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Abstract
Hedging a portfolio containing autocallable notes presents unique
challenges due to the complex risk profile of these financial instru-
ments. In addition to hedging, pricing these notes, particularly when
multiple underlying assets are involved, adds another layer of com-
plexity. Pricing autocallable notes involves intricate considerations
of various risk factors, including underlying assets, interest rates, and
volatility. Traditional pricing methods, such as sample-based Monte
Carlo simulations, are often time-consuming and impractical for long
maturities, particularly when there are multiple underlying assets.
In this paper, we explore autocallable structured notes with three
underlying assets and proposes a machine learning-based pricing
method that significantly improves efficiency, computing prices 250
times faster than traditional Monte Carlo simulation based method.

Additionally, we introduce a Distributional Reinforcement Learn-
ing (RL) algorithm to hedge a portfolio containing an autocallable
structured note. Our distributional RL based hedging strategy pro-
vides better 𝑃𝑛𝐿 compared to traditional Delta-neutral and Delta-
Gamma neutral hedging strategies. The 𝑉𝑎𝑅 5% (𝑃𝑛𝐿 value) of our
RL agent based hedging is 33.95, significantly outperforming both
the Delta neutral strategy, which has a 𝑉𝑎𝑅 5% of −0.04, and the
Delta-Gamma neutral strategy, which has a 𝑉𝑎𝑅 5% of 13.05. It also
provides the hedging action with better left tail 𝑃𝑛𝐿, such as 95%
and 99% value-at-risk (𝑉𝑎𝑅) and conditional value-at-risk (𝐶𝑉𝑎𝑅),
highlighting its potential for front-office hedging and risk manage-
ment.
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1 Introduction
Autocallable notes are complex structured financial products that
offer investors potential returns linked to the performance of an
underlying asset, such as a stock or index. These notes have an
embedded "autocall" feature, meaning they can be automatically
redeemed before maturity if the underlying asset meets certain pre-
defined conditions on specified observation dates. The complexity
of autocallable notes stems from their intricate components, such as
barrier levels, coupon payments, and conditions for early call. This
complexity poses significant challenges for both pricing and hedging,
necessitating advanced financial models and a thorough understand-
ing of market dynamics. The difficulty increases substantially when
autocallable notes involve multiple underlying assets, such as a com-
bination of different stocks or indices. The inclusion of potential
coupon and call features complicates the price profile over time.
Traditional methods for pricing, such as sample-based Monte Carlo
pricers, are often very time-consuming, especially for long maturi-
ties involving multiple underlying assets, making them impractical
in many cases. This inefficiency becomes especially problematic
in applications such as Reinforcement Learning based hedging and
XVA calculations. In Reinforcement Learning, where millions of
scenarios must be processed for effective hedging, traditional pricers
are too slow to be practical. Similarly, for XVA calculations, which
require the pricing of instruments hundreds of thousands of times,
using a faster pricer can significantly reduce computation time and
enhance efficiency.

Utilizing machine learning (ML) to approximate the original pric-
ing model offers substantial efficiency gains [18, 21, 24]. In this di-
rection, we propose a machine learning based approximation which
enhances efficiency, expediting the pricing process and significantly
reducing computational time compared to the traditional methods.
For instance, in a case of autocallable notes with three underlying
indexes, our ML approximator computes the pricing 250 times faster
than the Monte Carlo based pricer. Moreover, the execution time
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of the ML approximator remains constant regardless of the original
pricer’s complexity, resulting in significant efficiency enhancements.

In addition to the pricing, hedging a portfolio containing auto-
callable notes with multiple underlying assets is also crucial due
to the complex risk profile of these financial instruments. Effective
hedging strategies are necessary to ensure that the portfolio is pro-
tected against adverse price movements and unexpected changes in
asset correlations. Additionally, given the intricacies of pricing and
managing such notes, sophisticated hedging techniques are required
to optimize risk management and enhance portfolio performance
against adverse movements in the portfolio Gamma or index prices.

