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Abstract 

Intrinsic breakdown strength (𝐹bd ), as the theoretical upper limit of electric field 

strength that a material can sustain, plays important roles in determining dielectric and 

safety performance. The well accepted concept is that a larger band gap (𝐸g) often leads 

to a larger intrinsic breakdown strength. In this work, we analytically derive a simplified 

model of 𝐹bd, showing a linear relationship between 𝐹bd and the maximum electron 

density of states (DOSmax) within the energy range spanning from the conduction band 

minimum (CBM) to CBM + 𝐸g. Using the Wannier interpolation technique to reduce 

the cost of calculating the 𝐹bd for various three- and two-dimensional materials, we find 

that the calculated 𝐹bd  did not show any simple relationship with band gap, but it 

behaves linearly with the DOSmax, consistent with our theoretical derivation. Our work 

shows that the DOSmax is more fundamental than the band gap value in determining the 

𝐹bd , thus providing useful physical insights into the intrinsic dielectric breakdown 

strength and opening directions for improving high-power devices. The dimensional 

effects on 𝐹bd has also been revealed that monolayers tend to have larger 𝐹bd due to 

reduced screening effects. 
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Breakdown strength is a critical parameter in the design of electrical devices and 

systems, playing a pivotal role in determining both the dielectric and safety 

performance [1–4]. As the dimensions of electrical devices continue to shrink, and the 

demand for higher power increases, there is a growing focus on materials with 

exceptional breakdown strength, capable of operating under extremely high electric 

fields. Materials such as SiC, GaN, and diamond have garnered substantial attention 

due to their potential applications in high-power devices [5–8]. Moreover, in the realm 

of energy storage, supercapacitors necessitate materials with high breakdown strength 

to achieve elevated energy densities [1,9–16]. Despite the notable advancements in this 

field, a comprehensive understanding of the fundamental mechanisms governing 

breakdown strength remains a crucial pursuit.  

Under an external electric field, electrons in a dielectric material gain energy from the 

field, and then lose energy due to scatterings by phonons or collisions with ions. 

Depending on how electrons dissipate energy, there are various breakdown mechanisms 

such as intrinsic, electromechanical, thermal, and electrochemical breakdown. For an 

intrinsic breakdown process, electrons lose energy only through electron-phonon 

scattering. Therefore, the intrinsic breakdown strength (denoted as 𝐹bd hereafter) gives 

the upper boundary of the breakdown strength [17]. According to avalanche 

theory [18,19], at a low electric field, electrons have balanced rates of energy gain and 

loss. However, once the strength of the electric field exceeds the threshold, the average 

energy gain rate will become greater than the average energy loss rate, and the energy 

of electrons will continuously increase. As shown in Fig. 1, based on the von Hippel 

criterion [18], electrons that have an energy larger than the critical energy may collide 

with valence electrons, and excite them to the conductive bands, i.e., impact ionization. 

Consequently, the dielectric breakdown will happen. And for intrinsic breakdown, 

considering the energy conservation and momentum conservation, in direct band gap 

materials, the minimum energy required to excite a valence band electron to the 

conductive band is equal to the band gap (𝐸g) energy. For indirect band gap materials, 

this process may involve absorption or emission of phonons, but since phonon energy 



are generally much smaller than the band gaps of dielectric materials, they can be 

neglected while dealing with energy conservation. Therefore, the critical energy is 

considered to be 𝐸g here, which has been generally used in other works [20–22]. Note 

that, for some insulators that have band gaps larger than formation enthalpy (∆𝐻), like 

