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We describe the duality of incompressible Navier-Stokes fluid dynamics in three di-
mensions, leading to its reformulation in terms of a one-dimensional momentum loop
equation. The momentum loop equation does not have finite-time blow-up
solutions. The decaying turbulence is a solution of this equation equivalent to a string
theory with discrete target space made of regular star polygons and Ising degrees of
freedom on the sides. This string theory is solvable in the turbulent limit, equivalent to
the quasiclassical approximation in a nontrivial calculable background. As a result,
the spectrum of decay indexes is analytically computed, and it agrees very
well with real and numerical experiments. Among the decay indexes there are
complex conjugate pairs related to zeros of the Riemann zeta function. The Kolmogorov
scaling laws are replaced by certain number theory functions, nonlinear in log-log scale.
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I. INTRODUCTION

The incompressible Navier-Stokes (NS) equation is more than a partial differential equation with quadratic non-
linearity; it encapsulates deep hidden symmetries, reflecting the geometric nature of fluid flows. Arnold (Arnold,
1966) first revealed the geometric aspects of fluid dynamics, showing the relationship between the evolution of fluid
elements, preserving volume, and diffeomorphism groups.

This insight has sparked considerable mathematical investigation, yet it has not resolved the enduring problem of
explosive solutions in NS dynamics. Power counting suggests that finite-time singularities (poles) might arise in the
NS equation, but is a deeper mechanism preventing such outcomes?

In 1993, we introduced a new geometric approach to the NS equation called the loop equation (Migdal, 1995).
This approach predicted the Area Law for the probability distribution of turbulent velocity circulation around large
stationary loops, a prediction later confirmed numerically (Iyer et al., 2021, 2019).

More recently, we found an exact solution to the loop equation (Migdal, 2023b), yielding explicit energy spectrum
formulas for decaying turbulence, which closely align with experimental and simulation data (Migdal, 2024b). There
is an online document (Migdal, 2024a) where the latest results and updates of the theory and its verification are
collected.

This paper, however, focuses on the broader duality between fluid dynamics and a Schrödinger equation in loop
space. This duality reveals a hidden one-dimensional quantum system underlying classical NS dynamics in any spatial
dimension. The dimensional reduction and the quantum nature embedded in everyday fluids open new avenues for
study.

We present a general framework for solving the NS equation’s Cauchy problem with rough initial data of finite
variance σ. We do not claim any mathematical rigor, though our equations are well-defined as limits of the finite set
of equations. The rigorous mathematical theorems will be presented in a subsequent publication in collaboration with
Camillo De Lellis and Elia Bruè.

Classical solutions are recovered in the limit σ → 0. From a physical standpoint, this limit is unnecessary, as real
fluids always experience thermal noise, which the NS evolution can amplify or diminish over time.

We highlight five key features of this new representation:

1. It uncovers a duality between classical fluid dynamics and quantum mechanics.

2. It reduces the problem from (d+ 1) to (1 + 1) dimensions, introducing fractal curves as solutions.

3. It allows for exact solutions characterized by fixed trajectories.

4. One such trajectory provides an exact solution for decaying turbulence (Migdal, 2023b, 2024b).

5. The explosive solutions are ruled out.

II. LOOP FUNCTIONAL AND ITS GENERAL PROPERTIES

The loop functional is defined as a phase factor associated with velocity circulation, averaged over the initial
distribution v⃗0 of the velocity field

Ψ(γ,C) =
〈

exp
( ıγ
ν

Γ
)〉

v⃗0
; (1)

Γ =
∮

C

v⃗(r⃗) · dr⃗; (2)

We use viscosity ν as a unit of circulation. Both have the same dimension L2/T as the Planck’s constant ℏ. The
viscosity will play the same role in our theory as Planck’s constant in quantum mechanics. The variable γ with this
definition is dimensionless.

This loop functional is the Fourier transform of the PDF for the circulation over fixed loop C

Ψ(γ,C) =
∫ ∞

−∞
dΓP (Γ, C) exp

( ıγ
ν

Γ
)

; (3)

P (Γ, C) =
∫ ∞

−∞

dγ

2πΨ(γ,C) exp
(

− ıγ

ν
Γ
)

(4)
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Loop Functional Evolution 

  Noisy data
t=0

P∼(t+t0)
(-½);  Ѱ(t→∞)→1

Decaying turbulence

P∼(t*-t)
(-½);  Ѱ(t→t*)∈C1

Finite time Blowup?

P=P*(θ) ; Ѱ*∝e(-Σ*Σ); 
Σ=∫ C ⨯ d C;

Fixed Point

Laminar Flow

Laminar Flow

Figure 1 Asymptotic trajectories of the time evolution for the loop functional inside the unit circle in the complex plane. The
laminar flow is the yellow region on the circle close to Ψ = 1. Three other flows are 1) hypothetical explosion, 2) decaying
turbulence, and 3) special fixed point.

There is an implicit dependence of time, coming from the evolution of the velocity field by the Navier-Stokes equation

∂tv⃗ = −ν∇ × ω⃗ − v⃗ × ω⃗ − ∇⃗
(
p+ v⃗2

2

)
; (5)

∇ · v⃗ = 0; (6)
ω⃗ = ∇⃗ × v⃗ (7)

We restrict ourselves to three-dimensional Euclidean space, the most interesting case for physics applications. The
generalization to arbitrary dimension is straightforward, as discussed in previous papers (Migdal, 1995, 2023a,b).

In the next sections, we shall study the Cauchy problem for the loop equation (Migdal, 1995, 2023a), which follows
from the Navier-Stokes equation. Here, we state some general properties of the loop function and various scenarios
of its evolution. The first obvious property is that this evolution goes inside the unit circle

|Ψ(γ,C)| ≤ 1; ∀t; (8)

At a small enough time passed from initial data, t < tc, turning off the noise would bring us to the usual unique
laminar solution of the Navier-Stokes equation, corresponding to the loop functional at the unit circle with a small
enough phase.

lim
σ→0

|Ψ(γ,C)| = 1; ∀t < tc; (9)

Here, σ denotes the variance of the Gaussian distribution of the velocity field around some smooth initial value.
Generally speaking, we could expect the following fixed points (see Fig.1) of the time evolution for the loop functional1.

1. Special solution. There is a fixed point corresponding to the global random rotation of the fluid (see (Migdal,
1995, 2023a,b)).

2. Decaying Turbulence. The evolution of loop average reaches some fixed trajectory, independent of initial
data, and covers some nontrivial manifold (see (Migdal, 2023b, 2024b)). At infinite time, this fixed trajectory
leads to zero velocity, corresponding to all the kinetic energy dissipated by viscous effects.

3. Finite-time explosion? The vorticity could blow up at some finite or infinite point in time, leading to infinite
circulation. In this case, the loop functional would cover the unit circle at this moment of singularity.

In the following sections, we elaborate on each of these possible regimes. The finite-time explosion is proven to be
inconsistent and is therefore ruled out.