Employing RL techniques to hedge such portfolios allows for
the dynamic adjustment of hedging positions [17], ensuring that the
portfolio remains well-protected against market fluctuations while
capitalizing on the benefits of multiple underlying assets. Other re-
searchers have also demonstrated that RL is an attractive alternative
to traditional hedging strategies based on the performance and Profit
and Loss (𝑃𝑛𝐿) distribution as compared to the baseline Delta neu-
tral and Delta-Gamma neutral strategies [5, 6, 17]. Recently, [8]
proposed a method for pricing autocallable notes and employing a
Delta neutral strategy for hedging. They emphasized that hedging
autocallable notes is complex due to their intricate structure. Simi-
larly, we investigate autocallable structured note hedging using RL
which outperforms the traditional hedging strategies (Delta neutral
and Delta-Gamma neutral). In particular, the structured products,
which derive their value from multiple underlying assets, can offer
diversified risk exposure and enhanced return potential. Employing
RL techniques to hedge such portfolios allows for the dynamic ad-
justment of hedging positions, ensuring that the portfolio remains
well-protected against market fluctuations while capitalizing on the
benefits of multiple underlying assets.

In our approach, we use Distributed Distributional DDPG (D4PG)
algorithm with Quantile Regression (QR) to learn an optimal policy
for hedging. This distributional RL enables a more nuanced under-
standing of uncertainty and risk in the learning process. Specifically,
we use an American option as hedging instruments and the trained
RL agent selects an action which quantifies the amount of hedg-
ing that needs to be performed. We compare the 𝑃𝑛𝐿 distribution,
Value at Risk (𝑉𝑎𝑅), and Conditional Value at Risk (𝐶𝑉𝑎𝑅) of dif-
ferent hedging strategies and show that the RL algorithm not only
reduces 95%𝑉𝑎𝑅, but also makes the 𝑃𝑛𝐿 distribution more symmet-
ric and retains positive returns. By employing our advanced pricing
model, we have achieved very fast results, significantly reducing the
time required for pricing and eventually hedging. Furthermore, our
RL-based hedging strategy has demonstrated superior performance
compared to traditional Gamma hedging, offering more effective
risk mitigation. This approach not only simplifies the pricing and
hedging processes but also enhances the overall efficiency and ro-
bustness of portfolio management in the face of dynamic market
conditions. The prices for the underlying asset are generated using
Geometric Brownian motion (GBM) model.

Our specific contributions are the following:

(1) We propose a machine learning-based option pricer for au-
tocallable structured notes that computes prices 250 times
faster than traditional Monte Carlo methods.

(2) We use a distributional RL based method to hedge a portfolio
containing one short autocallable note under multiple under-
lying assets. We conduct a thorough analysis and introduce a
novel objective function which helps to learn a generalized
policy that beats traditional hedging strategies.

(3) We compare with traditional hedging strategies, including
Delta neutral and Delta-Gamma neutral and show that RL
hedging outperforms these traditional methods.

2 Related Works
In this section, we review the literature on option pricing and hedging
strategies specifically for exotic options and structured products.

2.1 Option Pricing
Monte Carlo simulation is the most commonly used technique in
derivatives pricing; however, it is often computationally intensive.
To accelerate the calculation process, machine learning (ML), deep
learning (DL), and neural networks (NN) are extensively employed
to approximate the original pricing function, which is also referred
to as model-free pricing [18, 21, 24]. In finance, regulators require
that these approximations be explainable and predictable. Unfor-
tunately, NN methods typically do not meet these criteria. Several
alternative methods satisfy the explainability and predictability con-
ditions while also being efficient, such as Fourier and Chebyshev
series expansions, Image rendering methods based on regular and
stochastic sampling, and Tensor decomposition methods [1].

In this paper, we apply the Chebyshev Tensor method as our
model-free machine learning pricing approach. This technique uses
Chebyshev polynomials and tensor decomposition to approximate
pricing functions efficiently and accurately. By leveraging these
mathematical tools, we achieve a stable, computationally efficient
method that meets regulatory requirements for explainability and pre-
dictability. Previous studies have shown the effectiveness of Cheby-
shev Tensor methods in financial applications such as FRTB compli-
ance and market risk assessment [20, 25–27], and our work aims to
further validate its utility in derivative pricing.