LiF, the critical energy should be ∆𝐻 to account for the stability issue [22]. Intuitively, 

the larger the band gap, the larger the 𝐹bd [17,23,24]. Indeed, earlier models based on 

experimental data proposed a positive correlation between band gap and 𝐹bd [25,26], 

and recent theoretical studies also showed that band gap and phonon cutoff frequency 

are significantly related to the intrinsic breakdown field, although these studies used 

relatively coarse q-grids to sample the electron scattering [22,27]. The above insight 

has been a foundational consideration in the quest for increasing breakdown voltage 

and searching for dielectric materials with high breakdown strength [28–31]. Many 

works have tried to increase breakdown strength by increasing band gaps [12–14,32], 

however, the precise correlation between band gap values and intrinsic breakdown 

strength remains elusive. Consequently, a definitive consensus has yet to be reached on 

whether an increase in the band gap of a dielectric material invariably results in a 

commensurate enhancement of its intrinsic breakdown strength. Revealing this 

relationship is of great importance for gaining a comprehensive understanding of a 

material's performance under high electric field conditions, particularly for reliability 

in electronic devices and electrical equipment.  

In this work, for the first time, we analytically derive that 𝐹bd is linearly dependent on 

the maximum electron density of states (DOSmax) within the energy range spanning 

from the CBM to the CBM + 𝐸g  (for some materials is the CBM + ∆𝐻  due to the 

stability consideration) rather than the intuitive thought that 𝐹bd is positively correlated 

to band gap value. Using first-principles methods in combination with the Wannier 

interpolation technique to efficiently sample the electron-phonon scatterings on very 

dense k- and q-grids, we accurately calculate 𝐹bd  for various systems ranging from 

three-dimensional crystals in different structures to two-dimensional (2D) monolayer 



MoS2 and phosphorene. For each system, we use different strains to tune its band gap 

as well as DOSmax. Our results show that, while the correlations between the 𝐹bd and 

band gap values behave differently for different systems and lack a universal trend, the 

dependence of the 𝐹bd  on DOSmax  consistently behaves linearly for every system 

studied, without exception, thus demonstrating our model.  

The energy gain rate of the electron with energy 𝐸 in a field 𝐹 can be written as [22] 

𝐴(𝐸, 𝐹) =
𝑒2𝜏(𝐸)𝐹2

3𝑚∗
   (1), 

where 𝑒 is the electronic charge and 𝑚∗ is the effective electronic mass. The average 

electron relaxation time 𝜏(𝐸) is the reciprocal of the average electron scattering rate, 

given by 

1
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=

1
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where 𝐷(𝐸) is the density of states (DOS), and 𝜏𝑛𝐤 describes the process in which an 

electron in the initial state |𝑛𝐤⟩ is scattered by a phonon with frequency 𝜔𝐪𝜈, reaching 

the final state |𝑚𝐤 + 𝐪⟩. Using Fermi’s golden rule, 𝜏𝑛𝐤 can be evaluated as 
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where 𝑛𝐪𝜈 is the Bose-Einstein distribution for phonons and the delta function ensures 

energy conservation. The electron-phonon coupling (EPC) matrix element 𝑔𝑚𝐤+𝐪,𝑛𝐤
𝐪𝜈

 is 

given by 
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where 𝑀 is the atomic mass, and 𝜓 is the wave function of the electron. The phonon 

polarization vector is 𝜉𝐪𝜈 , and ∇𝐑𝑉𝐪  is the gradient of the potential with respect to 

collective atomic displacements from their equilibrium positions 𝐑. 

The energy loss rate of the electron during a phonon absorption or emission process can 

be evaluated by [22] 

𝐵(𝐸) =
2𝜋

ℏ𝐷(𝐸)
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− 𝑛𝐪𝜈𝛿(𝜀𝑛𝐤 − 𝜀𝑚𝐤+𝐪 + ℏ𝜔𝐪𝜈)]𝛿(𝜀𝑛𝐤 − 𝐸)   (5). 

Then, using the von Hippel breakdown criterion [18], i.e., 

𝐴(𝐸, 𝐹) > 𝐵(𝐸),    𝐸 ∈ [CBM, CBM + 𝐸g]   (6), 

one can obtain 

𝐹bd = Max [
√3𝑚∗

𝑒
√

1

𝜏(𝐸)
𝐵(𝐸)] ,    𝐸 ∈ [CBM, CBM + 𝐸g]   (7). 