1 We do not count deterministic fixed points corresponding to potential flows. They correspond to isolated points on the unit circle.
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III. LOOP EQUATION

The first step is to write down the loop equation by projecting the Hopf equation to the loop space.
Before doing that, we have to specify certain boundary conditions which we assume in our fluid dynamics. Namely,

we consider infinite space R3, with boundary condition of vanishing or constant velocity at infinity.
Vorticity can be everywhere in space, but not at infinity, where the velocity gradients vanish by our boundary

conditions. We also assume that there are no internal boundaries, such as the surfaces of the bodies which our
fluid flows around. We do not eliminate some surfaces with singular vorticity in the limit of zero viscosity, such as
vortex lines and sheets, as long as these singular regions are located in a finite part of the volume, in agreement with
our boundary conditions. At finite viscosity, these regions have finite thickness proportional to

√
ν, which leads to

anomalous dissipation in the turbulent flow.
The computations leading to the loop equation were performed in the old papers (Migdal, 1995, 2023a). For the

reader’s convenience, we repeat them here using another language, hopefully more clear for mathematicians.
The straightforward time derivative of the loop functional, assuming the constant loop C and using time derivative

(5) of the velocity field in the circulation, yields

∂tΨ(γ, C⃗) =〈
ıγ

ν

∮
dC⃗(θ) · L⃗(C⃗(θ)) exp

( ıγ
ν

Γ(v⃗, C⃗)
)〉

sol

; (10)

L⃗(r⃗) = −ν∇⃗ × ω⃗(r⃗) + ω⃗(r⃗) × v⃗(r⃗) (11)

The averaging ⟨⟩sol goes, as before, over time-dependent NS solutions v⃗(r⃗) with a given set of initial values v⃗0(r⃗). It
is implied that a probability measure (see examples below) is supplied for this set of initial velocity fields. The phase
factor of circulation is averaged over initial data using this measure.

The gradient terms ∇⃗
(
p+ v⃗2

2

)
in (5) dropped in the time derivative of the circulation as the integral of a gradient

of some single-valued function of coordinate H(r⃗) = p(r⃗) + v⃗2(r⃗)
2 around the closed loop:∮

dC⃗(θ) · ∇⃗H(C⃗(θ)) =
∮
dH(C⃗(θ)) = 0.

The velocity field v⃗ is a solution of the Poisson equation, relating it to vorticity by incompressibility condition

v⃗(r⃗) = −1
∇⃗2

∇⃗ × ω⃗(r⃗) (12)

This representation leaves vorticity as the main unknown variable in the time derivative of the loop functional.
To find the loop equation, we must replace the vorticity and its gradients with certain operators acting on the loop

independently of the vorticity and velocity fields. As a result of such transformation, the vector function L⃗(C⃗(θ)) will
be replaced by a certain operator L̂(θ) in loop space acting on Ψ(γ, C⃗)

L̂(θ) exp
( ıγ
ν

Γ(v⃗, C⃗)
)

=(
−ν∇̂(θ) × ω̂(θ) + ω̂(θ) × v̂(θ)

)
exp

( ıγ
ν

Γ(v⃗, C⃗)
)

; (13)

∂tΨ(γ, C⃗) = ıγ

ν

∮
dC⃗(θ) · L̂(θ)Ψ(γ, C⃗) (14)

This operator L̂(θ) depends on certain operators ∇̂(θ), ω̂(θ), v̂(θ) instead of on the dynamical variables v⃗(r⃗), ω⃗(r⃗),
therefore it can be taken out of the averaging over trajectories starting from various initial data v⃗0(r⃗) so that this
operator acts on the loop average Ψ(γ, C⃗). Such is the plan of the proof of the loop equation. We define the loop
operators and follow this plan in the next section.

IV. THE DEFINITIONS OF THE LOOP OPERATORS AND THE PROOF OF THE LOOP EQUATION

The operators in the loop equation were introduced in(Migdal, 1995) and explained at length in my review pa-
per(Migdal, 2023a).
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In this paper, we do not assume any knowledge of the previous work; instead, we derive the loop operators from
scratch using a simpler method.

First, we approximate the smooth loop C(θ) by a polygon with N vertices C⃗k = C⃗(2πk/N) in the limit N → ∞.
We postpone this local limit until we solve the discrete loop equation. This limit will define the continuum theory
in the same way as in the QFT; the functional integral is discretized using a lattice with the lattice spacing going to
zero at the end of the calculation. In this limit, the theory’s parameters vary with the lattice spacing to provide a
finite result for the physical observables.

The first observation is that with smooth velocity and vorticity fields, the discrete circulation around the polygon
C⃗k, k = 0, . . . N − 1, C⃗N = C⃗0 converges to the circulation around the smooth loop

Γ ≡
∑

k

∆Ck · v⃗(C⃗k) →
∮
dC⃗(θ) · v⃗(C⃗(θ)); (15)

∆Ck = C⃗k+1 − C⃗k; (16)

The finite difference becomes derivative for the smooth loop; the error will vanish as O(1/N).
The next property is also easy to prove using the Stokes theorem for a small triangle

(
C⃗k−1, C⃗k, C⃗k+1

)
∇⃗k ≡ ∂C⃗k

; (17)

∇⃗kΓ ∝
(

∆C⃗k + ∆C⃗k−1

)
× ω⃗(C⃗k) → 0 (18)

This first derivative vanishes at N → ∞ as ∆C⃗k ∼ O(1/N).
The second derivative, however, stays finite. We prefer to use another set of variables

s⃗k = ∆C⃗k; (19)
η⃗k = ∂s⃗k

; (20)
∇⃗k = −∆η⃗k−1; (21)

The last relation follows from the chain rule

∇⃗k = ∂s⃗k

∂C⃗k

· η⃗k + ∂s⃗k−1

∂C⃗k

· η⃗k−1 =

η⃗k−1 − η⃗k = −∆η⃗k−1 (22)

The vorticity can be represented as

η⃗k− × ∇⃗kΓ → ω⃗(C⃗k) + O(1/N); (23)

η⃗k− ≡ η⃗k + η⃗k−1

2 ; (24)

The contour C becomes an open line when we move all s⃗k independently, without restricting
∑
s⃗k = 0. However, the

contribution to the time derivative of circulation from the extra gap between the endpoints ∆∂tΓ ∝ H(C⃗N ) −H(C⃗0)
where H(r⃗) = p(r⃗) + v⃗2(r⃗)

2 is the enthalpy, which is supposed to be differentiable. Thus, this error term goes to zero
as we reinstate the closure condition

∑
s⃗k = C⃗N − C⃗0 = 0.

Finally, the velocity field at the vertex v⃗(C⃗k) can be related to the vorticity through the Biot-Savart law

v⃗(C⃗k) exp (ıΓ) = −1/(∇⃗2
k)∇⃗k × ω⃗(C⃗k) exp (ıΓ) ; (25)

Let us verify this relation using the Biot-Savart integral formula for the inverse Laplace operator

v⃗(C⃗k) exp (ıΓ) = O(1/N) +
1

4π

∫
d3r

r⃗ × ω⃗(C⃗k + r⃗)
|r⃗|3

exp
(
ıΓ̃(r⃗)

)
; (26)

Γ̃(r⃗) = Γ|C⃗k⇒C⃗k+r⃗ (27)

At first glance, the loop in the new circulation Γ̃(r⃗) involves two long ”wires”: (C⃗k−1, C⃗k + r⃗) and (C⃗k + r⃗, C⃗k+1).
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However, in the local limit, when the distance |C⃗k+1 − C⃗k−1| = O(1/N), these two wires have zero area inside
the arising thin triangle, so they effectively cancel in virtue of the Stokes theorem, assuming the Biot-Savart integral
converges.

Γ̃(r⃗) → Γ̃(0) = Γ (28)

This produces the desired result in the Biot-Savart formula.
The convergence of the Biot-Savart integral follows from our boundary conditions, assuming no vorticity at infinity

or even stronger requirement of finite support of vorticity. The phase factor exp
(
ıΓ̃(r)

)
does not influence the absolute

convergence, so it can be set to exp (ıΓ) for that purpose and taken out of the integral, returning us to the convergence
of the ordinary Biot-Savart integral.

Therefore, with O(1/N) accuracy, we can replace the right side of the (10) by its discrete version with operators
involving ∇⃗k

∂t ⟨exp (ıΓ)⟩ =
ıγ

ν

∑
k

∆C⃗k · L̂k ⟨exp (ıΓ)⟩ + O(1/N); (29)

L̂k = −ν∇⃗k × ω̂k + ω̂k × v̂k; (30)
v̂k = −1/(∇⃗2

k)∇⃗k × ω̂k; (31)
ω̂k = η⃗k− × ∇⃗k; (32)

We restrict ourselves to the velocity vanishing at infinity and no internal boundaries in the physical domain. With
this boundary condition, the harmonic potential is zero, and there is no zero mode to add to the inverse Laplace
operator.

