
A Mexican hat dance: clustering in Ricker-potential particle systems

D. Sabin-Miller∗
University of Michigan, Center for the Study of Complex Systems

D. Abrams
Northwestern University, Engineering Sciences and Applied Mathematics

(Dated: November 5, 2024)

The dynamics and spontaneous organization of coupled particles is a classic problem in modeling and applied
mathematics. Here we examine the behavior of particles coupled by the Ricker potential, exhibiting finite local
repulsion transitioning to distal attraction, leading to an energy-minimizing “preferred distance”. When com-
pressed by a background potential well of varying severity, these particles exhibit intricate self-organization into
“stacks" with varying sizes and positions. We examine bifurcations of these high-dimensional arrangements,
yielding tantalizing glimpses into a rich dynamical zoo of behavior.

I. INTRODUCTION

Systems of coupled particles are a classic problem in
physics and applied mathematics (e.g., [1–4] and many oth-
ers). Here we investigate particles interacting via short-
distance repulsion and long-distance attraction, often referred
to as a “Mexican hat” potential (see Fig. 1). This qualitative
scenario is seen in intermolecular forces and can be modeled
via, e.g., the Lennard-Jones and Morse potentials.

Here we explore the behavior as one-dimensional popu-
lations of such particles are “squeezed” together, similar in
concept to “particle in a box” considerations from quantum
physics (e.g., [5]).

Local repulsion and distal attraction may call to mind the
Lennard-Jones and Morse potentials from physics (see section
A 2). These models for intermolecular potential energy have
features rendering them distinct from our Ricker wavelet: infi-
nite repulsion in the case of Lennard-Jones, and a “sharp” non-
differentiable peak at the origin for Morse. However, these
models may not be applicable in situations where coexistence
at the same position is allowed, due to their nonphysical im-
plications at x = 0. However, we believe a “smoothing” of the
Morse potential’s central peak (such as by integration against
a “blurring” kernel function) would cause qualitatively similar
results to what we observe in our Ricker system, and it is pos-
sible other “soft-core” potential systems (e.g., [6–8]) could
find our results applicable. The smooth and coexistence-
friendly dynamic embodied by our Ricker wavelet may also
apply to neuronal phase models under proper conditions (e.g.,
[9–11]).

II. THE MODIFIED RICKER POTENTIAL

We use a modified form of the Ricker wavelet as the poten-
tial function carried or “worn” by each particle,

U(x) =
[

1− k
k−1

(x
s

)2
]

e−k( x
s )

2
, (1)
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FIG. 1: Ricker wavelet. Interaction potential U(x) for a
particle described by the Ricker wavelet potential (Eq. (1))

with parameters s = 1 and k = 2.

which is pictured in Fig. 1.
This function has the following properties:

1. Central peak at (0,1)

2. Symmetric troughs (i.e., local minima) at x =±s

3. Trough depth controlled by k ∈ [1,∞): as k → 1+,
trough depth →−∞, and as k → ∞, trough depth → 0−

Due to the central hump and symmetric troughs, this potential
provides short-range, finite repulsion coupled with long-range
attraction to a “preferred separation” s.

The potential at position x due to a particle at position xi is

U(x|xi) =

[
1− k

k−1

(
x− xi

s

)2
]

e−k
(

x−xi
s

)2

. (2)

We suppose that n particles, indexed 1 through n, have
one-dimensional positions xi and influence each other through
their modified Ricker potential via the first order dynamical
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FIG. 2: Three particles at equilibrium. Example of three
particles at an equilibrium. The vertical solid blue lines show
particle positions, the dotted blue curves show the particles’

potentials, and the dashed maroon parabola is the
background potential well. The solid black curve is the total

potential, and we can see the derivative is zero at each
particle’s position, indicating this arrangement is at

equilibrium. This arrangement is stable: since a particle does
not influences itself, each particle effectively “sees” the

global potential minus its own contribution, which makes
each particle’s position in this arrangement a “trough” from

its own point of view.

system

dxi

dt
=− dUtot

dx

∣∣∣∣
xi

=−

(
dU0(x)

dx
+

n

∑
j=1

dU(x|x j)

dx

)∣∣∣∣∣
xi

,

where confinement is imposed by the global potential function
U0, which we assume for simplicity to have a quadratic shape

U0(x) =
x2

w2

with width-control parameter w. Figure 2 shows an example
arrangement of particles in such a system.

We note for later reference the first and second derivatives
of our Ricker potential:

dU
dx

=− 2k2

(k−1)s2 x
(

1− x2

s2

)
e−

kx2

s2 , (3)

d2U
dx2 =− 2k2

(k−1)s2

[
1− 3+2k

s2 x2 +
2k
s4 x4

]
e−

kx2

s2 . (4)

In particular we note that due to the zero derivative of the
Ricker potential at the origin, there is no need to compli-
cate notation by explicitly excluding particles from influenc-
ing themselves; particles have no self-interaction regardless.