As seen from Eqs. (1)-(7), the band gap value is not directly utilized in the calculation 

of 𝐹bd. To determine the intrinsic breakdown field, we focus on the summation term of 

the electron energy by using an averaged phonon frequency and EPC strength to replace 

the momentum-dependent 𝜔  and 𝑔  terms. Note that the utilization of this 

approximation concept is prevalent in the field of superconductivity [33]. In this case, 

we rewrite Eqs. (2) and (5) (see the Supplemental Materials for the derivation [34]) as 

1
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1
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where ℏ𝜔mean  represents the average energy for phonons that participate in the 

scattering process, 𝑛0  is the average occupation number of phonons, and 𝑔eff  is the 



average EPC strength. As we can see, 
1

𝜏(𝐸)
 and 𝐵(𝐸) are roughly proportional to 𝐷(𝐸). 

Accordingly, 𝐹bd can be expressed as 

𝐹bd =
√3𝑚∗

𝑒

2𝜋

ℏ
𝑔eff

2 √(2𝑛0 + 1)ℏ𝜔meanDOSmax   (10). 

Thus, we have a linear relationship between 𝐹bd and DOSmax if the remaining terms do 

not change much in a given material.  

To demonstrate the above model, we calculate the intrinsic breakdown field strengths 

for various materials with diverse atomic structures, band structures and symmetries, 

including diamond and silicon in the diamond structure, ZnO (ZB-ZnO), AlAs, and SiC 

(ZB-SiC)in the zinc blende structure, GaN (W-GaN) in the wurtzite structure, LiF and 

NaCl in the NaCl-type structure, CsCl in the CsCl-type structure, as well as MoS2 and 

phosphorene in the monolayer structure (m-MoS2 and BP). The calculation details can 

be found in the Supplementary Materials [34]. To ensure calculation accuracy, 

relatively dense k- and q-grids are often needed for sampling in the Brillouin zone, 

which is very expensive. To reduce the computational cost, we first obtain necessary 

quantities on relatively sparse grids and then we adopt the Wannier interpolation 

technique to obtain band structures, phonon dispersions and EPC matrices on the fine 

grids. Convergence tests are conducted on these materials (see Supplementary 

Materials [34] for more details). In the following studies, we set the sizes of both k- 

and q-grids as 100 × 100 × 100  for the bulk systems (for W-GaN, we use 100 ×

100 × 60  mesh), 300 × 300 × 1  for m-MoS2 and 320 × 240 × 1  for BP. The 

smearing parameter is set at 0.01 eV. In general, the computational cost tends to increase 

rapidly with the density of the grid. Therefore, the utilization of the Wannier 

interpolation technique is indispensable and highly efficient for achieving a balance 

between accuracy and cost. Note that the electric field is assumed to be applied in the 

in-plane direction for 2D materials and BP exhibits strong anisotropic band structure 

near the CBM with the effective masses being 1.24 and 0.07 𝑚e along the zigzag and 

armchair directions, respectively. Therefore, we use the geometric mean value 𝑚∗ =



√𝑚X
∗ 𝑚Y

∗   to estimate the effective mass in Eq. (7). The hydrostatic strain in bulk 

materials is applied by directly changing the lattice constant, which is defined as 

(𝑎 − 𝑎0)/𝑎0 , where 𝑎  and 𝑎0  are the lattice constants with and without strain, 

respectively. While in 2D materials, biaxial strain is applied. To deal with the 

underestimation of band gaps under the Perdew-Burke-Ernzerhof exchange-correlation 

functional [36], we correct them using experimental values, i.e., 𝐸g
∗ = 𝐸g − 𝐸g

ref +

𝐸g
exp

 , where 𝐸g
exp

  is the experimental band gap, 𝐸g  and 𝐸g
ref  are the calculated band 

gaps with and without strain, respectively. Using our recently developed machine 

learning method [40], we also use the HSE functional [41] to get more accurate band 

structures and EPC matrices to calculate the  𝐹bd. 

