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PRODUCTS OF TWO ORTHOGONAL PROJECTIONS

JAYDEEP BHATTACHARJEE AND JAYDEB SARKAR

Abstract. We study operators that are products of two orthogonal projections. Our results
complement some of the classical results of Crimmins and von Neumann. Particular emphasis
has been given to projections associated with inner functions defined on the polydisc.
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1. Introduction

Elements from an algebra that are finite products of special elements from the same algebra
are of general significance. One of the more specific cases would be the ring of all square
matrices or the ring of all bounded linear operators acting on a Hilbert space H, which we
denote by B(H). The present investigation focuses on operators that are products of pairs of
projections on Hilbert spaces. Here, all projections are orthogonal projections, and all Hilbert
spaces are separable and over C. Technically, an operator P ∈ B(H) is a projection if

P = P ∗ = P 2.

And, our aim is to study operators T ∈ B(H) such that

T = P1P2,

for some projections P1 and P2 in B(H). Operators that admit the above factorizations have
been examined in multiple contexts. Aronszajn, Browder, Dixnier, Kakutani, and Weiner are
among the many more eminent names who have contributed to illuminate this subject (see
[13, 22] for a thorough historical description). Two additional notable contributions relevant
to our work are von Neumann’s formula for iterated products of projections and Crimmins’
analysis of products of two projections. Let us first revisit two characterizations from the list
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2 BHATTACHARJEE AND SARKAR

provided by Crimmins [5, 22] : An operator T ∈ B(H) is the product of two projections if
and only if

T 2 = TT ∗T,

if and only if

T = PranTPranT ∗ .

Given a closed subspace S of a Hilbert space H, we denote the orthogonal projection of H
onto S by PS . The preceding factorization of T is referred to as the canonical factorization

and will be crucial in the subsequent discussion. We present somewhat independent proofs of
the above equivalence properties. Additionally, we offer the following new characterization:
T ∈ B(H) is a product of two projections if and only if

TT ∗ = TPranT ∗ .

Before turning to von Neumann’s perspective, we pause for Nagy-Foias and Langer’s view-
point on contractive operators acting on Hilbert spaces. This is relevant because, if T ∈ B(H)
is a product of two projections, then T is necessarily a contraction (that is, ‖Th‖ ≤ ‖h‖ for
all h ∈ H). Consequently, the theory of contractions [17]— an influential and impactful
theory—applies to operators that are products of two projections. This paper presents some
new perspectives on the structure of contractions that are products of two projections. Given
a contraction T ∈ B(H), the celebrated canonical decompositions of T is the orthogonal
decomposition of closed subspaces

H = Hu ⊕Hcnu,

where Hu and Hcnu reduce T , and T |Hu
is unitary and T |Hcnu

is cnu (that is, T |Hcnu
on Hcnu

does not have unitary summand). Moreover, the unitary summand Hu is given by

Hu = {h ∈ H : ‖Tmh‖ = ‖T ∗mh‖ = ‖h‖, m ∈ N}.

This decomposition is due to Nagy-Foias and Langer [10, 18]. The spaces Hu and Hcnu are
designated as the unitary part and the cnu part of T , respectively.

Now we assume that T = P1P2 for some projections P1 and P2 in B(H). Theorems 3.1 and
3.2 give a concrete description of the canonical decomposition of such operators: The unitary
and cnu parts of T are given by

Hu = ker(I − P1P2) = ranP1 ∩ ranP2,

and

Hcnu = ker T
∨

ker T ∗,

respectively, where
∨

denotes the span closure of subspaces. The above results also comple-
ment the classical von Neumann’s alternating orthogonal projection formula. In fact, if P1

and P2 are projections, then the von Neumann’s alternating orthogonal projection formula
tells us that

SOT- lim
m→∞

Tm = PranP1∩ranP2
.

From this perspective and in view of our results outlined above, we further assert that (see
Theorem 4.1 for more details)

SOT- lim
m→∞

Tm = PHu
,
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where Hu is the unitary part of the canonical decomposition of the contraction T = P1P2.
In the context of canonocial decomposition, we additionally include the following asymptotic
properties of the cnu part of T (see Theorem 4.2):

SOT− lim
m→∞

(T |Hcnu
)∗m = SOT− lim

m→∞
(T |Hcnu

)m = 0.