Without loss of generality, we henceforth restrict our anal-
ysis to the case s = 1, since an appropriate rescaling of space
and time (x̃ = x/s, w̃ = w/s, t̃ = t/s) removes that parameter

FIG. 3: Equilibrium diagram. Apparently stable
equilibrium positions for 512 particles confined in a

quadratic potential well. Color indicates particle abundance.
The horizontal w-axis tick marks are placed at approximate
bifurcation points, and persist on other diagrams of this type

for comparison’s sake. The horizontal scale is set by

w0 =
s
k

√
k−1

n , which is the critical w value where the
fully-stacked origin state becomes unstable (see section
IV B). See section V for additional simulation details.

from the governing equations. The parameter k does quali-
tatively affect system behavior (which we briefly explore in
Section (DSM: fix)S.2 of the Supplementary Materials (SM)),
though our analysis is primarily concerned with the confine-
ment parameter w. Unless otherwise noted, our numerical ex-
amples use the default parameter value k = 2.

A. Intriguing Collective Behavior

Free of confinement (i.e., with w→∞) and in the absence of
any degenerate initial positions, particles will settle into a state
of uniform spacing, with each particle residing at the preferred
distance s from its neighbors. However, when confined, they
exhibit highly nonuniform and rich behavior.

When confinement is present, we observe spontaneous or-
ganization of the particles depending on the choice of con-
finement parameter w (note that confinement is stronger as
w decreases toward zero). Particles form “stacks”—states
where multiple particles occupy the same spatial position—
since their repulsion weakens as they get nearer to each other,
but the number of particles in each stack can vary, and indeed
the stacks exchange particles as w changes. We demonstrate
this spontaneous organization in Fig. 3, which shows the re-
sults of numerical investigation of the system’s stable equilib-
ria.

Note that there is some slight asymmetry in Fig. 3 due to
high dimensional multistability with various stack sizes; if
we enforce symmetry, we see a picture of “core” behavior as
shown in Fig. 4.
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FIG. 4: Equilibrium diagram, n = 512, symmetry enforced. Left:A symmetry-enforced version of Fig. 3. Besides being
“cleaner,” however, we also notice the apparent bifurcation points change slightly due to the minimum of two particles in a

stack. Right: A 3D view of the data in the left panel, with stack-size information encoded in the vertical axis as well as color.
This emphasizes the continuous shift in population fractionation and the structure of the major bifurcations.

FIG. 5: Symmetry-enforced system, n convergence. Equilibrium diagrams for increasing population sizes n. The diagrams
appear to converge in a visual sense to the same few “major” bifurcations, which occur at nearly the same multiples of the

critical parameter value w0 (given in Eq. (12)). This motivates us to understand and characterize this large-n generic behavior.

Also, note that these figures actually display 2-dimensional
projections of an n-dimensional bifurcation diagram, with
each particle’s position occupying one dimension. However,
the interchangeability symmetry of the particles allows the
display of the whole population to serve as analogue for any
single particle’s possible positions.

The stack-size information (encoded by color) can be fur-

ther emphasized with a third dimension, as shown in the right
panel of Fig. 4.

Thus we see even more clearly the pattern of stable be-
havior. For very small w (strong confinement, i.e., a narrow
parabolic well) all the particles stack up at the origin, but the
population splits apart into two symmetric stacks[12] when w
passes a critical threshold we label w0—we derive a formula
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for this value (Eq. (12)) in the “Large n analysis” section. As
w continues to grow, the stacks drift apart and the origin be-
comes stable again, and we see particles “fall” inwards to set-
tle there. Initially only a few particles stably rest there, but
as the stacks continue to separate the central stack grows, un-
til it becomes large enough to split into two in a manner that
appears similar to its initial bifurcation at w = w0.

There are many other, more complex equilibria possible,
but for large n the equilibrium diagram appears to become in-
creasingly well characterized by the aforementioned behavior,
as shown in Fig. 5. All the “major” bifurcations (birth of cen-
tral stacks, splitting of central stacks) appear to happen at the
same multiples of the critical parameter value w0, thus with
proper scaling of the w axis (to match w0) the diagrams ap-
pear increasingly similar to one another.

We will start our exploration with smaller, more tractable
examples and then progress from there to the more general,
large-n cases.

III. SMALL-n PARTICULAR CASE ANALYSIS

A. Two-particle case

We can solve for the equilibrium condition on the right par-
ticle by assuming the particles are at ±x∗ (plugging in 2x∗ as
the distance in equation (3) and adding the background poten-
tial at position x∗):

dUtot

dx

∣∣∣∣
x=x∗

=
2x∗

w2 − 4k2x∗

(k−1)s2

(
1−4

x∗2

s2

)
e−

4kx∗2

s2 .

At equilibrium this slope is zero, thus x∗ = 0 (corresponding
to both particles stacked at the origin) or

0 =
1

w2 e
4kx∗2

s2 − 2k2

(k−1)s2

(
1−4

x∗2

s2

)
(5)

So the bifurcation diagram (in w,k, or s) is given by the
implicit equation (5). This corresponds to the exact solution

x∗(w) =
1
2

√
1− 1

k
W
(
(k−1)ek

2kw2

)
(6)

x∗(w) =
s
2

√
1− 1

k
W
(

1
2

k−1
k

s2

w2 ek

)
(7)

where W is the Lambert W function, defined as the solution to

W (z)eW (z) = z .

