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Classification of abelian finite-dimensional C∗-algebras by

orthogonality

BOJAN KUZMA AND SUSHIL SINGLA

Abstract. The main goal of the article is to prove that if A1 and A2 are Birkhoff-James isomorphic

C
∗-algebras over the fields F1 and F2, respectively and if A1 finite-dimensional, abelian of dimension

greater than one, then F1 = F2 and A1 and A2 are (isometrically) ∗-isomorphic C
∗-algebras.

Furthermore, it is also proved that for a finite-dimensional C∗-algebra A, we have L⊥
A is the sum of

minimal ideals which are not skew-fields and L⊥⊥
A is the sum of minimal ideals which are skew-fields,

where LA denotes the set of all left-symmetric elements in A and for any subset S ⊆ A, the set S⊥

represents the set of all elements of A which are Birkhoff-James orthogonal to S . A procedure to

extract the minimal ideals which are (commutative) fields is also given.

1. Introduction

By Gelfand transform every unital abelian complex C∗-algebra A is ∗-isomorphic to C(X), the

space of complex-valued continuous functions on some compact Hausdorff space. This translates

the study of algebraic properties to the study of topological properties (and vice-versa): C(X)

is ∗-isomorphic to C(Y ) if and only if X and Y are homeomorphic topological spaces. Formally,

Gelfand transform is a contravariant equivalence between the category of unital abelian C∗-algebras

and the category of the space of compact Hausdorff spaces (see, e.g., [2, 5, 6] for more information).

Recently Tanaka [23, Theorem 3.5, Corollary 3.6] showed that the same can be achieved by

studying the geometrical properties rather than the topological ones: He characterized abelian

complex C∗-algebras among all complex C∗-algebras by using only the underlying geometric struc-

ture. Moreover, he showed that two complex abelian C∗-algebras are ∗-isomorphic if and only if

their geometric structures are homeomorphic.

The geometric structure was initially defined in terms of Birkhoff-James orthogonality (see [22,

Definition 3.4]). Figuratively speaking, suppose we obtain a cast of the closed unit ball of the

C∗-algebra norm. We are allowed to examine it with a sufficiently long, infinitesimally thin needle

by placing it tangentially in various directions onto the unit sphere of the norm, then translating

it parallelly to the center of the ball and examining the points which the translated needle cuts

out from the boundary. If x is the touching point of the needle and y is the cut-out point of

the translated needle, then the tangentiality of the needle at point x in direction y is equivalent

to ‖x + λy‖ ≥ ‖x‖ for each scalar λ, that is, to Birkhoff-James orthogonality of x and y (for

complex C∗-algebras, the probing needle has two real dimensions). The geometric structure was
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2 B. KUZMA AND S. SINGLA

defined in terms of maximal faces of C∗-norm’s unit ball and requires no knowledge of algebraic

operations. Following the approach outlined above we, in [17, Theorem 2.1], completely classified

the objects in the categories of real or complex finite-dimensional simple C∗-algebras by using only

the relation of Birkhoff-James orthogonality, that is, by relying only on the norm structure alone.

Another important aspect of our work was that we worked with real as well as complex C∗-algebras

simultaneously and even gave a procedure to characterize the underlying field when the dimension

of space is greater than one. The theory of real C∗-algebras is similar to complex C∗-algebras,

see [4, 6, 18, 21] (and [19] for a review of their applications) though being able to characterize the

underlying field of a given real or complex C∗-algebra, from Birkhoff-James orthogonality alone,

was still a bit surprising.

In this article we continue our work in the categories of finite-dimensional real or complex C∗-

algebras and characterize (pseudo-)abelian C∗-algebras together with the underlying fields when

the dimension of C∗-algebra is greater than one. A few notations are in order. In the sequel, A
will stand for a finite-dimensional C∗-algebra over the field F ∈ {R,C}. We will denote the matrix

block decomposition of a complex C∗-algebra A by

(1.1) Mn1
(C)⊕ · · · ⊕Mnℓ

(C)

for some positive integers n1 ≤ · · · ≤ nℓ. Similarly, the matrix block decomposition of a real

C∗-algebra A will be denoted by

(1.2) Mn1
(K1)⊕ · · · ⊕Mnℓ

(Kℓ)

where Ki ∈ {R,C,H} with real dimension d1, . . . , dℓ such that di ≤ · · · ≤ dj whenever ni = · · · = nj

(every A has such decomposition, see [6, Theorem 1.5, Theorem 8.4] for more information).

Recall that a non-zero two-sided ideal of A is minimal if it does not properly contain any other

non-trivial two-sided ideal. We will refer to the sum of those minimal ideals of A which are skew-

fields as a pseudo-abelian summand of A and we will refer to the sum of abelian minimal ideals

as an abelian summand of A. If C∗-algebra is decomposed as in (1.1) or (1.2), then its minimal

ideals coincide with the individual blocks, its pseudo-abelian summand coincides with the sum of

all blocks of size one, and its abelian summand coincides with the sum of all blocks of size one

over the real or complex field; see, e.g., Wedderburn-Artin theorem [7, V.4.6]. Therefore, if F = C

the pseudo-abelian summand coincides with the abelian summand of A. Also, if A is an abelian

C∗-algebra, then its pseudo-abelian summand equals A. However, in case F = R the pseudo-abelian

summand might contain a quaternionic block in which case it is not abelian. We will say that A is

a pseudo-abelian C∗-algebra if it equals to its pseudo-abelian summand. In the case when F = C

this is the same as an abelian C∗-algebra.

Let us briefly discuss also the definition and basic properties of Birkhoff-James (BJ) orthogonality.

For two vectors v,w in a normed space V over a field F, v is said to be BJ orthogonal to w, denoted

by v ⊥ w if

‖v‖ ≤ ‖v + λw‖ for all λ ∈ F.

One can easily see that this relation is homogeneous and that, equivalently, v ⊥ w if and only if

fv(w) = 0 for some supporting functional fv at v (that is, ‖fv‖ = 1 and fv(v) = ‖v‖), see [13,
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Theorem 2.1] or [8, Equation 2.1]. Therefore, if we define the outgoing neighborhood of v by

(1.3) v⊥ = {w ∈ V ; v ⊥ w},

then we have

(1.4) v⊥ =
⋃

{ker f ; f is supporting functional at v}.

A bijective map φ : V → V ′ is a BJ isomorphism between V and V ′ if

v ⊥ w ⇐⇒ φ(v) ⊥ φ(w) for all v,w ∈ V.

Two normed spaces V and V ′ are BJ isomorphic if there exists a BJ isomorphism between them.

We can now state our main results. Recall that a finite-dimensional C∗-algebra is pseudo-abelian

if it contains contains only blocks of size one in its matrix block decomposition.

Theorem 1.1. Let A1 and A2 be two BJ isomorphic C∗-algebras over the fields F1 and F2. If A1

is finite-dimensional pseudo-abelian C∗-algebra with dimA1 ≥ 2, then the following are true:

(1) F1 = F2,

(2) A1 and A2 are isomorphic as C∗-algebras, so in particular, A2 is pseudo-abelian and

dimA1 = dimA2.

It is immediate that if, in the Theorem 1.1, A1 is a finite-dimensional abelian C∗-algebra, then A2

is also abelian. We further remark that BJ orthogonality alone cannot determine the underlying

field in one-dimensional C∗-algebras because the real C∗-algebra M1(R) = R and the complex

C∗-algebra M1(C) = C are BJ isomorphic; see [17, Example 2.2].

The above theorem can be seen as a partial extension of a recent result [23, Corollary 3.6] which

Tanaka proved for complex C∗-algebras: if two complex C∗-algebras A1 and A2 are BJ isomorphic

and one of them is abelian, then they are isomorphic as C∗-algebras. Within Theorem 1.2 below we

will further generalize Theorem 1.1 to include also the possibility when A1,A2 are BJ isomorphic

but not pseudo-abelian; when combined, the two theorems imply that the pseudo-abelian summands

of A1 and of A2 are isomorphic as C∗-algebras (provided A1,A2 are not one-dimensional). The

characterization is based on the notion of left-symmetricity (see [16, 20] and also [24]). A vector v

in a normed space V is left-symmetric if

(v ⊥ w) =⇒ (w ⊥ v),

and is right-symmetric if (w ⊥ v) =⇒ (v ⊥ w). By using the outgoing neigborhood defined

within (1.3) and the incoming neighborhood ⊥v := {w ∈ V ; w ⊥ v} it is easily seen that v is

left-symmetric if and only if

v⊥ ⊆ ⊥v,

and is right-symmetric if and only if the reversed inclusion holds. For a subset S of V , we will use

the notation LS for the set of all left-symmetric vectors relative to S, i.e.

