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Machine-learning interatomic potential models based on graph neural network architectures have the potential to make
atomistic materials modeling widely accessible due to their computational efficiency, scalability, and broad applica-
bility. The training datasets for many such models are derived from density-functional theory calculations, typically
using a semilocal exchange-correlation functional. As a result, long-range interactions such as London dispersion are
often missing in these models. We investigate whether this missing component can be addressed by combining a graph
deep learning potential with semiempirical dispersion models. We assess this combination by deriving the equations
of state for layered pnictogen chalcohalides BiTeBr and BiTeI and performing crystal structure optimizations for a
broader set of V-VI-VII compounds with various stoichiometries, many of which possess van der Waals gaps. We char-
acterize the optimized crystal structures by calculating their X-ray diffraction patterns and radial distribution function
histograms, which are also used to compute Earth mover’s distances to quantify the dissimilarity between the optimized
and corresponding experimental structures. We find that dispersion-corrected graph deep learning potentials generally
(though not universally) provide a more realistic description of these compounds due to the inclusion of van der Waals
attractions. In particular, their use results in systematic improvements in predicting not only the van der Waals gap but
also the layer thickness in layered V-VI-VII compounds. Our results demonstrate that the combined potentials studied
here, derived from a straightforward approach that neither requires fine-tuning the training nor refitting the potential
parameters, can significantly improve the description of layered polar crystals.

I. INTRODUCTION

In atomistic simulation of materials, machine-learning in-
teratomic potentials (MLIPs) offer a cost-effective approach
akin to traditional empirical analytical potentials, yet they can
deliver first-principles-level accuracy enabling realistic simu-
lations over extensive time and length scales.1 However, like
empirical potentials, the applicability of MLIPs can be hin-
dered by transferability issues, particularly when training is
restricted to a narrow chemical space with limited data se-
lection. Addressing this challenge has recently become a fo-
cal point of research, encouraging multiple research groups
to develop universal MLIP models using graph neural net-
work architectures, such as M3GNet (materials 3-body graph
network),2 PFP (preferred potential),3 ALIGNN-FF (atom-
istic line graph neural network-based force field),4 CHGNet
(crystal hamiltonian graph neural network),5 GNoME (graph
networks for materials exploration),6 MACE-MP-0,7 and
MatterSim.8 These models are trained on vast datasets of
atomic configurations, generated through crystal structure op-
timizations performed via density-functional theory (DFT)
calculations, involving a multitude of chemical elements from
many rows and columns of the periodic table.

The development of MLIP models with general applica-
bility comparable to DFT-based methods has the potential to
make atomistic materials modeling widely accessible, thanks
to the computational efficiency and scalability of MLIPs.
Achieving this level of generality and transferability across
numerous chemical elements in combination is quite unlikely
with any class of analytical potentials.9 On the other hand,

the training datasets for many MLIP models are typically
derived from DFT calculations using a semilocal exchange-
correlation functional, i.e., the functional of Perdew, Burke,
and Ernzerhof (PBE).10 Consequently, these models largely
lack long-range interactions. To address this, some mod-
els (PFP and MACE-MP-0) are supplemented with an addi-
tive dispersion correction (DFT-D3) potential11,12 to account
for London dispersion interactions. Despite being weaker
than ionic or covalent bonds, dispersion interactions provide
attractive van der Waals forces between the layers in lay-
ered crystals, cumulatively determining the stability of the
crystal. The inclusion of London dispersion is essential not
only for crystal structure optimization but also for the predic-
tion of anisotropy, compressibility, and indirectly, electronic
structure, particularly for layered polar compounds such as
BiTeI.13 Furthermore, London dispersion is critical for devel-
oping a universal, broadly applicable potential, even for non-
layered crystals, as long as the possibility of a phase transition
to a layered phase cannot be excluded a priori.