Fig. 6 shows this solution overlaid on the empirical equilib-
rium diagram for two particles.

An approximation for |x| ≪ 0 yields

x∗(w)≈ s√
2w0,2(k+1)

√
w−w0,2 , (8)

FIG. 6: Two-particle bifurcation diagram, with exact
solutions. Equilibria for the two-particle system, with exact

analytical solutions x∗ = 0 (dashed when unstable) and
Eq. (5) overlaid in black. The critical parameter value w0

(= 1√
8

in this case) is marked as well.

where we have defined w0,2 = s
k

√
k−1

2 as the lowest critical
value of w with n = 2. We derive the general-n version (which
we simply refer to as w0 going forward) in the “Large-n anal-
ysis” section (Eq. (12)).

B. Three- and four-particle cases

Three- and four-particle systems have unique stable equi-
libria for all w, which are shown in Fig. 7; unfortunately these
resist such easy exact-solution form as the n = 2 case. Other
equilibria exist for these systems (such as 1− 2 states[13] in
the n = 3 case, 1− 2− 1 and 1− 3 states in n = 4, and the
fully-stacked origin state at w > w0), but none of them are sta-
ble. In Fig. 8 we show all such equilibrium positions using the
MatCont analytical-continuation software package for Matlab
(MatCont v7.3, see [? ]) to track those unstable artificially-
partitioned states as well as the stable state we actually see in
regular numerical simulations.

FIG. 7: Three- and four-particle bifurcation diagrams.
Equilibria for 3-particle (left) and 4-particle (right) systems.
For these small n, these are the only stable states. Note that
we have shifted to using multiples of w0 on the w axis, for

comparison with higher n cases.
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The nonzero stable branches for n = 3 (and k = 2,s = 1) are
solutions to the implicit equation

e8x∗2
+(4x∗2 −4)w2e6x∗2

+(32x∗2 −8)w2 = 0 ,

which is the result of assuming symmetry (one particle at 0
and the other two at x∗) and solving for nonzero x∗ solutions
to the equilibrium condition on the particle at x∗. For large
w ≫ w0 this relationship converges to w2 = e2x2

(4− 4x2)−1

(or explicitly in x: x2 = 1 − 1
2W ( 1

2 e2/w2)); for w near w0

(w0 =
√

3/6) the relation is well approximated by x2 ≈ 1/9−
1/108 w−2 instead.

In the 4-particle case, (n = 4,k = 2,s = 1) we can find the
implicit equation for the 2−2 (i.e. two stacks of two particles
each) state, namely

w2 =
e8x∗2

16(1−4x∗2)
,

which is stable from w = w0 (= 1/4 in this case) to w ≈ 2.1w0
as seen in Fig. 7. More exactly, the 2− 2 state splits into the
1−1−1−1 state when w = wc, where

w2
c =

1+20x∗2 −64x∗4

16(1−4x∗2)
,

and where x∗ satisfies the implicit equation

1+20x∗2 −64x∗4 = e8x∗2
.

The 1−2−1 state, while never stable, is also tractable, with
outer stack positions given by the relation

8w2 =
e8x2

1−4x2 +(1− x2)e6x2 .

Other particular states may also have similar implicit equi-
librium expressions, but their multitude makes this endeavor
an impractical strategy for understanding the system for gen-
eral n.

C. Five-particle system: birth of multistability

With five particles, we see the first case where there is mul-
tistability, by two different mechanisms. First of all, unlike
n = 3 the origin cannot stably hold a particle as we cross w0,
and the population splits into a 3− 2 state, which is neces-
sarily asymmetric in position. Then the indifference between
which stack has 3 particles leads to bistability between two
visibly different states, though they might be considered the
same state up to reflection of the domain. Second, the point
that the system drops to a 2−1−2 state (on an increasing-w
pass) is different from the point that it jumps back to the 3−2
state (on a decreasing-w pass). We can see this in the differ-
ence between upper-left and upper-right panels in Fig. 9. This
is because there is a region of bistability between 3− 2 and
2−1−2 configurations—the loss of stability of 3−2 happens
at a higher w value than the gain of stability of 2−1−2. This
hysteresis with respect to increasing and decreasing parame-
ter w is explored more generally in the “Medium-n analysis”
section below.

FIG. 8: n = 3 bifurcation diagram, all equilibria. The
equilibrium diagram similar to the left panel of Fig. 7, but

made with analytical-continuation software (MatCont v7.3)[?
], showing unstable equilibria (in red) as well as stable ones
(in blue). We note that since this is a 2D projection of a 4D

bifurcation diagram (all three state variables are
superimposed on the same vertical axis), stable and unstable
branches appear to “cross” without exchanging stability but
in fact belong to entirely different branches in state space.
For example, the stable curved branches correspond to the
outer particles of the 1−1−1 state, while the red branches
which cross them are for the single particle in the unstable

2−1 state (meanwhile the inner branches correspond to the
location of the 2-stack in that state). Similarly, the origin

beyond w0 is a stable position if the system is in the 1−1−1
state but an unstable position for the fully-stacked state, so it

is both blue and red-dotted in this figure.

