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Abstract

Combining the efficiency of semi-empirical potentials with the accuracy of quantum mechanical methods,

machine-learning interatomic potentials (MLIPs) have significantly advanced atomistic modeling in compu-

tational materials science and chemistry. This necessitates the continual development of MLIP models with

improved accuracy and efficiency, which enable long-time scale molecular dynamics simulations to unveil

the intricate underlying mechanisms that would otherwise remain elusive. Among various existing MLIP

models, the moment tensor potential (MTP) model employs a highly descriptive rotationally-covariant mo-

ment tensor to describe the local atomic environment, enabling the use of even linear regression for model

fitting. Although the current MTP model has achieved state-of-the-art efficiency for similar accuracy, there

is still room for optimizing the contraction process of moment tensors. In this work, we propose an effective

genetic algorithm based optimization scheme that can significantly reduce the number of independent mo-

ment tensor components and intermediate tensor components. This leads to a speedup of nearly one order

of magnitude in efficiency and also improved accuracy compared to the traditional MTP model for intricate

basis sets. We have applied our improved MTP model to predicting the energetic and dynamical properties

of various point and planar defects in Ni-Al alloys, showing overall good performances and in general out-

performing the semi-empirical potentials. This work paves the way for fast and accurate atomistic modeling

of complex systems and provides a useful tool for modeling defects in Ni-Al alloys.
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I. INTRODUCTION

Nickel-based high-temperature alloys hold significant importance in engineering applications,

particularly in gas turbines and aerospace, owing to their exceptional high-temperature mechan-

ical properties. The superior mechanical properties originate from the ordered γ′-Ni3Al phase

embedded in the γ phase matrix [1]. The presence of a lattice misfit leads to the formation of

a dislocation network between the γ and γ′ phases, which prevent dislocations sliding through

the γ′ phase, resulting in increased strength and creep resistance [2]. Moreover, defects such as

impurities, vacancies, dislocations, and stacking faults are prevalent in these alloys, significantly

influencing their mechanical strength and resistance to creep. For instance, manipulating complex

stacking faults and twinning boundaries has been discovered to effectively enhance the harden-

ing properties of Ni-Al alloys [3]. Furthermore, the aggregation of vacancies in Ni-Al alloys can

lead to the formation of vacancy-type dislocation loops, voids, and stacking fault tetrahedra (SFT)

under conditions like quenching, irradiation, plastic deformation, and exposure to a hydrogen en-

vironment [4–7]. These defects have a direct impact on the mechanical properties of the alloys.

Therefore, accurately predicting the energetic and dynamic properties of these defects in Ni-Al

alloys is crucial for optimizing their mechanical performance.

Density functional theory (DFT) has significantly advanced our comprehension of defect beha-

vior in the Ni-Al alloys [8–23]. For instance, Siegel [8] reported that alloying elements can reduce

the stacking fault energies in Ni. Shang et al. [9] further studied the effects of various alloying

elements on stacking fault energies in Ni, demonstrating that most alloying elements decreased

the stacking fault energy, with a more pronounced effect observed when the alloying element is

further from Ni in the periodic table. Zhu et al. [18] highlighted the significant strengthening ef-

fects of the alloying elements Re, W, and Mo on the Ni and Ni3Al systems, which increased the

slip energy barriers of the trailing slip process in the γ phase and the leading slip process in the γ′

phase. Using a DFT based flexible boundary condition approach, Tan et al. [19] investigated the

core structure of 1
2 [110] screw dislocation in the γ phase and [110] screw super dislocation in the

γ′ phase, determining the split distances of planer faults in the dislocation core structure, in good

agreement with experimental observations. Zhao et al. [20] investigated the stability of vacancy

clusters in Ni using ab initio molecular dynamics (AIMD), revealing that the SFT was the most

thermodynamically stable configuration for large vacancy clusters in Ni.

Despite the extensive DFT investigations on the Ni-Al alloys, accurately modeling defects re-
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mains a challenging task. On the one hand, a large simulation cell is often required to eliminate the

artificial interactions between the defect and its periodic replicas, thereby substantially increasing

the computational expenses. This necessity becomes especially pronounced for intricate defects

like vacancy clusters, dislocations, and stacking faults. On the other hand, capturing the dynamical

properties of defects necessitates a long timescale that is usually beyond the reach of AIMD sim-

ulations. To overcome the limitations of DFT, several semi-empirical interatomic potentials have

been developed for the Ni-Al binary system. Among these potentials, the most successful ones

for Ni are the embedded atom method (EAM) potential developed by Voter et al. in 1986 [24],

Mishin et al. in 2004 [25] and 2009 [26], and the EAM potential optimized for NiAl and Ni3Al

systems developed by Wang et al. [27]. Besides, Kumar et al. [28] developed a third-generation

charge-optimized many-body potential, which was featured by its accurate description of planer

defects within the γ and γ′ phase as well as their interfaces with Al2O3. Notably, Avik et al. [29]

recently developed a modified EAM potential for the Ni-Al system that worked in a wide tem-

perature range and can accurately reproduce experimental melting points across all compositions.

Although these physics-based semi-empirical potentials were capable of reproducing the target

properties used in the fitting such as experimental lattice parameters, elastic constants, cohesive

energy, and vacancy formation energy, they often suffered from the limited accuracy and failed to

capture the properties of complex defects over a large phase space, because of their simple and

inflexible analytical forms.

Machine-learning interatomic potentials (MLIPs) have emerged as an elegant solution to bridge

the expensive DFT calculations and less accurate semi-empirical potentials [30–63]. These MLIPs

utilize machine learning techniques to fit the high-fidelity quantum mechanical data, thereby main-

taining the high efficiency of semi-empirical potentials while preserving quantum mechanical ac-

curacy. In recent years, the MLIPs have been successfully applied to metals and alloys [64–81].

With variations in the construction of the training set, structural descriptors, and regression tech-

niques, several MLIP models have been proposed. Behler and Parrinello [30] pioneered the local-

ity assumption and proposed a high-dimensional neural network potential (HDNNP) model. As of

now, the HDNNP model has advanced to the fourth generation, incorporating long-range Coulomb

interactions, charge transfer, and magnetic moments [32, 82]. The Deep Potential model [33, 34]

also employed a deep neural network but using an embedding network of atomic coordinates as

local configuration descriptors, and have achieved great success in various systems [79, 83–86].

Another popular and successful MLIP model is the kernel-based Gaussian Approximation Po-
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tential (GAP) proposed by Bartók et al. [37, 38], which employed the descriptor of the Smooth

Overlap of Atomic Positions (SOAP) and the Gaussian process regression [37, 38], demonstrat-

ing promising results in many applications [51]. Jinnouchi et al. [39, 40] further developed the

GAP model by incorporating an on-the-fly active learning procedure within AIMD simulations

using the Bayesian force errors, effectively addressing the laborious process of conventional train-

ing set construction. Despite the popularity of the GAP potential, the kernel-based models suf-

fer efficiency issues, especially as the training set grows large. Instead of employing complex

neural networks or kernel functions, linearly parameterized models such as the Spectral Neighbor

Analysis Potential (SNAP) [43], Moment Tensor Potential (MTP) [44, 45], and Atomic Cluster

Expansion (ACE) [46–48] have been developed owing to their highly descriptive nature. Zuo et

al. [87] systematically assessed the accuracy and efficiency of the HDNNP, GAP, MTP, SNAP and

quadratic SNAP (qSNAP) [88] models on various lattice types, demonstrating that among these

tested models, the MTP potential exhibits the highest efficiency for the same level of accuracy.