LS := {v ∈ S; v⊥ ∩ S ⊆ ⊥v ∩ S}.

In particular, if S = V , then LV is the set of all left-symmetric vectors. We will also use the

notations L⊥
S :=

⋂
v∈LS

v⊥ and L⊥⊥
S :=

⋂
v∈L⊥

S
v⊥.
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Given a finite-dimensional C∗-algebra A, we will call the sum of all its minimal ideals which are

not skew-fields (that is, the sum of all its blocks of sizes bigger than one) to be the nonpseudo-abelian

summand of A. In particular, a finite-dimensioal C∗-algebra is a sum of its nonpseudo-abelian and

its pseudo-abelian summands.

Theorem 1.2. Let A be a finite-dimensional C∗-algebra over field F. Then, L⊥
A is the nonpseudo-

abelian summand and L⊥⊥
A is the pseudo-abelian summand of A.

The set L⊥⊥
A is therefore a C∗-algebra and in fact classifies pseudo-abelian finite-dimensional

C∗-algebras as follows:

Corollary 1.3. Let A be a finite-dimensional C∗-algebras over F. Then A is a pseudo-abelian

C∗-algebra if and only if L⊥⊥
A = A.

Theorem 1.1 suggests that BJ orthogonality alone can determine whether a finite-dimensional

C∗-algebra is abelian and, if not, to extract its abelian summand. We will provide a positive

solution to this problem in the Section 5, once we develop the necessary machinery to formalize

the procedure that isolates the quaternionic blocks in the pseudo-abelian summand.

Remark 1.4. (a) Finite-dimensional complex C∗-algebras are von-Neumann algebras (see, e.g., [2]

for more on von-Neumann algebras). Recall that an element p of von-Neumann algebra A is called

a central projection if p2 = p = p∗ (a projection) and p commutes with all other elements of A. A

projection p ∈ A is called abelian if pAp is commutative. In case of factor von-Neumann algebras

Mn(C), central abelian projections exist only when n = 1. Thus, the abelian summand equals the

complex linear span of abelian central projections. A non-zero projection p is minimal if the only

non-zero projection q ∈ A such that q ≤ p is q = p. Since pAp is also a von Neumann algebra with

p as an identity, it is easily seen that this is equivalent to the fact that pAp is a field. Thus, in case

F = C, Theorem 1.2 says that L⊥
A is the complex linear span of minimal non-central projections

and L⊥⊥
A is the complex linear span of abelian central projections (or abelian summand).

(b) In a related study [16, Theorem 3.2] the authors classified elements, left-symmetric relative

to the positive cone of general complex C∗ algebras. These are exactly scalar multiples of minimal

projections.

A proof of Theorems 1.1 and 1.2 will be given in Section 4. In Section 2 we characterize left-

symmetric elements and right-symmetric elements in Lemmas 2.2 and 2.4. In Lemma 2.4 we prove

that right-symmetric elements are exactly scalar multiples of unitaries. This extends [24, Theorem

2.5] to general finite-dimensional C∗-algebras. As a consequence, every BJ isomorphism will map

the set of scalar multiples of unitaries to itself. Section 3 is devoted to developing the tools to prove

Theorem 1.1. In (3.7) and (3.9), formulas to find the dimension of an pseudo-abelian C∗-algebra A
are provided and in Corollary 3.3, a characterization of the underlying field of A is given, provided

the dimension of A is greater than one. Lemma 3.5 gives a procedure to find the number of blocks

in the matrix block decomposition of an pseudo-abelian C∗-algebra. In section 5 we extract the

abelian summand and give a characterization of abelian C∗-algebras in terms of BJ orthogonality.
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2. Symmetricity and smoothness

Any A =
⊕ℓ

k=1Ak ∈
⊕ℓ

k=1Mnk
(Kk) acts on a column vector x =

⊕ℓ
k=1 xk ∈ K̂ =

⊕ℓ
k=1K

nk

k

by Ax =
⊕ℓ

k=1(Akxk). We let (a row vector) x∗ be its conjugate transpose. If needed we will

regard K
nk

k as a right-vector space over the (skew) field Kk; the above action, when restricted to

a summand K
nk

k , then induces a Kk-linear operator. We regard K̂ as a (right) F-vector space and

equip it with a natural F-valued inner product by

〈 ℓ⊕

k=1

xk,

ℓ⊕

k=1

yk

〉
F
=

ℓ∑

k=1

〈xk, yk〉F where 〈xk, yk〉F :=

{
Re y∗kxk, if F = R

y∗kxk, if F = C
.

Notice that 〈xk, yk〉F = y∗kxk only in complex C∗-algebras in which case Kk = C for each k and

K̂ = Cn1+···+nℓ . Notice also that

(2.5) 〈xkλ, ykλ〉F = |λ|2〈xk, yk〉F; λ ∈ Kk

which is clear if F = C and is also clear if F = R and x, y belong to Rn or Cn. However, if

xk, yk ∈ Hn we have 〈xkλ, ykλ〉F = Reλ(y∗kxk)λ. Here we decompose y∗kxk ∈ Kk = H into its

real and purely imaginary part and use that the conjugation λ(y∗kxk)λ maps purely imaginary part

again into purely imaginary part, so Reλ(y∗kxk)λ = λRe (y∗kxk)λ = |λ|2Re (y∗kxk).
This inner product defines a norm on K̂ and the induced operator norm for A =

⊕ℓ
k=1Ak ∈

⊕ℓ
k=1Mnk

(Kk) coincides with C∗-norm and satisfies

∥∥
ℓ⊕

k=1

Ak

∥∥ = max{‖Ak‖; 1 ≤ k ≤ ℓ}.

For its computation, we recall the singular value decomposition for Mn(K). It states that for

A ∈ Mn(K), there exists K-orthonormal basis {x1, . . . , xn} and {y1, . . . , yn} (i.e., x∗i xj = y∗i yj = δij ,

Kronecker delta) such that A =
n∑

i=1
σiyix

∗
i , where σ1 ≥ · · · ≥ σn ≥ 0 are singular values of A

arranged in the decreasing order, with ‖A‖ = σ1 (see [25, Theorem 7.2] for the singular value

decomposition for Mn(H)).

For A =
⊕ℓ

k=1Ak ∈ A, we define

M0(A) = {x ∈ K̂; ‖Ax‖ = ‖A‖‖x‖}.

We also define M∗
0 (A) =

⊕ℓ
k=1M

∗
0 (Ak) where

M∗
0 (Ak) =

{
M0(Ak), if ‖Ak‖ = ‖A‖
0k, if ‖Ak‖ < ‖A‖ .

Notice that M0(Ak) is a Kk-subspace of K
nk

k (see, e.g., [17, Lemma 3.1]), hence in particular

an F-subspace, so M∗
0 (A) is also an F-subspace of K̂. We will prove in the next lemma that

M0(A) = M∗
0 (A); therefore M0(A) is also a F-subspace of K̂. We will use 0nk

for the zero matrix

in Mnk
(Kk).
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Lemma 2.1. Let A =
⊕ℓ

k=1Mnk
(Kk) be a C∗-algebra and let A,B ∈ A. Then:

(i) B ∈ A⊥ if and only if there exists a normalized vector x ∈ M0(A) such that 〈Ax,Bx〉F = 0.

(ii) If A =
⊕ℓ

k=1Ak is its decomposition, then

M∗
0 (Ak) ⊆ M0(A) = M∗

0 (A) ⊆
ℓ⊕

k=1

M0(Ak).

Consequently, if ‖Ai‖ < max{‖Ak‖; 1 ≤ k ≤ ℓ} = ‖A‖, then

A⊥ =
(
A1 ⊕ · · · ⊕Ai−1 ⊕ 0ni

⊕Ai+1 ⊕ · · · ⊕Aℓ

)⊥
.

Proof. For (i) we note that the BJ orthogonality of two vectors v and w in a normed space V depends

only on the two-dimensional subspace generated by v and w. With this in mind, if F = R, consider

the embedding of real C∗-algebras Mn(C) and Mn(H) into M2n(R) and M4n(R), respectively.

This way, a C∗-algebra A =
⊕ℓ

k=1Mnk
(Kk) embeds into M∑

dknk
(F) where dk = dimRKk in case

of F = R and where dk = dimC Kk = 1 in case of F = C (since Kk = C when F = C). Then, (i)

follows by Stampfli-Magajna-Bhatia-Šemrl classification (see [3, Theorem 1] or, for some historical

background, [17, Proposition 3.2] and [10, page 2716]) applied on M∑
dknk

(F).