2.2 Hedging
In recent years, Reinforcement Learning (RL) methods have been
extensively applied in finance for a variety of purposes, including
optimal trade execution [28], credit pricing [16], market making [11],
learning exercise policies for American options [19], and optimal
hedging [6, 12, 17, 23].

Hedging portfolios that include exotic options is a significant
research challenge requiring sequential decision-making to periodi-
cally rebalance the portfolio. This has drawn interest in RL-based
solutions, which have shown superior performance compared to
traditional hedging strategies. For instance, [17] utilized Deep Q-
learning and Proximal Policy Optimization (PPO) algorithms to
develop a policy for option replication considering market frictions,
capable of handling various strike prices. [13] employed RL for delta
hedging, taking into account transaction costs, option maturity, and
hedging frequency, and applied transfer learning to adapt a policy
trained on simulated data to real data scenarios. [6] and [12] applied
the Deep Deterministic Policy Gradient (DDPG) algorithm to hedge
under SABR and Heston volatility models, respectively.
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Table 1: The details of the Autocallable coupon note structure
on U.S. Select Regional Banks Index (AR).

Variable Value
Reference Index The worst performing of

asset A, asset B and asset C
Initial Price A:$382, B:$494, C:$142

Term (0% fee) 4 years
Coupon Frequency Quarterly

Coupon Rate 2.275%
Coupon Barrier -25.00%

Autocall Frequency Quarterly
Call Barrier 0.00%

Contingent Principal
Protection -30.00%

Additionally, [22] trained an RL algorithm on real intraday op-
tions data spanning six years for the 𝑆&𝑃500 index. [4] addressed
hedging over-the-counter derivatives using RL under market fric-
tions like trading costs and liquidity constraints. [10] explored RL
for CVA hedging. The literature extensively covers RL-based se-
quential decision-making for European [6, 14, 17], American [19],
and Barrier options [7], demonstrating that RL is a compelling al-
ternative to traditional hedging strategies based on performance and
𝑃𝑛𝐿 distribution. However, there has been limited focus on hedging
high-risk options such as autocallable notes. Recently, [8] introduced
a method for pricing Autocallable notes and employing a Delta neu-
tral strategy for hedging, highlighting the complexity due to multiple
barriers and the high cost of Delta hedging near these barriers.

Our approach involves training an RL policy to hedge a 4-year
maturity autocallable note portfolio with three underlying assets.
We evaluate the RL agent’s performance under varying transaction
costs and with different hedging instruments, demonstrating that the
RL agent achieves a better 𝑃𝑛𝐿 distribution compared to traditional
hedging strategies.

3 Autocallable Note Pricing
Autocallable notes are structured products that provide the investors
with an opportunity to earn extra interest in terms of coupon pay-
ments if the underlying asset price closes above a specific threshold
on periodic observation dates (barriers). In addition, the note will be
autocalled or redeemed on an observation date if asset price return is
above or equal to autocall barrier. Otherwise, it may offer contingent
downside protection when the notes are held to maturity.

An autocallable note also provides principal protection at maturity
if the Reference Index Return is greater than or equal to -30% on
the final valuation date. Table 1 shows the note structure that we
used in our experiments. We use our ML pricer to simulate the note
price. The note greeks (𝐷𝑒𝑙𝑡𝑎 and 𝐺𝑎𝑚𝑚𝑎) are generated using the
finite difference method. The note greeks change significantly near
the observation date, making it difficult to maintain a Delta/Gamma
neutral portfolio (as also highlighted in [8]).