While the MTP model has reached state-of-the-art levels in efficiency and accuracy, there re-

mains room for improvement. In this work, we advanced the MTP model by developing an elegant

optimization scheme for the contraction of moment tensors. Thanks to the utilization of lower-rank

moment tensors and more efficient contraction rules, the number of independent moment tensor

components and intermediate tensor components in our improved MTP model was significantly

reduced. This resulted in a nearly tenfold increase in speed and enhanced accuracy as compared

to the traditional MTP model for the basis sets with high level of complexity. As a benchmark

application of our improved MTP model, we have systematically assessed its performance in de-

scribing the energetic and dynamical properties of various point and planar defects in Ni-Al alloys,

an established challenging task for MLIPs. Our results showcased consistently good performance

of our developed MTP model, in general outperforming the semi-empirical EAM potentials. This

was manifested by accurately predicting various properties such as the lattice constants, elastic

properties, energy-volume curves, and phonon dispersions as well as the melting points of bulk Ni

and Ni3Al. Furthermore, our MTP model accurately predicted the formation and binding energies

of vacancy clusters, antisite defects, stacking faults, and the diffusion behavior of vacancy clusters.

This work paves the way for fast and accurate atomistic modeling of complex systems and lays

foundation for further improving the current MTP model for Ni-Al alloys by expanding the phase

space of the training set.

The paper is organized as follows. In Sec. II we will detail the methodology of our improved
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MTP model. Particular emphasis is devoted to the proposed optimization scheme for contract-

ing moment tensors and basis set selection. Technical details and computational setups will be

provided in Sec. III. The extensive results will be presented and discussed in Sec. IV, followed by

the conclusion in Sec. V.

II. METHOD DEVELOPMENT

A. Moment tensor potential

We start from the introduction of the moment tensor potential (MTP) proposed by Shapeev [44].

The key quantity of the MTP is the rotationally covariant moment tensor descriptor [44]

Mµ,ν (ni) =
∑

j

fµ,ν
(∣∣∣ri j

∣∣∣ , zi, z j

)
fc(
∣∣∣ri j

∣∣∣) ri j ⊗ . . . ⊗ ri j︸          ︷︷          ︸
ν times

, (1)

which describes the local atomic environment ni of atom i. The moment tensor Mµ,ν is a tensor

of rank ν. fµ,ν denotes radial basis functions (e.g., Chebyshev polynomials), zi denotes the species

index of atom i, and fc represents the cutoff function function that approaches to zero smoothly at

a specific cutoff radius rc. ri j represents the distance vector from atom i to atom j, and the symbol

⊗ denotes the Kronecker product.

It is worth noting that the rank of the moment tensor corresponds to the rank of the momenta of

the weighted atom mass density [44]. Physically, one can think of the moment tensor descriptors

as analogues to mass distribution properties. For instance, the rank-0 moment tensor descriptor

simply gives the total mass and the rank-1 moment tensor descriptor describes the center of mass.

The rank-2 moment tensor descriptor represents the second moments of inertia, while the rank-3

and rank-4 moment tensor descriptors capture the skewness and kurtosis of the mass distribution,

respectively.

By appropriately contracting a set of k moment tensors Mµi,νi , one is able to obtain a scalar-

valued k-body function [44]. Such contraction can be represented by a symmetric index matrix

α of size k × k with diagonal terms being zero. The i-th row of the matrix α corresponds to the

moment tensor Mµi,νi , and the sum of the elements in the i-th row of the matrix α is equal to νi,

(i.e., νi =
∑

j αi j). The off-diagonal element αi j describes how many dimensions are contracted

between the moment tensors Mµi,νi and Mµ j,ν j . Using this contraction representation, the scalar-

valued function can be described as Bα =
∏

i

αMµi,νi [44]. To better illustrate the contraction, here
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we present an example. Suppose that we have three moment tensors M1,3, M2,2 and M3,1 [i.e.,

µ = (1, 2, 3)T and ν = (3, 2, 1)T ] and a contraction rule α =


0 2 1

2 0 0

1 0 0

, then the final contracted

scalar function Bα can be represented in Einstein summation rule as Bα = (M1,3)i jk(M2,2)i j(M3,1)k.

The scalar basis functions {Bα} are invariant under translation, rotation and reflection. It has

been shown by Shapeev [44] that all these scalar functions form a complete basis set. Therefore,

the local atomic energy Ui of atom i can be written as linear combinations of these scalar basis

functions

Ui =
∑
θ

ξθBθ, (2)

where ξθ are linear coefficients. The summation over all atoms then yields the potential energy of

the system U =
∑

i Ui.

B. Optimization of moment tensors contraction

In practical implantation, directly computing the contractions is computationally demanding,

since the entries to be summed grow exponentially with the count of contracted indices (namely, 3m

when contracting m indices between two moment tensors). Thanks to the symmetric nature of the

moment tensors, this computational cost can be reduced to (m + 2)(m + 1)/2 when incorporating

symmetry of the moment tensors. To reduce the cost further, Shapeev [44] found an ingenious

scheme. In this scheme, as illustrated in Fig. 1, a contraction process can be represented as a

tree. Starting from a scalar function which is defined by contractions of moment tensors, a tensor

is decomposed into contraction of two intermediate tensors iteratively until moment tensors are

reached. This process actually defines the order of contractions and represents the intermediate

results. It can be seen that decomposition for different scalar functions may contain the same

intermediate tensors. Therefore, if all these common intermediate tensors are computed once and

used for all, the entire tensors contraction cost can be further reduced.
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Figure 1. Illustration of the tree representation of scalar decomposition. Bα and Bβ are two different scalar

functions, Bηi are indeterminate tensors, and Mi are moment tensors. Note the common indeterminate

tensors Bη2 and Bη4 between the two different scalar functions.

To illustrate this procedure in detail, the indices of a tensor Bα that is decomposed into a tensor

Bγ of rank kγ and a tensor Bη of rank kη can be expressed as

α =

 γ′ ϕϕT η′

 , (3)

γ′i,i = γi,i −
∑

j

ϕi, j, η
′
i,i = ηi,i −

∑
j

ϕT
i, j, (4)

γ′i, j = γi, j, η
′
i, j = ηi, j, (i , j), (5)

where γ′ and η′ are the diagonal blocks of the index matrix α with sizes of kγ × kγ and kη × kη,

respectively, and ϕ is the off-diagonal block of α with size kγ × kη, which defines contractions

between Bγ and Bη. The non-zero diagonal terms αii of non-scalar index α denote that the αii

indices of moment tensor Mi are not involved in contraction, whereas the off-diagonal terms αi j

represent contracting αi j indices between moment tensors Mi and M j. The indices α, γ, η and ϕ

define a contraction rule to obtain Bα from Bγ and Bη.

Based on above analysis, the computation routine for the moment tensors contraction in prac-

tice can then be established. First, the components {mi, j} of moment tensor Mi can be calculated

directly from atomic coordinates. The components of intermediate tensor Bη3 in Fig. 1, for ex-

ample, can be calculated by bη3,i =
∑

k m3,km4,k where k loops over contracted indices, and so do

other intermediate tensors. Taking Bi as root node and Bl and Bm as leaf nodes for instance, the
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components of Bi can be expressed as bi, j =
∑

k bl,kbm,k. By assigning each nonequivalent tensor

components with an unique ID, each intermediate tensor component and scalar tensor component

can be evaluated through a collection of tuples {(n, di, ki, li)}

bn =
∑

i

di · bki · bli , (6)

where di is the degeneracy due to tensor symmetry, n, ki and li are unique IDs of tensor components.

We refer to these tuples as times rules. Once these rules have been built, one can employ them at

any time without rebuilding them.

It needs to be noted that for a specific scalar function Bα, the decomposition routine is not

unique. In fact, for a collection of scalar functions {Bα}, different choices of decomposition

routines for each scalar function can lead to varied numbers of nonequivalent tensor components

and times rules. This, in turn, significantly increases the computational cost of the model training

and applications. Due to the large number of possible decomposition routines, it is practically

impossible to loop over all cases. For instance, in the case of the moment tensors with level=28 as

defined by Shapeev [44], there are more than 102195 possible decomposition routines. Shapeev [44]

simply pointed out that minimizing the sum of dimensions for each decomposition and maximiz-

ing tensor reuse can be served as a guideline for the selection of decomposition routines. Although

this scheme may result in a reasonable solution, it could introduce ambiguity, e.g., when multiple

decomposition routines have the same sum of dimensions or intermediate tensors, and thus might

not consistently ensure the optimal solution.