Our calculated results are shown in Table Ⅰ and Table SI. And the calculated 𝐹bd are in 

good agreement with previous theoretical results [22,27] and available experimental 

measurements. An interesting finding is that ZB-ZnO has an even smaller 𝐹bd than Si 

despite its much larger band gap, which completely violates the prevailing view. Note 

that, 𝐹bd is not only correlated to 𝐸g but also depends on the electron effective mass 

and EPC. To focus on revealing the correlation between 𝐹bd and 𝐸g, we use strains to 

manipulate the bandgaps and study the dependence of 𝐹bd on bandgaps for each system. 

For bulk materials, the strains cover from -2% to +2%. For m-MoS2, the strains cover 

from 0 to +2%, and for BP, the strains are in the range between -1% to 2%. Our 

calculation results are shown in Fig. 2. The results of more materials can be found in 

the Supplemental Materials [32]. For Si and BP, we find that the band gaps increase 

with increasing strain, which is consistent with previous results [51–55]. In contrast, 

for diamond [56], ZB-ZnO and m-MoS2 [57], the bandgaps decrease with increasing 

strain. As for the relationship between bandgap and 𝐹bd, we can see in Fig. 2(a)-(e) that 

only the results for Si and ZB-ZnO are consistent with the common view, whereas for 

other materials, the common view does not hold, especially for diamond and m-MoS2. 



In general, our results show that there is no clear dependence of 𝐹bd on band gap value, 

suggesting the absence of a universal trend. 

Next, we examine the correlation between 𝐹bd  and DOSmax . To eliminate the strain 

effects on effective masses and phonon frequencies, we normalize DOSmax  by 

multiplying by the 𝑀  factor, i.e., 𝑀 = √𝑚∗𝜔mean , for each material under different 

strains (see also Eq. 10) and we use 𝜔cutoff  to approximate 𝜔mean  here. The 

relationships between 𝑀DOSmax and 𝐹bd are shown in Fig. 2(f)-(j). It is clearly seen 

that 𝐹bd  is linearly dependent on the normalized DOSmax  for every system without 

exception, thus demonstrating our model. The slight deviation from linearity is mainly 

due to the variation of the 𝑔eff
2  term under different strains. 

To ascertain why the common view is flawed, we analyze the energy gain rates and 

energy loss rates for unstrained materials. As shown in Fig. 3, under a given electric 

field, electrons with low energies have higher energy gain rates compared to their 

energy loss rates. Consequently, the electron energy will increase until it reaches a 

pinning energy (PE) above which the energy loss rate exceeds the energy gain rate. For 

example, the PE for Si under an electric field of 63.9 MV/m is 0.95 eV, as shown in Fig. 

3(a). Electrons with lower energies will undergo a net energy gain, while those with 

higher energies will experience a net energy loss. Thus, the average energy of electrons 

will be equal to the PE. With an increasing electric field, the PE also increases for Si, 

since the energy loss rate increases and the energy gain rate decreases monotonically 

with electron energy increasing from the CBM to the CBM + 𝐸g, as seen in Fig. 3(a). 

Consequently, the PE also increases monotonically with the increasing electric field. 

When the PE reaches the maximum, that is, CBM + 𝐸g , which is 1.17 eV for Si, 

conducting electrons will have sufficient energies to excite valance electrons into 

conduction bands, leading to breakdown. The increase in 𝐸g  will lead to a 

corresponding increase in the PE maximum, thereby allowing for a larger electric field, 

that is, enhancement of 𝐹bd. Therefore, the thought that a larger band gap leads to a 



larger 𝐹bd holds for Si. A similar situation exists for ZB-ZnO [see Fig. S2(a)], in which 

the PE maximum is also located at CBM + 𝐸g exactly under the breakdown field. 