In view of the popular notations [17], we write the above asymptotic properties simply as:

T ∗|Hcnu
, T |Hcnu

∈ C·0.

Now we look into a more concrete infinite dimensional Hilbert space, H2(Dn), the Hardy
space of square summable analytic functions defined on the polydisc Dn. The commutative
Banach algebra of all bounded analytic functions on Dn is denoted by H∞(Dn). Therefore,
we have

H∞(Dn) = {ϕ ∈ Hol(Dn) : ‖ϕ‖∞ := sup
z∈Dn

|ϕ(z)| <∞}.

For each ϕ ∈ H∞(Dn), the analytic Toeplitz operator Tϕ on H2(Dn) is defined by

Tϕf = ϕf,

for all f ∈ H2(Dn). One knows that Tϕ ∈ B(H2(Dn)) for all ϕ ∈ H∞(Dn). The function
ϕ ∈ H∞(Dn) is said to be inner if |ϕ| = 1 a.e. on T

n in the sense of radial limits. It is known
that ϕ is inner if and only if Tϕ is an isometry on H2(Dn). In this case, TϕT

∗
ϕ is an orthogonal

projection onto ϕH2(Dn). In other words, we have

TϕT
∗
ϕ = PϕH2(Dn).

A projection P ∈ B(H2(Dn)) is said to be an inner projection [6] if there exists an inner
function ϕ ∈ H∞(Dn) such that P = TϕT

∗
ϕ. Equivalently, we have

(1.1) P = PϕH2(Dn).

Here our goal is to classify operators that are products of two inner projections. Of course,
our aim is to obtain an analytic answer to this problem. To achieve this, for each nonzero
operator T ∈ B(H2(Dn), we associate an inner function that acts as the least common multiple
within a suitable class of inner functions. Our approach is as follows: Given a bounded linear
operator T on H2(Dn), define the set (which appears to be a nonemtpy set)

IT = {ϕ ∈ H∞(Dn) : ϕ is inner, and ranT ⊆ ϕH2(Dn)}.

Denote by ϕT ∈ H∞(Dn) the unique inner function, which is the lcm (that is, the least
common multiple) of IT . Therefore (see Lemma 5.2 for more details)

ϕT := lcmIT .

Under this notation, we also have

ϕT ∗ = lcmIT ∗ ,

In the spirit of canonical factorizations, Theorem 5.3 yields an analytic characterization of
products of two inner projections: Let T ∈ B(H2(Dn)) be a nonzero operator. Then T is a
product of two inner projections if and only if

T = PϕTH2(Dn)PϕT∗H2(Dn).

Moreover, we observe in Corollary 3.3 that if T ∈ B(H2(Dn)) is a cnu contraction, then T
cannot be expressed as a product of two inner projections.
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We also obtain similar results in the context of model spaces. A model space Qϕ is defined
as the closed subspace obtained by quotienting H2(Dn) by an inner function ϕ ∈ H∞(Dn) in
the sense that

Qϕ = H2(Dn)/ϕH2(Dn).

We refer to PQϕ the projection onto the model space Qϕ as a model projection. We prove the
following (see Theorem 6.3): Let T ∈ B(H2(Dn)) be a nonzero operator. Then T is a product
of two model projections if and only if

T = PQψT
PQψT∗

,

where

ψT := gcdJT ,

and

JT = {ϕ ∈ H∞(Dn) : ϕ is inner and ϕH2(Dn) ⊆ ker T ∗}.

We note that, unlike IT , the set JT has the potential to be empty. Therefore, part of the
above result also guarantees that the set JT remains nonempty. In the final section of this
paper, we illustrate some of our results through concrete examples as above.

The remaining part of the paper is arranged as follows: Section 2 primarily focuses on
proving some of the well-known results, including those by Crimmins and Sebestyén. How-
ever, the more general framework we’ve provided here also emphasizes the possibilities for
the larger problem. In Section 3, we explain the classical concept of canonical decomposi-
tions of contractions and relate them to our theory of the product of two projections. This
provides a precise description of the orthogonal decompositions applicable to the operators
under consideration. Section 4 establishes an additional connection between our theory and a
classical result, providing new insights into von Neumann’s alternating orthogonal projection
formula. In Section 5, we examine our underlying problem from a specific standpoint. We
apply our theory to projections based on inner functions defined on the Hardy space over
the polydisc. We continue to work on concrete situations in Section 6, where the projections
are considered to be model projections. The final section, Section 7, illustrates some of our
results on products of two projections using Blaschke products.