In this paper, we combine the M3GNet potential2 (trained
to reproduce PBE/PBE+U energies, forces, and stresses)
with the DFT-D311,12 and DFT-D414 models into dispersion-
corrected potentials, termed M3GNet+D3 and M3GNet+D4,
respectively. We explore whether these combined potentials
provide an adequate physical description of pnictogen chal-
cohalides MVQVIXVII, where M = As, Sb, Bi; Q = O, S, Se,
Te; X = F, Cl, Br, I. First, we focus on predicting the equa-
tion of state (EOS) of BiTeI and BiTeBr, which are poorly de-
scribed by PBE but are well described15,16 using the PBEsol
functional.17 We therefore investigate whether a MLIP trained
to reproduce PBE results can be enhanced with dispersion cor-
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rections to achieve accuracy comparable to that of PBEsol.
Second, we perform crystal structure optimizations, using
the M3GNet, M3GNet+D3, and M3GNet+D4 potentials, for
a set of V-VI-VII compounds with various stoichiometries,
for which experimental crystal structures are available in the
Crystallography Open Database (COD).18 Following these
optimizations, we calculate the X-ray diffraction (XRD) pat-
terns and radial distribution function (RDF) histograms for
the optimized and corresponding experimental crystal struc-
tures. The Earth mover’s distance (EMD)19 between the opti-
mized and experimental structures is then computed from the
XRD patterns and separately from the RDF histograms. This
approach quantifies the dissimilarity of the optimized struc-
ture relative to the experimental structure using two distinct
EMDs: one capturing differences in long-range periodicity
and interplanar distances and another that is more sensitive
to local atomic environments and bond lengths.

Our interest in V-VI-VII compounds is two-fold. First,
they are promising candidates for energy applications due
to their appealing electronic and optical properties, along
with their wide compositional variety and tunability.20–22 En-
abling cost-effective and realistic atomistic simulation of these
compounds and their derived systems via M3GNet+D3 or
M3GNet+D4 would facilitate theoretical studies for under-
standing their fundamental properties and optimizing their
performance in applications. Second, many of these com-
pounds possess van der Waals (vdW) gaps, either between
planes or chains in their crystal structures. The effect of pres-
sure on the atomic structure of layered V-VI-VII compounds
depends strongly on the reduction of the vdW gap. Predicting
the lattice parameters of layered crystals with vdW gaps (and
their variation under pressure) using the PBE functional,10 or
even a nonempirical van der Waals functional like optB86b-
vdW,23 can yield inaccurate, or even unrealistic, results.15 Ac-
cordingly, crystal structure optimizations for pnictogen chal-
cohalides offer a sensible case study for assessing the impact
of adding London dispersion corrections to a MLIP.

Our results indicate that the dispersion-corrected M3GNet
potentials generally (although not universally) provide a sub-
stantially improved description of the crystal structures of
pnictogen chalcohalides. The improvement, however, be-
comes less effective for compressed structures, likely because
the M3GNet potential was primarily trained on low-energy
configurations, which could hinder the broader applicability
of the dispersion-corrected M3GNet potentials. Nonetheless,
while M3GNet substantially overestimates the unit cell vol-
ume, this error becomes a slight underestimation when D3 and
D4 corrections are included. Importantly, incorporating Lon-
don dispersion corrections into the M3GNet potential leads to
systematic improvements in predicting not only the van der
Waals gap but also layer thickness in layered V-VI-VII com-
pounds. Notably, these significant improvements are achieved
with a simple combination that does not require fine-tuning
the training process or refitting any potential parameters.

The rest of the paper is organized as follows: Section II
describes the method of calculation and summarizes the com-
putational details. Section III discusses the calculation results,
and concluding remarks are presented in Sec. IV.