To tackle this issue, we propose a straightforward approach to obtain the optimal decompos-

ition routine for each scalar function using genetic algorithms (GA). Specifically, we construct

all possible decomposition trees for each scalar function. These trees constitute a “tree collec-

tion” and are denoted as {Tαi } for a scalar function Bα. For each scalar function Bα, we assign a

“gene” k, which picks the k-th tree out of {Tαi }. For a collection of scalar functions, a sequence

{k1, k2, · · · , kn} forms an individual, which represents a decomposition routine. The objective of

optimizing the computation routine amounts to minimizing the number of nonequivalent tensor

components and the count of times rules. To quantify this, we define a cost function F(R)

F(R) = m + 3t, (7)

where R represents a specific routine, m is the number of nonequivalent tensor components, and t

is the count of times rules. Adding more weight (i.e.,“3”) to the count of times rules is due to the
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fact that this part is computationally more costly for relatively large number of basis sets. With the

definition of F(R), the fitness function of each individual can then be defined as

f (R) = 1 −
1

1 + e−k
(

F(R)−F(R)min

)
+c
. (8)

Here, F(R)min represents the current minimum of F(R) and it will be changed dynamically during

the optimization process. k and c are positive constants, which should be fine-tuned to prevent

populations from being dominated by identical solutions. The detailed workflow can be described

as follows:

(1) Generate all nonequivalent scalar functions according to given conditions (i.e., maximum

”level”, order of many-body interactions, maximum coordination power, etc.) and then sort

these scalar functions by the count of moment tensors involved in contraction.

(2) Build tree collections for all scalar functions.

(3) Generate initial populations of individuals. In this step, a score is assigned to each tree in

the collection based on specific criteria. For example, a tree may gain ten points if it has the

minimum sum of dimensions among all possible decompositions, with one point for each

reuse of intermediate tensor and an additional point if a tensor can be decomposed into two

identical tensors. Those trees with highest scores are selected as the initial guesses for the

decomposition routine.

(4) Generate child populations via mutations and cross-over operations. The mutation operator

randomly selects a scalar function and replaces its current tree with another one from the

collection, and the cross-over operator substitutes a subset of an individual’s trees with those

from another individual.

(5) Calculate the fitness function of each individual and decide which individuals will be sur-

vived according to their fitness.

(6) Repeat steps (4) and (5) until either the designated maximum number of iterations has been

attained or the convergence criteria have been reached.

It should be mentioned that during the search process, we enforce that each tensor is assigned

by one decomposition routine. This means that the genes representing the decomposition trees
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are not independent from each other. In other words, choosing a specific tree for a previously-

processed scalar function may render the tree structure invalid for a later-processed scalar function

if they assign the same tensor with nonequivalent decompositions. This will introduce conflicts

during the optimization process. To tackle this problem, when generating times rules for the later-

processed tree, the branches forked from previously-processed tensors are chopped so that they

can be consistent with the previously-processed tensors without changing the genes. After the

optimization using the genetic algorithms, a greedy algorithm search is then carried out to further

optimize the computation routine. In this step, all trees are looped from a low rank to a higher rank

and the decomposition routine with the lowest loss function is eventually selected.

C. Basis set selection

After the rules of moment tensors contraction have been established, a subsequent question is

which basis functions should be selected. Unlike the scheme proposed by Shapeev [44] which

empirically defines the level of scalar basis as lev (Bα) = 4µ+ ν+ 1 [see Eq. (1) for the meaning of

µ and ν], here we redefine the level of scalar basis as lev (Bα) = 2µ + ν + 1. We made such choice

based on the consideration that the computational complexity of the MTP model primarily arises

from two sources: (i) the calculation of the moment tensor components, and (ii) the computation

of all tensor components through pre-generated contraction rules. To compute the moment tensor

components, one must loop over all ni neighboring atoms of a central atom i. The computational

cost of this process exhibits a quadratic scaling with the moment tensor order ν and a cubic scaling

with the radial cutoff rc. This part of the computation can not be optimized and its cost may

become dominant as ν increases. Therefore, we limit the upper bound of ν to a smaller value (ν≤3)

to reduce the number of moment tensor components. Additionally, we retain the complexity of the

basis functions by decreasing the penalty factor of µ from 4 to 2. Our tests showed that this scheme

can greatly enhances the computational speed without compromising accuracy. To achieve higher-

order polynomial terms, one can introduce scalar basis functions generated by the contraction of a

larger number of moment tensors (representing higher-order many-body interactions).
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III. COMPUTATIONAL DETAILS

All first-principles calculations and on-the-fly training set selection were performed using

the Vienna ab initio simulation package (VASP) [89, 90]. The Perdew-Burke-Ernzerhof (PBE)

exchange-correlation functional [91] within projected augmented wave method [92, 93] was em-

ployed. A plane-wave cutoff of 400 eV and a Monkhorst-Pack k-point grid with a spacing of ∼0.2

Å−1 were used, which ensure the convergence of total energy within 1 meV/atom. The conver-

gence criteria for the electronic self-consistent calculation and structure optimization were set to

10−6 eV and 0.01 eV/Å, respectively.

The phonon dispersions were calculated by the frozen phonon method using the Phonopy

code [94, 95]. For these calculations, a 3×3×3 supercell and a finite displacement of 0.01 Å were

employed.

All molecular dynamics simulations were conducted using the LAMMPS code [96] in the NPT

ensemble at ambient pressure. The Langevin thermostat [97] and Parrinello-Raman method [98,

99] were used to control the temperature and pressure of the system. The time step was set to 2 fs.

IV. RESULTS AND DISCUSSION

A. Training and validation sets generation

The initial training structures were obtained using an on-the-fly learning procedure based on

kernel-based Bayesian regression during AIMD simulations as implemented in the VASP code [39,

40]. The cutoff radius for the descriptors and the width of the Gaussian functions used for broad-

ening the atomic distributions of the descriptors were set to 5 Å and 0.5 Å, respectively. The

number of radial basis functions was set to 10 and 8 for the two-body and three-body descriptors,

respectively. In order to generate a comprehensive training dataset, various initial structure models

including bulk Ni and Ni3Al, point defects such as Ni and Al vacancies, and defective Ni-Ni3Al

interfaces were built. Then, the on-the-fly AIMD samplings were performed by heating the struc-

tures from 700 to 1600 K at ambient pressure in an isothermal-isobaric ensemble using a Langevin

thermostat [97] combined with the Parrinello-Rahman method [98, 99]. Throughout this process,

a training dataset consisting of 6,092 configurations were obtained.

It is recognized that the kernel-based methods can encounter performance issues when training

set grows large, resulting in large number of basis functions [87, 100]. To address this issue,
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we refitted the on-the-fly generated dataset using a more efficient linearly parameterized MTP

potential [44]. When building the MTP basis functions, the maximum number of moment tensors

involved in contraction was set to 4, which resulted in up to five-body interactions considered. The

maximum level of scalar functions was set to 26 and 8 radial basis functions were used.

Having obtained the initial MTP model that was refitted the on-the-fly generated dataset,

we performed multiple active learning cycles based on Shapeev’s generalized D-optimality cri-

terion [45] to further sample the phase space and improve the transferability of the model. These

cycles began by generating initial configurations that span a broad range of diversity, including

various defects. Subsequently, we carried out 200 ps MD simulations and identified configur-

ations with an extrapolation grade exceeding five. The DFT energies, forces and stress tensors

of these selected configurations were then computed and incorporated into the training set at

the end of each active learning cycle, followed by a refitting of the MTP model. This process

was repeated until no configurations reached the given threshold of extrapolation grade . In this

second-round active learning procedure, 2,358 new configurations were collected, leading to the

eventual expansion of the training set to 8,450 configurations, on which the final MTP potential

was trained.
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Figure 2. a, b, c, Comparison of DFT and MTP predicted energies, forces and stresses, respectively. d,

PCA analysis of training and validation datasets. Black and red points represent training and validation

data, respectively.