Pricing autocallable notes involves intricate considerations of
various risk factors, such as underlying assets, interest rates, and

volatility. The inclusion of potential coupon and call features com-
plicates the price profile over time (for example, see Figures ?? for
the price grid at different call time). Traditional pricing models like
Monte Carlo Simulation are time-consuming, hindering applications
like Reinforcement Learning or XVA calculations. Utilizing machine
learning (ML) to approximate the original pricing model offers sub-
stantial efficiency gains. For instance, in a case of autocallable Notes
with three underlying indexes, the ML approximator executes the
task 250 times faster than the original pricer. Moreover, the execu-
tion time of the ML approximator remains constant regardless of
the original pricer’s complexity, resulting in significant efficiency
enhancements.

In this paper, we apply Chebyshev Tensor [20, 25–27] as the
model-free machine learning pricing approach. Chebyshev inter-
polants possess two unique mathematical properties:

(1) They converge exponentially to analytic functions.
(2) Algorithms exist that ensure a fast and numerically stable

evaluation of approximation functions.

Chebyshev points, also known as Chebyshev nodes, are specific
points in the interval [−1, 1] used in polynomial interpolation. They
are particularly important because they minimize the problem of
Runge phenomenon, which is the oscillatory behavior seen at the
edges of an interval when using high-degree polynomials to approxi-
mate functions.

The 𝑛 Chebyshev points of the first kind are defined as:

𝑥𝑖 = cos
(
2𝑖 − 1
2𝑛

𝜋

)
for 𝑖 = 1, 2, . . . , 𝑛 (1)

These points are the roots of the Chebyshev polynomial of the
first kind, 𝑇𝑛 (𝑥) = cos(𝑛 arccos(𝑥)

The most efficient way to evaluate Chebyshev interpolants and
their derivatives is through the barycentric formula[20, 25]. Let
𝑥0, . . . , 𝑥𝑛 be the first 𝑛 +1 Chebyshev points and let 𝑓0, . . . , 𝑓𝑛 be the
values of 𝑓 (the original derivative pricing functions) on these points.
Then the polynomial interpolant 𝑃𝑛 to 𝑓 on 𝑥0, . . . , 𝑥𝑛 is given by

𝑃𝑛 (𝑥) =
∑𝑛
𝑖=0 𝜎

(−1)𝑖 𝑓𝑖
𝑥−𝑥𝑖∑𝑛

𝑖=0 𝜎
(−1)𝑖
𝑥−𝑥𝑖

(2)

Where 𝑃𝑛 (𝑥) = 𝑓𝑗 if 𝑥 = 𝑥 𝑗 . The symbol 𝜎 in equation 2 means
the summation is multiplied by 0.5, when 𝑖 = 0, 𝑛.

For the autocallable note, let the risk factors (underlying asset
prices, volatility, and interest rates) be the variables 𝑥 . By taking n
Chebyshev points and evaluating the prices 𝑓0, . . . , 𝑓𝑛 at these points
using the Monte Carlo simulation method, we can train a Chebyshev
Tensor via the barycentric method. However, as illustrated in Figure
1, the price of an Autocallable note is not differentiable in the time to
maturity dimension due to the autocall feature and potential coupons.
Therefore, we cannot use the time to maturity as a variable; instead,
we should fix the date and create a Chebyshev Tensor for each day.

4 Hedging as an MDP
In this section, we will describe the problem formulation using
Markov Decision Process (MDP) using which we train a reinforce-
ment learning based agent to achieve hedging objective.
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4.1 Problem Formulation as an MDP
The RL Pipeline uses a MDP (Markov Decision Process) to frame
the problem of our RL agent interacting with the environment to
maximize a potential reward. An MDP is defined as a tuple of
elements (𝑆,A, 𝑓 , 𝑅,𝛾), where 𝑆 is the state space, A is the action
space, 𝑓 (𝑠𝑡 , 𝑠𝑡+1) is the state transition function, 𝑅(𝑠, 𝑎) is the reward
function and 𝛾 is the discount factor. We formulate a finite horizon
discounted sum reward problem where the horizon length is the
maturity of the option (4 year in our experiments).
The individual elements of the MDP are described below:
State: The state represents the information available to the agent at
each time step. In the current hedging framework, the state at time 𝑡
is given by 𝑠𝑡 = (𝑥𝑡 , 𝛾𝑝 , 𝜏), where 𝑥𝑡 contains the stock price of all
underlying indices/assets, 𝛾𝑝 is the portfolio gamma, and 𝜏 indicates
the time remaining until the next call date.
Action: RL hedging agent’s action at any instant is the proportion
of maximum hedging that can be done. For example, if the selected
action is 0.2, then the RL agent takes a position equal to the 20% of
the maximum hedge allowed. This proportion is then translated into
actual number of units in the hedging instrument and those units are
used to simulate the portfolio for the next time step.
Reward: Reward is defined as the following:

𝑅𝑖 = −𝜅 |𝑉𝑖𝐻𝑖 | + (𝑃−𝑖 − 𝑃+𝑖−1) (3)

where 𝑉𝑖 is the value of the option (hedging instrument) at time
𝑖Δ𝑡 , 𝐻𝑖 is the position taken in the hedging instrument, 𝜅 is the
transaction cost, 𝑃−

𝑖
is portfolio’s market value before time 𝑖Δ𝑡 , 𝑃+

𝑖
is portfolio’s market value after time 𝑖Δ𝑡 , −𝜅 |𝑉𝑖𝐻𝑖 | is the transaction
cost paid at time 𝑖, and (𝑃−

𝑖
− 𝑃+

𝑖−1) is the change in portfolio value
from time (𝑖 − 1)Δ𝑡 to 𝑖Δ𝑡 .
State transition function: With 𝑠𝑡 as the state at time 𝑡 , the policy
selects an action 𝑎𝑡 ∈ [0, 1]. The next state is updated based on the
amount of hedging done at the current instant. The updated gamma
of the portfolio and the new underlying price are then used in the
state variable at the next instant.

Using the above MDP, an RL environment was created which
gives the next state of the environment based on the actions selected
by the RL agent. At any given time, the RL agent interacts with the
environment simulator by providing an action and the environment
returns the next state and the reward.

4.2 Distributional Reinforcement Learning
We use Distributional Reinforcement Learning (DRL) in our pro-
posal. DRL is an advanced paradigm which focuses on modeling
the entire distribution of returns, rather than solely estimating the
expected value. In DRL, the return 𝐺𝑡 (total reward received by the
agent in an episode) is modelled as a distribution 𝑍𝜋

𝑡 for a fixed
policy 𝜋 . The return distribution provides more information and
is more robust as compared to only the expectation. Classical RL
tries to minimize the error between two expectations, expressed
as E𝑠,𝑎,𝑠′ [{𝑟 (𝑠, 𝑎) + 𝛾𝑚𝑎𝑥𝑎′𝑄 (𝑠 ′ , 𝑎′ ) − 𝑄 (𝑠, 𝑎)}2], where 𝑄 (𝑠, 𝑎) is
the output of the policy and 𝑟 (𝑠, 𝑎) + 𝛾𝑚𝑎𝑥𝑎′𝑄 (𝑠 ′ , 𝑎′ ) is the target
function. In contrast, in DRL, the objective is to minimize a distribu-
tional error, which is a distance between the two full distributions
(the target PMF and the predicted PMF) [3, 9].

Figure 1: Model architecture of Distributed Distributional
DDPG (D4PG) with Quantile Regression (QR).

The optimal action is selected from the 𝑄 value function:

𝑎∗ = argmax
𝑎
′

𝑄 (𝑠
′
, 𝑎

′
) = argmax

𝑎
′
E[𝑍 (𝑠

′
, 𝑎

′
)] (4)

In DRL, the distribution of returns is represented as a PMF (Prob-
ability Mass Function) and generally, the probabilities are assigned
to discrete values that denote the possible outcome of the RL agent.
Let’s say we have a neural network that predicts this PMF by tak-
ing a state 𝑠 and returning a distribution 𝑍 (𝑠, 𝑎) for each action.
Categorical distributions are commonly employed to model these
distributions in some DRL algorithms like C-51 [3] where the action
distribution is modelled using a finite number of possible outcomes.
In C-51, probabilities are estimated to these fixed locations. We
employ Quantile Regression (QR) to learn the distribution of returns
and unlike C-51, QR estimates the quantile locations where each
quantile corresponds to a fixed uniform probability. That means, QR
provides the flexibility to stochastically adjust the quantile locations
in place of fixed locations in C-51. QR is a popular approach in DRL
which is combined with several distributional RL algorithms such as
in QR-DQN [9]. QR-DQN uses quantile regression with traditional
DQN to learn a distribution of outcomes.