For diamond, however, we find that neither the energy loss rate nor the energy gain rate 

changes monotonically with electron energy increasing from the CBM to the CBM +

𝐸g. As seen in Fig. 3(b), the energy loss rate has a peak and the energy gain rate has a 

dip around 4.3 eV. When the PE is smaller than 4.3 eV, the electron energies will be 

pinned by the PE and the breakdown will not happen. With further increase of the 

electric field, the PE of electrons increases. When the electric field reaches 2972.6 

MV/m, the PE will reach 4.3 eV. Under this field, the energies of electrons will exceed 

4.3 eV and keep increasing because the energy gain rate is always larger than the energy 

loss rate when the electron energy is larger than 4.3 eV. Ultimately, the electrons will 

have energies larger than the CBM + 𝐸g, leading to breakdown. In this case, the 𝐹bd is 

not directly related to the 𝐸g but is determined by the PE maximum. As a larger 𝐸g does 

not necessarily lead to a larger PE maximum, the prevailing thought that a larger band 

gap leads to a larger 𝐹bd fails for diamond. Similar situations happen for m-MoS2 and 

BP in which the PE maxima appear before CBM + 𝐸g [see Figs. S2(b) and S2(c)]. 

Note that, according to our model, the energy loss rate and gain rate reach the maximum 

and minimum, respectively, when the DOS reaches DOSmax according to Eqs. (8) and 

(9). The consequence is that, with the increase of electric field strength before 

breakdown, the intersection will finally happen at the position of the DOSmax, which 

determines the PE maximum and thus the 𝐹bd . For systems such as Si, the DOS 

increases monotonically with electron energy and reaches the maximum at the CBM +

𝐸g . Therefore, if strain induces an increase in the band gap, it also results in a 

corresponding enhancement of DOSmax , leading to a larger 𝐹bd . In this case, the 

prevailing view is valid. For systems such as diamond, the DOSmax is reached before 

the electron energy reaches the CBM + 𝐸g, as seen in Fig. S3(d). Although the tensile 



strain reduces the band gap, the DOSmax still increases. The consequence is that the 𝐹bd 

gets larger counterintuitively. In this case, the prevailing view fails. Our results show 

that, it is the DOSmax  rather than the commonly believed band gap that plays the 

dominant role in determining 𝐹bd.  

Through our model, we can explain why ZB-ZnO has a smaller 𝐹bd than Si despite its 

larger experimental band gap of 3.27 eV [58] compared to 1.17 eV for Si. The band 

structure of ZB-ZnO shows that there is simply one band, mainly consisting of an s-

orbital of Zn between the CBM and the CBM + 𝐸g, as shown in Fig. S4. Hence, the 

DOSmax of ZB-ZnO is much smaller than that of Si, i.e., 0.22 v.s. 0.94, leading to the 

relatively low 𝐹bd in ZB-ZnO.  

In addition, we can reveal the dimensional effects on the 𝐹bd, since low-dimensional 

materials tend to suffer high electric field under operations. Generally speaking, 

dimensional effect is mainly manifested in the quantum confinement effect and 

reduction of screening effect. On the one hand, the quantum confinement effect will 

generally lead to the increase of the band gap values in monolayers and thus will affect 

the DOSmax between CBM and CBM + 𝐸g. However, whether DOSmax will be larger 

or not in monolayers has no decisive conclusions. On the other hand, due to the reduced 

screening effect, EPC are often stronger in monolayers, which is good for obtaining 

larger 𝐹bd. Taking MoS2 as an example, we compare the breakdown field strength for 

monolayer and bulk phase in the Supplementary Materials [34]. We find that the 

calculated 𝐹bd of monolayer MoS2 is larger than that of bulk phase, in agreement with 

experimental results [50]. However, the larger 𝐹bd  in monolayer MoS2 is actually 

mainly due to the stronger EPC rather than the increased band gap. 