For (ii), we first show M0(A) = M∗
0 (A). Let x =

⊕ℓ
k=1 xk ∈ M0(A). Then, ‖Ax‖ = ‖A‖‖x‖ and

so

‖A‖2‖x‖2 = ‖Ax‖2 =
ℓ∑

k=1

‖Akxk‖2 ≤
ℓ∑

k=1

‖Ak‖2‖xk‖2 ≤ max
1≤k≤ℓ

‖Ak‖2
( ℓ∑

k=1

‖xk‖2
)
= ‖A‖2‖x‖2.

Now, it implies equalities overall so that

‖Akxk‖2 = ‖Ak‖2‖xk‖2 = ( max
1≤k≤ℓ

‖Ak‖2)‖xk‖2 = ‖A‖2‖xk‖2 for all 1 ≤ k ≤ ℓ.

Therefore, if ‖Ai‖ < max
1≤k≤ℓ

‖Ak‖ we have xi = 0, while if ‖Ai‖ = max
1≤k≤ℓ

‖Ak‖, we have xi ∈ M0(Ai).

It implies M0(A) ⊆ M∗
0 (A). Conversely, if x =

⊕ℓ
k=1 xk ∈ M∗

0 (A), let Λ be the collection of all

indices i such that ‖Ai‖ = ‖A‖. By definition of M∗
0 (A) we have xk = 0 if k /∈ Λ, so that

‖Ax‖2 =
ℓ∑

k=1

‖Akxk‖2 =
∑

i∈Λ
‖Aixi‖2 = ‖A‖2

∑

i∈Λ
‖xi‖2 = ‖A‖2‖x‖2.

This proves x ∈ M0(A), hence M∗
0 (A) ⊆ M0(A). The other containment in (ii) follows directly

from the definitions, while the last statement of the lemma follows from (i) and (ii). �

We now begin to investigate algebraic properties of elements of A with BJ orthogonality. Let

us record a trivial observation which classifies the 0 element in terms of BJ orthogonality. We will

tacitly used it in many subsequent lemmas when claiming that BJ orthogonality alone determines

a relevant property:

A = 0 ⇐⇒ A ⊥ A.
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Lemma 2.2. Let A = Mn1
(K1)⊕ · · · ⊕Mnℓ

(Kℓ) with n1 = · · · = np = 1 and np+1, . . . , nℓ ≥ 2 for

some p ≥ 0. If p = 0, then A has no non-zero left-symmetric elements. If p ≥ 1, then the following

are equivalent for a non-zero element A ∈ A:

(i) A is left-symmetric element of A,

(ii) The block decomposition of A has only one non-zero entry and it belongs to M1(Ki) for

some i ∈ [1, p].

Proof. Let A be a normalized left-symmetric and let i be such that ‖Ai‖ = ‖A‖ = 1. Without

loss of generality, Ai = Σi = diag (σi
1, . . . , σ

i
ni
) is already in its singular value decomposition form

where 1 = ‖Ai‖ = σi
1 ≥ · · · ≥ σi

ni
≥ 0. Consider now a matrix Bi = ei2(e

i
2)

∗ ∈ Mni
(Ki) and let

B =
(⊕i−1

k=1 0nk

)
⊕ Bi ⊕

(⊕ℓ
k=i+1 0nk

)
. Notice that A attains its norm on x =

(⊕i−1
k=1 0k

)
⊕ ei1 ⊕(⊕ℓ

k=i+1 0k
)
and

〈Ax,Bx〉F = 〈Aie
i
1, Bie

i
1〉F = 0,

so A ⊥ B by Lemma 2.1. Being left-symmetric, this implies B ⊥ A. Note also that B attains its

norm only on vectors y ∈
(⊕i−1

k=1 0k
)
⊕ ei2Ki ⊕

(⊕ℓ
k=i+1 0k

)
, and maps them into themselves, so

B ⊥ A forces

0 = 〈By,Ay〉F = 〈Bie
i
2, Aie

i
2〉F = σi

2.

Similarly, σi
j = 0 for all 2 ≤ j ≤ ni. Thus, Ai = diag (1, 0, . . . , 0) = ei1(e

i
1)

∗. If now ni > 1,

consider Bi = (aei1 + bei2)(ae
i
1 + bei2)

∗ − 1
3(−bei1 + aei2)(−bei1 + aei2)

∗ where (a, b) = (−1/2,
√
3/2)

and B =
(⊕i−1

k=1 0nk

)
⊕ Bi ⊕

(⊕ℓ
k=i+1 0nk

)
. Notice that A attains its norm on x =

(⊕i−1
k=1 0k

)
⊕

ei1 ⊕
(⊕ℓ

k=i+1 0k
)
and that

〈Ax,Bx〉F = 〈Aie
i
1, Bie

i
1〉F = 0,

so A ⊥ B. Notice also that B attains its norm only on a multiple of y =
(⊕i−1

k=1 0k
)
⊕ (aei1 +

bei2) ⊕
(⊕ℓ

k=i+1 0k
)
and that 〈By,Ay〉F = 〈Biyi, Aiyi〉F = a2 6= 0, so B 6⊥ A. Hence, A is not

left-symmetric, a contradiction.

The only possibilities left for A are of form α1 ⊕ · · · ⊕ αp ⊕ Ap+1 ⊕ · · · ⊕ Aℓ, with ‖Ak‖ < ‖A‖
for k > p (we identified the 1-by-1 summands with scalars αk ∈ Kk). We first claim that each of

Ak is zero for k > p. Namely, we clearly have

0p ⊕Mnp+1
(Kp+1)⊕ · · · ⊕Mnℓ

(Kℓ) ⊆
(
α1 ⊕ · · · ⊕ αp ⊕Ap+1 ⊕ · · · ⊕Aℓ

)⊥
,

(here, 0p denotes p repeated zeros).

Since A is left-symmetric, it implies that X =
(⊕p+i−1

k=1 0nk

)
⊕Ap+i ⊕

(⊕ℓ
k=p+i+1 0nk

)
satisfies

X ⊥ A. Clearly if X 6= 0 it achieves its norm only inside its unique non-zero block. Then, however,

X ⊥ A is equivalent to Ap+i ⊥ Ap+i, so that Ap+i = 0 since the only matrix in Mnp+i
(Kp+i) which

is orthogonal to all matrices is a zero matrix.

Hence, the only possibilities left for A are of form α1 ⊕ · · · ⊕ αp ⊕ 0np+1
⊕ · · · ⊕ 0nℓ

. We claim

that only one of αi can be non-zero. Without loss of generality |α1| = ‖A‖. Assume α2 6= 0 and

notice that

0⊕ α2 ⊕ 0p−2 ⊕ 0np+1
⊕ · · · ⊕ 0nℓ

∈
(
α1 ⊕ α2 ⊕ · · · ⊕ αp ⊕ 0np+1

⊕ · · · ⊕ 0nℓ

)⊥
,
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but they are not mutually BJ orthogonal. Indeed, α2 = 0, and the only possibility for left-symmetric

A is that all, except possibly one, of its blocks are zero and the non-zero block is of size 1-by-1.

It is easily observed that these are indeed left-symmetric elements, namely: given A = α ⊕
{0}p−1 ⊕

(⊕ℓ
k=p 0nk

)
, choose any B = β ⊕

(⊕ℓ
k=2Bk) ∈ A⊥. Note that, modulo a multiplication

by scalars, x = 1 ⊕ 0 ⊕ · · · ⊕ 0 is the only norm-attaining vector for A. Then, 0 = 〈Ax,Bx〉F =

〈α · 1, β · 1〉F = Re(β̄α) (or it equals β̄α if F = C). Now, if |β| = ‖B‖, then x is also a norm-

attaining vector for B and we have B ⊥ A. If |β| 6= ‖B‖, then it is clear that B ⊥ A. It implies A

is left-symmetric. �

We now characterize right-symmetric elements. The following lemma which generalizes [17,

Lemma 3.3] will be useful.

Lemma 2.3. Let A =
⊕ℓ

k=1Mnk
(Kk) be a C∗-algebra over F. For elements A =

⊕ℓ
k=1Ak and

B =
⊕ℓ

k=1Bk we have A⊥ ⊆ B⊥ if and only if for all 1 ≤ i ≤ ℓ, we have M∗
0 (Ai) ⊆ M∗

0 (Bi) and

there exist non-zero αi ∈ F having the same modulus such that Aixi = αi(Bixi) for all xi ∈ M∗
0 (Ai).