To assess the accuracy of our developed MLIP model, a validation set consisting of 815 con-

figurations was constructed using the same structure prototypes as the training set. The training

and validation datasets were analyzed by principle component analysis (PCA) using the smooth

overlap of atomic positions as local structure descriptors [101]. The PCA analysis, as shown in

Fig. 2d, demonstrated that the validation set effectively covers the training set. Three distinct

clusters were identified, which correspond to Ni-based, Ni3Al-based and interface configurations.

The Ni3Al-based configurations spread in a larger area, which is due to the diffusion of vacancies

and vacancy clusters leading to antisite defects and defect complexes.
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B. Basis set selection and training of MLIP

Following the scheme we proposed in Sec. II B, here we aim to find out the optimal basis

functions that yield both accurate and efficient MLIPs by examining five basis sets. Among them,

three are the basis sets with levels of 18, 24, and 28, as defined in the scheme of Shapeev [44]. The

remaining two are the basis sets generated using our proposed scheme, which are referred to as the

2653 and 4613 basis sets. The 2653 basis set considered up to five-body interactions and moment

tensors of rank 4, leading to 2653 linear parameters, whereas the 4613 basis set accounted for up

to seven-body interactions and moment tensors of rank 6, leading to 4613 linear parameters. For

each basis set, 100,000 GA search iterations were performed. For all the basis sets, the parameter

c in Eq. (8) was set to be 0.2 and the parameter k in Eq. (8) was set to 5 × 10−2 for the level-18

basis set, 5 × 10−3 for the level-24 and 2653 basis sets, and 5 × 10−4 for the level-28 basis set,

respectively. The population size was set to be 40. At each iteration, 12 individuals were selected

by roulette wheel selection to generate new individuals.

Table I presents the assessments of different basis sets on the accuracy and efficiency of res-

ulting MLIPs. One can observe that the optimization process does not affect the accuracy, but it

reduces the number of intermediate tensors, the number of nonequivalent tensor components, as

well as the count of times rules for all the basis sets considered. This reduction becomes more

pronounced for more complex basis sets. For example, for the simple basis set such as level-18,

the reduction percentages are 8.0% for the number of intermediate tensors, 19.2% for the number

of nonequivalent tensor components, and 19.0% for the count of times rules. By contrast, for more

complex basis sets like level-28, which have more intricate decomposition routines, the optimiza-

tion process exhibits more significant reductions in the numbers of intermediate tensors (18.2%),

nonequivalent tensor components (41.3%) and times rules (43.9%).
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Table I. Assessments of different basis sets on the accuracy and efficiency of MLIPs. The columns with

“#Tensors”, “#Components”, and “#Times rules” represent the number of intermediate tensors, the number

of nonequivalent tensor components, and the count of times rules, respectively. The columns with “En-

ergies”, “Forces”, and “Stresses” indicate the training (upper row) and validation (lower row) RMSEs of

energies (in meV/atom), forces (in meV/Å), and stress tensors (in kbar), respectively. MD times were meas-

ured on a 8 × 8 × 8 supercell of bulk Ni3Al (2048 atoms) with 100,000 time steps using 96 CPU cores and

averaged for 5 independent runs. The column with “Efficiency” denotes the speedup of the MLIPs with

optimized basis sets (OPT) as compared to those with non-optimized (INI) basis sets. Note that for these

tests all the MLIPs were fitted on the same reduced training dataset (4800 structures) using a reduced cutoff

radius of 5 Å.

Basis set #Tensors #Components #Times rules Energies Forces Stresses MD time (s) Efficiency

18

INI 225 736 2799
3.64 0.045 2.22

151 1.00
2.40 0.042 1.52

OPT 205 595 2254
3.64 0.045 2.22

145 1.04
2.40 0.042 1.52

24

INI 1222 4991 38970
3.00 0.035 1.52

917 1.00
1.98 0.033 1.11

OPT 1038 3403 25732
3.00 0.035 1.52

711 1.29
1.98 0.033 1.11

28

INI 3501 16504 186495
2.43 0.030 1.24

4418 1.00
1.53 0.028 0.97

OPT 2863 9683 104664
2.43 0.030 1.24

2580 1.71
1.53 0.028 0.97

2653

INI 2969 4764 15157
1.89 0.029 1.20

274 1.00
1.38 0.028 0.92

OPT 2854 3822 11581
1.89 0.029 1.20

241 1.14
1.38 0.028 0.92

4613

INI 5264 7676 18634
1.62 0.026 1.02

474 1.00
1.11 0.026 0.88

OPT 4964 6140 13322
1.62 0.026 1.02

403 1.17
1.11 0.026 0.88
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As for the efficiency, although the the optimization process reduces both the number of tensor

components and times rules by 19% for the level-18 basis set, it only sightly decreases the MD

time cost (3%). This is because in this case the computation cost is primarily driven by calculating

moment tensor components rather than contractions. However, when it comes to the more complex

basis sets such as level-28, the optimized MLIP exhibits a notable 71% acceleration. This is due to

the fact that for complex basis containing higher order many-body interactions and more intricate

contraction operations, loop over times rules and computing derivatives associated with tensor

components turn to dominate the computing cost. As a result, in this case the optimization process

of contractions can significantly enhance the overall computational efficiency.

Next, we turn to evaluating the performances of the 2653 and 4613 basis sets that were gen-

erated using our proposed scheme. As compared to the level-28 basis set (with 2445 scalar func-

tions), the 2653 basis set contains a similar number of scalar functions and fitting coefficients.

However, the trained MLIP using the 2653 basis set is nearly 11 times faster than using the level-

28 basis set. Furthermore, the former exhibits a higher accuracy (see Table I). The enhanced effi-

ciency of the 2653 basis set can be attributed to the utilization of lower-rank moment tensors and

more efficient contraction rules. This results in a notable decrease in the number of independent

moment tensor components (scaling quadratically with the tensor rank) and intermediate tensor

components. It is worth mentioning that theoretically, the level-28 basis set is expected to achieve

superior accuracy owing to its higher polynomial order (22 compared to 12 for the 2653 basis set

excluding the radial function component). However, the comparatively reduced accuracy of the

level-28 basis set, as evidenced in our findings, may be attributed to the heightened complexity of

the basis set, which complicates the optimization process.

While the 4613 basis set offers the highest accuracy, in this study, the 2653 basis set is ulti-

mately chosen for its notable efficiency and relatively high accuracy. With the 2653 basis set, the

MLIP was refitted on the full training dataset (8,450 structures) and a larger cutoff of 5.4 Å. To

achieve greater accuracy of the MLIP, we implemented a two-step final fitting procedure. The first

step was to obtain suitable initial linear coefficients. This was achieved by the following processes.

A minimal basis set was initially extracted from the full basis set, utilizing the same radial basis

functions. This minimal basis set was utilized to fit the training set. Subsequently, the initial linear

coefficients were obtained by conducting a linear optimization on the full basis set, inheriting the

radial basis functions of the potential. The weights of energies, forces and stress tensors used in

fitting were set to 1, 0.01 and 0.005, respectively. The second step involved optimizing the fitting
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parameters. This was executed using the L-BFGS algorithm with 5000 iterations, followed by a

least square linear fit to further refine the linear parameters.

The accuracy of the ultimately fitted MLIP was assessed against the DFT calculations. Figure 2

illustrates the comparison between DFT and MTP-predicted energies, forces, and stresses on both

the training and validation sets, demonstrating outstanding agreement. The root mean square

errors (RMSEs) of the energies, forces and stresses for the training set are 2.24 meV/atom, 0.029

eV/Å2 and 0.11 GPa, whereas for the validation set the RMSEs are 1.64 meV/atom, 0.028 eV/Å2

and 0.09 GPa, respectively. To conclude this section, we have developed an efficient and accurate

MTP model for the Ni-Al systems.

C. Assessment of MLIP for predicting fundamental physical properties

We further assessed the performance of our developed MLIP on various physical properties

of Ni and Ni3Al systems. For comparison purposes, we also employed the most widely used

EAM-type semi-empirical interatomic potential for the Ni-Al alloy developed by Mishin [26]. We

first computed the lattice parameters, elastic constants, bulk modules, shear modules and Yong’s

modules as well as Poison’s ratio of both bulk Ni and Ni3Al. The results are compared to the pre-

dictions from DFT and EAM methods as well as the experimental data, as summarized in Table II.