In the rest of the paper, we shall use the language of the continuum theory, implying the limit
N → ∞ of a polygon C⃗ with N sides. While the lengths of the sides of C⃗ vanish in the local limit
N → ∞, the sides of P⃗ polygon are not at our disposal, so they may stay finite (this will happen in the
decaying turbulence below).

V. SCHRÖDINGER EQUATION IN LOOP SPACE

Before we investigate the solutions of the loop equation, let us consider its physical and mathematical meaning and
its relation to the geometry of the incompressible flow.

By definition, the loop functional Ψ(γ, C⃗) is a superposition of the phase factors exp
(

ıγ
ν Γ(v⃗, C⃗)

)
with the circulation

Γ of a particular solution v⃗(r⃗, t) of the Navier-Stokes equation. These solutions have initial values v⃗(r⃗, 0) = v⃗0(r⃗),
distributed by some distribution P [v⃗] which we assume Gaussian with the mean given by some smooth initial field
and some coordinate-independent variance σ.

In the turbulent scenario, the Navier-Stokes trajectories initiated from a narrow vicinity of some smooth velocity field
eventually expand and cover some attractor, slowly varying with time and asymptotically converging to v⃗ = 0,Ψ = 1.

The alternative smooth solution of the Navier-Stokes equation, sought after in numerous mathematical papers,
would correspond to these trajectories staying close and converging to a single trajectory in the limit σ → 0. This
single trajectory would go along the unit circle, bounding our disk.

With this generalization of a definition of the Cauchy problem for the Navier-Stokes equation, we can address the
existence of smooth, explosive, or stochastic (i.e., turbulent) solutions within the loop equation’s framework.

The transformation from the Navier-Stokes equation to the loop equation is similar to that from the Newton
equation of the particle in random media to the diffusion equation. We add dimension to the problem, switching
to the probability distribution in Rd, after which the particle’s infinitesimal time steps translate into probability
derivatives by coordinates.

There are two essential differences, however. Our loop space is not just higher-dimensional; in the local limit
N → ∞, it is infinite-dimensional. The second difference is that in addition to diffusion terms ν∇̂ × ω̂, we have
nonlocal advection terms v̂ × ω̂ affecting the evolution of the distribution in loop space.

Our definition of the loop functional already by construction has superficial similarities with quantum mechanics.
We are summing phase factor over a manifold of solutions of the Navier-Stokes equations. The circulation plays the
role of classical Action, and viscosity plays the role of Planck’s constant.
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Figure 2 The ”hairpin” loop C used in defining the pair correlation of vorticity. The little circles are the loop variations needed
to bring down vorticity at two points in space. The backtracking contribution to the circulation cancels at vanishing separation
between these parallel lines.

This analogy becomes a complete equivalence when the time derivative of the loop functional is represented as an
operator L⃗(C⃗(θ)) ⇒ L̂(θ) in the loop space acting on this functional.

Now we have quantum mechanics in loop space, with the Hamiltonian

Ĥ ∝
∮
dC⃗(θ) · L̂(θ).

The operator L̂(θ) depends of functional derivatives δ

δC⃗(θ)
, as was determined, and discussed in previous works (Migdal,

1995, 2023a,b). Our polygonal approximation has no functional derivatives, just ordinary derivatives ∇⃗k = ∂C⃗k
, η⃗k =

∂∆C⃗k
. Thus, our quantum-mechanical system has 3N continuum degrees of freedom C⃗1, . . . C⃗N with periodicity

constraint C⃗0 = C⃗N .
This Hamiltonian is not Hermitian, which reflects the dissipation phenomena. The time reversal leads to complex

conjugation of the loop functional, a nontrivial transformation, as there is no symmetry for the reflection of velocity
field v⃗(r⃗, t) → −v⃗(r⃗, t).

The loop in our theory is a periodic function of the angular variable θ. Geometrically, this is a map of the unit
circle into Euclidean space S1 7→ Rd. In particular, there could be several smaller periods, in which case this loop
becomes a set of several closed loops connected by backtracking wires like in Fig.2. Also, this map could have an
arbitrary winding number n corresponding to the same geometric loop in Rd traversed n times.

The linearity of the loop equation is the most important property of this transformation from Navier-Stokes equation
to the quantum mechanics in loop space.

This transformation exemplifies how the nonlinear PDE reduces to the linear problem projected from high dimen-
sional space. In our case, this space is the loop space, which is infinite-dimensional.

As a consequence of linearity, the generic solution of the loop equation is a superposition of particular solutions
with various parameters. More generally, this is an integral (or sum, in discrete case) over the space S of solutions of
the loop equation.

In the case of the Cauchy problem in loop space, the measure for this integration over space S is determined by
the initial distribution of the velocity field. The asymptotic turbulent solution (Migdal, 2023b) uniformly covers the
Euler ensemble, like the microcanonical distribution in Newton’s mechanics covers the energy surface.

This turbulent solution does not solve a Cauchy problem; it rather solves the loop equation with the boundary
condition at infinite time Ψt=∞ = 1.

In the next section, we simplify the loop equation using Fourier space; this will be the foundation for the subsequent
analysis.

VI. MOMENTUM LOOP EQUATION

The loop operator, L̂ in (29), dramatically simplifies in the functional Fourier space, which we call momentum loop
space. In our discrete approximation, the momentum loop will also be a polygon with N sides.

The origin of this simplification is the lack of direct dependence of the loop operator L̂(θ) on the loop C itself. Only
derivatives ∇⃗k, η⃗k enter this operator.

From the point of view of quantum mechanics in loop space, our Hamiltonian only depends on the canonical
momenta but not on the canonical coordinates. This property is exact as long as we do not add external forces.

This remarkable symmetry property (translational invariance in loop space) allows us to look for the ”plain wave”
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Ansats:

Ψ(γ,C|t) = ⟨ψp(t)⟩init ; (33a)

ψp(t) = exp
(
ıγ

ν

∑
k

∆C⃗k · P⃗k(t)
)

(33b)

Here the averaging ⟨. . . ⟩init goes over all trajectories Pk(t) passing through random initial data P⃗k(0) distributed with
the corresponding probability to reproduce initial value Ψ(γ,C|0). We discuss this initial distribution in the next
sections.

The operators ∇⃗k, η⃗k become ordinary vectors when applied to ψp in (33):

∇⃗kψp = − ıγ

ν
∆P⃗k−1ψp; (34a)

η⃗k−ψp = ıγ

ν
P⃗k−ψp; (34b)

P⃗k− ≡ P⃗k + P⃗k−1

2 ; (34c)

The velocity circulation can be rewritten up to O(1/N) corrections as a symmetric sum∑
k

∆C⃗k · P⃗k(t) + O(1/N) =
∑

k

∆C⃗k + ∆Ck+1

2 · P⃗k(t) =∑
k

∆C⃗k · P⃗k−(t) (35)

We did not assume here anything about the continuity of P⃗k; we only assumed that |∆Ck+1 − ∆C⃗k| ≪ |∆C⃗k| which
is true for smooth loop.

The discrete loop equation (29) with our Anzatz (33) after some algebraic transformations using the above identities
(34), (35) reduces to the following momentum loop equation (MLE)(Migdal, 2023a,b)

ν∂tP⃗ = −γ2(∆P⃗ )2P⃗ +

∆P⃗
(
γ2P⃗ · ∆P⃗ + ıγ

(
(P⃗ · ∆P⃗ )2

∆P⃗ 2
− P⃗ 2

))
; (36a)

∆P⃗ ≡ P⃗k − P⃗k−1; (36b)
P⃗ ≡ P⃗k− (36c)

In the local limit N → ∞, the momentum loop will have a discontinuity ∆P⃗ (θ) at every parameter 0 < θ ≤ 2π,
making it a fractal curve in complex space Cd. Such a curve can only be defined using a limit like a polygonal
approximation.