Proof. Let A⊥ ⊆ B⊥. If ‖Ai‖ < ‖A‖, then M∗
0 (Ai) = {0i} ⊆ M∗

0 (Bi). Assume ‖Ai‖ = ‖A‖,
let xi ∈ M0(Ai) be a normalized vector and consider the hyperplane H = {X =

⊕ℓ
k=1Xk ∈

A; 〈Xixi, Aixi〉F = 0} contained in A⊥ ⊆ B⊥. By [13, Theorem 2.1] (whose proof works over real

as well as complex normed spaces), we have |F (B)| = ‖F‖‖B‖, where F (X) = 〈Aixi,Xixi〉F is an

F-linear functional on A. Hence

|〈Aixi, Bixi〉F| = |F (B)| = ‖F‖‖B‖ = ‖Aixi‖ · ‖xi‖ · ‖B‖,

(where last equality follows as an application of Cauchy-Schwarz inequality and the fact that

‖Xi‖ ≤ ‖X‖). Now, we have

‖Aixi‖ · ‖xi‖ · ‖B‖ = |〈Aixi, Bixi〉F| ≤ ‖Aixi‖‖Bixi‖ ≤ ‖Aixi‖ · ‖xi‖ · ‖Bi‖ ≤ ‖Aixi‖ · ‖xi‖ · ‖B‖.

So, we get equality throughout, so

‖B‖ = ‖Bi‖
and ‖Bixi‖ = ‖Bi‖‖xi‖. Also, by the condition of equality in Cauchy-Schwarz inequality, we get

Aixi = λi(Bixi) for some λi = λi(xi) ∈ F. Now, we prove λi(xi) is independent of xi ∈ M0(Ai).

First note that |λi(xi)| = ‖Ai‖/‖Bi‖ = ‖A‖/‖B‖. Let xi, yi ∈ M0(Ai) be normalized vectors such

that Aixi = µi(Bixi) and Aiyi = νi(Biyi). We first observe that there exists a normalized vector

wi ∈ M0(Ai) such that

µi + νi
2

=
〈Bixi, Aixi〉F + 〈Biyi, Aiyi〉F

2
= 〈Biwi, Aiwi〉F;

in the last step we have used the convexity of {〈Bixi, Aixi〉F; ‖xi‖ = 1, xi ∈ M0(Ai)}, the numerical

range of the compression of A∗
iBi to the subspace M0(Ai) (recall that A∗

iBi is embedded into a

suitable Mn(R),M2n(R) or M4n(R)). Again, wi ∈ M0(Ai) implies that Aiwi = τi(Biwi) for

some τi with |τi| = ‖A‖/‖B‖. Thus, |µi + νi| = 2‖A‖/‖B‖. But |µi| = |νi| = ‖A‖/‖B‖ and hence

µi = νi. So, λi(xi) is independent of xi.
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Also, |αi| = ‖A‖/‖B‖ for all i, when M∗
0 (Ai) 6= {0i} and in case M∗

0 (Ai) = {0i}, we can choose

any αi, so in particular αi = ‖A‖/‖B‖. The converse follows from Lemma 2.1 (i). �

As an application of Lemma 2.1, we also get a classification of right-symmetric elements. It

turns out that they are nothing but scalar multiples of unitary elements. For simple complex

finite-dimensional C∗-algebra, this follows from [24, Theorem 2.5] (but see also [17, Lemma 3.7]).

Lemma 2.4. The following are equivalent in a finite-dimensional C∗-algebra A over F:

(i) A is a scalar multiple of some unitary U .

(ii) There does not exist a non-zero B ∈ A such that A⊥ ( B⊥.

(iii) A is right-symmetric in A.

Proof. Without loss of generality, let A = Mn1
(K1)⊕ · · · ⊕Mnℓ

(Kℓ).

(i) ⇐⇒ (ii). Notice that the unitaries in Mn1
(K1) ⊕ · · · ⊕ Mnℓ

(Kℓ) are of form U1 ⊕ · · · ⊕ Uℓ

where Ui is a unitary matrix in Mni
(Ki). Therefore, A = A1 ⊕ · · · ⊕ Aℓ is a multiple of unitary

if and only if M∗
0 (Ai) = Kni

i for each i. Also, by Lemma 2.3, there exists non-zero B such that

A⊥ ( B⊥ if and only if dimKi
(M∗

0 (Ai)) < dimKi
(M∗

0 (Bi)) for some i. The two claims combined

give the wanted equivalence.

(i) ⇐⇒ (iii). Assume A =
⊕ℓ

k=1Ak is right-symmetric. We first show that each Ak ∈
Mnk

(Kk) is of the same norm. Suppose on the contrary. Without loss of generality ‖A1‖ <

max{‖A2‖, . . . , ‖Aℓ‖} = ‖Ai‖ = 1 where i 6= 1 and consider X = X1 ⊕ (A2/2) ⊕ · · · ⊕ (Aℓ/2) with

‖X1‖ = 1 and X1 is BJ orthogonal to A1. Then, we have X ⊥ A. Due to right-symmetry of A

this implies A ⊥ X so there exists a normalized vector x ∈ M0(A) ⊆ Span{M0(A2), . . . ,M0(Aℓ)} =

{(0, x2, . . . , xℓ); ‖A(0, x2, . . . , xℓ)‖ = ‖A‖ · ‖(0, x2, . . . , xℓ)‖ and xk ∈ K
nk

k } such that

0 = 〈Ax,Xx〉F =

ℓ∑

k=2

1

2
〈Akxk, Akxk〉F =

1

2

∑

k

‖Akxk‖2 =
1

2
‖Ax‖2 6= 0,

which is a contradiction. This implies ‖A1‖ = max{‖A2‖, . . . , ‖Aℓ‖} = ‖A‖. Similarly, we get

‖Ai‖ = ‖A‖ for all 1 ≤ i ≤ ℓ. Now, we prove that each Ai is a scalar multiple of a unitary matrix.

Let 1 ≤ i ≤ ℓ be fixed. Recall that (X1 ⊕ · · · ⊕Xℓ) 7→ (U1X1V
∗
1 , . . . , UℓXℓV

∗
ℓ ) is an isometry for

unitaries Uk and Vk in Mnk
(Kk), and hence induces a BJ isomorphism, so we can assume with no

loss of generality that

Ai = Σi = diag (σi
1, . . . , σ

i
ni
)

with σi
1 = · · · = σi

j > σi
j+1 ≥ · · · ≥ σi

ni
≥ 0 for some j ∈ {1, . . . , ni}. We claim that j = ni i.e. Ai

is a scalar matrix ‖Ai‖ = ‖A‖, and this will imply that A is a scalar multiple of unitary.

Assume, if possible, j ≤ ni − 1 and denote σ :=
σi
j+1

σi
j

∈ [0, 1), and consider B = B1 ⊕ · · · ⊕ Bℓ

where Bk = Ak if k 6= i and

Bi = ei1(e
i
1)

∗ + · · · + eij−1(e
i
j−1)

∗ + xij(y
i
j)

∗ + xij+1(y
i
j+1)

∗,
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where {eij ; 1 ≤ j ≤ ni} denotes the standard basis of Kni

i and

xij =
eij − eij+1√

2
, yij =

σeij + eij+1√
1 + σ2

, xij+1 =
eij + eij+1√

2
, yij+1 =

eij − σeij+1√
1 + σ2

.

Notice that B is already in its singular value decomposition and achieves its norm on yij , which

is mapped into Byij = xij while Ayij =
σi
j+1√
1+σ2

(eij + eij+1) is clearly orthogonal to xij in 〈·, ·〉F.
Thus, B ⊥ A by Lemma 2.1. Because of right-symmetricity of A we then have A ⊥ B, so there

exists a normalized w = w1 ⊕ · · · ⊕ wℓ ∈ M0(A) = M∗
0 (A) =

⊕ℓ
1M0(Ak) with ‖Aw‖ = ‖A‖ and

0 =
∑

k〈Akwk, Bkwk〉F. Due to Bk = Ak whenever k 6= i we see that

0 =
∑

k 6=i

‖Akwk‖2 + 〈Aiwi, Biwi〉F = ‖A‖2
∑

k 6=i

‖wk‖2 + 〈Aiwi, Biwi〉F

= ‖A‖2
∑

k 6=i

‖wk‖2 + ‖Ai‖〈wi, Biwi〉F

= ‖A‖2
∑

k 6=i

‖wk‖2 + ‖A‖〈wi, Biwi〉F;

in the one but last equality we used that the restriction of Ai to the Ki-subspace K
j
i ⊕ 0ni−j =

M0(Ai) = M∗
0 (Ai) ∋ wi is a σi

1-multiple of identity. Notice also that the compression of Bi to

this subspace equals

(
Ij−1 0

0 1−σ√
2

√
1+σ2

)
and is positive-definite. This gives wk = 0 for every k, a

contradiction.