One can see that the MTP-predicted lattice parameters accurately reproduce the DFT results. The

underestimation in the lattice parameters compared to experimental data can be attributed to two

factors: (i) The experimental data were obtained at room temperature, and (ii) more importantly,

the current MLIP does not incorporate magnetic effects. Furthermore, the MTP reproduces well

the elastic properties compared to the DFT results—Both are in good agreement with the experi-

ential data. Regarding the elastic properties, the EAMs also demonstrate good performance. This

outcome is not so surprising as the employed semi-empirical EAM potential was derived through

fitting specifically to the elastic properties [26].

17



Table II. Lattice constant a (in Å), elastic constants (C11, C12 and C44, in GPa), elastic moduli (bulk modulus

B, shear modulus G and Young’s modulus E, in GPa), and Poisson’s ratio v of bulk Ni and Ni3Al predicted

by DFT, MTP and EAM methods. The available experimental (EXP) values are given for comparison.

a C11 C12 C44 B G E v

Ni

DFT 3.511 257.53 171.26 117.70 200.02 78.73 208.79 0.326

MTP 3.508 238.71 176.04 113.09 196.93 67.86 182.61 0.345

EAM 3.520 241.34 150.85 127.34 181.01 84.15 218.57 0.299

EXP 3.524 [102] 249±4a 155±7a 114±12a 190±13a 78±5a 197±15a 0.296± 0.029a

Ni3Al

DFT 3.562 237.56 156.40 125.80 182.86 80.27 210.08 0.309

MTP 3.563 236.50 155.81 117.98 182.71 76.80 202.08 0.316

EAM 3.533 237.32 166.38 130.16 190.03 77.61 204.94 0.320

EXP
3.567[103] 230[104] 150[104] 131[104]

221[105] 146[105] 124[105] 171[105] 77.8[106] 203.1[106] 0.398[105]

a Ref. [107]
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a b

c d

Figure 3. a, b, The energy-volume curves of bulk Ni and Ni3Al predicted by DFT, MTP, and EAM methods.

c, d The phonon dispersion relationships and phonon density of states of bulk Ni and Ni3Al predicted by

DFT, MTP, and EAM methods.

Figure 3 displays the predicted energy-volume curves, phonon dispersion relationships and

phonon density of states of bulk Ni and Ni3Al by DFT, MTP, and EAM methods. In compar-

ison to the EAM potential, the developed MTP potential accurately reproduces the DFT-calculated

energy-volume curves across all the volume ranges under consideration. By contrast, the EAM po-

tential diverges from the DFT outcomes as the system moves away from the equilibrium volume.

Regarding the phonon properties, our developed MTP potential demonstrates exceptional align-

ment with the reference DFT results, once more surpassing the EAM potential.
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D. Description of the energetics of point defects by MLIP

Since a crucial goal of our developed MLIP is to provide an accurate description of point

defects, including vacancies and vacancy clusters, within the Ni-Al system, this section extensively

evaluated the MLIP on various types of point defects, including mono-vacancies, di-vacancies, tri-

vacancies, vacancy clusters, and antisite defects.

The vacancy formation energy for mono-vacancy and vacancy clusters in bulk Ni is defined as

E f (nVNi) = E(nVNi) − (N − n)Epristine/N, (9)

where E(nVNi) indicates the total energy of the defective system containing n vacancies VNi, Epristine

stands for the total energy of the pristine bulk Ni system with N atoms. In bulk Ni3Al and Ni-Ni3Al

interface systems, the vacancy formation energy for mono-vacancy and vacancy clusters is defined

as [108]

E f (nNiVNi, nAlVAl) = Ede f ect − Epre f ect + nNiENi
re f + nAlEAl

re f + nNiµNi + nAlµAl, (10)

where Ede f ect represents the total energy of the defective system with nNi Ni vacancies and nAl Al

vacancies, Eper f ect denotes the total energy of the defect-free system, while ENi
re f and EAl

re f are the

reference energies of bulk Ni and bulk Al in a face-centered cubic cell, respectively, and µNi and

µAl stand for the chemical potentials of the Ni and Al atoms in bulk Ni3Al, respectively. Here, a

Ni-rich reservoir was considered, meaning that µNi=0 eV and µAl is equal to the chemical potential

of bulk Ni3Al.

The binding energy of vacancy clusters is calculated as

Eb(nNiVNi, nAlVAl) = nNiEVNi + nAlEVAl − Ede f ect − (nNi + nAl − 1)Epre f ect, (11)

where Ede f ect represents the total energy of the defective system with nNi Ni vacancies and nAl

Al vacancies, Eper f ect denotes the total energy of the defect-free system, EVNi and EVAl denote the

total energies of the systems with a Ni vacancy and an Al vacancy, respectively. Following this

convention, positive and negative binding energies denote the attractive and repulsive interactions

of the vacancy clusters, respectively.

The antisite defect NiAl denotes a defective system in which a Ni atom occupies an Al site, while

the antisite defect AlNi signifies a defective system where an Al atom occupies a Ni site. An antisite

pair (AlNi,NiAl) is formed by exchanging the positions of a Ni and an Al atom. The formation
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energy of an antisite defect or an antisite pair is simply calculated as E f (antisite) = Ede f ect−Epre f ect,

where Ede f ect and Epre f ect are the total energies of the systems with and without antisite defects,

respectively.

Table III. Formation and binding energies of point defects and clusters in bulk Ni and Ni3Al predicted by

MTP, DFT, and EAM methods. The available experimental results are given for comparison. 1NN, 2NN

and 3NN represent the first-, second- and third-nearest neighbors. All energies are given in eV.

MTP DFT EAM Experiments

Ni

E f (VNi) 1.425 1.425 1.572 1.4±0.2[109], 1.74±0.06[110], 1.73±0.07[111]

Em(VNi) 1.000 1.000 1.195 1.24[112], 1.38[113]

Edi−1NN
f 2.835 2.799 2.890 2.92∼3.10[110], 2.42[114], 2.46[115]

Edi−2NN
f (VNi,VNi) 2.924 2.912 3.129

Edi−3NN
f (VNi,VNi) 2.853 2.865 3.141

Edi−1NN
b (VNi,VNi) 0.015 0.051 0.164 0.4±0.2[110], 0.28[114], 0.44[115]

Edi−2NN
b (VNi,VNi) −0.074 −0.063 0.016

Edi−3NN
b (VNi,VNi) −0.003 −0.016 0.004

Ni3Al

E f (VNi) 1.588 1.643 1.773 1.6±0.2[116]

E f (VAl) 1.710 1.787 1.544 1.6±0.2[116]

Edi−1NN
b (VNi,VNi) −0.121 −0.154 −0.121

Edi−2NN
b (VNi,VNi) 0.068 0.107 −0.009

Edi−3NN
b (VNi,VNi) 0.115 0.125 −0.005

Edi−1NN
b (VNi,VAl) −0.048 −0.076 −0.179

Edi−2NN
b (VNi,VAl) −0.044 −0.043 −0.008

Edi−1NN
b (VAl,VAl) 0.031 0.053 0.000

Edi−2NN
b (VAl,VAl) 0.004 0.002 0.019

E f (AlNi) 0.957 1.081 1.436

E f (NiAl) 0.159 0.033 −0.168

E1NN
f (AlNi,NiAl) 0.842 0.839 0.901

E2NN
f (AlNi,NiAl) 1.098 1.080 1.237

E3NN
f (AlNi,NiAl) 1.120 1.095 1.256
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All the formation and binding energies in the present work were calculated using a 3 × 3 × 3

supercell of 108 atoms. The minimal energy path (MEP) and migration energy barrier Em of

mono-vacancy were calculated using climbing image nudge elastic band (CI-NEB) method [117].