You can regard this curve as a periodic random process hopping around the circle (more about this process below,
in the context of the decaying turbulence).

The details can be found in (Migdal, 2023a,b). We will skip the arguments t, k in these loop equations, as there is
no explicit dependence of these equations on either of these parameters.

VII. UNIFORM CONSTANT ROTATION AND MOMENTUM LOOP

The loop equation has several unusual features, especially the discontinuities of the momentum loop. These dis-
continuities have a physical meaning related to vorticity.

It is best understood by studying an exact fixed point of the loop equation: the global constant rotation. We set
γ = ν for simplicity in this example.

vα(r⃗|ϕ) = ϕαβrβ ; (37)
ϕαβ = −ϕβα; (38)

Ψ[C] = exp
(
ıϕαβ

∮
dCα(θ)Cβ(θ)

)
; (39)
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We present two implementations of the momentum loop for this simple model: one using an infinite Fourier expansion
and another using the limit of polygonal approximation of the loop. This will allow us better understand the origin
and the meaning of these discontinuities.

A. Infinite Fourier series

Here is the implementation of the momentum loop by an infinite Fourier series.

Ψ0[C] =
〈

exp
(
ı

∮
dC⃗(θ) · P⃗ (θ)

)〉
P

; (40)

Pα(θ) =
∞∑

odd n=1
Pα,ne

ınθ + P̄α,ne
−ınθ; (41)

Pα,n = N (0, 1); (42)

P̄α,n = 4
πn

ϕαβPβ,n; (43)

ϕαβ = −ϕβα; (44)

The covariance matrix components are (for odd n, l)

⟨Pα,nPβ,l⟩ = 4
n
δnlϕαβ ; (45)

⟨Pα(θ)Pβ(θ′)⟩P = 2ıϕαβ sign(θ′ − θ); (46)

The loop functional is obtained after averaging over Gaussian random variables Pα,n, ϕαβ . The loop function can
be computed without an explicit Functional Fourier transform using the well-known properties of the Gaussian
expectation value of the exponential.〈

exp
(
ı

∮
dC⃗(θ) · P⃗ (θ)

)〉
P

∝ exp
(

−1/2

∮
dCα(θ)

∮
dCβ(θ′) ⟨Pα(θ)Pβ(θ′)⟩

)
∝ exp

(
−ı/2ϕαβ

∮
dCα(θ)

∮
dCβ(θ′) sign(θ − θ′)

)
=

exp (−ıϕαβΣαβ) ; (47)

Σαβ =
∮
dCα(θ)Cβ(θ) (48)

With this representation, it is obvious why the circulation does not depend on time; the vorticity is a global constant
ϕαβ which does not depend on time nor r⃗. Simple tensor algebra in the time derivative of circulation leads to the
term ∮

dCα(θ)Lα(θ) ∝ ϕαβϕβγΣγα = 0; (49)

Σαγ = −Σγα =
∮

C

rαdrγ (50)

The tensor trace vanishes by symmetry γ ↔ α, changing the sign of Σαγ . This solution is a consequence of the
rotational symmetry of the Navier-Stokes equation.

Verification of the MLE is more tedious because, this time, the velocity in (37) explicitly depends on the coordinate.
This will become ϕαβCβ(θ) in the equation, which means that the operator L̂(θ) depends both on C⃗, P⃗ . Still, for the
proof, it suffices to know the momentum loop (33) and the corresponding velocity field (37), solving the Navier-Stokes
equation for arbitrary constant ϕ.

Though this special solution does not describe isotropic turbulence, it helps understand the mathematical properties
of the loop technology.
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In particular, it shows the significance of the discontinuities of the momentum loop P⃗ (θ), as it is manifest in the
correlation function(46). These discontinuities are necessary for vorticity; they result from the divergence of the
Fourier series in (40).

The mean vorticity at the circle is proportional to ϕαβ independently of θ〈
ωαβ(C⃗(θ))

〉
∝ ⟨Pα(θ)∆Pβ(θ)⟩ ∝ ϕαβ ; (51)

B. Polygonal approximation

The second implementation is more aligned with the methods we use in the MLE. We approximate the loop C as
a polygon with vertices C⃗k equidistant on a parametric circle.

ı

∫
C

C⃗(θ) · ϕ · dC⃗(θ) ≈ ı

N−1∑
k=0

C⃗(k) · ϕ · ∆C(k) =

ı

2

N−1∑
k,l=0

∆C⃗(k) · ϕ · ∆C⃗(l) sign(k − l); (52)

∆C⃗(k) = C⃗(k + 1) − C⃗(k); (53)

Our next task is to represent the loop functional as a Gaussian average over the momentum loop P⃗ = {P⃗0, . . . P⃗k}
with symmetric covariance matrix 〈

Pα
k P

β
l

〉
= ıϕαβ sign(k − l) (54)

This representation will involve the following discrete Fourier transform with Gaussian coefficients

Pα
k =

N∑
n=1

ξα
n exp (ıkωn) + ξ̄α

n exp (−ıkωn) ; (55)

ωn = π(2n+ 1)/N ; (56)〈
ξα

n ξ̄
β
m

〉
= ıϕαβδn,mU(n); (57)

U(n) = 2
N

N∑
k=−N

sign(k) sin (kωn) (58)

This discrete Fourier transform for U(n) reduces to a finite geometric series with the following result

U(n) = 2
N tan

(
ωn

2
) ; (59)

Note that this P⃗k is antiperiodic: it changes the sign when the index goes around the loop. This, however, keeps the
solution simply periodic in C space, as only an even number of P⃗ variables have non-vanishing expectation values in
this particular example.

This example shows both the discontinuities’ meaning and the momentum loop’s approximation by a polygon. In
this example, the continuum limit N → ∞ can be taken for the loop functional, but not at the level of the Fourier
series for the momentum loop.

The formal limit N → ∞ exists for U(n) at fixed n

U(n)N→∞ → 4
π(2n+ 1) (60)

and matches the continuum theory, but the oscillating sum of Gaussian random variables does not converge to any
normal function; rather, this is a stochastic process on S1 with convergent expectation values.
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VIII. CAUCHY PROBLEM AND ITS SOLUTION

The Cauchy problem, notoriously difficult for nonlinear PDE, can be solved analytically for the loop equation. The
hard part of the problem is now hidden in the limit σ → 0, bringing us back to the Navier-Stokes equation with
smooth initial data.

Let us describe this solution. Assuming the MLE (36) satisfied, we have certain conditions for the initial data
P⃗0(θ) = P⃗ (θ, 0). This data is distributed with some distribution W [P ] to be determined from the equation

Ψ0(γ,C) = Ψ(γ,C)t=0 =∫
[DP0]W [P⃗0] exp

(
−ıγ
ν

∮
C⃗ · dP⃗0

)
; (61)

This path integral is nothing but a functional Fourier transform, which can be inverted as follows

W [P0] =
∫

[DC]Ψ0(γ,C) exp
(
ıγ

ν

∮
C⃗ · dP⃗0

)
; (62)

The definition of the parametric-invariant functional measure in this Fourier integral was discussed in detail in the
old work (Migdal, 1995, 2023a). The periodic vector functions C⃗(θ), P⃗ (θ) are represented by the Fourier series, after
which the measure becomes a limit of the multiple integrals over all the Fourier coefficients. As an alternative, one
may replace these loops with polygons with N → ∞ sides and define the measure as a product of integrals over the
positions of the vertices of these polygons.

The explicit formulas for the Fourier measure, proof of its parametric invariance, and some computations of the
Functional Fourier Transform can be found in (Migdal, 2023a), section 7.10 (Initial data).