Conversely, if A is a scalar multiple of a unitary then it achieves its norm on every non-zero vector.

Consider an arbitrary B ⊥ A; then B achieves its norm on some vector y with 〈By,Ay〉F = 0. Since

A also achieves its norm on the same vector we see that A ⊥ B also holds, so that A is a right-

symmetric element. �

We note that Lemma 2.4 implies that the set of scalar multiples of unitary elements is invari-

ant under any BJ isomorphism between two finite-dimensional C∗-algebras. We end this section

by proving that same holds for smooth elements of finite-dimensional C∗-algebras also. We call

A =
⊕ℓ

k=1Ak ∈ A to be smooth if there exists exactly one index i such that ‖Ai‖ = ‖A‖ and

dimKi
(M0(Ai)) = 1. For example, A =

(⊕i−1
k=1 0nk

)
⊕ Ei

st ⊕
(⊕ℓ

k=i+1 0nk

)
are smooth elements

for all matrix units Ei
st ∈ Mni

(Ki), which can be easily seen by writing them as Ei
st = eis(e

i
t)
∗ and

using the fact that ‖Ei
stx‖ = |(eit)∗x| = |xit| ≤ ‖x‖ for x =

∑ni

j=1 x
i
je

i
j ∈ Kni

i , with inequality being

strict except if x = xite
i
t.

There is a well known notion of smoothness in general Banach space V that states that a

vector v ∈ V is smooth if and only if there exists a unique normalized functional f on V such

that f(v) = ‖v‖ (such f is called a supporting functional for v). We prove below that the two

definitions are equivalent. However before we do that let us note that our definition of smoothness

on finite-dimensional C∗-algebras is a special case of Holub’s condition, see [11]. The equivalence

of Holub’s condition and smoothness has been studied by many authors, for a brief survey see [9].
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In particular, it is known that the two definitions are equivalent for finite-dimensional simple or

abelian C∗-algebras, see [11, Theorem 2.1], [1, Theorem 3.1], [12, Theorem 3.3], and [14, Corollary

3.3], [15, Corollary 2.2]. We show below that the same holds for any finite-dimensional C∗-algebra.

Lemma 2.5. Let A be a finite-dimensional C∗-algebra over F. Then, A ∈ A is a smooth element if

and only if there exists a unique normalized functional f on A such that f(A) = ‖A‖. Furthermore,

for a smooth element A ∈ A, there exists a unique i such that if x =
⊕ℓ

k=1 xk ∈ M0(A), then xk = 0

for all k 6= i and we have

A⊥ =
(
0n1

⊕ · · · ⊕ 0ni−1
⊕ (Aixi)x

∗
i ⊕ 0ni+1

⊕ · · · ⊕ 0nℓ

)⊥
.

Proof. First, let A be a smooth element of A. By definition there exists exactly one i such that

‖Ai‖ = ‖A‖ which, by Lemma 2.1, gives the statement about the vectors in M0(A). Moreover, we

also have dimKi
(M0(Ai)) = 1, so there exists a vector xi ∈ Kni

i such that

(2.6) M0(A) = 0⊕ · · · ⊕ 0⊕ xiKi ⊕ 0⊕ · · · ⊕ 0

Then, (i) of Lemma 2.1 and identity (2.5), by which 〈A(xiγ), B(xiγ)〉F = |γ|2〈Axi, Bxi〉F for each

normalized vector xiγ ∈ xiKi = M0(Ai) imply

A⊥ =
(
0n1

⊕ · · · ⊕ 0ni−1
⊕ (Aixi)x

∗
i ⊕ 0ni+1

⊕ · · · ⊕ 0nℓ

)⊥
.

This proves the last statement.

To prove the first one, let A be a smooth element which attains its norm on i-th component and

define an F-linear functional f on A as f :
(⊕ℓ

k=1Xk

)
7→ 1

‖Ai‖〈Aixi,Xixi〉F. Then, by Cauchy-

Schwarz, f is a normalized functional and f(A) = ‖Ai‖ = ‖A‖; also, A⊥ = Ker f . By (1.4), the

kernel of every supporting functional of A is contained in A⊥ = Ker f so f is a unique supporting

functional of A.

Conversely, let A ∈ A be such that there exists a unique normalized supporting functional for A.

Assume there exist j 6= i such that ‖Ai‖ = ‖Aj‖ = ‖A‖. Then there would be normalized vectors

x ∈ Kni

i and y ∈ K
nj

j such that ‖Aix‖ = ‖A‖ and ‖Ajy‖ = ‖A‖ so fx :
(⊕ℓ

k=1Xk

)
→ 1

‖Ai‖〈Aix,Xi〉F
and fy :

(⊕ℓ
k=1Xk

)
→ 1

‖Aj‖〈Ajy,Xjy〉F would be two distinct supporting (normalized) functionals

for A, which contradicts our assumption that A has a unique supporting (normalized) functional

for A. So, there exists a unique i such that ‖Ai‖ = ‖A‖. Similar arguments prove that there does

not exist two Ki-linearly independent vectors x, y ∈ M0(Ai) ⊆ Kni

i . Thus, dimKi
(M0(A)) = 1. �

The next lemma will show that smooth elements are preserved under BJ isomorphism.

Lemma 2.6. Let A be a finite-dimensional C∗-algebra over F. Then A ∈ A is a smooth element

if and only if there does not exist B ∈ A such that B⊥ ( A⊥.

Proof. We assume the usual matrix decompositions (1.1)–(1.2) of A. Let A ∈ A be smooth,

achieving its norm only on i-th component, and let B =
⊕ℓ

k=1Bk satisfy B⊥ ( A⊥. Notice that

M∗
0 (Bk) is a Kk-subspace of Knk

k for each k. By Lemma 2.3, B⊥ ( A⊥ implies dimKk
(M∗

0 (Bk)) ≤
dimKk

(M∗
0 (Ak)). Thus, for all k 6= i we have dimKk

(M∗
0 (Bk)) = 0, i.e., Bk = 0, while for k = i
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we have dimKi
(M∗

0 (Bi)) ≤ 1 with M∗
0 (Bi) ⊆ M∗

0 (Ai). So, either Bi = 0 or M∗
0 (Bi) = M∗

0 (Ai) and

Bi|M∗
0
(Ai) = αAi|M∗

0
(Ai) for some non-zero α ∈ F. The former case gives B⊥ = 0⊥ = A, while the

later case gives B⊥ = A⊥ by (i) of Lemma 2.1. So B⊥ ( A⊥ is not possible.

Conversely, assume there does not exist B ∈ A such that B⊥ ( A⊥ and suppose, if possible,

that A is not smooth. Then either there exists two distinct i, j such that ‖Ai‖ = ‖Aj‖ = ‖A‖ or

there exists j with ‖Aj‖ = ‖A‖ but dimKj
(M0(Aj)) > 1. In the first case, by Lemma 2.1(i),

(( i⊕

k=1

0nk

)
⊕Ai ⊕

( ℓ⊕

k=i+1

0nk

))⊥
6=

(( j⊕

k=1

0nk

)
⊕Aj ⊕

( ℓ⊕

k=j+1

0nk

))⊥

are both properly contained in A⊥ because only the first contains
(⊕j

k=1 0nk

)
⊕Aj⊕

(⊕ℓ
k=j+1 0nk

)
.

In the second case, let x, y ∈ M0(Aj) be Kj-linearly independent. By applying Gram-Schmidt we

can assume that their Kj-valued inner product, 〈x, y〉 := y∗x = 0 ∈ Kj . Then, by Lemma 2.1(i),

(( i⊕

k=1

0nk

)
⊕ (Ax)x∗ ⊕

( ℓ⊕

k=i+1

0nk

))⊥
6=

(( i⊕

k=1

0nk

)
⊕ (Ay)y∗ ⊕

( ℓ⊕

k=i+1

0nk

))⊥

are both properly contained in A⊥ because only the first one contains
(⊕i

k=1 0nk

)
⊕ (Ay)y∗ ⊕

(⊕ℓ
k=i+1 0nk

)
. Either case is contradictory. So A is a smooth element. �

3. BJ orthogonality in pseudo-abelian C∗-algebra

In the next lemma we show that BJ orthogonality characterizes the underlying field in case of

finite-dimensional abelian C∗-algebra A =
⊕ℓ

k=1M1(F) = Fℓ over the field F. As usual, we prefer

to write its elements as sequences, though we might still use ⊕ notation. We will use the notation

RA = {A; A is right-symmetric element in A}.