2. Crimmins’ perspective

In this section, we prove some results on operators that can be represented as products of
two projections. As stated in the very beginning, this is a problem that has been triggered
by many. We take Crimmins’ point of view and dedicate a part of the section to reproving
his results. However, we address this within a marginally wider framework, anticipating more
realistic uses in the structure of operators that can be expressed as products of operators.

Let us start with a lemma that states that operators with projection factors on the left side
are obligated to have a canonical choice for the left projection factors.

Lemma 2.1. Let T ∈ B(H). If T = PX for some projection P ∈ B(H) and linear operator

X ∈ B(H), then

T = P
ranTX.

Proof. Since T = PX , by Douglas’ lemma, it follows that ranT ⊆ ranP . Then

PPranT = PranT = PranTP.
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Now, T = PranTT , and hence T = PranTPX . This implies T = PranTX , which completes the
proof of the lemma.

As a result, operators admitting the left and right side projection factors can be represented
as follows:

Proposition 2.2. Let T ∈ B(H). If T = P1XP2 for some projections P1, P2 ∈ B(H) and

linear operator X ∈ B(H), then

T = P
ranTXPranT ∗ .

Proof. By Lemma 2.1, we know that T = PranTXP2, and hence

T ∗ = P2X
∗PranT .

The proof can now be obtained by applying Lemma 2.1 one more time to T ∗ and the above
factorization of T ∗.

In particular, if X = I, then we have the following classification of operators as products
of two projections:

Corollary 2.3. Let T ∈ B(H). Then T is a product of two projection if and only if

T = P
ranTPranT ∗ .

Crimmins is credited with this result [5, page 1595]. Here, we draw the conclusion from a
rather broad perspective.

We are now presenting a result of Sebestyén [16, Corollary 2]. The present proof, compared
to [16], is more elementary (the sufficient part) and is also presented for completeness. The
result is clearly in line with Douglas’ range inclusion theorem.

Proposition 2.4. Let T1, T2 ∈ B(H). Then there exists a projection P ∈ B(H) such that

T1 = T2P,

if and only if

T1T
∗
1 = T2T

∗
1 .

Proof. If T1 = T2P for some projection P ∈ B(H), then

T1T
∗
1 = T2PPT

∗
2 = T2PT

∗
2 = T2T

∗
1 .

Conversely, assume that T1T
∗
1 = T2T

∗
1 , then T1f = T2f for all f ∈ ranT ∗

1 . Pick f ∈ H and
write

f = Pker T1f ⊕ PranT ∗

1
f.

Then T1f = T1PranT ∗

1
f . Since PranT ∗

1
f ∈ ranT ∗

1 , we have

T1f = T2PranT ∗

1
f,

which completes the proof by choosing the projection P = PranT ∗

1
.

In addition to its more elementary nature, the proof above also adds to our understanding,
revealing that the projection P is given by

P = PranT ∗

1
,

whenever T1 = T2P .
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The subsequent corollary is yet another classification of operators that are products of
two projections. The result is in line with Crimmins and Sebestyén, yet it offers some new
perspective.

Corollary 2.5. Let T ∈ B(H). Then T is a product of two projections if and only if

TT ∗ = P
ranTT

∗.

Proof. If T is a product of two projections, then Corollary 2.3 implies T = PranTPranT ∗ . We
now compute

TT ∗ = PranTPranT ∗PranT = PranT (PranT ∗PranT ) = PranTT
∗.

For the converse direction, assume that TT ∗ = PranT ∗T ∗. The conclusion now follows directly
from the sufficient part of Proposition 2.4.

Next, we assemble all the results obtained so far, along with a new one.

Theorem 2.6. Let T ∈ B(H). The following are equivalent:

(1) T is a product of two projections.

(2) T = P
ranTPranT ∗.

(3) TT ∗ = TP
ranT .

(4) TT ∗T = T 2.

Proof. The equivalences (1) ⇔ (2) and (1) ⇔ (3) are simply Corollary 2.3 and Corollary 2.5,
respectively. Next, assume (1), that is, T is a product of two projections, say, T = PQ. Then

TT ∗T = PQ(QP )PQ = PQPQ = T 2.