II. METHOD

We combined the M3GNet potential2 with the DFT-D311,12

and DFT-D414 models within the framework of the atomic
simulation environment (ASE),25 using the available libraries
and APIs: MatGL (versions 1.1.2 and 1.1.3),26 Simple
DFT-D3 (versions 1.0.0 and 1.1.0),27 and DFT-D4 (version
3.6.0).28 From the MatGL library, we utilized the pre-trained
model M3GNet-MP-2021.2.8-PES. The default values of the
DFT-D3(BJ) and DFT-D4 parameters for PBE were used.12,14

A sensible combination of the M3GNet potential with the
DFT-D3(PBE) and DFT-D4(PBE) models is warranted only
if the error in M3GNet energies, relative to PBE energies, is
significantly smaller than the dispersion energy contributions.
A large-scale benchmark study2 on M3GNet reports a mean
absolute error (MAE) of 35 meV per atom in the M3GNet
energies, relative to the corresponding PBE/PBE+U energies.
This error is notably reduced to MAE = 12 meV per atom
when considering the subset of MVQVIXVII compounds stud-
ied here. We also provide a plot of the M3GNet energies
EM3GNet (obtained from the companion website29 of Ref. 2)
versus the PBE energies EPBE (retrieved from the Materi-
als Project30 via the MPRester API client) as supplementary
material, which reveals the linear correlation EM3GNet/N =
0.995(EPBE/N)−0.014 meV, with N denoting the number of
atoms in the compound’s unit cell. On the other hand, the dis-
persion energy contributions are in the range of ∼ 100–300
meV per atom, as will be seen in Sec. III, justifying the addi-
tion of D3 and D4 corrections to M3GNet.

We performed crystal structure optimizations that allowed
both the unit cell vectors and ionic positions to relax, as well
as fixed-volume optimizations to obtain EOSs. The optimiza-
tions used experimental structures downloaded from the COD
website18 as CIFs (crystallographic information files)31 for
the initial configurations. Using functions from ASE (version
3.23.0),25 we refined the symmetry of the initial structures
and applied constraints to preserve space group symmetry dur-
ing the optimizations. In addition, the FrechetCellFilter
class was used to apply the convergence criterion (set by a
single parameter fmax in ASE) simultaneously to the atomic
forces and unit cell stresses. To ensure convergence, we used
ASE optimizers based on the FIRE (fast inertial relaxation
engine)32 and L-BFGS (limited-memory Broyden-Fletcher-
Goldfarb-Shanno)33 algorithms in succession. We began with
structure optimization using FIRE, setting fmax = 0.05 and
the initial time step dt= 1.0, and allowing a maximum num-
ber of steps steps= 1000. We then switched to L-BFGS and
refined the optimization with fmax= 0.02 and steps= 100.
Finally, we switched back to FIRE with fmax = 0.01, dt =
0.5, and steps= 2000. This strategy resulted in a fairly rea-
sonable accuracy with the following values for the maximum
residual atomic force and stress components ( fmax and σmax, re-
spectively) in the optimized structures: fmax ≤ 9 (16) meV/Å
for the optimized crystal structures used to obtain the EOS
of BiTeI (BiTeBr); fmax ≤ 10 meV/Å and σmax ≤ 0.11 GPa for
the rest of the optimized crystal structures, regardless of the
potential used.

Following the crystal structure optimizations, we calculated
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FIG. 1. The plots of energy E versus the volume V for BiTeBr (a) and BiTeI (c). The black solid curves represent fourth-order Birch-
Murnaghan (BM) fits. The corresponding volume versus pressure P curves are shown in (b) and (d). For BiTeBr, the experimental and PBEsol
curves are reproduced using third-order BM fit parameters reported in Ref. 16. For BiTeI, the PBEsol, PBE-D2, and PBE curves are taken
from Refs. 13 and 15, while the experimental curve represents data from Ref. 24.

the XRD patterns and RDF histograms from the CIF files of
the optimized and experimental crystal structures using the
functions get_rdf from ASE25 and XRDCalculator from
the Python Materials Genomics (pymatgen) library34 (version
2024.5.1), respectively. The Earth mover’s distance EMDXRD
(EMDRDF) between the XRD patterns (RDF histograms) of
the optimized and corresponding experimental structures are
computed using the function wasserstein_distance from
SciPy.35 We prefer to use the EMD, which measures the
minimum total “work” required to transform one distribu-
tion into another by treating intensity values as mass, among
other choices of dissimilarity measures,19 because it does
not require the peaks to occur in the same positions in the
two distributions being compared and accounts for intensi-
ties. Higher values of EMDXRD (probing differences in in-
terplanar distances) and EMDRDF (probing differences in in-
teratomic distances) indicate greater dissimilarity between the
optimized and experimental structures, while lower values
indicate greater similarity. This overall approach for struc-
ture comparison is adopted because it is easily automated via
scripting, does not require significant human intervention, and
can be easily scaled to much larger datasets.