In the next section, we completely solve the Cauchy problem for an interesting example – the exact fixed point of
the loop equation corresponding to a global random rotation.

In a physically justified case of Gaussian thermal noise ξ⃗(r⃗) added to the initial velocity field v⃗0(r⃗), we can advance
solving the Cauchy problem for a generic initial velocity field.

The potential component of ξ⃗(r⃗), proportional to the gradient of some scalar, drops from the loop functional.
Therefore we could always add such a term to make ∇⃗·ξ⃗(r⃗) = 0, preserving incompressibility. Though such a constraint
noise is not quite physical, it is equivalent to a physical Gaussian random noise inside the velocity circulation we study.

Averaging the initial loop functional over Gaussian noise, we find

Ψ0(γ,C) = exp
(
ıγ

ν

∮
C

dr⃗ · v⃗0(r⃗)
)

exp
(

− γ2

2ν2

∮
C

∮
C

dr⃗ ·
〈
ξ⃗(r⃗) ⊗ ξ⃗(r⃗′)

〉
· dr⃗′

)
(63)

This Gaussian noise is correlated at small distances r0, related to the molecular structure of the fluid, which leads to
the following estimate ∮

C

∮
C

dr⃗ ·
〈
ξ⃗(r⃗) ⊗ ξ⃗(r⃗′)

〉
· dr⃗′ → |C|σ2

r2
0

; (64)

|C| =
∮ ∣∣∣dC⃗(θ)

∣∣∣ =
∫ 1

0
dθ|C⃗ ′(θ)| (65)

This estimate yields the following initial distribution of the random loop P⃗0(θ)

W [P0] =
∫

[DC] exp (−m0|C|)

exp
(
ıγ

ν

∮
dC⃗ ·

(
v⃗0(C⃗(θ)) − P⃗0(θ)

))
; (66)

m0 = γ2σ2

2ν2r2
0

(67)

This path integral is equivalent to that of a relativistic Klein-Gordon particle in the presence of the electromagnetic
field with vector potential v⃗0(r⃗) in three Euclidean dimensions. The unusual feature is the distributed momentum
P⃗0(θ) along the loop.
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Let us compute this path integral for the uniform initial velocity v⃗0(r⃗) = const . In this case, the circulation is
zero, so we are left with the Fourier transform of the exponential of the loop’s length.

This path integral is equivalent (Polyakov, 1987) to the Klein-Gorgon propagator of the free massive particle with
the mass m0 up to renormalization coming from the short-range fluctuations of the path.

The constant velocity v0(C⃗(θ)) drops from the closed-loop integral, which brings the exponential to the ordinary
momentum term in the Action

∮
dC⃗(θ) · P⃗0(θ). This path integral is computed by fixing the gauge for the parametric

invariance θ ⇒ f(θ), which is studied in the modern QFT, say in (Polyakov, 1987), Chapter 9.
The result is the following Gaussian distribution

W [P ] ∝∫ ∞

0
dT exp

(
− γ2

2ν2

∫ T

0
ds

(
σ2

r2
0

+ P⃗ (s)2
))

; (68)

Fourier coefficients pα(n) can parametrize this periodic trajectory

Pα(s) =
∞∑

n=−∞;n ̸=0
pα(n) exp

(
2πıns
T

)
; (69)

p̄α(m) = pα(−m); (70)

⟨pα(n)pβ(m)⟩ = δαβν
2

γ2T
δn,−m (71)

The term with n = 0 is omitted, as it drops from the closed loop integral
∫
C⃗(s) · dP⃗ (s). These Fourier coefficients at

fixed T are Gaussian variables with the above variance matrix ⟨pα(n)pβ(m)⟩. This property is, in principle, sufficient
to compute the terms of the perturbative expansions in inverse powers of viscosity (see below).

These Fourier coefficients do not decrease with number, so the curve P⃗ (θ, 0) is fractal rather than smooth. In
particular, P⃗ (T ) ̸= P⃗ (0).

Note that the limit σ → 0 of smooth initial velocity field corresponds to the zero mass for this relativistic particle.
This limit does not lead to infinities in correlation functions in three or more dimensions. This important question
deserves more investigation in our case. If this limit exists, we can prove the no-explosion theorem for the
smooth initial field.

Let us summarize the results of this section. We bypassed the nonlinear Cauchy problem for the Navier-Stokes
equation by treating it as a limit of the solvable Cauchy problem in the linear loop equation. As we argued, the
unavoidable thermal noise in any physical fluid makes such a limit the correct definition.

We have advanced the Cauchy problem further by reducing the dimensionality from d+1 dimensions in the Navier-
Stokes equation to 1 + 1 dimensions in the MLE.

Before elaborating on that dimensional reduction, we consider an exact solution of the loop equation corresponding
to the random global rotation of the original velocity field and the associated Cauchy problem.

IX. UNIVERSALITY AND SCALING OF MLE

Various symmetry properties affect solutions’ space, especially their fixed trajectories.
First of all, this equation is parametric invariant:

P⃗ (θ, t) ⇒ P⃗ (f(θ), t); f ′(θ) > 0; (72)

Naturally, any initial condition P⃗ (θ, 0) = P⃗0(θ) will break this invariance; each such initial data will generate a family
of solutions corresponding to initial data P⃗0(f(θ)).

The lack of explicit time dependence on the right side leads to time translation invariance:

P⃗ (θ, t) ⇒ P⃗ (θ, t+ a) (73)

Less trivial but also very significant is the time-rescaling symmetry:

P⃗ (θ, t) ⇒
√
λP⃗ (θ, λt), (74)
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This symmetry follows because the right side of (36) is a homogeneous functional of the third degree in P⃗ without
explicit time dependence.

This scale transformation is quite different from the scale transformation in the Navier-Stokes equation, which
involves rescaling of the viscosity parameter:

v⃗(r⃗, t) ⇒ v⃗(αr⃗, λt)
αλ

; (75)

ν ⇒ ν
α2

λ
(76)

In our case, there is a genuine scale invariance without parameter changes; in other words, no dimensional parameters
are left in MLE.

Using this invariance, one can make the following transformation of the momentum loop and its variables

P⃗ =
√

ν

2(t+ t0)
F⃗

γ
(77)

The new vector function F⃗ satisfies the following dimensionless equation

2∂τ F⃗ =
(

1 − (∆F⃗ )2
)
F⃗ +

∆F⃗
(
γ2F⃗ · ∆F⃗ + ıγ

(
(F⃗ · ∆F⃗ )2

∆F⃗ 2
− F⃗ 2

))
; (78)

τ = log t+ t0
t0

; (79)

The viscosity disappeared from this equation; now it only enters the initial data

F⃗ (θ, 0) =
√

2t0
ν
P⃗0(θ) (80)

This universality property is extremely important. Note that the loop functional is now represented as

Ψ(C, t) =〈
exp

 ı
∮
dC⃗(θ) · F⃗

(
θ, log t+ t0

t0

)
√

2ν(t+ t0)


〉

(81)

with the square root of viscosity in the denominator as a coupling constant in nonlinear QFT.
This formula immediately suggests that turbulence is a quasiclassical phenomenon in our quantum mechanical

system that can be studied by the well-known WKB method (or corresponding methods developed by Kolmogorov
and Maslov in the mathematical literature).

In the conventional approach to fluid mechanics, based on the Navier-Stokes equation, the Reynolds number dis-
tinguishing between the laminar and turbulent flow enters the equation and controls the relative magnitude of non-
linearity. One has to study various regimes in that equation, including the inviscid limit presumably related to the
turbulence, but different from the Euler equation due to the dissipation anomaly.

In our dual theory, representing the same Navier-Stokes dynamics as a quantum system, the dynamical equation
(78) is universal; it does not depend upon the Reynolds number. This number enters initial data and the relation
between our solution for F⃗ and the loop functional (i.e., the PDF for the circulation as a functional of the shape of
the loop).