This proves (4). To prove (4) ⇒ (3), we assume that TT ∗T = T 2, equivalently, T ∗TT ∗ = T ∗2.
Then

0 = T ∗(TT ∗ − T ∗) = T ∗(PranT + (I − PranT ))(TT
∗ − T ∗) = T ∗PranT (TT

∗ − T ∗),

implies
(TT ∗ − TPranT )T = 0.

This says TT ∗ = TPranT on ranT . Since the identity holds trivially on (ranT )⊥ = ker T ∗, we
conclude that TT ∗ = TPranT . This completes the proof of the theorem.

Crimmins once again receives credit for the equivalence of (1) and (4) [5, page 1595]. The
present proof is once again different. In this context, we also refer the reader to [5, Theorem
3.1]. The same paper contains results (cf. [5, Corollary 3.8]) related to parametrizations and
the uniqueness of pairs of projections whose products yield a given operator.

3. Nagy-Foias and Langer’s perspective

Note that if a bounded linear operator acting on a Hilbert space is a product of two
projections, then it is necessarily a contraction. Consequently, the theory of contractions,
widely recognized as being extremely rich, applies in this situation. This is a vast domain,
and a thorough application of the theory of contractions to this particular class of operators
and vice versa may not be entirely transparent. This requires a more in-depth investigation,
which ought to be carried out. However, in this section, we will address a fundamental
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characteristic of the product of projections via the structure of contractions. To do that, we
revisit the classic Nagy-Foias and Langer orthogonal decompositions of contractions [10, 18].

Let T ∈ B(H) be a contraction. Then there is a unique orthogonal decomposition H =
Hu ⊕ Hcnu such that both Hu and Hcnu reduce T , and T |Hu

is unitary whereas T |Hcnu
is

completely non-unitary (cnu in short). This amounts to saying that T |Hcnu
does not have

unitary summand (see Section 1). As a result, we get the diagonal decomposition:

T =

[

T |Hu
0

0 T |Hcnu

]

,

on H = Hu ⊕ Hcnu. Moreover, we have the representation of the unitary part Hu as [17,
Chapt. 1, Theorem 3.2]

Hu = {h ∈ H : ‖Tmh‖ = ‖T ∗mh‖ = ‖h‖, m ∈ N}.

This decomposition is popularly known as the Nagy-Foiaş and Langer or the canonical de-

composition of contractions and stands as one of the most basic structures of contractions.
In the following, we connect this with our theory of the product of two projections. For
simplicity of notation, given projections P1 and P2, define the closed subspace SP1P2

as

(3.1) SP1P2
= ranP1 ∩ ranP2.

Theorem 3.1. Let P1 and P2 be projections defined on some Hilbert space H. Then

Hu = ker(P1P2 − I) = SP1P2
,

where Hu is the unitary part of the contraction P1P2.

Proof. First, we claim that

(3.2) SP1P2
= {f ∈ H : ‖P1P2f‖ = ‖f‖}.

Let f ∈ H, and assume that ‖P1P2f‖ = ‖f‖. Then

‖f‖ = ‖P1P2f‖ ≤ ‖P2f‖ ≤ ‖f‖.

Subsequently, each of the preceding inequities attains equality. Therefore

‖P2f‖ = ‖P1P2f‖ = ‖f‖.

Since P2 is a projection, ‖P2f‖ = ‖f‖ implies that f ∈ ranP2, or equivalently

P2f = f.

Again, ‖P2f‖ = ‖P1P2f‖ implies that P2f ∈ ranP1. Therefore, P2f = P1P2f and hence

P1f = f.

This proves that f ∈ ranP1 ∩ ranP2. On the other hand, if f ∈ ranP1 ∩ ranP2, then

P1P2f = f,

and evidently ‖P1P2f‖ = ‖f‖. This completes the proof of the identity (3.2). Now we turn
to the proof of the main body of the theorem. Let f ∈ Hu. In particular, ‖P1P2f‖ = ‖f‖,
and then, (3.2) implies

f ∈ ranP1 ∩ ranP2.
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Therefore, P1P2f = f , and we conclude that f ∈ ker(P1P2 − I). This proves that Hu ⊆
ker(P1P2 − I) and Hu ⊆ SP1P2

. For the reverse inclusion, pick g ∈ ker(P1P2 − I). Then
‖P1P2g‖ = ‖g‖ and (3.2) together imply that

g ∈ ranP1 ∩ ranP2,

and hence P2P1g = g. It follows that

P1P2g = (P1P2)
∗g = g,

and hence g ∈ Hu. This proves that ker(P1P2 − I) ⊆ SP1P2
and SP1P2

⊆ Hu. Therefore,
Hu = ker(P1P2 − I) = SP1P2

, which completes the proof of the theorem.