4.2.1 Distributed Distributional DDPG (D4PG). We use the
Deep Deterministic Policy Gradients (DDPG) algorithm [2] to learn
the underlying distribution of returns and the optimal policy for
hedging action selection. DDPG is an Actor-Critic based method
which helps to learn a policy in continuous action space. D4PG is a
distributional RL algorithm which estimates the distribution of the
return (unlike the mean in classical RL). Figure 1 shows the model
architecture that we utilized in our experiments to train the D4PG
algorithm. There are three components:

(1) The trading environment: One essential component of the
architecture is the trading environment, which simulates the
stock and option prices. It tracks how the portfolio evolves
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(a) Price grid of ML Approximator (three
underlying)

(b) Error(%) of ML Approximator vs.
Monte Carlo pricer

(c) Price comparison of ML approxima-
tor and Monte Carlo Simulation

Figure 2: Figure shows the price grid of the autocallable note with three underlying assets and the price comparison with Monte Carlo
method.

over time based on the agent’s hedging position, market dy-
namics (e.g., SABR volatility), and the arrival of the client
options. At any particular time, the environment receives the
hedging action and returns the next state and the reward.

(2) The actor neural network (also known as policy network)
implements the hedging strategy. It is a neural network of size
(256, 256, 256, 1). At any instant 𝑡 , it takes as input a state 𝑠𝑡
and outputs the amount of hedging (𝑎𝑡 ) that the agent should
perform. The objective function for training the agent’s neural
network is 99%𝑉𝑎𝑅.

(3) The critic neural network takes as inputs a state, 𝑠𝑡 , and the
action from the actor’s output, 𝑎𝑡 . Its role is to (a) estimate the
distribution of the trading loss at the end of the hedging period,
𝑍 (𝑠𝑡 , 𝑎𝑡 ), when taking action 𝑎𝑡 in state 𝑠𝑡 , and (b) compute
gradients that minimize the objective function 𝑓 (𝑍 (𝑠𝑡 , 𝑎𝑡 )).
We use a neural network of size (512, 512, 256, 1) as the critic
network. We use the reward from the environment to train the
agent’s critic network.

We utilize quantile regression (QR) [9] in combination with D4PG
to approximate the distribution 𝑍 (𝑠, 𝑎) with the help of quantiles
at the output of critic neural network. We use 100 quantiles in our
experiments for D4PG policy learning. Each quantile has a fixed
probability but the location is stochastically adjusted during training.
The policy output and the target distribution are used to compute
the error in the policy output. Wasserstein distance [9] is used as
the loss function to estimate the quantiles which is later used to
backpropagate the gradients using Adam optimizer.

5 Experiments and Results
In this section, we will describe the different empirical analysis that
we performed to get the pricing faster, hedging on autocallable notes
with three underlying assets, along with the experimental setup and
the performance metrics.

5.1 Experimental Setup
We are hedging a trader’s portfolio which contains risky options - the
trader hedges the portfolio by adding other instruments to a hedging

Figure 3: The 𝑃𝑛𝐿 distribution of the traditional Delta neutral
and Delta-Gamma neutral hedging strategies and the 𝑃𝑛𝐿 of
RL agent based hedging strategy on a portfolio containing auto-
callable note with 4 year maturity with three underlying assets.