The evolution of the loop functional Ψ inside the unit circle in the complex plane in Fig.1 goes by universal
trajectories, determined by (78). The Reynolds number describes the initial position of this Ψ inside the circle. The
distance |Ψ − 1| from the fixed point Ψ∗ = 1 is the true measure of turbulence. One could expect a laminar flow
solution in some small vicinity of this fixed point (corresponding to potential flow).
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X. LAMINAR FLOW AT SMALL TIME AND SEEDS OF TURBULENCE

The viscosity enters the MLE’s denominator, making it straightforward to investigate the laminar flow (large
viscosity) and even turbulent flow (small viscosity).

Let us start with the laminar flow. It corresponds to small F⃗ , in which case the equation (78) linearizes and can
be explicitly solved

F⃗ (θ, t) → P⃗0(θ)
√

2(t0 + t)
ν

+O(F 3) (82)

This solution will stay smooth when starting with the smooth initial value P⃗0(θ). There will be no discontinuity in
F⃗ (θ, t) and no discontinuity in P⃗ (θ, t).

For the loop functional this means zero area derivative, in other words, potential flow without vorticity. Moreover,
this flow will stay as a potential flow in every order of the formal perturbation expansion in inverse powers of ν for
an arbitrary smooth initial value P⃗0(θ).

However, any finite initial discontinuity in P⃗0(θ) would lead to nontrivial terms of this perturbation expansion.
These terms will be singular but scale as higher powers of ∆F⃗ . One may expect these corrections to be controlled at
a large enough viscosity (compared to initial circulation).

The above thermal fluctuations lead to a small but singular contribution to the initial momentum loop. The
Fourier coefficients p⃗n do not decrease with order n, leading to the delta function singularity in the correlation
function

〈
P⃗ (θ) ⊗ P⃗ (θ′)

〉
∝ δ(θ − θ′), which is stronger than the discontinuity, required for the presence of vorticity.

After sufficient time, these small singular terms may lead to larger singular terms in the solution.
The recent paper (Bandak et al., 2024) argued that the thermal fluctuations could produce turbulence in finite

time, comparable with experimental times of the large eddy formation. In other words, these small fluctuations
could quickly grow and end up as large random eddies observable in experiments by order of magnitude estimates in
(Bandak et al., 2024).

Our theory considers two possible asymptotic regimes: decaying turbulence or a finite-time explosion. We study
these regimes in the subsequent sections.

XI. DECAYING TURBULENCE

The solutions originating deep inside the unit circle, far from Ψ = 1, can become turbulent and eventually decay to
Ψ → 1 due to energy dissipation by vorticity micro-structures. This decay for P⃗ (θ, t) corresponds to the fixed point
equation for F⃗

(
(∆F⃗ )2 − 1

)
F⃗ =

∆F⃗
(
γ2F⃗ · ∆F⃗ + ıγ

(
(F⃗ · ∆F⃗ )2

∆F⃗ 2
− F⃗ 2

))
(83)

This fixed point F⃗ (θ) is not a solution of the Cauchy problem for the loop functional, though we expect the solution
of some Cauchy problems to asymptotically approach this fixed point at a large time.

This fixed point represents the solution of the loop equation with the boundary condition Ψ(θ,+∞) = 1. This
boundary condition describes the flow eventually stopping as a result of dissipation of kinetic energy

E =
∫
d3r

v⃗2

2 , ∂tE = −ν
∫
d3rω⃗2 < 0.
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A. Fixed point solution

The saddle point equation (83) was solved and investigated in previous papers (Migdal, 2023b, 2024b). The solution
for F⃗ (θ) is a fractal curve defined as a limit N → ∞ of the polygon F⃗0 . . . F⃗N = F⃗0 with the following vertices

F⃗k = Ω ·

{
cos(αk), sin(αk), ı cos

(
β
2

)}
2 sin

(
β
2

) ; (84)

θk = k

N
; β = 2πp

q
; N → ∞; (85)

αk = αk−1 + σkβ; σk = ±1, β
∑

σk = 2πpr; (86)
Ω ∈ SO(3) (87)

The parameters Ω̂, p, q, r, σ0 . . . σN = σ0 are random, making this solution for F⃗ (θ) a fixed manifold rather than a
fixed point. We suggested in (Migdal, 2023b) calling this manifold the big Euler ensemble of just the Euler ensemble.

It is a fixed point of (83) with the discrete version of discontinuity and principal value:

∆F⃗ ≡ F⃗k − F⃗k−1; (88)

F⃗ ≡ F⃗k + F⃗k−1

2 (89)

Both terms of the right side (78) vanish; the coefficient in front of ∆F⃗ and the one in front of F⃗ are both equal zero.
Otherwise, we would have F⃗ ∥ ∆F⃗ , leading to zero vorticity (Migdal, 2023b).

This requirement leads to two scalar equations

(∆F⃗ )2 = 1; (90a)

F⃗ 2 − γ2

4 =
(
F⃗ · ∆F⃗ − ıγ

2

)2
; (90b)

The integer numbers σk = ±1 came as the solution of the loop equation, and the requirement of the rational p
q

came from the periodicity requirement, as we prove below.
In our limit, the integral for velocity circulation becomes the Lebesque sum:∮

dC⃗(θ) · F⃗ (θ) →
∑

k

∆C⃗k · F⃗k; (91)

A remarkable property of this solution F⃗ (θ, t) of the loop equation is that even though it satisfies the complex
equation and has an imaginary part, the resulting circulation (91) is real! The imaginary part of the F⃗k does not
depend on k and thus drops from the total sum

∑
k ∆C⃗k = 0 due to the periodicity of the loop C.

B. The proof of the Euler ensemble as a fixed point of MLE

Let us present here the proof of this solution.

Euler Ensemble Theorem.

The Euler ensemble solves the discrete MLE.

We start from the general Anzatz with real vectors A⃗, f⃗k , corresponding to the real circulation in (91)

F⃗k = ıA⃗+ (f⃗k−1 + f⃗k)/2; (92)
∆F⃗k = f⃗k − f⃗k−1; (93)
(f⃗k − f⃗k−1)2 = 1 (94)
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Figure 3 regular star polygons for Euler ensembles of various p, q. The σk variable indicates the direction of the random step
of the link k ↔ k + 1. The random walk could go several times around the polygon as long as it ends where it started.

Analyzing the imaginary and parts of the second equation in (90), we observe that the imaginary part will vanish
provided

A⃗ · f⃗k = 0∀k; (95)
f⃗2

k = f⃗2
k−1∀k; (96)

We conclude that f⃗k belongs to a circle with some radius R in the origin of the plane, which plane is orthogonal to A⃗.
In the coordinate frame where A⃗ = {0, 0, A}

f⃗k = R {cos(αk), sin(αk), 0} (97)

The SO(3) matrix needed to rotate our vectors to this coordinate frame can be absorbed into the rotation matrix Ω we
have in our solution.

The radius R and A are determined by the real part of our equations as follows

4A2 = 2R2 (1 + cos(αk − αk−1)) ; (98a)
1 = 2R2 (1 − cos(αk − αk−1)) ; (98b)

Solving these two equations, we find the Z2 variables at every step

αk = αk−1 + βσk, σ
2
k = 1; (99)

The radius R and the length A = |A⃗| are related to this angular step β

R = 1
2 sin

(
β
2

) ; (100)

A = 1
2 tan

(
β
2

) ; (101)

The periodicity of the sequence f⃗k requires the angular step to be a fraction of 2π, which brings us to the Euler ensemble
(84).■

C. Euler ensemble as a random walk on a regular star polygon

Geometrically, the vertices f⃗k belong to the regular star polygon with q sides of unit length, with vertices at
R exp (ıkβ) , k = 1 . . . q. They were classified by Thomas Bradwardine (archbishop of Canterbury) and later by
Johannes Kepler in the 17th Century and are denoted as {q/p} ( so-called Schläfli symbol).