D. Medium-n analysis

To get a sense of how the transition to the large-n behavior
happens, we will look at a medium-scale n, in particular n =
32.

Figure 10 shows part of the bifurcation diagram for 32 parti-
cles, which shows hints of the dynamical process by which the
particles transfer between stacks. At this resolution, we can
see three “connecting” branches in the top right (decreasing-
w) figure where single particle pairs transfer from the central
stack to the outer ones.

Just as with the n = 3 and n = 4 diagrams, there are many
more equilibria than we see in Fig. 10. First of all, we only
see stable equilibria due to our method of forward-time nu-
merical integration with minutely perturbed initial conditions,
so we do not see the huge number of unstable equilibria. Sec-
ond, we have enforced symmetry in this simulation, so we
are missing the slightly asymmetric stable states that can (and
generally do) result when particles are individually free; the
enforcement of symmetry is nevertheless justified as we seek
a generic central pattern around which many co-stable pertur-
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FIG. 9: Increasing- and decreasing-w equilibrium
diagrams, n = 5 particles. Zoomed equilibrium diagrams

for five particles. Top Left: increasing-w pass; note the
asymmetric 3−2 state arms are slightly longer. Top Right:
decreasing-w pass, with shorter 3−2 arms. The overlapping

region exhibits bistability of 3−2 and 2−1−2 states.
Bottom: Overlay with increasing-w in black and

decreasing-w in orange, emphasizing the area of bistability
around w = 0.3. Previous w0 multiple reference points persist

as vertical lines, but decimal values are provided for finer
reference.

bations exist. But even in the symmetric case, there is co-
stability of states, which is demonstrated by the discrepancy
between increasing- and decreasing-w passes. Exploring these
discrepancies will provide intuition about how the system be-
haves at higher n.

1. Repeated Hysteresis

The bottom panel of 10 emphasizes the differences between
the increasing- and decreasing-w passes, with increasing-w
pass in black and decreasing-w in orange. Two of those
“branches” are isolated in Fig. 11.

To understand the hysteresis in Fig. 11, we start at the left
side of the left-two figures, at w = 0.2. The top-left fig-
ure, a scatter plot of the full population, hides the stack-size
information, but this is a 12 − 8 − 12 arrangement in both
black (increasing-w) and orange (decreasing-w) passes. The
bottom-left figure shows us why; the “free” pair of particles
may only stably exist at the outer stack positions for this pa-
rameter value (the central position is red, indicating instabil-
ity).

As the parameter value increases, this arrangement stays
stable until slightly under w = 0.21, when we see this branch
undergoes a transcritical bifurcation. Theoretically, the pair
could drift outward beyond the outer stack at this point, as the

FIG. 10: Equilibrium Diagrams, n = 32, zoomed.
Bifurcation diagram for 32 particles, zoomed for higher
resolution, displaying particle transfer branches and the

system’s multistability. Top Left: Increasing w pass, where
particles “fall” to the center only when the outer stacks lose

stability at their previous capacity. Top Right: Decreasing w,
with particles transferring in three visible branches when the
central stack becomes “overstuffed” and sheds particles to

the outer stacks. Bottom: Both passes overlaid to emphasize
differences, with forward pass in black and backward pass in

orange.

lower-left figure indicates, but that diagram assumes the other
stacks stay perfectly stacked, while in reality we perturb all
particles with noise, and that state isn’t robust to that broken
symmetry. So what we actually see is that one pair falls to
the origin and the rest remain together, corresponding to the
x∗ = 0 stable state in the bottom-left figure, and the overall
population state 11−10−11.

However, as we decrease w again, the system stays at this
11−10−11 state until the branch point near w = .205, where
the free pair’s position follows stable branches away from the
origin (in a 11−1−8−1−11 state) until those branches go
vertical in an apparent saddle-node bifurcation, at which point
the pair jump suddenly to join the outer stacks again. Dur-
ing this bistable region, the position of the outer stacks differs
slightly, which is reflected in the disalignment of outer stacks
in the top-left figure.

A similar process occurs at slightly higher parameter value,
reflected by the right two figures. In this case, the popula-
tion is transitioning between 11− 10− 11 and 10− 12− 10
states. The only qualitative difference this time is the trans-
critical loss of stability at the outer position occurs before the
central pitchfork bifurcation, so the outer pair is dropped to
that branch of the pitchfork in a 10− 1− 10− 1− 10 state
on the forward pass rather than all the way to the center. On
the backwards pass, of course, that 10−1−10−1−10 state
persists longer before losing stability and the transferring par-
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12−8−12

11−1−8−1−11

11−10−11

12−8−12

1−11−8−11−1 .5j 11−10−11

10−1−10−1−10

10−12−10

11−10−11

1−10−10−10−1 .5j

FIG. 11: Particle-transfer branches. Zoom views of central
and right “transfer arms” from Fig. 10. Top: Overlaid scatter
plots of the full-population equilibria, for forward (black) and

backward (orange) passes. Bottom: Stability of states
evaluated using MatCont analytical-continuation software,

tracking locations where the transferring “free” particle pair
can be—with stable positions are shown in blue, and unstable
in red. The free pair may align with the other stacks (seen as
effectively-horizontal lines, like the state labeled 12−8−12;

these persist through bifurcations but switch stability), or
may reside in-between or outside them (e.g., the