In particular, the cnu part of P1P2 is given by

Hcnu = (ker(P1P2 − I))⊥.

However, some more can be said, and that is the content of the following result. Recall again
that

∨

denotes the span closure of subspaces.

Theorem 3.2. If T ∈ B(H) is a product of two projections, then

Hcnu = ker T
∨

ker T ∗.

Proof. We start with a general observation of such T as follows:

(3.3) (T ∗ − I)TH ⊆ ker T.

To show this, it suffices for us to prove that T (T ∗ − I)Tf = 0 for all f ∈ H. Fix such
f ∈ H. Since T is a product of two projections, Theorem 2.6 (the one by Crimmins) implies
TT ∗T = T 2, and consequently

T (T ∗ − I)Tf = TT ∗Tf − T 2f = 0.

This proves the inclusion in (3.3). We will now move on to the core part of the proof for the
theorem. Since Hcnu = (ker(T − I))⊥, as a general fact, we have

Hcnu = ran(T ∗ − I).

Fix a vector f ∈ H. In view of the decomposition H = ker T ∗⊕ ranT , we write f = f1 ⊕ f2 ∈
ker T ∗ ⊕ ranT . We focus on the half part of the decomposition that f2 ∈ ranT . Then (3.3)
implies that

T (T ∗ − I)f2 = 0.

In view of this, we write

(T ∗ − I)f = (T ∗ − I)(f1 ⊕ f2)

= −f1 + (T ∗ − I)f2

∈ ker T ∗ + ker T.

which proves that Hcnu ⊆ ker T
∨

ker T ∗. For the reverse inclusion, we pick g1 ∈ ker T ∗ and
g2 ∈ ker T . We will prove that g1 + g2 ⊥ Hu, which, in view of H⊥

u = Hcnu, will lead to the
conclusion. To this end, pick g ∈ Hu. By Theorem 3.1, we know that Hu = ker(T − I), and
consequently

Tg = g.

Since T ∗g1 = 0, it follows that

〈g1 + g2, g〉 = 〈g1 + g2, T g〉 = 〈T ∗g1, g〉+ 〈T ∗g2, g〉 = 〈g2, T g〉 = 〈g2, g〉,
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that is

〈g1 + g2, g〉 = 〈g2, g〉.

Again, Tg = g implies that T ∗Tg = T ∗g. On the other hand, since T |Hu
: Hu → Hu is a

unitary operator, and g ∈ Hu, it follows that T ∗Tg = g. When we combine this with the
identity T ∗Tg = T ∗g, we find that

T ∗g = g.

Then 〈g1 + g2, g〉 = 〈g2, g〉 implies

〈g1 + g2, g〉 = 〈g2, T
∗g〉 = 〈Tg2, g〉 = 0,

as g2 ∈ ker T . This shows g1 + g2 ⊥ Hu and completes the proof of the theorem.

Given this and Theorem 3.1, the canonical decompositions for contractions that are prod-
ucts of two projections are relatively concrete.

We end this section with an application of Theorem 3.1 to a concrete situation, like inner
projections defined on the polydisc (see the definition in (1.1)). Let T ∈ B(H2(Dn)) be a
nonzero operator. Suppose T is a product of two inner projections, that is, there exist two
inner functions ϕ and ψ in H∞(Dn) such that

T = PϕH2(Dn)PψH2(Dn).

Theorem 3.1 yields

(3.4) ker(T − I) = H2(Dn)u = ϕH2(Dn) ∩ ψH2(Dn).

In terms of operators not being a product of two inner projections, the following specific
observation is definitive:

Corollary 3.3. If T ∈ B(H2(Dn)) is a cnu contraction, then T cannot be expressed as a

product of two inner projections.

Proof. If possible, assume that T is a product of two inner projections. Since T is cnu, we
have that H2(Dn)u = {0}. By (3.4), we conclude

{0} = ϕH2(Dn) ∩ ψH2(Dn),

which is a clear contradiction as ϕψ ∈ H∞(Dn) is an inner function and

ϕψ ∈ ϕH2(Dn) ∩ ψH2(Dn).