We show several examples in Fig. 3. The general polygon is characterized by co-prime p, q with p < q < N, (N−q) =
0 mod 2. Euler totients count these polygons. The number N > q counts the coordinates f⃗k covering our polygon
several times, so that, in general, each geometric vertex is covered more than once.

The Ising variables σk describe a random walk around this polygon with the extra condition that it comes to the
initial point after N steps. The random walk goes k ↔ k + 1 according to the sign of σk. The periodicity condition
requires β to be a rational fraction of 2π.
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Figure 4 The world sheet of our discrete string made of regular star polygons with unit side. The red/green colors of the sides
indicate random directions of random walk.

This quantization of the angle and the radius brings the number theory to the statistical distribution. Each polygon
may be covered several times during this random walk with this periodicity condition. A certain winding number w is
related to

∑N
1 σi = qr, w = pr. Surprisingly, such a fundamental random walk problem on the 500-year-old geometric

manifold has been solved only now.

D. Euler ensemble as string theory with discrete target space

This random walk problem can also be interpreted as a closed fermionic string in the discrete target space consisting
of regular star polygons on a (randomly rotated) plane. Integrating over fermionic degrees of freedom in a quantum
trace of the evolution operator is equivalent to summation over occupation numbers nk = 0, 1, providing directions
σk = 2nk − 1 of the random walk.

The target space coordinates are the vertices of the regular star polygons {q, p}.
The integration over target space made of these regular star polygons becomes a discrete sum over states of the

Euler ensemble: the fraction p
q , the configurations of fermionic occupation numbers νk = 0, 1 and the winding number

w = p
q

∑
(2νk − 1).

Placing these polygons for a fixed N on a torus in 3D space ordered by the angle β shows the world sheet of
our discrete string in Fig.4, with red/green colors of sides indicating random directions of random walk (occupation
number of fermions). The large disk (infinite at N = ∞) corresponds to endpoints β = 2π

N , 2π(N−1)
N .

The solution of the Euler ensemble(Migdal, 2023b) is based on new number theory identities for sums of powers
of cotangent of fractions of π. These identities relate these sums to Jordan multi-totient functions weighted with
Bernoulli coefficients.

The nontrivial part of using the Euler ensemble is the formula (81) relating this ensemble to the observable loop
functional of the decaying turbulence theory.

In the string theory language, where the momentum loop is the target space along with fermionic occupation
numbers, this formula is the dual amplitude for the discrete string theory, with ∆C⃗(θ)√

2ν(t+t0)
playing the role of external

momentum distributed along the closed string position (regular star polygon) F⃗ (θ).
This turbulence/string duality reveals the hidden beauty of primes under the ugly mask of chaos in

the observable turbulent flow.
The corresponding universal energy spectrum for the decaying turbulence was computed in quadrature (Migdal,

2024b) in the quasiclassical limit at ν ∝ 1/N → 0, and it closely matched the data of real and numerical experiments.
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The detailed comparison with available real and numerical experiments in decaying turbulence was published in the
previous work (Migdal, 2024a,b).

E. Continuum limit exists for the loop functional but not for the momentum loop

There is a following peculiarity in our theory. The momentum loop P⃗ (θ, t) has no continuum limit when N → ∞,
but the original loop functional Ψ(C, γ, t) stays finite in such a limit. To be more precise, there is renormalizability:
the energy dissipation and the energy spectrum stay finite when ν → ν̃

N2 → 0. The dimensionless parameters and
functions of scaling arguments such as |r⃗|/L(t), |⃗k|L(t) where L(t) =

√
ν̃(t+ t0) all stay finite in this limit.

In particular, the second moment of velocity difference〈
∆v2〉 =

〈
(v⃗(r⃗) − v⃗(0))2〉

as a function of scaling variable |r⃗|/L(t) decays at small argument as an infinite series of power terms with growing
positive powers 1

t (|r⃗|/L(t))p. The spectrum of these scaling indexes p (unrelated to a dilatation operator as far as we
know) is given in the following table: ∣∣∣∣∣∣∣∣∣∣∣∣∣∣

scaling indexes p of
〈
∆v2〉

2n if n ∈ Z ∧ n ≥ 1
5/2

11/2

7 ± ıtn if n ∈ Z
1/2(15 + 4n) if n ∈ Z ∧ n ≥ 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(102)

Here ±tn are imaginary parts of the zeros of ζ(z), all located at the ray Re z = 1/2, according to the Riemann
hypothesis. At least, it was proven that these zeros are all inside the strip 0 < Re z < 1.

The second moment does not scale as a single power. The effective index (log derivative of the second moment as
a function of coordinate difference), is a nontrivial function of the scaling variable r/

√
t. The DNS data from the

numerical simulation of the NS equation is shown as red dots in Fig 5, together with our theory (green curve) and
the Kolmogorov 2/3 prediction (blue dashed line). Our theory matches the data within a few % margin of error.
The Kolmogorov scaling is totally off the charts.

Our solution has a well-defined continuum limit for observable variables such as decaying kinetic energy, energy
spectrum, and moments of velocity difference, closely matching experiments.

At the same time, the dual system– the string itself– does not have any continuum limit. The regular star polygons
with unit side have the radia R = 1/(2 sin(πp/q)), which vary between 1/2 and ∞ but do not converge to any continuous
function, with p, q being co-prime numbers. The distribution of the variable X(p, q) = cot(πp/q)2/q2 =

(
4R2 − 1

)
/q2

for large co-prime p, q was studied in the previous work, and it is a discontinuous piecewise power like distribution

fX(X) =
(

1 − π2

675ζ(5)

)
δ(X) +

π3

3 X
√
XΦ

(⌊
1

π
√
X

⌋)
; (103)
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depicted in Figure.6. Here Φ(n) is the totient summatory function

Φ(q) =
q∑

n=1
φ(n) (104)

This manifests the same phenomena we observed in the simplest solvable case of constant global rotation. This
stationary solution of the NS equation studied in the sectionVII at finite N is a finite sum of Gaussian random
variables. However, there is no limit N → ∞ in this sum. Only the loop functional, related to the variance of the
random variable P⃗ (θ) tends to a finite limit related to the tensor area Σ[C] =

∮
C
r⃗ × dr⃗.

In our solution of decaying turbulence, there are no random Gaussian variables: there’s a random walk on random
regular star polygons, equivalent to a string theory with discrete target space, which does not possess any continuum
limit. At the same time, the dual amplitudes of this string theory have a continuum limit, providing the solution for
the loop functional.

F. An open problem of the stability of Euler ensemble as MLE fixed point

The interesting and unexpected property of the Euler ensemble solution of the MLE is its independence of the
spectral parameter γ. The γ dependence reappears in the linearized MLE for the small deviations δF⃗ from the
fixed point. These deviations describe the approach of the solution of the MLE to the fixed trajectory of decaying
turbulence.

As we found in the first paper (Migdal, 2023b), these deviations decay by power laws with some indexes, depending
on γ

δF⃗ (i)(θ) ∝ ψi(θ|γ)t−µi(γ) (105)

The spectral equation for these decay indexes µi(γ) was written down in (Migdal, 2023b) for the finite N in the Euler
ensemble. The problem of the continuum limit of this spectrum is yet to be solved.

XII. INCONSISTENCY OF EXPLOSIVE SOLUTION

Within our dual theory, there is, in principle, a possibility for finite-time explosion with F⃗ → ∞ at some finite
moment τc.