11−1−8−1−11 state which becomes 1−11−8−11−1
in the bottom-left figure). The left figures explore the

empirically observed transition from a 12−8−12 state on
the low w side to 11−10−11 for higher w, and the right

figures explore the transition from 11−10−11 (lower w) to
10−12−10 (higher w). For these parameters, w0 = 0.0884.

ticles rejoin the outer stacks.
In this way, we see how bistability occurs between dis-

tinct population fractionations. As we can see in Fig. 10, the
fractionation changes more rapidly when the central stack is
small, which we may now understand causes these branches to
overlap, yielding multi-stability between more than two frac-
tionation states. Furthermore, as Fig. 5 displays, these tran-
sitionary states become narrower (in w) as n increases, such
that we no longer easily see them at finite resolution. In the
infinite-n limit, there is a continuous family of these bifurca-
tions (and corresponding family of transition curves) as the
central fractionation changes smoothly rather than in these
discrete jumps, and smooth bands of stable fractionation (and
corresponding stack positions) accordingly.

E. Large-n analysis

As Fig. 5 suggests, the overall system behavior appears to
converge for large numbers of particles, under the appropriate
scaling of the w axis. This makes discussion of the large-
n limit meaningful—indeed it appears that the rapid “transi-

FIG. 12: Equilibrium diagrams, large-n forward and
backward passes. Equilibrium diagrams for 1024 particles,
with symmetry enforced. Some differences between forward

and backward passes indicate the persistence of stability
bands: we see different stable fractions of the population at

the origin, and correspondingly different bifurcation points of
the origin stack.

tionary” bifurcations from the previous section become effec-
tively invisible, while the “major” central stack-birth/stack-
splitting bifurcations remain. There is still fractionation indif-
ference (i.e. bands of possible stable population percentages in
each stack), and the location of these major bifurcations can
still vary meaningfully between forward and backward param-
eter continuation, as Fig. 12 shows.

We can check the stability of particular configurations like
we did in Fig. 8 for 3 particles, again using MatCont—for
example, testing the stable and unstable equilibrium positions
of a 129th “test” particle given 128 particles in two stacks of
64—this is shown in Fig. 13.

In Fig. 13 we see that the test particle can align with ei-
ther of the large stacks (desymmetrizing their locations im-
perceptibly). But we also see that the birth of stability at the
origin is in fact due to a second pitchfork bifurcation with
very short-lived asymmetric unstable branches which cross
the outer stack positions and become stable, roughly corre-
sponding to sitting in the trough outside the two large stacks
(and in fact approaching that well location, ±3s/2, as w→∞).

IV. ANALYSIS

A. General Equilibrium Statement

For particle j to be at equilibrium:

dx j

dt
=−dU

dx

∣∣∣∣
x j

= 0,

0 =−
2x j

w2 +
n

∑
i=1

2k2(x j − xi)

(k−1)s2

(
1−

(x j − xi)
2

s2

)
e−k

(x j−xi)
2

s2 .

(9)

If the right hand side (RHS) is positive, particle j will move
right, and if negative, left. If it is zero for all particles, the
system is at equilibrium. There are many particular states,
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FIG. 13: Stable and unstable equilibrium positions for a
129th particle. Analytical-continuation software Matcont

yields the stable (blue) and unstable (red) equilibrium
positions for a 129th particle in a system with two

perfectly-aligned stacks of 64 particles (which reside at the
narrower U-shape, technically but imperceptibly influenced
by the position of this 129th particle). We see that the “test

particle” can stably align with those two stacks from w = w0
up to slightly above w = 2w0, the latter point occurring right
after the birth of stability at the origin. At that point, it must
either fall to the center or flee to the outside trough position.

In this context, we see stability at the center is born as a
pitchfork bifurcation, and we may observe the small region
of bistability shared between 64−65 and 64−1−64 states

(which includes 2w0). For n = 129, w0 = 0.0442.

such as all the particles at the origin (0,0, . . . ,0), two sym-
metric stacks (x∗,x∗, . . . ,x∗,−x∗,−x∗, . . . ,−x∗), etc., which
may satisfy this equilibrium condition for various parameter
values.

B. Stability

We can analytically examine the stability of the fully-
stacked state at the origin, recovering the critical bifurcation
value w0 below which that state is stable—and in fact appears
to be the only equilibrium.

The elements of the jth row of the Jacobian matrix J for the

system (9) are

J j j =− 2
w2 +

2k2

(k−1)s2 ·

n

∑
i=1

[
1− 3+2k

s2 (x j − xi)
2 +

2k
s4 (x j − xi)

4
]

e−
k(x j−xi)

2

s2

J ji =− 2k2

(k−1)s2 ·[
1− 3+2k

s2 (x j − xi)
2 +

2k
s4 (x j − xi)

4
]

e−
k(x j−xi)

2

s2

,

(10)
which, at the origin xi = x j = 0 (corresponding to the fully-
stacked state), become

J j j|O =− 2
w2 +(n−1)

2k2

(k−1)s2 ,

J ji|O =− 2k2

(k−1)s2 .