portfolio at every hedging instant. In other words, the trader rebal-
ances the portfolio at every Δ𝑡 time interval for hedging. The hedging
action involves selecting the percentage of 𝐺𝑎𝑚𝑚𝑎 to hedge at any
rebalancing instant. For example, in the experiments for autocallable
note hedging, the trader’s portfolio contains one short Autocallable
note with 4 years of maturity and featuring three underlying indices
and 2% transaction cost. The trader also keeps a hedging portfolio
and at every hedging instant (Δ𝑡 = 1 month), the trader adds an
at-the-money American call and put option to the hedging portfolio
for hedging. A hedging strategy decides how much hedging needs to
be performed based on the different portfolio Greeks such as 𝐷𝑒𝑙𝑡𝑎,
𝐺𝑎𝑚𝑚𝑎, etc. 𝐷𝑒𝑙𝑡𝑎 tells how much the option’s price will change
for a one-point change in the underlying asset’s price, while𝐺𝑎𝑚𝑚𝑎

tells how much the 𝐷𝑒𝑙𝑡𝑎 will change for a one-point change in the
underlying asset’s price. Trader’s use these Greeks to manage risk
and make informed decisions. For example, a Delta neutral strate-
gies hedges the entire 𝐷𝑒𝑙𝑡𝑎 of the portfolio by creating a position
with a 𝐷𝑒𝑙𝑡𝑎 value of zero, or very close to zero. We propose a
RL based hedging strategy which learns to decide the percentage
of the 𝐺𝑎𝑚𝑚𝑎 that needs to be hedged. We compare the hedging
performance of our RL agent with traditional hedging strategies,
Delta neutral and Delta-Gamma neutral.
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Table 2: The table compares the performance of the Delta neutral, Delta-Gamma neutral, and RL agent on a portfolio of autocallable
note (having three underlying assets) with American options (Put and Call) as hedging instruments with 2% transaction cost.
Note: 𝑉𝑎𝑅 numbers are actual 𝑃𝑛𝐿 and not the opposite side.

Strategy 99%VaR 99%CVaR 95%VaR 95%CVaR 5%𝑉𝑎𝑅 5%𝐶𝑉𝑎𝑅 1%VaR 1%CVaR
Delta Neutral -28.1 -30.82 -21.62 -25.55 -0.04 -7.87 10.82 -7.38

Delta-Gamma Neutral -26.05 -33.59 -15.38 -22.58 13.05 -4.22 26.78 -3.32
RL [Am. Put & Call] -11.65 -15.46 -6.35 -9.67 33.95 2.76 50.36 4.27

Table 3: Runtime comparison: Machine Learning Approximator
VS. Monte Carlo Simulation based Pricer (over 100,000 paths).

Instrument MC Pricer ML Efficiency
Gain

Autocall Note
(7 years,

1 Underlying Asset) 1.87 sec 1e-5 sec 190,000x
Autocall Note

(4 years,
3 Underlying Asset) 1.25 sec 5e-3 sec 250x

Our RL agent uses the D4PG (Distributed Distributional DDPG)
algorithm with quantile regression to learn an optimal policy. The
RL agent selects an optimal action using the learned policy from
interval [0, 1]. The RL agent is trained for 40, 000 episodes (where
one episode is one stock path till note maturity or auto-call). To
compare the performance for all methods, we generate an additional
5000 episodes on which KPI metrics are reported. The prices for the
underlying asset are generated using Geometric Brownian motion
(GBM) model. We evaluate the hedging performance using 95%
percentile of the value-at-risk (𝑉𝑎𝑅) and conditional value-at-risk
(𝐶𝑉𝑎𝑅) distribution.
Implementation: We implemented the D4PG algorithm using the
ACME library from Deepmind [15] with Tensorflow backend. We
utilized a server with 64-GBs of RAM with 16-CPU cores for train-
ing. To train the model, we employ a deep neural network with
three hidden layers with Adam optimizer for both actor and critic
networks. The subsequent sections present the performance on the
optimal parameters.