Among the CIF files obtained from the COD, we ex-
cluded the ones with partial site occupancies, and the ones
where atoms were unrealistically close to each other, us-
ing PyCifRW36 (version 4.4.6) parser and functions from
pymatgen.34 Furthermore, for the compounds SbSBr, SbSI,
Sb4O5Cl2, Sb4O5Br2, BiOF, BiOCl, BiOBr, Bi4O5Br2, BiOI,
BiSCl, among multiple CIF files belonging to the same com-
pound with the same space group, only the one from the most
recent experimental determination was used. A list of the re-

maining 48 crystal structures, along with clickable links to
the information cards for entries on the COD website,18 is
provided as supplementary material. Note that some crystal
structures in the COD may require further experimental re-
finement, as distinguishing chalcogens from halogens can be
challenging, particularly in compounds with large unit cells
or in the presence of disorder or non-stoichiometry, where de-
termining internal coordinates becomes increasingly complex.
Nevertheless, since our focus is on identifying general charac-
teristics, we opted to use structures from the COD rather than
manually collecting this data, which also aligns well with au-
tomation.

III. RESULTS AND DISCUSSION

Earlier DFT calculations for layered metal tellurohalides13

revealed that the energy versus volume curve calculated us-
ing the PBE functional is anomalously flat near the equilib-
rium volume, particularly for volumes larger than the equilib-
rium value. Additionally, the EOS calculated with PBE ex-
hibits an excessively steep slope in the low-pressure region.
We find that these issues are also present in the M3GNet
calculations for BiTeBr [Figs. 1(a) and 1(b)] as well as for
BiTeI [Figs. 1(c) and 1(d)]. This outcome is as expected
since M3GNet was trained to reproduce PBE energies, forces,
and stresses. The comparison of M3GNet and PBE curves
in Fig. 1(c) shows that the flatness of the M3GNet curve is
inherited directly from PBE. On the other hand, the M3GNet
curve deviates from the PBE curve in the compression regime,
leading to differences in the compressibility curves shown



4

TABLE I. The calculated and experimental values of the bulk mod-
ulus K0 and its pressure derivatives K′

0 and K′′
0 of BiTeI and BiTeBr.

Method K0 K′
0 K′′

0 Reference
(GPa) (GPa−1) (GPa−1)

BiTeI
M3GNet+D3 15.3 11.1 −2.6
M3GNet+D4 17.6 10.6 −2.2
DFT/PBEsol 17.0 12.4 −7.2 15
Experiment 20.5 7.6 24, 13

BiTeBr
M3GNet+D3 20.0 11.5 −4.9
M3GNet+D4 22.1 10.9 −4.0
DFT/PBEsol 21 8.1 16
Experiment 20 11 16

22 7.5 37

in Fig. 1(d). This deviation is also expected since M3GNet
achieves a coefficient of determination R2 = 0.757 for bulk
modulus predictions.2 For a subset of V-VI-VII compounds
studied here, we calculate R2 = 0.869 and provide a plot of
the Voigt-Reuss-Hill bulk moduli (M3GNet versus PBE) as
supplementary material, demonstrating that M3GNet’s accu-
racy does not deteriorate for V-VI-VII compounds.