Table III summarizes the calculated formation and binding energies of point defects and clusters

in bulk Ni and Ni3Al predicted by MTP, DFT, and EAM methods. One can observe that our de-

veloped MTP potential is capable of nicely reproducing all the DFT results, capturing both the val-

ues and the signs of the binding energies accurately. This is a remarkable outcome, since machine

learning energies for defects is much more challenging than for bulk systems [65, 69, 118]. Con-

sidering the limited descriptive capacity of the EAM model, the performance of the EAM potential

is acceptable and somehow unexpected. The noticeable disparities between EAM and the DFT res-

ults are evident in the description of the binding energies of vacancy clusters and formation energy

of antisite defect NiAl. The EAM potential inaccurately predicts a negative formation energy of

NiAl. The MTP-calculated formation energy of a vacancy in bulk Ni is 1.425 eV, in reasonable

agreement with the scattered experimental data (1.4∼1.74 eV) [109–111]. The mono-vacancy in

bulk Ni3Al demonstrates a slightly higher formation energy. The MTP-predicted formation ener-

gies for a Ni vacancy and an Al vacancy are 1.588 eV and 1.710 eV, respectively, suggesting the

relatively easier formation of a Ni vacancy in bulk Ni3Al. Experimental differentiation between

Ni and Al vacancies is challenging, leading to an averaged formation energy of 1.6±0.2 eV [116].

It is important to note that the MTP model inherits the limitations of the underlying DFT, which

demonstrates inaccuracies in predicting surface energy when using the PBE functional [119–123].

This could be linked to the precision of the predicted formation and binding energies of vacancies.

Regarding the binding energies of vacancy clusters, it is interestingly found that the di-

vacancies in the first-nearest neighbor (1NN) in the bulk Ni exhibit a weak attractive interaction.

However, as the distance between the two Ni vacancies increases, the interaction becomes repuls-

ive. In the bulk Ni3Al system, an opposite trend is observed for the two Ni vacancies. The two Al

vacancies in the 1NN demonstrate a weak attractive interaction, whereas an Al vacancy and a Ni

vacancy exhibit repulsive interactions up to the second-nearest neighbor.

Figure 4 illustrates the predicted MEPs for a vacancy migration to its 1NN site in both bulk Ni

and bulk Ni3Al systems using DFT, MTP, and EAM methods. It is evident that the MTP potential

aligns well with the DFT predictions, whereas the EAM potential overestimates all the migration

energy barriers as compared to DFT. However, the EAM-predicted migration energy barrier of a

Ni vacancy is 1.195 eV, which is closer to the experimental values (see Table III). This is because
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the EAM potential developed by Mishin [26] was obtained by deliberately fitting the migration

energy barrier. Overall, the DFT-predicted migration energy barrier of a vacancy in Ni is greater

than that in Ni3Al, indicating a faster vacancy diffusion in Ni3Al.

d

b

c

a

Figure 4. a, The MEP of a Ni vacancy diffusion in bulk Ni. b, The MEP of a Ni atom diffusing to the

nearest Ni vacancy in bulk Ni3Al. c, The MEP of a Ni atom diffusing to the nearest Al vacancy in bulk

Ni3Al. d, The MEP of a Al atom diffusing to the nearest Ni vacancy in bulk Ni3Al. The DFT, MTP, and

EAM predicted results are shown in gray solid lines, red dashed lines, and black solid lines, respectively.

We also computed the binding and formation energies of tri-vacancies in both Ni and Ni3Al

systems using DFT, MTP, and EAM methods. In the case of tri-vacancies in Ni, we meticulously

analyzed 144 potential symmetrically nonequivalent configurations within a 3 × 3 × 3 supercell.

For the tri-vacancies in Ni3Al, we extensively explored a total of 280 energetically non-degenerate

configurations within a 3 × 3 × 3 supercell. The results are compiled in Fig. 5. One can see

that the MTP potential is able to capture the overall trend observed in the DFT results. In the

case of tri-vacancies in Ni, the MTP potential correctly predicted the energetically most favor-
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able tri-vacancies, which form a triangle in the {111} plane. The second energetically most stable

tri-vacancies forming a line along the ⟨111⟩ direction were also accurately reproduced by MTP.

The least favorable tri-vacancies were found to form a line the ⟨001⟩ direction. In the case of

tri-vacancies in Ni3Al, the developed MTP potential was also capable of accurately predicting the

most and least favorable configurations. Nevertheless, given the accuracy of the MTP model, dis-

tinguishing the relative stability of the two tri-vacancies becomes highly challenging when their

formation energy difference is less than 0.03 eV. This discrepancy contributes to variations in the

relative stability of different tri-vacancies between the MTP and DFT predictions. It is also notable

that the current MTP potential exhibits a larger error for tri-vacancies that involve Al vacancies,

which is likely due to insufficient sampling of phase space encompassing the Al vacancies. This

underscores the need for improving the training set in the future work. In contrast to the MTP po-

tential, the EAM potential can only correctly predict the energetically most favorable configuration

of tri-vacancies and typically shows a larger deviation with the DFT results.
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Figure 5. a, b, Binding and formation energies of tri-vacancies in Ni. c-j. Binding and formation energies

of tri-vacancies in Ni3Al. The horizontal axis indicates the ID of the tri-vacancies configurations, which are

ordered by DFT-calculated formation energies.

Furthermore, we evaluated formation energies of vacancies at the Ni-Ni3Al interface boundary.

As depicted in Fig. 6, all the three (DFT, MTP, and EAM) methods predict that the Ni vacancy

at the site 1 is the most favorable. The MTP potential can effectively reproduce the DFT-derived

relative stability of various vacancies, while the EAM potential significantly overestimates the

formation energies. Again, within the accuracy, the current MTP struggles to correctly determine

the order of stabilities for the vacancies at sites 2 and 3.
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Figure 6. a, Formation energies of vacancies at the Ni-Ni3Al interface boundary predicted by DFT, MTP,

and EAM methods. b, The positions of the vacancies (red balls). The site number is indicated. The blue

and gray balls represent Al and Ni atoms, respectively.

E. Ground-state configuration of vacancy clusters in Ni

Vacancy clusters in metals can be formed under various working conditions, including tensile

or shear loads, irradiation damage, and so on [4, 5, 124–126], which therefore necessitates spe-

cial investigation. It is widely accepted that in FCC metals, vacancy clusters prefer stacking fault

tetragonal configurations and void configurations. While numerous studies explored these con-

figurations using DFT [20, 127] or semi-empirical potentials [128–132], the stable configurations

of vacancy clusters remain elusive due to the high computational cost of DFT and the limited ac-

curacy of semi-empirical potentials. To address this issue, here we attempted at examining the
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stability and ground-state configurations of vacancy clusters in nickel using our developed MTP

potential.

We first accessed the accuracy of the MTP potential using 5 × 5 × 5 supercell, a size affordable

for DFT calculations. Figure 7 presents the formation energies and binding energies of the vacancy

clusters of loop, SFT, and void types predicted by DFT and MTP methods. One can see that as

compared to the DFT results, the MTP predictions generally overestimate the formation energy

per vacancy, but underestimate the binding energy of the vacancy clusters. For vacancy clusters

containing fewer than three vacancies, the current MTP potential fails to predict the correct relative

order of binding and formation energies across the three types of vacancy clusters. We would like

to note that reproducing the formation and binding energy of large defect clusters using machine-

learned interatomic potentials is highly challenging due to the potential accumulation of prediction

errors with increasing system sizes. Nevertheless, the overall trend of binding energy remains

consistent with anticipated behavior.

a

b

Figure 7. a, Formation energies and b, binding energies of the vacancy clusters of LOOP, SFT, and VOID

types predicted by DFT and MTP methods.
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Then, we turned to a larger 8×8×8 supercell consisting of 2048 atoms to determine the ground-

state configuration of the vacancy clusters at their equilibrium volume and at 0 K. The vacancies

loop with a triangular shape, void, and SFT configurations were considered. For the vacancies

loop and void configurations, we conducted an exhaustive search considering all possible config-

urations. To identify the most stable configuration for the SFT and other possible configurations,

we conducted multiple molecular dynamics annealing simulations.

a b

Figure 8. a, Formation energies and b, binding energies of vacancy clusters of different sizes in an 8× 8× 8

supercell of Ni predicted by MTP.