5.2 Note Pricing
Figure 2a illustrates the price grid for the first three months of an
autocallable note with a four-year maturity, using multiple underly-
ing assets. This figure highlights how the prices evolve over time
for the given period. In figure 2c, we present a comparison of the
price estimations obtained using machine learning (ML) approxi-
mation (Chebyshev Tensor) and the traditional Monte Carlo (MC)
simulation method. The maximum absolute error that we encoun-
tered in our experiments is 0.43% between both the pricers. This
comparison shows that the ML method can approximate the original
pricing function (MC) very well. There is no significant bias in their
errors. Figure 2b depicts the error percentage in pricing between the
ML approximation and the Monte Carlo method, specifically for an
autocallable note with three underlying assets. This figure quantifies

the pricing discrepancies and provides insights into the performance
of the ML approximation relative to the Monte Carlo simulation.

Table 3 provides a detailed comparison of computation times for
pricing a four-year autocallable note with three underlying assets.
This comparison is essential for understanding how traditional meth-
ods like Monte Carlo simulations, which can be computationally
intensive, stack up against more modern approaches such as ma-
chine learning-based models that promise faster computation. By
evaluating these trade-offs on accuracy and computational efficiency,
practitioners can make informed decisions on selecting the appropri-
ate pricing method based on their needs for accuracy, computational
resources, and operational efficiency.

5.3 RL Agent for Hedging
In this experiment, we hedge a trader’s portfolio containing one short
autocallable note with a maturity of 4 years and multiple underlying
assets. We use American call and put options as hedging instrument
which are added at every hedging instant based on the action selected
by the RL agent. For this experiment, the state at any time instant
𝑡 contains the stock price (𝑥𝑡 , portfolio gamma, and the days to
the next call date). The trader rebalances the portfolio every month
by adding one American option to the hedging portfolio, both call
and put option are added to eliminate the need to rebalance the
𝐷𝑒𝑙𝑡𝑎 exposure in the portfolio. We choose Δ𝑡 = 1 month as the
rebalancing interval because of the longer maturity time of 4 years
for the autocallable note. The hedging agent strategy decides how
much hedging needs to be performed in terms of the Gamma value
of the portfolio. We use 𝑉𝑎𝑅99% as the objective function as the
reward to the RL agent which then selects an action for the amount
of hedging that needs to be performed. The RL agent generated
the best payoff as compared to the traditional hedging strategies
(Delta-neutral and Delta-Gamma neutral). The figure 3 shows the
𝑃𝑛𝐿 distribution of the three hedging strategies and RL agent is
found to be performing best than the other strategies. Table 2 shows
the 𝑉𝑎𝑅 − 5%, 𝐶𝑉𝑎𝑅 − 5%, 𝑉𝑎𝑅 − 95%, 𝐶𝑉𝑎𝑅 − 95% of the 𝑃𝑛𝐿

distribution to compare the values at different percentiles of the 𝑃𝑛𝐿
distribution. Please note that the values in the table are for the actual
𝑃𝑛𝐿 distribution. The 𝑃𝑛𝐿 for 𝑉𝑎𝑅 − 5% of the RL agent is 33.95,
significantly outperforming both the Delta-neutral strategy, which
has a 𝑉𝑎𝑅 of −0.04, and the Delta-Gamma-neutral strategy, which
has a 𝑉𝑎𝑅 of 13.05. Additionally, the 𝑉𝑎𝑅 − 95% of the RL agent
is −6.35, which is also better compared to the Delta-neutral and
Delta-Gamma-neutral strategies. Overall, the RL agent shifts the
𝑃𝑛𝐿 distribution positively. From the table and the figure, we can
claim that the RL agent provides substantial improvement in the 𝑃𝑛𝐿
by hedging of the portfolio.
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6 Conclusion
We demonstrated that pricing autocallable structured notes using
traditional Monte Carlo simulations is computationally expensive.
To address this, we proposed a machine learning option pricing
method with Chebyshev tensors that achieves pricing 250 times faster.
Additionally, we introduced a distributional reinforcement learning
(RL) method for hedging portfolios of structured products, which
significantly improves PnL compared to traditional Delta-neutral
and Delta-Gamma strategies. Our RL agent achieves a 𝑉𝑎𝑅 of 33.95
at 5%, while Delta-neutral and Delta-Gamma strategies yield −0.04
and 13.05, respectively, highlighting the RL agent’s superiority.
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