In previous work, we found that adding a semiempirical
dispersion (D2) force field38 to PBE substantially improved
the prediction of compressibility.13 Nevertheless, a more re-
alistic description of the experimental compressibility data
for BiTeI as well as BiTeBr was achieved using the PBEsol
functional.15,16 Therefore, we will use results obtained with
PBEsol, where available, as the reference for comparison with
those obtained using the M3GNet+D3 and M3GNet+D4 po-
tentials. Another reason for this choice is that the calculated
and experimental EOSs usually refer to zero and room tem-
peratures, respectively. It is to be noted that incorporating
D3 corrections into PBE calculations yields optimized crystal
structures that are highly comparable to those from PBEsol.
This is demonstrated by a plot of the calculated39–41 lattice
parameters against the experimental16,42 lattice parameters
for bismuth tellurohalides, provided as supplementary mate-
rial, which shows that PBEsol results nevertheless align more
closely with experimental values than PBE-D3.

As shown in Figs. 1(b) and 1(d), the volume (V ) vs.
pressure (P) curves calculated using the M3GNet+D3 and
M3GNet+D4 potentials, rather than M3GNet alone, show
much better agreement with the corresponding PBEsol curves.
This indicates that incorporating London dispersion signifi-
cantly improves the prediction of compressibility. The bulk
modulus (K0) and its pressure derivatives (K′

0 and K′′
0 ), ob-

tained from Birch-Murnaghan (BM) fits, are presented in Ta-
ble I. Note that a third-order Birch-Murnaghan fit yields the
values for K0 and K′

0, while at least a fourth-order fit is nec-
essary to determine K′′

0 . Table I reveals that the overesti-
mation of K0 is balanced by the underestimation of K′

0, and
vice versa. Additionally, discrepancies between experimental
measurements for BiTeBr reported in Refs. 16 and 37 suggest
that a reasonable error margin for K0 is approximately 2 GPa.
Therefore, the results in Table I confirm that the accuracy of
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FIG. 2. The variation of the lattice parameters a (a) and c (b) of BiTeI
with the pressure P. The PBEsol, PBE-D2, and PBE curves are taken
from Refs. 13 and 15, while the experimental curves represent data
from Ref. 24.

the dispersion-corrected M3GNet potentials is comparable to
that of PBEsol.

The graphs in Figs. 2(a) and 2(b) show the variation of the
lattice parameters a and c of BiTeI with pressure, respectively.
The steeper decay in the M3GNet V (P) curve at low pres-
sure is primarily due to the variation of c with P. This be-
havior is consistent with the PBE results.13 However, it is im-
portant to note that the PBE-calculated c(P) curve decreases
monotonically, a trend not observed in the corresponding
M3GNet curve. This difference is likely due to the fact that the
M3GNet potential was trained mostly on low-energy config-
urations. Consequently, the improvement in crystal structure
prediction through dispersion corrections becomes less effec-
tive for compressed structures. This finding, in our opinion,
unveils the importance of including at least moderately com-
pressed (and expanded) and, if feasible, high-pressure (and
high-temperature) configurations in the training datasets of a
MLIP. For this reason, the remainder of the paper will focus
on predicting equilibrium crystal structures at zero pressure.