Due to the symmetry, we can identify all the eigenvectors:

1. The eigenvector v1 = (1,1, . . . ,1) corresponding to the
full stack drifting left or right from the origin has eigen-
value λ1 =−2/w2, which is always negative, indicating
that the 1-stack system is stable to these types of per-
turbations (unsurprising based on intuition for a single
particle).

2. The other n−1 eigenvectors consist solely of symmet-
ric two-particle divergence; i.e., vectors of the form
(−1,1,0,0, . . . ,0) with the positive 1 in each of the
other n−1 positions. These vectors all have eigenvalue
λ =−2/w2 +2nk2/(k−1)s2. The 1-stack state is thus
stable to these types of perturbations for

w
s
<

1
k

√
k−1

n
. (11)

Solving for w, this gives us the critical parameter value
w0 for general n:

w0 =
s
k

√
k−1

n
. (12)

We note that this agrees with the n = 2 particular case,
given above after Eq. (8). This also suggests the appro-
priate way to rescale the w axis as n varies (as we have
for all figures), since the structure appears to depend
only on the ratio w/w0 (at least asymptotically for large
n).

C. Two-stack state

The simplest nontrivial arbitrary-n case, the two-stack
state—where the population is split into two symmetric stacks
of n/2 particles each—is quite relevant to examine since it is
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the dominant behavior for approximately w0 < w < 2w0. It
is exactly solvable via a simple tweak of the logic which led
us to Eq. (5), with the influence from the other “particle” be-
ing multiplied by n/2 while the background contribution is
unchanged:

dUtot

dx

∣∣∣∣
x∗
= 0 =

2x∗

w2 −
(n

2

) 4k2x∗

(k−1)s2

(
1−4

x∗2

s2

)
e−

4kx∗2

s2

=⇒ x∗ = 0 or

w2 =
s2(k−1)

nk2
1

1−4 x∗2

s2

e
4kx∗2

s2

w2 = w2
0

e
4kx∗2

s2

1−4 x∗2

s2

(13)

The solution can be written explicitly in terms of the Lam-
bert W function (as done above for the special case n = 2),
now using w0 to further simplify:

x∗(w) =
s
2

√
1− 1

k
W
(

kek w2
0

w2

)
(14)

For |x| ≪ 1, this is approximately

x∗ ≈ s√
2w0(k+1)

√
w−w0 .

exactly as we saw before (all scaling is accounted for by w0).

D. Return of stability at the origin

We seek an understanding of the second “major” bifurca-
tion: the birth of the three-stack state near w = 2w0, with a
small central stack between the two large symmetric stacks.
We can easily check the curvature of the potential landscape
at the origin between two equal stacks, using this as a test to
identify when a particle would stably rest there. We note that
this spot sees an identical contribution from all particles at
±x∗:

d2Utot

dx2

∣∣∣∣
x=0

=
2

w2 +n
[
− 2k2

(k−1)s2 ·(
1− 2k+3

s2 x∗2 +
2k
s4 x∗4

)
e−

kx∗2

s2

]
=

2
w2 − 2

w2
0

(
1− 2k+3

s2 x∗2 +
2k
s4 x∗4

)
e−

kx∗2

s2 ; ,

so the birth of stability happens when this curvature crosses 0,
at

w2
c = w2

0
e

kx∗2

s2

1− 2k+3
s2 x∗2 + 2k

s4 x∗4
. (15)

When we combine this condition with the two-stack equilib-
rium relation for w2, Eq. (13), we get

w2
0

e
kx∗2

c
s2

1− 2k+3
s2 x∗2

c + 2k
s4 x∗4

c
= w2

0
e

4kx∗2
c

s2

1−4 x∗2
c
s2

,

1−4
x∗2

c

s2 =

(
1− 2k+3

s2 x∗2
c +

2k
s4 x∗4

c

)
e

3kx∗2
c

s2 ,

(16)

which defies closed-form solution but which we may numeri-
cally approximate for our default parameters k = 2 and s = 1,
yielding x∗c ≈ 0.324. We can see that this agrees empirically
with the stack width coincident with the birth of stability in
our large-n figures like Figs. 4 and 12.

This approximation for x∗ in turn allows us to approximate
wc, by using either relation again. Using Eq. (13) with k =
2,s = 1, we have

w2
c = w2

0
e8x∗2

c

1−4x∗2
c

,

x∗c ≈ 0.324176 . . .
=⇒ wc ≈ 1.99978w0 .

This is suspiciously close to 2w0, but these approximations
were done using 16-digit precision, so it appears to indeed be
distinct. We note that this value depends on k (though s may
be scaled out as always); for example, for k = 100 we have
wc,100 ≈ 1.791w0.

After the central stack’s creation, the exchange of parti-
cles between central and outer stacks is complicated, since
the fraction of the population at the origin influences the po-
sition of the outer stacks, which in turn influences the stable
fraction at the origin. We observe empirically that the outer
stacks drift apart in a roughly linear manner, which may be
helpful, though we leave this exploration for future work.