This completes the proof of the corollary.

In a more general way, operators with unitary parts cannot be expressed as products of
inner projections.

4. von Neumann’s perspectives

When discussing products of two projections, one immediately draws a connection with the
classical von Neumann’s alternating orthogonal projections formula [19]. This formula relates
to the limit of powers of products of two projections. We begin with recalling a notation.
Given projections P1 and P2 defined on some Hilbert space H, the closed subspace SP1P2

is
the common range space defined by (see (3.1))

SP1P2
= ranP1 ∩ ranP2.
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The iterated product of projections then satisfies the following intriguing property, which was
proved by von Neumann in 1933 [19]:

(4.1) SOT- lim
m→∞

(P1P2)
m = PSP1P2

,

where SOT refers to the strong operator topology. This result, known as von Neumann’s al-
ternating orthogonal projections formula, has historically been associated with notable math-
ematicians, including Aronszajn [1], Browder [3], Kakutani [9], Nakano [12], and Wiener [21],
among others. We direct the reader to [13] for a comprehensive account of the development
and a proof. There is more to say in this line, and it will be crucial to our understanding. In
fact, we further have (see the proof of Theorem 1 in [13])

SP1P2
= ker(I − P2P1).

Now we bring in Theorem 3.1, which tells us, in addition, that

Hu = ker(I − P2P1) = SP1P2
.

This proves the following, which appears to be new information to von Neumann’s alternating
projection formula:

Theorem 4.1. Let P1, P2 ∈ B(H) be two projections. Then

SOT- lim
m→∞

(P1P2)
m = PHu

,

where Hu is the unitary part of the canonical decomposition of the contraction P1P2.

Next, we introduce another significant class of contractions that serves a profound role in
the theory of operators. Let T ∈ B(H) be a contraction. If in addition

SOT− lim
m→∞

T ∗m = 0,

then we say that T is a C·0 contraction. If both T and T ∗ are in C·0, then we simply write
[17, page 72]

T ∈ C00.

This class of operators is interesting as they can be modeled in a more tangible manner
by adhering to the classical theory of Sz.-Nagy and Foias. Evidently, if T ∈ B(H) is a C00

contraction, then its unitary part is zero, that is, Hu = {0}. In the following, we focus on
contractions that are products of pairs of projections. In fact, in the following result, we have
added yet another new information to von Neumann’s iterated products of projections:

Theorem 4.2. Let T ∈ B(H) be a product of two projections. Then

T |Hcnu
∈ C00.

Proof. Assume without loss of generality that T ∈ B(H) is a nonzero operator. Suppose
T = P1P2 for some projections P1 and P2 in B(H). By a part of Theorem 2.6 (which is due
to Crimmins), we know that

TT ∗T = T 2.

Consider the canonical decomposition of T as H = Hu ⊕Hcnu. We know that Tcnu := T |Hcnu

is a cnu contraction. Since Hcnu reduces T , it follows that

T =

[

Tu 0
0 Tcnu

]

,
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where Tu := T |Hu
is the unitary part of T . This immediately implies that

Tcnu(Tcnu)
∗Tcnu = T 2

cnu.

Applying Theorem 2.6 again to Tcnu on Hcnu, we conclude that it is the product of two
projections. In particular, Tcnu onHcnu is a contraction. We write the corresponding canonical
decomposition of Tcnu as

Hcnu = H̃u ⊕ H̃cnu,

where H̃u is the unitary part of Tcnu. Theorem 4.1 now tells us that

SOT- lim
m→∞

Tmcnu = PH̃u
.

However, Tcnu is a cnu contraction, and hence, its unitary part is trivial, that is,

H̃u = {0},

which says that T |cnu ∈ C·0. Finally, the fact that T is a product of two projections implies
that T ∗ is also a product of two projections, thereby proving that T |cnu is in C·0. This
completes the proof of the theorem.

Finally, recall from Theorem 3.2, given T ∈ B(H), which is a product of two projections,
we have

Hcnu = ker T
∨

ker T ∗.

Therefore, we have somewhat clear picture of the cnu part T |Hcnu
of T . This observation

shows significant potential for exploring the structure of this class of operators. However, we
save this topic and direction for future work.