Figure 8 shows the MTP-predicted formation and binding energies as a function of the size of

vacancy clusters in an 8×8×8 supercell of Ni. The most stable configurations of vacancy clusters

for each size are depicted in Fig. 9. For simplicity, in the following we denote the cluster of n

vacancies as nv. It can be seen that the 3v cluster stabilizes the loop configuration, while 4v and

8v clusters favor the void configuration. The 5v cluster forms a 6v void configuration with an self

interstitial atom (SIA) near the center. For the remaining vacancy clusters, the SFT configuration

is found to be the most stable. Specifically, the ideal SFT configuration is attained for the 6v, 10v,

15v, and 21v clusters, known as magic numbers. For other vacancy clusters whose size does not

align with these magic numbers, the SFT configuration is imperfect, with a neighboring vacancy.
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Figure 9. Configurations of vacancies from monovacancy to vacancy cluster consisting of up to 24 vacancies

in Ni. The green balls represent self interstitial atoms within the perfect lattice, the gray cubes denote the

vacancy sites, and blue cubes represent the positions of atoms in the perfect lattice. Note that only the

environment containing the defects is displayed.
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F. Diffusion behavior of vacancy clusters in Ni

In addition to investigating the static energetics of vacancy clusters, we delved into the dynamic

diffusion characteristics. In order to ensure the same vacancy concentration, we constructed an 12×

12 × 12 supercell containing twelve vacancies for each type of vacancy clusters. By doing so, we

restricted ourselves to the clusters of mono-vacancy, di-vacancies, tri-vacancies, quad-vacancies,

and hexa-vacancies. In other words, within each system, there are 6 clusters of di-vacancies, 4

clusters of tri-vacancies, 3 clusters of quad-vacancies, and 2 clusters of hexa-vacancies. Using our

developed MTP potential we performed molecular dynamics simulations at 800 K over a duration

of 2 ns and then computed the mean squared displacement (MSD) of each system. The results

are shown in Fig. 10. We note that in the absence of vacancy diffusion, the atoms also underwent

vibrational motion around their equilibrium positions, leading to a MSD of 0.1 Å2, represented by

the dashed horizontal line in Fig. 10.

We observed during the MD run that the di-vacancy and hexa-vacancy clusters are stable, keep-

ing the cluster size from the beginning to the end. However, the tri-vacancy cluster is unstable,

decomposing into a di-vacancy cluster and a nearby mono-vacancy after several migration steps.

After about 1 ns, all four clusters of tri-vacancies underwent decomposition. During this pro-

cess, the decomposed mono-vacancy remains unchanged, whereas the decomposed di-vacancy

clusters exhibit behavior akin to regular di-vacancy clusters. The quad-vacancy clusters are also

unstable. They initially broke down into a tri-vacancy cluster and a mono-vacancy after several

migration steps. Finally, these tri-vacancy clusters further decomposed into a di-vacancy cluster

and a mono-vacancy. Because of the decomposition process, the ultimate slopes of the MSD

curves for di-vacancy, tri-vacancy, and quad-vacancy clusters are hence nearly indistinguishable.

Under 800 K, the mono-vacancy is almost immobile, with only one jump observed throughout the

entire trajectory. Interestingly, the hexa-vacancy clusters with the SFT structure (6v-SFT) exhibit

the fastest diffusion.
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Figure 10. MTP predicted mean squared displacements in the defective Ni system containing various type

of vacancy clusters at a temperature of 800 K.

We conducted an in-depth analysis to understand why the 6v-SFT cluster diffuses so rapidly

compared to the other five vacancy clusters under consideration. Within the 6v-SFT clusters, there

are two configurations that are mutually centrosymmetric with each other. We ran another MD

simulation with a shorter dump interval, containing only one 6v-SFT cluster in the system. During

this simulation, we observed frequent transitions between the two configurations of the 6v-SFT

cluster. The calculated transition barrier at 0 K using the CI-NEB method is approximately 0.4 eV,

surprisingly low for such transitions to occur.
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Figure 11. Snapshots from a MD trajectory. Note that only atoms near the SFT cluster are shown. The atoms

are color-coded based on their site energies predicted by our MTP potential. The blue cubes represent the

positions of atoms in the perfect lattice. The trajectory of the migrating atoms (marked by red arrows) is

colorized according to simulation time. a-c. Snapshots of the first migration event occurring between 631.2

ps and 635.2 ps. d-f. Snapshots of second migration event occurring between 724.2 ps and 744.2 ps.

To uncover the migration path of the 6v-SFT cluster, we applied a low pass filter with a super-

Gaussian window on the trajectory to effectively filter out thermal vibrations above 10 THz. At

631.2 ps, during the transition between the two configurations of the SFT cluster, an atom un-

derwent a rapid and long-distance migration across the core region. It moved swiftly, covering a

significant distance, and then quickly returned to its original position within a few femtoseconds.

The trajectory of the migrating atom is shown in Fig. 11a-c. Notably, a hole appeared at the center

of the cluster during the transition between the two symmetrically opposite configurations of the

6v-SFT, potentially aiding in the occurrence of the observed long-distance transfers.

Similarly, at 724.2 ps, a migration event similar to the one observed at 631.2 ps reoccurred.

However, this time another atom took the place of the previously migrated atom, as shown in

Fig. 11d-f. This caused the cluster to enter an unstable state characterized by rapid transfers of core
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atoms. This unstable state persisted for over 500 ps in the trajectory, corresponding to the rising

section of the MSD curve in Fig. 10. Once the cluster returned to a stable 6v-SFT configuration,

the rapid migrations ceased, rendering the cluster immobile once more. Following this process,

the 117 atoms of the 6v-SFT cluster including the initial SFT core atoms migrated approximately

17 Å. To enhance the understanding of the migration process, we have included an additional

supplemental movie.

G. Description of the energetics of planer defects by MLIP

Having assessed the accuracy of our developed MLIP in describing point defects, we now turn

to evaluating its performance in the description of planer defects such as generalized stacking

faults (GSF). The GSF was introduced by Vitek [133] to describe the energy variations that occur

when half of a crystal undergoes shear displacement across a glide plane in specific directions. It

provides valuable insights into the behavior of intrinsic stacking faults and the deformation mech-

anisms of materials [134, 135]. Accurate modeling of stacking faults is crucial for understanding

the strength and plasticity of materials, since the intrinsic stacking fault energies and distances of

these faults are critical parameters for modeling dislocations [136].

Employing our developed MTP potential, we computed the generalized stacking fault energy

(GSFE) for the densely packed (111) plane in both Ni and Ni3Al. To model the stacking faults, the

shear alias method [137] was employed using a 6-layer supercell. The GSFE was calculated as

γGS F = (EGS F − E0)/A, (12)

where EGS F and E0 are total energies of the supercell with or without the stacking fault, respect-

ively, and A is the area of the slip plane within the supercell. For determining the GSFE on the

(111) plane, a 16 × 26 grid was utilized for DFT calculations, while a dense 120 × 120 grid was

applied for MTP and EAM calculations.

Figure 12 presents the GSFEs of the (111) plane of Ni and Ni3Al predicted by DFT, MTP,

and EAM methods. The values of various stacking fault energies are summarized in Table IV.

Overall, the MTP predictions demonstrate better agreement with the DFT results than the EAM

predictions. Given the scattered nature of both the calculated and experimental literature data,

our predictions are in line with them. The MTP prediction errors are negligible in the low-energy

region, but tend to increase in the high-energy region. This is due to inefficient sampling of these
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energetically unfavorable configurations from unbiased molecular dynamics simulations.

Figure 12. a, b, and c, Contour plot of generalized stacking fault energy of the Ni (111) plane predicted

by DFT, MTP, and EAM, respectively. d, e, and f, Contour plot of generalized stacking fault energy of

the Ni3Al (111) plane predicted by DFT, MTP, and EAM, respectively. The x and y axis denote the dis-

placements from initial perfect lattice along the [11̄0] and [112̄] directions, respectively. The color coding

indicates the generalized stacking fault energy in unit of mJ/m2.
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Table IV. Stacking fault energies of the (111) plane of Ni and Ni3Al predicted by DFT, MTP, and EAM

methods. The specific definition of each stacking fault energy has been provided in Fig. 12. The results are

compared to other calculations as well as experiments. All energies are in unit of mJ/m2.