Lemma 3.1. Let A = Fℓ be a finite-dimensional abelian C∗-algebra over the field F with ℓ ≥ 2.

Then, the set

{A⊥; A ∈ RA \ {0}}
has finitely many elements in case of F = R and infinitely many in case of F = C. They are indexed

by the tuples (1,±1, . . . ,±1) in case of Rℓ and are indexed by (1, eiθ2 , . . . , eiθℓ) for θk ∈ [0, 2π) in

case of Cℓ.

Proof. Any non-zero right symmetric element is a multiple of unitary by Lemma 2.4. Also, A⊥ =

(λA)⊥ for λ ∈ F \ {0} because BJ orthogonality is homogeneous. So, we have

{A⊥; A ∈ RA} = {(1, α2, . . . , αℓ)
⊥; |αi| = 1} ∪ {Fℓ = 0⊥}.

As for the fact that (1, α2, . . . , αℓ) with |αi| = 1 have different outgoing neighborhoods, notice that

if A = (1, α2, . . . , αℓ) and B = (1, β2, . . . , βℓ) satisfy A⊥ = B⊥, then by Lemma 2.3, there exists

λ ∈ F such that

(1, α2, . . . , αℓ) = λ(1, β2, . . . , βℓ),

which implies λ = 1 and A = B. �
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We remark that Lemma 3.1 does not hold if ℓ = 1 because M1(R) and M1(C) are BJ isomorphic

(see [17, Example 2.2]). In the next lemma we give a complete characterization of Fℓ among the

finite-dimensional pseudo-abelian C∗-algebras. We also provide a formula for the dimension of a

complex abelian C∗-algebra which uses nothing but BJ orthogonality relation. It is simpler than

the one valid in general normed spaces, see [8, Theorem 1.1 and Remark 1.2]. For simplicity we

denote 1-by-1 blocks M1(K) simply as K.

Lemma 3.2. Let A = K1 ⊕ · · · ⊕ Kℓ be a finite-dimensional pseudo-abelian C∗-algebra over the

field F. If A = Fℓ, then

(3.7) dimA = |{A⊥; A ∈ LA \ {0}}|.

However, if F = R and one of Ki ∈ {C,H}, then {A⊥; A ∈ LA \ {0}} is an infinite set.

Proof. By Lemma 2.2, the set of all non-zero left-symmetric elements in A is given by (recall that

0n denotes n repeated zeros)

{(0k−1, αk, 0
ℓ−k); 1 ≤ k ≤ ℓ and αk ∈ Kk \ {0}}.

Now, all non-zero F-multiples of an element share the same outgoing neighbourhood. We further

note that, by Lemma 2.3(i), i 6= j and αi ∈ Ki \ {0}, αj ∈ Kj \ {0} imply

A⊥ = (0, . . . , 0, αi, 0, . . . , 0)
⊥ 6= (0, . . . , 0, αj , 0, . . . , 0)

⊥ = B⊥,

(because M0(A) 6= M0(B)). Therefore, if A = Rℓ or Cℓ, then (3.7) holds.

Finally, let A = K1 ⊕ · · · ⊕Kℓ be C∗-algebra over R with K1 ∈ {C,H}. Then

Aλ = (1 + λi, 0, . . . , 0); (i2 = −1 ∈ R)

are left-symmetric elements for all λ ∈ R \ {0} by Lemma 2.2. However, A⊥
λ 6= A⊥

µ for λ 6= µ

because
(
1− 1

λ
i, 0, . . . , 0

)
∈ (1 + µi, 0, . . . , 0)⊥ if and only if µ = λ. �

As a direct consequence of Lemma 3.1 with its proof, and Lemma 3.2, we get the following

corollary which characterizes the underlying fields in an pseudo-abelian C∗-algebra with the help

of BJ orthogonality.

Corollary 3.3. Let A be pseudo-abelian C∗-algebra over the field F with dimFA ≥ 2. Then F = C

if and only if

|{A⊥; A ∈ LA}| < ∞ and |{A⊥; A ∈ RA}| = ∞.

Moreover, F = R if and only if either both sets are infinite or else they are both finite.

Since the above corollary characterizes the underlying field and complex pseudo-abelian finite-

dimensional C∗-algebras are completely determined by their dimension, which is given by formula

(3.7), we already got a complete BJ characterization of complex finite-dimensional pseudo-abelian

C∗-algebras. It remains to focus on real finite-dimensional pseudo-abelian C∗-algebras, where

we still need to compute the number of blocks over reals, over complexes, and over quaternions.

This will be done by carefully counting the cardinality associated with finite collections of smooth

elements A1, . . . , As ∈ A. By convention, if s = 0 we let
⋂s

k=1A
⊥
k := A.
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Lemma 3.4. Let A ∈ {M1(C),M1(H)} be a real C∗-algebra. Then, there exist finitely many

smooth elements A1, . . . , As in A such that

|{B⊥; B ∈ L⋂s
k=1

A⊥
k
\{0}}| < ∞.

If s is the minimal such number, then s = 1 in case of A = M1(C) and s = 3 in the case of

A = M1(H). In both cases,
⋂s

k=1A
⊥
k is a one-dimensional real vector space.

Proof. As usual, K will denote either the field C or the (skew) field H. Recall from Lemma 2.1 that,

for A = (a), B = (b) ∈ M1(K) (1-by-1 matrices), we have A ⊥ B if and only if Re〈A · 1, B · 1〉 =
Re(ba) = 0 (here, B · 1 is matrix B applied on a vector 1 ∈ K). Therefore, A⊥ coincides with the

kernel of the R-linear functional fA : M1(K) → R, given by fA : X = (x) 7→ Re(xa) = Re(ax).

Notice also that the map W 7→ fW from M1(K) to HomR(M1(K),R) is R-linear with zero kernel,

because for W = (w), we have fW (W ) = Re(w̄w) = |w|2 = 0 if and only if W = 0. It implies that

A⊥ = ker fA and B⊥ = ker fB are different whenever A,B are R-linearly independent. Therefore,

if V ⊆ M1(K) is a real subspace of dimension at least two, and A = (a), B = (b) ∈ V are R-linearly

independent, then (A + λ1B) and (A + λ2B) are R-linearly independent for λ1 6= λ2 and as such

(A + λ1B)⊥ 6= (A + λ2B)⊥. Thus, the cardinality of {A⊥; A ∈ V} is infinite. This shows that

s ≥ 1 in case K = C and s ≥ 3 in case of K = H. The inequalities are achieved, for example by

using {i} in case of C and {i, j, k} in case of K = H. �

Lemma 3.5. Let A = K1 ⊕ · · · ⊕Kℓ be a real finite-dimensional pseudo-abelian C∗-algebra. Then,

there exists finitely many smooth elements A1, . . . , As in A such that

(3.8) |{B⊥; B ∈ L⋂s
k=1

A⊥
k
\ {0}}| < ∞.

If s is minimal such number, then
⋂s

k=1A
⊥
k = (Rα1, . . . ,Rαℓ) for some unimodular numbers

αk ∈ Kk and the cardinality of the set in (3.8) is equal to ℓ, the number of matrix blocks in

A. Furthermore,

(3.9) dimA = s+ ℓ.

Proof. In case of a real C∗-algebra A = Rℓ we have, by Lemma 3.2, s = 0; clearly also dimA = ℓ,

which, again by Lemma 3.2, equals the cardinality of (3.8), and the statement follows by inserting

αk = 1. We now consider the remaining cases of a real C∗-algebra when one of the blocks is C or

H with F = R. Without loss of generality, let A = Rr ⊕ Cc ⊕ Hh for some r, c, h ≥ 0. Now, if we

take Ak’s to be all the elements in the finite set {(0j , µ, 0ℓ−j−1); r+1 ≤ j ≤ ℓ, µ ∈ {i, j, k}∩Kj},
then Ak are smooth elements. It is straightforward that (α1, . . . , αℓ) ∈

⋂s
k=1A

⊥
k is possible only if

all αk ∈ R, so
s⋂

k=1

A⊥
k = Rr ⊕ (R+ 0i)c ⊕ (R + 0i + 0j + 0k)h.