5. Inner projections

This section presents a specific scenario of the product of projections where one might
expect analytic solutions. The objective is to relate the concept of inner functions to pro-
jections, which was first explored under the name of inner projections in [6]. We define an
invariant subspace of H2(Dn) as a nonzero closed subspace S ⊆ H2(Dn) satisfying ziS ⊆ S,
or, equivalently

TziS ⊆ S,

for all i = 1, . . . , n. Let S ⊆ H2(Dn) be an invariant subspace. For each i = 1, . . . , n, we
define a bounded linear operator Ri ∈ B(S) by

Ri = Tzi |S .

It is easy to see that Ri is an isometry, and consequently, (R1, . . . , Rn) is an n-tuple of
commuting isometries on S. We say that S is doubly commuting or a doubly commuting

invariant subspace if
R∗
iRj = RjR

∗
i ,

for all i 6= j. When discussing doubly commuting invariant subspaces, we always assume
that n > 1. Reminiscent of the Beurling characterization of invariant subspaces of H2(D),
the following connects doubly commuting invariant subspaces with inner functions [11]: An
invariant subspace S ⊆ H2(Dn) is doubly commuting if and only if there exists an inner
function ϕ ∈ H∞(Dn) such that

S = ϕH2(Dn).
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This is also equivalent to the factorization of the projection PS :

PS = TϕT
∗
ϕ.

In view of the above, if S = ϕH2(Dn) for some inner function ϕ ∈ H∞(Dn), then, for each
i 6= j, we compute

PST
∗
zi
TzjPS = TϕT

∗
ϕ(T

∗
zi
Tzj )TϕT

∗
ϕ = TϕT

∗
zi
(T ∗

ϕTϕ)TzjT
∗
ϕ.

We know that ϕ is inner, and hence Tϕ is an isometry. This and the doubly commuting
condition T ∗

zi
Tzj = TzjT

∗
zi
implies

PST
∗
zi
TzjPS = TϕT

∗
zi
TzjT

∗
ϕ

= TϕTzjT
∗
zi
T ∗
ϕ

= Tzj(TϕT
∗
ϕ)T

∗
zi
,

and hence

(5.1) PST
∗
zi
TzjPS = TzjPϕH2(Dn)T

∗
zi
,

for all i 6= j. This well-known identity will be used extensively in what follows.
Let T ∈ B(H2(Dn)). We already have learned from Corollary 2.3 that T is a product of two

projections if and only if T = PranTPranT ∗ . In this section, we additionally demand that the
factors be inner projections, and in exchange we look for an analytic answer. Stated differently,
our focus will be on identifying analytic interpretations of the projection factors. For this, we
introduce the notion of lcm of bounded linear operators on H2(Dn). Given a nonzero operator
T ∈ B(H2(Dn)), define the set

IT = {ϕ ∈ H∞(Dn) : ϕ is inner, and ranT ⊆ ϕH2(Dn)}.

Since the constant function 1 ∈ H∞(Dn) is also in IT (as, of course, ranT ⊆ H2(Dn)), it
readily follows that

IT 6= ∅.

We need to recall the notion of the lcm of inner functions. In what follows, our index set will
always be nonempty, and the collection of functions will never be a singleton zero function.

Definition 5.1. Given a set of inner functions {ϕα}α∈Λ ⊆ H∞(Dn), an inner function ϕ ∈
H∞(Dn) is said to be the least common multiple (or lcm in short) of {ϕα}α∈Λ if

(1) ϕα divides ϕ for all α ∈ Λ, and
(2) if ϕα divides an inner function ψ ∈ H∞(D) for all α ∈ Λ, then ϕ also divides ψ.

Clearly, the lcm function ϕ is unique (if exists), and we simply express it as

ϕ = lcm{ϕα}α∈Λ.

Returning to the range of inner projections, we now want to make sure that lcm exists at all
times. The result is a straightforward application of Beurling’s theorem for the case when
n = 1, but it necessitates additional work when n > 1. We also notice that the lcm of
{ϕα}α∈Λ ⊆ H∞(Dn), as stated above, requires that it be an inner function.

Lemma 5.2. lcmIT exists for all nonzero T ∈ B(H2(Dn)).
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Proof. Suppose n = 1. The proof in this case is well-known and is available in [2, page 21,
Proposition 2.3]. Nevertheless, we sketch a proof just to be thorough. Set

ST =
⋂

ϕ∈IT

ϕH2(D).