We now focus on using the Earth mover’s distances
EMDXRD and EMDRDF, computed from XRD patterns and
RDF histograms, respectively, to compare optimized crys-
tal structures with experimental equilibrium structures from
the COD. The XRD patterns and RDF histograms for the
48 V-VI-VII compounds studied here are provided as sup-
plementary material. Larger (smaller) values of EMDXRD
and EMDRDF indicate greater dissimilarity (similarity) be-
tween the optimized and experimental crystal structures. For
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BiOCl, the EMDXRD values are: 6.00 (M3GNet), 0.29
(M3GNet+D3), and 0.27 (M3GNet+D4). Consistent with
these values, the XRD patterns in Figs. 3(c) and 3(e) are
noticeably more similar, while that in Fig. 3(a) is less sim-
ilar, to the reference pattern in Fig. 3(g). Similarly, the
EMDRDF values for this compound are: 0.071 (M3GNet),
0.012 (M3GNet+D3), and 0.012 (M3GNet+D4). Reflecting
this trend, the RDF histograms in Figs. 3(d) and 3(f) are again
noticeably more similar, while that in Fig. 3(b) is less simi-
lar, to the reference histogram in Fig. 3(h). This improvement
with the inclusion of D3 and D4 corrections can be elucidated
by the visual inspection of the crystal structures in Figs. 3(i)-
3(l). While there is a slight improvement in predicting the
lattice parameter a, the prediction of c improves substantially,
driven by a more accurate estimation of the vacuum region
width between layers w (i.e., the vdW gap) and the interatomic
distance between two Cl atoms residing at the bottom of an
upper layer and at the top of a lower layer (dCl−Cl). The rel-
atively accurate estimation of the interplanar distance w and
interatomic distance dCl−Cl with the inclusion of dispersion
corrections renders the respective peaks in the XRD patterns
and RDF histograms more consistent with the reference peaks,
thereby reducing the dissimilarity with the experimental crys-
tal structure and leading to smaller values of EMDXRD and
EMDRDF.

The inclusion of dispersion corrections leads to improved
predictions of layer thickness t (as well as w), as illustrated

for another bismuth oxyhalide in Figs. 3(m)-3(p). The layer
thickness t for BiOBr is significantly underestimated with the
M3GNet potential alone, and this underestimation becomes a
slight overestimation with the dispersion-corrected M3GNet
potentials. As shown for the bismuth oxyhalides BiOX (X
= Cl, Br, and I) and BiO(IO3) in Fig. 4, adding D3 and D4
corrections to the M3GNet potential results in systematic im-
provements in predicting not only the vdW gap but also the
layer thickness.

Next, we compare the results of crystal structure optimiza-
tions using M3GNet, M3GNet+D3, and M3GNet+D4 with
the experimental equilibrium structures (COD) for the 48
aforementioned V-VI-VII compounds. Figures 5(a) and 5(c)
show the bar plots of EMDXRD and EMDRDF for these com-
pounds. The most significant improvement from incorporat-
ing London dispersion is observed for BiOCl discussed above.
The reduction in EMDXRD resulting from the addition of D3
and D4 corrections to M3GNet is more pronounced com-
pared to the reduction in EMDRDF. This indicates that the
D3 and D4 corrections have a greater impact on interactions
with longer ranges, rather than shorter ranges, which aligns
with the physical insights behind the construction of DFT-D3
and DFT-D4 models.

The mean EMDXRD [EMDRDF] values are 1.8 [0.104],
1.2 [0.087], and 1.3 [0.092] for M3GNet, M3GNet+D3, and
M3GNet+D4, respectively, as indicated by the dashed lines
in Fig. 5(b) [5(d)]. Lower values of EMDXRD and EMDRDF
indicate greater similarity between the optimized and experi-
mental crystal structures. However, it should be noted that for
some compounds, especially those with relatively large unit
cells containing a greater number of atoms, both EMDXRD
and EMDRDF increase when the D3 and D4 corrections are
applied. This means that the improvement with combined po-
tentials is not universal. On the other hand, it should also
be noted that experimentally determining the internal coor-
dinates becomes more difficult as N increases, which leads
to uncertainties in the experimental structures. Since the
unit cell volume is usually measured with higher accuracy,
we compare the optimized and experimental volumes (V and
VCOD, respectively) to each other in Figs. 5(e) and 5(f). It
is seen that while M3GNet substantially overestimates the
unit cell volume, the inclusion of D3 and D4 corrections in
M3GNet results in a slight underestimation. This behavior
is quantified by the power-law regressions in Fig. 5(f) for
V/N versus VCOD/N, i.e., V/N = A(VCOD/N)α . The co-
efficients of regression are given in Table II. Typically, ei-
ther the prefactor A, the exponent α , or both in such re-
gressions should be slightly less than unity, because the op-
timized volumes refer to zero temperature, while the exper-
imental volumes correspond to finite temperatures. This ex-
pectation is best satisfied by the optimized volumes obtained
with M3GNet+D3, as seen in Table II, even though the regres-
sion lines of M3GNet+D3 and M3GNet+D4 are almost indis-
tinguishable in Fig. 5(f). It is therefore clear that, on average,
the dispersion-corrected M3GNet potentials provide superior
volume predictions compared to M3GNet alone. Among the
two dispersion-corrected potentials, M3GNet+D3 appears to
be superior to M3GNet+D4.