We note that the increasing-w sweep only sees particles at
the center when they are kicked out of the outer stacks to pop-
ulate it. On the decreasing-w pass, however, the center hosts
a larger stable population at each w value reached, since con-
tinuation from the right causes the accumulation of all nearby
particles at the center, where they stay until they are ejected
to the outer stacks. It is perhaps counterintuitive that these
particles “climb” the global potential as it narrows, but it is
nevertheless true; the narrowing background potential pushes
the outer stacks inward enough that the center becomes less
stable, at which point it is “overstuffed” and repels some of its
former constituents to join the other stacks.

The decreasing pass thus acts as a lower bound for the max-
imal stable fraction at the center, and the increasing pass acts
as an upper bound on the minimal stable fractionation. We ex-
pect a continuous band of stable fractionations between those
values, as indicated by Fig. 14. We leave further exploration
of the bands of stability in the n → ∞ limit for future work.
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FIG. 14: Origin fractionation bands, n = 1024. Fraction of
population at origin for forward and backward passes with

small noise. These curves demonstrate the existence of bands
of stability, and are an approximation of those bands. The

true bands may be slightly wider, but the fractionations
between these curves are stable for corresponding w values.

E. k dependence

The parameter k distorts the equilibrium diagram; in par-
ticular, Fig. 15 shows what happens when k grows. We see
that large k coincides with a narrower population (smaller
range on vertical axis); this is perhaps unintuitive since large
k makes the Ricker wavelet’s trough shallower, which intu-
itively means “less stability” overall, and perhaps the domi-
nance of repulsion. However, that would imply a wider pop-
ulation, while in reality we see a narrower one. We might
instead take away the competing explanation that the Ricker
wavelets’ weaker attraction to their preferred distance means
the particles don’t “buoy” their partners away from the origin
as strongly, which leads to more dominance of the background
potential-well containment overall.

Asymptotic analysis of Eqs.15 and 16 with large k yields

xc ∼
α√

k
, where

(1−2α)e3α = 1

=⇒ α =
1
3

W
(
−3

2
e−3/2

)
+

1
2

≈ 0.2914, and

wc → w0e2α ≈ 1.791w0.

which seems compatible with the large-k diagrams shown in

Fig. 15.

V. METHODS/SIMULATION DETAILS

Particles were started with random Gaussian positions with
standard deviation 0.1 on the small-w end. The positions were
updated using ODE45 numerical integration for an initial du-
ration of T = 20n−1/2 time units (chosen empirically to ap-
proximate equilibration-time scaling with n). Runs at each
w value exponentially scaled integration time until all parti-
cles had moved less than 0.001 units, or a run ended with
T > 5000n−1/2 (which occured after 8 doublings, for a max-
imum total run-time of 10,220n−1/2 time units for any single
w value). This was necessary since equilibration time grows
dramatically near bifurcation points.

After each integration converged or hit the time limit at one
w value, final positions were recorded and a small random
perturbation of each particle’s position (Gaussian with stan-
dard deviation 0.001) was applied to that ending state before
the parameter value w was updated and the next simulation
commenced—this ensured we only recorded stable equilibria.
This process proceeded from w = 0.925w0 to 5w0 before de-
scending along those same values; the black arrows in each
diagram indicates the direction of this continuation.

VI. DISCUSSION/CONCLUSION

We have examined a system of particles with first-order
coupling through Ricker wavelet potential functions, and
found remarkably rich self-organizing behavior. Intuitive
small-n cases transition to archetypal large-n limiting behav-
ior, with non-origin bifurcations becoming compacted into in-
visibility while other, “major” bifurcations (those regarding
stability of the origin) persist and stabilize for large n. Multi-
stability abounds, and persists for large n; overlapping hys-
teresis in the position of individual particles becomes stability
bands for fractions of the population.

There is plenty more to be explored with these particles.
We have not systematically examined dependence on the pa-
rameter k, which controls trough depth, though we showcase
some promising initial findings in section IV E in the appendix
below. Also of interest is the oscillator interpretation, with
these particles living on a finite periodic domain, for which
we likewise present some intriguing initial findings in the ap-
pendix. Behavior with other types of confinement, such as a
finite “hard-walled” box, is also an open question. Some of
these model variants may lend themselves to real-world appli-
cations such as those mentioned in the introduction.

We hope this work provides a solid foundation for the ex-
ploration of this system and its variants, which offer tanta-
lizing glimpses of order governing a wild dynamical zoo of
possible behavior.
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Appendix A: Extra Findings

1. Fresh random starts

Without continuation—i.e., when the simulation at each
w value proceeds from an entirely random starting state
rather than a slightly-perturbed version of the previous
equilibrium—we see a “fuzzier” but ultimately similar pic-
ture; see Fig. 16. This does yield some information about
the system’s tolerance for asymmetry; the two-stack state for
n = 128 can be as lopsided as 68 − 60 in this run and still
appear stable. More lopsided stable two-stack states may be
possible with biased initial conditions, however.