DFT MTP EAM Other calculations Experiments

Ni

γISF 133 115 139 117.70 120∼130[138]

γusf1 263 276 297 283[139],273[140],278[141]

γusf2 713 688 974 783[139]

Ni3Al

γCSF 210 196 238 205[142],208[16],225[143],249[15] 235±45[144]

γAPB 163 235 206 180[142],198[140],259[139] 175±15[144]

γSISF 55 73 41 21[140],47[139],75[142],80[143] 6±5[144],35[145]

γusf1 1324 1291 1618 1332[140],1368[142],1421[139]

γusf2 808 788 948 778[142],791[140],830[139]

γusf3 232 248 252 227[140],254[142]

γusf4 214 299 257

γusf5 522 524 610

Following the minimal slide path as depicted in Fig. 12, our results clearly demonstrated that

in bulk Ni, a 1
2 [11̄0] dislocation decomposes into two Schockley partial dislocations 1

6 [21̄1̄] and
1
6 [12̄1] plus a intrinsic stacking fault (ISF). In the case of Ni3Al, a [11̄0] super dislocation first

decomposes into two 1
2 [11̄0] dislocations plus an anti-phase boundary (APB). Then, each 1

2 [11̄0]

decomposes into two Schockley partial dislocations 1
6 [21̄1̄] and 1

6 [12̄1] plus a complex stacking

fault. Our results are consistent with the discussions presented in the literature [2, 145–148].

It is worth mentioning that the anti-phase boundary (APB) in Ni3Al, as shown in Fig. 12,

exhibits a slight deviation from its geometrically ideal position after structural relaxation. For this

reason, we employed the minimal energy point of the APB instead of the geometrically ideal one

to determine the stacking fault energies. As a result, our computed value of γAPB is lower than the

values reported in the literature.
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H. Melting point prediction by MLIP

As a final inference test for our developed MLIP, we computed the melting points of Ni and

Ni3Al using the solid-liquid coexistence method [149]. A 10 × 10 × 20 supercell consisting of

8000 atoms was employed. The solid and liquid phases were separated by the (001) interface. The

calculated melting point of Ni is around 1597 K, which underestimates the experimental value of

1728 K [150, 151]. For Ni3Al, the MTP-predicted melting point is 1630 K, in good agreement with

the experimental value of 1645 K [150, 151]. We note that our training set did not deliberately

incorporate melting structures. It is therefore remarkable that the MTP potential we developed

accurately predicts the melting points of both Ni and Ni3Al, showcasing a notable extrapolation

capacity.

V. CONCLUSIONS

In conclusion, we have proposed an effective genetic algorithm based optimization scheme

for moment tensors contractions, which significantly reduces the number of independent moment

tensor components and intermediate tensor components. This results in almost an tenfold acceler-

ation in speed and improved accuracy as compared to the traditional MTP model of Shapeev [44]

for the basis sets with high level of complexity. The performance of our improved MTP model has

been thoroughly assessed by predicting the energetic and dynamical properties of various point

and planar defects in Ni-Al alloys. We found that our developed MTP model not only is capable

of reproducing the fundamental physical properties of bulk Ni and Ni3Al such as the lattice con-

stants, elastic properties, energy-volume curves, phonon dispersions, and the melting points, but

also can accurately predict the formation and binding energies of vacancy clusters, antisite defects,

and stacking faults as well as the diffusion behavior of vacancy clusters, in general surpassing the

widely used semi-empirical EAM potentials. The latter perform well for the target properties used

in fitting, but tend to exhibit large errors for complex defects such as vacancy clusters and stacking

faults. Our developed MTP model also enables the identification of the ground-state configuration

of vacancy clusters of differing sizes, accurately predicting the optimal SFT configuration for the

6v, 10v, 15v, and 21v clusters. Interestingly, we found that the 6v cluster with the SFT configura-

tion is very stable and diffuses fastest among the considered vacancy clusters (1v, 2v, 3v, 4v, and

6v) with the same vacancy concentration. Furthermore, our work underscores the general chal-
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lenge for MLIP models to predict the correct relative stability order of the defects with comparable

formation energies, which probably requires an accuracy of less than a meV per atom. While more

complex basis sets can achieve this high level of accuracy, it comes at the expense of efficiency.

Finally, we would like to note that the current MTP model can be systematically improved by

broadening the phase space of the training set through the active learning approach, thereby laying

the foundation for developing a general-purpose MLIP for Ni-Al alloys.
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M. Avaylon, W. J. Baldwin, F. Berger, N. Bernstein, A. Bhowmik, S. M. Blau, V. Cărare, J. P. Darby,
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[78] J. Liu, J. Byggmästar, Z. Fan, P. Qian, and Y. Su, Phys. Rev. B 108, 054312 (2023).

[79] T. Wen, L. Zhang, H. Wang, W. E, and D. J. Srolovitz, Materials Futures 1, 022601 (2022).

[80] C. J. Owen, Y. Xie, A. Johansson, L. Sun, and B. Kozinsky, Nature Communications 15, 3790

(2024).

[81] B. Cheng, npj Computational Materials 10, 157 (2024).

[82] T. W. Ko, J. A. Finkler, S. Goedecker, and J. Behler, Nature Communications 12, 398 (2021).

[83] R. Bian, R. He, E. Pan, Z. Li, G. Cao, P. Meng, J. Chen, Q. Liu, Z. Zhong, W. Li, and F. Liu, Science

385, 57 (2024).

41

https://arxiv.org/abs/2312.15492
http://arxiv.org/abs/2312.15492
http://dx.doi.org/10.1103/PhysRevB.90.104108
http://dx.doi.org/10.1103/PhysRevMaterials.2.013808
http://dx.doi.org/ 10.1038/s41524-018-0125-4
http://dx.doi.org/ 10.1038/s41524-018-0125-4
http://dx.doi.org/10.1038/s41524-019-0195-y
http://dx.doi.org/10.1038/s41524-019-0195-y
http://dx.doi.org/10.1038/s41524-020-0283-z
http://dx.doi.org/10.1038/s41524-020-0283-z
http://dx.doi.org/10.1103/PhysRevB.100.144105
http://dx.doi.org/10.1103/PhysRevMaterials.4.093802
http://dx.doi.org/10.1088/1361-648X/ac03d1
http://dx.doi.org/10.1088/1361-648X/ac03d1
http://dx.doi.org/ 10.1103/PhysRevMaterials.5.053804
http://dx.doi.org/ 10.1103/PhysRevB.103.094112
http://dx.doi.org/ 10.1103/PhysRevB.103.094112
http://dx.doi.org/ 10.1103/PhysRevMaterials.7.045802
http://dx.doi.org/ 10.1103/PhysRevMaterials.7.045802
http://dx.doi.org/10.1038/s41578-021-00340-w
http://dx.doi.org/https://doi.org/10.1016/j.jnucmat.2022.154183
http://dx.doi.org/ 10.1103/PhysRevMaterials.7.043601
http://dx.doi.org/ 10.1103/PhysRevMaterials.7.043601
http://dx.doi.org/ 10.1103/PhysRevB.108.054312
http://dx.doi.org/ 10.1088/2752-5724/ac681d
http://dx.doi.org/ 10.1038/s41467-024-48192-6
http://dx.doi.org/ 10.1038/s41467-024-48192-6
http://dx.doi.org/10.1038/s41524-024-01332-4
http://dx.doi.org/10.1038/s41467-020-20427-2
http://dx.doi.org/10.1126/science.ado1744
http://dx.doi.org/10.1126/science.ado1744


[84] H. Niu, L. Bonati, P. M. Piaggi, and M. Parrinello, Nature Communications 11, 2654 (2020).

[85] M. Yang, U. Raucci, and M. Parrinello, Nature Catalysis 6, 829 (2023).

[86] T. Zhu, L. Ma, S. Deng, and S. Liu, npj Computational Materials 10, 188 (2024).

[87] Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi, A. V. Shapeev, A. P. Thompson,
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