7

0.0

2.0

4.0

6.0

E
M

D
X

R
D

(a) (b)

0.0

0.1

0.2

E
M

D
R

D
F

(c)
M3GNet

M3GNet+D3

M3GNet+D4

M3GNet

M3GNet+D3

M3GNet+D4

(d)

B
iT

eI
S

bT
eI

B
iO

F
B

iO
I

B
iO

C
l

B
iO

B
r

S
bS

eI
S

bS
B

r
S

bO
F

A
sS

eI
B

iS
B

r
B

iS
I

S
bS

I
B

iS
eI

B
iS

C
l

S
b 4

O
5
B

r 2
S

b 4
O

5
C

l 2
B

iO
(I

O
3
)

B
i 3

O
4
B

r
B

i 3
O

4
C

l
(T

e 4
)(

T
e 1

0
)(

B
i 4

C
l 1

6
)

S
bO

C
l

(T
e 4

)(
S

bF
6
) 2

S
b 3

O
2
F

5

S
b 4

S
5
C

l 2
B

i 4
O

5
I 2

B
i 4

O
5
B

r 2
B

i 7
F

1
1
O

5

B
i(

IO
3
) 3

S
b 5

O
7
I

B
i 5

O
7
I

(A
s 3

S
4
)(

A
sF

6
)

(T
eF

3
)(

S
b

2
F

1
1
)

B
i 2

(I
O

4
)(

IO
3
) 3

S
bI

3
·3

S
8

A
sI

3
·3

S
8

(S
e 4

) 2
(S

b 4
F

1
7
)(

S
bF

6
)

B
i 5

O
7
B

r
T

e 8
[B

i 4
C

l 1
4
]

B
i 5

O
7
I

B
i 2

4
O

3
1
C

l 1
0

T
e 6

(A
sF

6
) 4

(A
sF

3
) 2

S
8
(A

sF
6
) 2

S
8
(A

sF
6
) 2

S
e 1

0
(S

bF
6
) 2

S
4
(F

2
(S

b 2
F

2
))

(F
(S

b
2
F

4
))

(S
bF

6
) 5

S
e 4

(S
b 2

F
4
)(

S
b

2
F

5
)(

S
bF

6
) 5

S
8
(S

b 3
F

1
4
)(

S
bF

6
)

0.8

1.0

1.2

V
/V

C
O

D

(e)

10 20 30 40 50
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FIG. 5. The bar plots showing the Earth mover’s distances EMDXRD (a) and EMDRDF (c), and the ratio V/VCOD (e) for ternary MVQVIXVII

compounds (M = As, Sb, Bi; Q = O, S, Se, Te; X = F, Cl, Br, I), sorted by increasing number of atoms in the unit cell, where V and VCOD
denote the optimized and experimental volumes, respectively. In the panels (b) and (d), EMDXRD and EMDRDF are plotted against VCOD/N,
respectively, with the horizontal dashed lines indicating the mean values of EMDXRD and EMDRDF. In the panel (f), V/N is plotted against
VCOD/N, with the solid lines representing the power-law regressions.