2. Lennard-Jones and Morse potentials

As mentioned in Section I, the Lennard-Jones and Morse
potentials from physics are models of intermolecular potential
energy with short-range repulsion and long-range attraction.
These potentials may be described in the following forms:

ULJ(x) = 4ε

[( x
σ

)−12
−
( x

σ

)−6
]
,

UM(x) = De

[
e−2a(|x|−re)−2e−a(|x|−re)

]
.

Fig. 17 shows examples of these potential functions, with
as much matching to our default Ricker potential as possible.
In particular, this should highlight the limits of their qualita-
tive comparability, and why alteration to a “soft-core” poten-
tial amenable to “stacking”/coexistence would be necessary to
expect results similar to those presented in this work.

https://doi.org/10.1103/PhysRevC.40.2226
https://doi.org/10.1103/PhysRevLett.93.257803
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FIG. 16: Equilibrium diagram without continuation.
Equilibrium states with a fresh Gaussian random start every
time (and symmetry not enforced). Stack size here gives a
lower bound for tolerance of asymmetric fractionation; the
greatest asymmetry in the two-stack state observed here is

68−60.

FIG. 17: Other Classic Potentials. Examples of the
Lennard-Jones (left) and Morse (right) potentials from

physics. Parameters have been chosen to match the trough
coordinates of our default-parameter Ricker

potential—(±1,e−2)—and the peak of (0,1) for the Morse
potential. Still, we note significant qualitative discrepancies,
namely the infinite central spike for Lennard-Jones and the
“sharp” origin peak for Morse. These qualities preclude the

stability (or even well-defined behavior) of stacking behavior,
and thus the particular richness of behavior we find in our
Ricker system, but alterations to smoothen behavior at the

origin may lead to reconciliation.

3. Ricker Oscillators

A model variant of considerable interest for these Ricker-
potential-coupled particles is their implementation as coupled
oscillators. In this case, their position would represent phase
on a periodic domain, like (−π,π]. A slight tweak to the
Ricker potential would need to be defined to make it periodic;
distance between particles in this space might be taken to be
the shortest distance around the circle, or the infinite sum of
possible distance interpretations at all ±2πm multiples, or the
potential itself might be made periodic in some other way.
In any case, the parameter s (controlling the location of the
troughs, which acts as a “preferred distance”) is no longer re-
movable by scaling in this paradigm; its ratio with the domain
is a qualitatively important value.

Using the simpler, shortest-distance interpretation, we per-
formed simulations and demonstrate the results in Fig. 18. We
found that for small n, the particles did settle uniformly at in-
tervals of s. Sometimes the system took a long time to find
this state, as it evolves more slowly when evenly spaced—
even when the population is more compact than necessary.

However, at large n (such that n times the preferred distance
was much larger than 2π), the system appeared to exhibit
“frozen disorder,” or a “glassy” state where particles neither
clump nor uniformly distribute (see Fig. 19). The best lens for
understanding this process appears to be the cumulative po-
tential; as the population evolves, it appears to self-organize
almost instantly into a single low frequency wave (created by
many individual Ricker potentials) which then damps quickly
to reveal middle frequencies at smaller amplitude. As the
magnitude of this cumulative potential wave shrinks beneath
the scale of a single wavelet, the inherent higher frequen-
cies of individual particles emerge again (see Fig. 19, bottom
right).

This apparent phenomenon of self-organization in service
of the cumulative potential’s frequency-damping is only a nu-
merical observation thus far, and merits future analytical ex-
ploration. It is unclear if this disordered state is truly stable
or merely quasi-stable, and how the parameter-space transi-
tion from even-spacing to disordered “equilibrium” occurs as
the domain becomes overpopulated relative to the preferred
distance. We believe this is a ripe area for future exploration.
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FIG. 18: Oscillator interpretation, slow convergence. Ten Ricker oscillators with preferred distance 2π/10. The left figure
shows the system at time t = 5, central figure at t = 25, and right figure at t = 30; the population swiftly self-arranges to

become near-evenly but too-compactly arranged, then slowly separates, until suddenly “snapping” to perfectly even spacing.
Black dots around circle indicate preferred distance; we see the particles eventually space themselves at the same intervals.

Color indicates particle index, to distinguish and keep track of them over time.
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FIG. 19: Ricker oscillator system. Two hundred Ricker oscillators with preferred distance 2π/6. Top left: Random starting
state, and its resulting cumulative potential. Top right: At T = 0.1, the particles have very quickly arranged themselves into a

single low-frequency cumulative-potential wave. Bottom left: At T = 0.6, the low-frequency wave has damped, leaving a
mid-frequency wave (with period 2π/8, higher frequency than the Ricker wavelet’s preferred distance) of much lower

amplitude (two orders of magnitude smaller), with only minute positional adjustments. Bottom right: At T = 20, the global
potential has damped another order of magnitude, to 1×10−4, leaving only the high-frequency spikes of individual Ricker
wavelets (which have a “sharp” nondifferentiable corner as they wrap around ±π). This “glassy” and distinctly nonuniform

state appears to be stable, though it might only be extremely slow to evolve.
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