Finally, we want to mention that, to get more accurate 𝐹bd, it is necessary to use accurate 

band structures and EPC matrices using more advanced functionals. We have discussed 

the calculated 𝐹bd using different functionals in the Supplementary Materials [34], and 

the results show that HSE functional can provide more reasonable results compared to 



experiments for some systems. Nevertheless, our model and our conclusion, which are 

not limited to the choice of special functionals, will not be quantitively affected.  

In conclusion, we have developed an analytical model that shows a linear relationship 

between 𝐹bd and DOSmax using appropriate approximations. To accurately determine 

the value of 𝐹bd  within a reasonable time, we employed the Wannier interpolation 

technique in our calculations and showed the necessity of using dense k- and q-meshes 

to achieve convergence. By investigating the behaviors of 𝐹bd under different strains in 

different materials, we found that 𝐹bd has no clear dependence on band gap value and 

validated the effectiveness of our model even in cases where the prevailing view does 

not hold. Our work shows that the DOSmax is more fundamental than the band gap value 

in determining the 𝐹bd  and suggests that 𝐹bd  might be enhanced by engineering the 

DOS using strategies like strain and doping, opening directions for improving high-

power devices.  
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Table Ⅰ. Calculated properties of Si, diamond, ZB-ZnO, m-MoS2 and BP. The 

experimental values are obtained from ref [17,49,50,59–61]. 

System 
𝒂𝟎 

(Å) 

𝒃𝟎 

(Å) 

𝑬𝐠 

(eV) 

𝑬𝐠
𝐞𝐱𝐩

 

(eV) 

𝒎∗ 

(𝒎𝐞) 

𝑭𝐛𝐝 

(MV/m) 

𝑭𝐛𝐝
𝐞𝐱𝐩

 

(MV/m) 

Si 5.469 0.608 1.17a 0.959 79.9 50e 

Diamond 3.572 4.173 5.48a 1.642 2972.6 2150e 

ZB-ZnO 4.620 0.699 3.27b 0.128 71.0 ---- 

m-MoS2 3.185 1.658 1.90c 0.447 225.8 433f 

BP 3.303 4.625 0.894 2.00d 0.294 212.8 ---- 

aReference [59] 
bReference [60] 
cReference [49] 
dReference [61] 
eReference [17] 

fReference [50]  



 

FIG. 1. Schematic diagram for the process of electron avalanche breakdown. 

  



 

FIG. 2. Comparison of the relation between 𝐹bd and band gap with that between 𝐹bd 

and 𝑀DOSmax . Here, the band gap and DOSmax  are tuned using strains, which are 

labeled for each data. The calculated 𝐹bd  as a function of 𝐸g
∗
  for strained (a) Si, (b) 

diamond, (c) ZB-ZnO, (d) m-MoS2 and (e) BP, respectively. The relationships between 

𝐹bd and 𝑀DOSmax for strained (f) Si, (g) diamond, (h) ZB-ZnO, (i) m-MoS2 and (j) BP, 

respectively. The red lines are the results of linear fitting for eye guide. Note that, the 

calculated 𝐹bd did not follow a simple relationship with the band gap, while the linear 

dependence of 𝐹bd on the 𝑀DOSmax holds for every system. 

 

  



.  

FIG. 3. The calculated breakdown properties for Si and diamond. The calculated energy 

gain rates, energy loss rates and DOS for (a) Si and (b) diamond. The red line is the 

energy gain rate under the external field of 𝐹bd , while the yellow and purple line 

correspond to the energy gain rates when the external field is 20% smaller and larger 

than 𝐹bd , respectively. The electron energy scale is referenced to the CBM and the 

vertical dotted lines represent the band gaps. Notably, the curve shapes of the energy 

gain rate and energy loss rate indicate that they are closely related to DOS, and the 

intersection of them does not necessarily locate at CBM + 𝐸g under the breakdown field. 
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