The prefactor A takes a significantly smaller value for
M3GNet+D4 compared to M3GNet+D3. This suggests that
the van der Waals binding energy is overestimated with
M3GNet+D4, given that the volume estimates are more re-
alistic with M3GNet+D3 and overbinding generally leads
to smaller equilibrium volumes. In order to quantify this
observation, we explore the correlation between the en-
ergy differences ∆4 = (EM3GNet+D4

min −EM3GNet
min )/N and ∆3 =

(EM3GNet+D3
min − EM3GNet

min )/N, where EP
min denotes the mini-

mum energy at the equilibrium volume calculated with poten-
tial P. The plot of ∆4 versus ∆3 is provided as supplementary
material. Both ∆3 and ∆4 take values in the range of ∼ 100–
300 meV per atom for the MVQVIXVII compounds, as men-
tioned in Sec. II. We find ∆4 = 1.13 ∆3 − 0.02 eV, indicat-
ing that the van der Waals binding energy is overestimated by
about 13% with M3GNet+D4 relative to M3GNet+D3. This
overestimation explains why M3GNet+D4 leads to a more
pronounced underestimation of the unit cell volume compared
to M3GNet+D3.

TABLE II. The prefactor A and exponent α values from power-law
regression V/N = A(VCOD/N)α .

Potential A α

M3GNet 0.79 1.12
M3GNet+D3 0.94 1.00
M3GNet+D4 0.87 1.02

IV. CONCLUSION

In this work, we explored the idea of combining a universal
graph deep learning interatomic potential (M3GNet), trained
on datasets from density-functional calculations using a semi-
local exchange-correlation functional, with two generally ap-
plicable London dispersion correction models (DFT-D3 and
DFT-D4). Our objective was to assess whether dispersion-
corrected M3GNet potentials can provide an adequate physi-
cal description of pnictogen chalcohalide compounds without
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fine-tuning the training or refitting the potential parameters.
We first derived the equations of state for layered pnicto-

gen chalcohalides BiTeBr and BiTeI, and found that the accu-
racy of the M3GNet+D3 and M3GNet+D4 potentials is com-
parable to that of a highly reliable density functional. We
then optimized and characterized the crystal structures of a
broader set of V-VI-VII compounds. To quantify the dissimi-
larity between the optimized and corresponding experimental
structures, we utilized two Earth Mover’s distances computed
from X-ray diffraction patterns and radial distribution func-
tion histograms. Our results indicate that dispersion-corrected
potentials generally provide a more realistic description of the
crystal structures of V-VI-VII compounds due to the inclusion
of van der Waals attractions, compared to using the graph deep
learning potential alone.

The improvement resulting from incorporating London dis-
persion corrections becomes less effective for compressed
structures, which could hinder the broader applicability of the
M3GNet+D3 and M3GNet+D4 potentials. We believe this
limitation can be addressed by including compressed and ex-
panded (high-pressure and high-temperature) configurations
in the dataset used to train the graph deep learning potential.
Additionally, for some compounds, especially those with rel-
atively large unit cells containing a greater number of atoms,
the addition of dispersion corrections does not improve the de-
scription of crystal structures, indicating that the improvement
with combined potentials is not universal. On the other hand,
while the unit cell volume is substantially overestimated with
the graph deep learning potential, this error turns into a slight
underestimation when dispersion corrections are applied. No-
tably, incorporating London dispersion corrections leads to
systematic improvements in predicting not only the van der
Waals gap but also layer thickness in layered V-VI-VII com-
pounds. While it remains a question for future studies whether
the combined potentials studied here can be made universal
and broadly applicable through fine-tuning and refitting, we
hope that, in their current simple and ready-to-use form, they
will enable cost-effective and realistic atomistic simulations
of an important class of materials (layered pnictogen chalco-
halides), systems derived from them, and composites made of
them, thereby facilitating further theoretical studies on these
systems.

SUPPLEMENTARY MATERIAL

Supplementary material is available online as a single PDF
containing a plot of M3GNet versus PBE energies, a list of V-
VI-VII compounds studied in the paper, with clickable links
to their information cards on the COD website, a plot of the
Voigt-Reuss-Hill bulk moduli (M3GNet versus PBE), the X-
ray diffraction patterns and radial distribution function his-
tograms calculated for the optimized and experimental crystal
structures, a plot of the calculated lattice parameters against
the experimental lattice parameters for bismuth tellurohalides,
and a plot of ∆4 versus ∆3.
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