By Lemma 2.2, all left-symmetric elements in
⋂s

k=1A
⊥
k \ {0} are of the form (0j−1, α, 0ℓ−j) and

α ∈ R \ {0}. Note that (0j−1, α, 0ℓ−j)⊥ equals (0j−1, 1, 0ℓ−j)⊥ So,

{B⊥; B ∈ L⋂s
k=1

A⊥
k
\ {0}} = {B⊥; B = (0j−1, 1, 0ℓ−j) for 1 ≤ j ≤ ℓ},
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which is a finite set, and (3.8) holds for some finite s.

Let s be minimal such and let A1, . . . , As ∈ A be the corresponding smooth elements for which

(3.8) holds. Being smooth, Lemma 2.5 implies that

A⊥
i = (0j−1, µAi

, 0ℓ−j)⊥

for some j (depending on i) and a unimodular µAi
∈ Kj . Hence, A⊥

i is an R-vector subspace of

A = K1 ⊕ · · · ⊕ Kℓ having only j-th block different from Kj. It implies that
⋂s

k=1A
⊥
k is also an

R-vector subspace of A. Moreover, by Lemma 3.4, its j-th block is at most one-dimensional real

vector space, else
⋂ℓ

k=1Ak contains infinitely many left-symmetric elements with pairwise distinct

outgoing neighborhoods (relative to j-th block M1(Kj) = Kj, hence also relative to A), which

would contradict the choice of s. Thus,
⋂s

k=1A
⊥
k =

⊕ℓ
k=1Rαk for some numbers αk ∈ Kk which

we can assume to be either unimodular or 0.

To finish, define a map sgn0 : K → K by sgn0(α) = 1 if α = 0, else sgn0(α) =
α
|α| and observe that

x → (sgn0(α1)⊕ · · · ⊕ sgn0(αℓ))x is an isometry of A, so induces a BJ isomorphism. With its help

we can achieve that
⋂s

k=1A
⊥
k =

⊕ℓ
k=1Rαk with each αk ∈ {0, 1}. This, in turn, is BJ isomorphic

to Rm, where m ≤ ℓ is the number of non-zero αi. But since Rℓ also contains finitely many left-

symmetric elements with pairwise distinct outgoing neighborhoods then, by the minimality of s, we

have m = ℓ and so αk = 1 for each k. Thus,
⋂s

k=1A
⊥
k =

⊕ℓ
k=1Rαk for some unimodular numbers

αk ∈ Kk and it contains exactly ℓ non-zero left-symmetric elements with pairwise distinct outgoing

neighborhoods. This shows that the set in (3.8) has cardinality ℓ. By Lemma 3.4, we furthermore

have

(3.10) s = c+ 3h.

Now, the dimension of A is clearly equal to

dimR A = r + 2c+ 4h.

while the number of blocks satisfies ℓ = r + c+ h. This implies s = dimA− ℓ. �

We say that a subset S ⊆ A has property FL if |{A⊥;A ∈ LS}| < ∞.

Lemma 3.6. Let A be a finite-dimensional pseudo-abelian C∗-algebra over R with dimA ≥ 2.

Choose the minimal integer s and the corresponding smooth elements A1, . . . , As as in Lemma 3.5,

and define the set

Ξ := {A ∈ LA; ∃m such that A⊥ ∩
⋂

k 6=m

A⊥
k has property FL}.

Then,

Ω =
⋂

A∈Ξ
A⊥

consists exactly of elements in A that are zero in nonreal blocks of A. Hence, the cardinality of

{A⊥; A ∈ Ω ∩ LA \ {0}}

coincides with the number of real 1-by-1 blocks in A.



16 B. KUZMA AND S. SINGLA

Proof. Let A = Rr ⊕ Cc ⊕Hh. Using Lemma 3.5,

s⋂

k=1

A⊥
k =

ℓ⊕

k=1

Rαk

for some unimodular numbers αk ∈ Kk. Now, without loss of generality (by multiplying with a

suitable unitary element, i.e., applying a suitable isometry), αk = 1 for each 1 ≤ k ≤ ℓ. Since

Ak are smooth there exist Xk such that A⊥
k = X⊥

k , where collection of all Xk takes the form

(0q−1, i, 0ℓ−q) in complex blocks, i.e., for r + 1 ≤ q ≤ r + c, and the form (0q−1, µj,q, 0
ℓ−q) with

span{µ1,q, µ2,q, µ3,q} = span{i, j, k} (1 ≤ j ≤ 3) in quaternionic blocks, i.e., for r + c + 1 ≤ q ≤ ℓ

(because we assumed αk = 1). Without loss of generality, we assume Ak = Xk.

Consider q such that Kq ∈ {C,H}. We examine only the slightly more challenging case of Kq = H

in the sequel. Then there exists m such that Am = (0q−1, µ1,q, 0
ℓ−q). Let us replace Am with

A = (0q−1, 1, 0ℓ−q).

Now, for each unimodular µ ∈ Kq we have µ⊥ = ker fµ (here, µ⊥ denotes the relative outgoing

neighborhood inside the q-th block M1(Kq) = Kq and fµ(x) = Re(µx) is R-linear functional on

Kq) is a three-dimensional subspace of Kq. Then, if µ1, µ2, µ3 are R-linearly independent, then

fµ1
, fµ2

, fµ3
are also R-linearly independent. Now, since µ1,q, µ2,q, µ3,q are purely imaginary and

R-linearly independent, it implies that 1, µ2,q, µ3,q are R-linearly independent, so 1⊥∩µ⊥
2,q∩µ⊥

3,q is a

one-dimensional subspace inM1(Kq) (again, we are using here the relative outgoing neighborhoods,

within q-th block M1(Kq) only). So, A
⊥∩⋂k 6=mA⊥

k =
⊕

k 6=q Rαk⊕Rβ for some unimodular β ∈ Kq

(because by replacing A⊥
m with A⊥ affects the q-th block only), which contains only finitely many

left-symmetric elements with pairwise distinct outgoing neighborhoods. It implies

(0q−1, 1, 0ℓ−j) , (0q−1, µq,j, 0
ℓ−j) ∈ Ξ for j ∈ {1, 2, 3}.

Since span(1, µ1,q, µ2,q, µ3,q) = Kq, then Ω =
⋂

A∈ΞA⊥ can only contain elements with zero entries

in q-th block. Since Kq was arbitrary non-real block, then Ω can only contain elements with zero

entry in all non-real blocks of A, that is,

Ω ⊆ Rr ⊕ 0c ⊕ 0h.

Now we consider those i such that Ki = R. By the minimality of s and the fact that we could

assume Ak = Xk, each Ak has zero entries in real blocks. Therefore, if we replace some Am

(which has a non-zero entry only in the q-th block) with a left-symmetric A, as outlined by the

procedure, then we claim that A also will have a non-zero entry in the q-th block: In case this

block is complex, then by the minimality of s, Am is the only element among {A1, . . . , As} with

non-zero entry in q-th block. Now, if its substitute, A ∈ Ξ would have a zero entry in q-th block,

then (0q−1 ⊕ M1(C) ⊕ 0ℓ−q) ⊆ A⊥ ∩ ⋂
k 6=mA⊥

k . This, by Lemma 3.4, contradicts the fact that

A⊥ ∩
⋂

k 6=mA⊥
k has property FL.

The arguments when the q-th block is quaternionic are similar; the only difference is that by the

minimality of s (and Lemma 3.4) we now have three matrices among {A1, . . . , As} with non-zero
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entries in this block, and they must be R-linearly independent. Then the substitute, A ∈ Ξ must

again have non-zero entries only in q-th block.

Therefore. Rr⊕0c⊕0h ⊆ A⊥∩⋂
k 6=mA⊥

k for every A ∈ Ξ and so Rr⊕0c⊕0h ⊆ Ω ⊆ Rr⊕0c⊕0h,

as claimed. The claim about the number of non-zero left symmetric elements with property FL
inside Ω is now clear. �

4. Proofs of Main results

Proof of Theorem 1.2. Without loss of generality, A =
⊕ℓ

k=1Mnk
(Kk) with n1 = · · · = np = 1

and np+1, . . . , nℓ 6= 1 for some p ≥ 0. If p = 0, then, by Lemma 2.2, LA = {0}, so L⊥
A = A. This

matches with the sum of minimal ideals which are not skew-fields. Also, L⊥⊥
A = {0}, which agrees

with the statement when there are no skew-field minimal ideals.