In that case, only the third-degree terms will remain on the right side, with the linear term becoming negligible at
τ → τc − 0. The scale invariance fixes the time dependence in this case, so the solution becomes

F⃗ (θ, τ) → (τc − τ)−1/2f⃗(θ); (106)
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The vector function f⃗(θ) must satisfy the following equation:(
(∆f⃗)2 + 1

)
f⃗ =

∆f⃗
(
γ2f⃗ · ∆f⃗ + ıγ

(
(f⃗ · ∆f⃗)2

∆f⃗2
− f⃗2

))
(107)

The left side of this equation for f⃗(θ) differs from the left side of the equation (83) for the fixed point for F⃗ .
The following theorem proves the lack of a solution for this fixed point f⃗ .

No explosion Theorem.

There is no explosive solution to the MLE.

Let us assume such a solution with some vector function f⃗(θ) and arrive at a contradiction. This vector equation
is a linear combination of two vectors af⃗ = b∆f⃗ . Both coefficients a, b must be zero. Otherwise, these two vectors are
parallel, or else one of them vanishes. In both cases, the vorticity at the loop vanishes ω⃗(C⃗) ∝ f⃗ × ∆f⃗ = 0 at every
point θ on the unit circle. Without vorticity, the solution reduces to the trivial fixed point Ψ(γ,C) = 1.

Now, the first coefficient a can only vanish if ∆f⃗ has some imaginary component, which contradicts the requirement
that the circulation

∮
dC⃗(θ) · f⃗(θ) is a real variable.

This requirement allows for a constant imaginary term in f⃗(θ) = f⃗R(θ) + ı⃗c, as this continuous term will drop
in the closed loop integral. This requirement implies real discontinuity ∆f⃗ . In the explosion equation (106) with
a = (∆f⃗R)2 + 1 > 1, there is no real solution with a = 0.■

We have proven the inconsistency of the finite-time explosion in the momentum loop dynamics, i.e., the Navier-
Stokes dynamics with noisy initial data and constant or vanishing velocity at infinity.

This inconsistency is a consequence of the universality and dimensional reduction of the dual fluid dynamics, leading
to much more stringent conditions on a potential explosion solution, which we have proven inconsistent.

In the conventional approach to the Navier-Stokes equation, without the noise in initial data, Constantin and
Fefferman have proven a theorem about the solution’s regularity (Constantin and Fefferman, 1993). As a consequence
of this theorem, any singular solution must have vorticity growing to infinity at some point in time in some region in
space.

In the MLE equation, vorticity at the loop would have a finite time singularity with the above hypothetical solution〈
ω⃗(C⃗(θ)) exp

(
ıγΓ(C, v)

ν

)〉
∝ 1
tc − t〈

f⃗(θ) × ∆f⃗(θ) exp
(
ı
∮
f⃗(θ′)dC⃗(θ′)√
2ν(tc − t)

)〉
f

(108)

In particular, the mean square of vorticity (so-called enstrophy) would have a double pole

〈
ω⃗2〉 ∝

〈(
f⃗(θ) × ∆f⃗(θ)

)2
〉

(tc − t)2 (109)

The growth of vorticity was proven necessary for the singular solution of Navier-Stokes equation in (Constantin and
Fefferman, 1993), and in our theory, it is ruled out.

If proven to stay in the smooth limit σ → 0, this proof would provide a negative answer to the notorious problem
of the explosion in the Navier-Stokes equation, leaving two remaining alternatives: smooth (laminar) solution and a
stochastic (turbulent) solution which we have found before (Migdal, 2023b, 2024b) and reinterpreted in this work as
a string theory.

Presumably, decaying turbulence occurs at a large enough Reynolds number in the initial data; otherwise, the
solution stays smooth.

XIII. DISCUSSION

The discovery of a new link between different branches of mathematics often serves as a foundation for developing
a broader theory that unifies both areas. In this discussion, we explore potential generalizations of our observations
on the equivalence between Navier-Stokes (NS) turbulence and random walks on discrete manifolds.
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A. Physical Generalizations

We begin by considering the applicability of the loop equations to other nonlinear equations that exhibit turbulence
or finite-time singularities. The potential extensions are outlined below in increasing order of complexity:

• Turbulence driven by random rotations. In this solvable case, the loop equations, when modified to include
random centrifugal forces, exhibit a fixed point describing the steady state of forced turbulence with energy flow.
(A.M., in preparation).

• Compressible fluids and aerodynamics. The loop functional remains unchanged, but the incompressibil-
ity condition linking velocity to vorticity must be replaced with variable density dynamics, governed by the
conservation of the volume element.

• Incompressible magnetohydrodynamics (MHD). For MHD, two independent circulation variables emerge:
one corresponding to the velocity field and another to the vector potential of the electromagnetic field.

• Passive scalars. The statistics of a passive scalar advected by a turbulent velocity field can be expressed via
path integrals involving the loop functional. These integrals resemble the propagator of a charged particle in an
electromagnetic field.

• General Relativity. Could turbulence replace naked singularities in Einstein’s equations? Loop equations
might provide insight. Unlike the longstanding focus of loop quantum gravity (Rovelli and Smolin, 1988;
Wikipedia contributors, 2023) on quantizing gravity via loop variables (e.g., Ashtekar variables (Wikipedia
contributors, 2022)), we propose exploring the classical Einstein loop equations (Voronov, 1982) for spontaneous
stochasticity. This mechanism, analogous to the NS case, could offer a physical alternative to naked singularities.
In this framework, the stochasticity in loop equations could imply a form of spontaneous quantization for classical
gravity.

B. Mathematical Directions

In addition to physical generalizations, our work suggests promising mathematical avenues for further exploration:

• Classification of dual PDEs. What is the class of partial differential equations (PDEs) that exhibit duality
to quantum mechanical systems in loop space?

• Dimensional reduction. Among these dual PDEs, which can be reduced to one-dimensional nonlinear mo-
mentum loop equations?

• Random walks on discrete manifolds. Are there higher-dimensional analogs of the observed random walk
on star polygons, or other discrete manifolds, that lead to similarly nontrivial statistical limits?

Investigating these questions could provide deep insights into the interplay between discrete geometry, number the-
ory, PDEs, and statistical mechanics. These mathematical directions, alongside the proposed physical generalizations,
highlight the potential of our approach to uncover new connections and phenomena across disciplines.

XIV. CONCLUSIONS

This work demonstrated the duality between classical incompressible fluid mechanics in Euclidean space R3 and
nonlinear dynamics in loop space. Key takeaways include:

• The classical Navier-Stokes equation, when supplemented by thermal fluctuations, is reformulated as a 1 + 1
dimensional equation (78) for momentum loop trajectory F⃗ (θ, t). The loop functional (83) is related to the
momentum loop by equation (81).

• The viscosity drops from this momentum loop equation (78), making momentum loop trajectories completely
universal. The Reynolds number becomes the property of initial data F⃗ (θ, 0), a stochastic loop in R3.
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• There is a degenerate fixed point for F⃗ (θ, t) = F⃗⋆(θ) covered by decaying turbulence solution: periodic random
walk on a regular star polygon with N → ∞ steps. This fixed point (Euler ensemble) was found analytically in
previous works (Migdal, 2023b, 2024b), where the decaying energy spectrum was computed in quadrature and
verified by the experimental data.

• This Euler ensemble is equivalent to a string theory with the target space made of regular star
polygons. This solvable string theory is an explicit example of a decaying stochastic solution of
the unforced Navier-Stokes equation.

• We have not proven that this solution is reachable from smooth initial data, corresponding to vanishing noise
σ = 0 or |Ψ(t = 0)| = 1, so we cannot claim a stochastic solution of the conventional Cauchy problem. However,
thermal noise is always present in a physical fluid, making the conventional Cauchy problem a purely academic
one.

• We established a No explosion theorem, eliminating finite-time blow-up solutions for arbitrary initial data
with finite noise and leaving two alternatives: the well-known smooth laminar solutions and decaying turbulence
solution (Euler ensemble = discrete string theory) (Migdal, 2023b, 2024b).
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