If p 6= 0, then, by Lemma 2.2,

LA =
⋃

1≤i≤p

( i−1⊕

k=1

0nk

)
⊕M1(Ki)⊕

( ℓ⊕

k=i+1

0nk

)
.

Note that M1(Ki)
⊥ = {0ni

} because Ai 6⊥ Ai for any non-zero Ai ∈ M1(Ki). Thus, if A =

α1⊕· · ·⊕αp⊕Ap+1⊕· · ·⊕Aℓ ∈ L⊥
A, then the left-symmetric element

(⊕j−1
k=1 0nk

)
⊕αj⊕

(⊕ℓ
k=j+1 0nk

)

is orthogonal to A; giving that αj = 0 for all 1 ≤ j ≤ p. Hence,

L⊥
A :=

⋂

A∈LA

A⊥ =
( p⊕

k=1

0nk

)
⊕

ℓ⊕

k=p+1

Mnk
(Kk),

which coincides with the sum of minimal ideals that are not skew-fields. Moreover,

L⊥⊥
A :=

⋂

A∈L⊥
A

A⊥ =

p⊕

k=1

M1(Kk)⊕
( ℓ⊕

k=p+1

0nk

)
,

which is the sum of skew-field minimal ideals. �

Proof of Theorem 1.1. Assume there is a BJ isomorphism between A and A′ and A is a finite-

dimensional pseudo-abelian C∗-algebra. If φ is a BJ isomorphism between A and A′, we get

LA′ = φ(LA), RA′ = φ(RA) and φ(0) = 0 (since x = 0 is the only element with x ⊥ x). Using

Corollary 1.3, we get A′ is pseudo-abelian. Using BJ isomorphism of A and A′, we have that the

cardinalities of {A⊥; A ∈ B is left-symmetric} and {A⊥; A ∈ B is right-symmetric} are same for

B ∈ {A,A′}. Then, using Corollary 3.3, we get F = F′. For F = C, then result follows because the

dimensions of A and A′ are same using (3.7). Now, we consider the case F = F′ = R.

Let A = Rr ⊕ Cc ⊕Hh and A′ = Rr′ ⊕ Cc′ ⊕Hh′
. Then, by Lemmas 2.6 and 3.6 we have

r = r′.

By Lemma 3.5, we also have that the number of blocks in A and A′ are same, i.e.,

r + c+ h = r′ + c′ + h′.
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The minimal number s such that there exists smooth elements A1, . . . , As for which (3.8) holds is

also preserved under a BJ isomorphism. Hence, by (3.9), the dimensions of A and A′ are same, so

r + 2c+ 4h = r′ + 2c′ + 4h′.

It implies, r = r′, c = c′ and h = h′. Consequently, A and A′ are C∗-isomorphic. �

5. Extraction of abelian summand

Recall from Theorem 1.2 that, given a finite-dimensional C∗-algebra A,

L⊥⊥
A = Cc; if F = C,

or

L⊥⊥
A = Rr ⊕Cc ⊕Hh; if F = R,

where r, c, h are the numbers of 1-by-1 real, complex and quaternionic blocks in the matrix block

decomposition, respectively. Notice that in case of complex C∗-algebra, its pseudo-abelian and

abelian summands coincide and equal to Cc. However, for a real C∗- algebra its abelian summand

equals Rr⊕Cc and differs from the pseudo-abelian summand when h > 0. Now, we give a procedure

to classify the abelian summand in case of real C∗-algebra. Recall that F, the underlying field of A,

can be determined using BJ orthogonality alone when dimL⊥⊥
A ≥ 2, see Corollary 3.3 and note that

the dimension of the pseudo-abelian C∗-algebra L⊥⊥
A can be computed using (3.9) (this was proven

for real C∗-algebra but it holds even for complex C∗-algebra since then s = 0 and (3.9) reduces

to (3.7)). When dimL⊥⊥
A = 1, then the pseudo-abelian and abelian summand of A coincides and

equal to C (if F = C) or R (if F = R), respectively.

Clearly, to extract the abelian summand we only need to work within the pseudo-abelian sum-

mand L⊥⊥
A and we only need to consider real C∗-algebras, that is, F = R. We will require the

smooth points in L⊥⊥
A . Since L⊥⊥

A is a C∗-algebra, its smooth points can be described by BJ

orthogonality alone, see Lemma 2.6. We will also require a property similar to the property FL,
which was defined just prior Lemma 3.6. We say that a subset S ⊆ L⊥⊥

A has a relative property

FL with respect to pseudo-abelian summand, PFL for short, if

|{X⊥ ∩ L⊥⊥
A ; X ∈ LS}| < ∞.

Now, we consider the following procedure to extract quaternionic 1-by-1 blocks in L⊥⊥
A : Start

with an arbitrary finite set Ω ⊆ L⊥⊥
A , with property PFL, that consists of smooth points relative

to L⊥⊥
A and is of minimal possible cardinality (it exists by Lemma 3.5). By Lemma 2.1 we replace

every element S ∈ Ω by Ŝ ∈ L⊥⊥
A , which is left symmetric relative to L⊥⊥

A and satisfies S⊥∩L⊥⊥
A =

Ŝ⊥ ∩ L⊥⊥
A . This way we achieve that each element of Ω is left-symmetric relative to L⊥⊥

A and, as

such, belongs to a single block of L⊥⊥
A (see Lemma 2.2(ii)) It follows from the proof of equation

(3.10) in Lemma 3.5 that, due to its minimal cardinality, |Ω| = c+3h and no element in Ω belongs

to a real block of L⊥⊥
A , while each complex block of L⊥⊥

A has one and each quaternionic block of

L⊥⊥
A has three representatives in Ω.
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Thus, if |Ω| ≤ 2, then L⊥⊥
A is the abelian part (and A is abelian if and only if A = L⊥⊥

A ).

If |Ω| ≥ 3, let Ω′ be the collection of all 3-subsets (i.e., subsets of cardinality 3) of Ω. For each

{X1,X2,X3} ∈ Ω′ we select (if they exist) all non-zero X ∈ L⊥⊥
A , left-symmetric relative to L⊥⊥

A ,

such that the three sets

(5.11)
⋂

S∈Ω\{X1}
S⊥ ∩X⊥ ∩ L⊥⊥

A ,
⋂

S∈Ω\{X2}
S⊥ ∩X⊥ ∩ L⊥⊥

A ,
⋂

S∈Ω\{X3}
S⊥ ∩X⊥ ∩ L⊥⊥

A

have property PFL. By Lemma 3.4 every quaternionic 1-by-1 block contains such a representative

triple in Ω (e.g., if {X1,X2,X3} = (0 ⊕ {i, j, k} ⊕ 0) ⊆ 0⊕ H⊕ 0; we can take X = (0 ⊕ 1⊕ 0) ∈
0⊕H⊕0). Conversely if, for a triple {X1,X2,X3} ⊆ Ω, we can find such a left-symmetric X, then,

by Lemma 2.2(ii), X belongs to a single block of L⊥⊥
A . It is then easy to see that if {X1,X2,X3}

do not belong to the same block (necessarily quternionic), then, by the minimal cardinality of Ω,

at least one of the three sets in (5.11) will not have the property PFL, a contradiction.

One also sees that each X must belong to the same quaternionic block containing X1,X2,X3

and at least one, say X0, is not in their R-linear span. Then, X⊥
1 ∩X⊥

2 ∩X⊥
3 ∩X⊥

0 vanishes on this

quaternionic block. Therefore, the common outgoing neighborhood of all those triples, together

with all the adjourned vertices X, and intersected by L⊥⊥
A , is the abelian summand of A.

To summarize the complete extraction of abelian summand: Start with L⊥⊥
A . If dimL⊥⊥

A = 1

(c.f. (3.9)) or if dimL⊥⊥
A ≥ 2 and F = C (see Corollary 3.3), then L⊥⊥

A is the abelian summand.

Otherwise, apply the above procedure to get it.

Corollary 5.1. Let A be a finite-dimensional C∗-algebra over F. Then, the following are equivalent:

(i) A is abelian.

(ii) A = L⊥⊥
A and it contains no quaterninic blocks.

(iii) A = L⊥⊥
A and if A1, . . . , As ∈ A is any (hence every) minimal tuple with the property FL,

then it contains no triple for which a non-zero left symmetric X would exist so that (5.11)

would have property FL.
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University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia, and Institute of Mathematics,

Physics, and Mechanics, Jadranska 19, SI-1000 Ljubljana, Slovenia.

Email address: bojan.kuzma@upr.si

Department of Mathematics, Indian Institute of Science, Bengaluru 560012, India, and University
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