Since

{0} 6= ranT ⊆ ϕH2(D),

for all ϕ ∈ IT , it follows that ST 6= {0}. Since ϕH2(D) is a closed Tz-invariant subspace
of H2(D) for all ϕ ∈ IT , it follows that ST is also a closed Tz-invariant subspace of H2(D).
According to the Beurling theorem, there exists an inner function ϕ ∈ H∞(D) such that
S = ϕH2(D). It is now easy to see that ϕ = lcmIT .
Assume that n > 1. In this case, a bit more effort is required. Like in the previous situation,
we again define

ST =
⋂

ϕ∈IT

ϕH2(Dn).

Again, as in the n = 1 case, we have that ST is a nontrivial closed subspace of H2(Dn), and

TziST ⊆ ST ,

for all i = 1, . . . , n. At this stage, though, it is not apparent whether ST is doubly commuting;
we so claim that it is. To that end, first, we define partial order ≤ on IT by

ϕ ≤ ψ whenever ϕH2(Dn) ⊇ ψH2(Dn),

for all ϕ, ψ ∈ IT . It is now easy to see that

PST = SOT − lim
ϕ∈IT

PϕH2(Dn).

Fix f ∈ ST . Note that, by the definition of ST , we have f ∈ ϕH2(Dn) for all ϕ ∈ IT . Then,
for each i 6= j, we have

R∗
iRjf = PSTT

∗
zi
PSTTzjPST f

= PSTT
∗
zi
Tzjf

= lim
ϕ∈IT

PϕH2(Dn)T
∗
zi
Tzjf

= lim
ϕ∈IT

(

PϕH2(Dn)T
∗
zi
TzjPϕH2(Dn)

)

f.

Recall from (5.1) that

PϕH2(Dn)T
∗
zi
TzjPϕH2(Dn) = TzjPϕH2(Dn)T

∗
zi
,

for all ϕ ∈ IT . Therefore, we obtain

R∗
iRjf = lim

ϕ∈IT

(

TzjPϕH2(Dn)T
∗
zi

)

f

= Tzj

(

lim
ϕ∈IT

PϕH2(Dn)

)

T ∗
zi
f

= TzjPSTT
∗
zi
f.

On the other hand, we have

RjR
∗
i f = TzjPSTT

∗
zi
f,
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and hence
R∗
iRj = RjR

∗
i ,

which implies that ST is a doubly commuting invariant subspace. Then, there exists an inner
function ϕT ∈ H∞(Dn) such that

ST = ϕTH
2(Dn),

and consequently

(5.2) ϕTH
2(Dn) =

⋂

ϕ∈IT

ϕH2(Dn).

Now, ϕTH
2(Dn) ⊆ ϕH2(Dn) for all ϕ ∈ IT implies that ϕ divides ϕT for all ϕ ∈ IT . Moreover,

if ψ divides all ϕ ∈ IT , then ψH
2(Dn) ⊆ ϕH2(Dn) for all ϕ ∈ IT . Therefore

ψH2(Dn) ⊆
⋂

ϕ∈IT

ϕH2(Dn) = ϕTH
2(Dn),

implies that ϕT divides ψ. This proves that the lcm of IT exists and is given by ϕT , which
completes the proof of the lemma.

Let T ∈ B(H2(Dn)) be a nonzero operator. In view of Lemma 5.2, we define the unique
inner function ϕT ∈ H∞(Dn) by

ϕT = lcmIT .

From here, we note that (as also observed in (5.2) above)

ϕTH
2(Dn) =

⋂

ϕ∈IT

ϕH2(Dn).

Given this notation, we also have the following:

ϕT ∗ = lcmIT ∗ ,

where IT ∗ is given by (as per the definition of IT )

IT ∗ = {ϕ ∈ H∞(Dn) : ϕ is inner, and ranT ∗ ⊆ ϕH2(Dn)}.

Now that we have the pairs of inner functions ϕT and ϕT ∗ as constructed above, we are ready
to provide an analytic description of operators that arise as products of inner projections.

Theorem 5.3. Let T ∈ B(H2(Dn)) be a nonzero operator. Then T is a product of inner

projection if and only if

T = PϕTH2(Dn)PϕT∗H2(Dn).

Proof. We only need to prove the necessary part. As a result, we assume that there are inner
functions ϕ1 and ϕ2 in H∞(Dn) such that T = Pϕ1H2(Dn)Pϕ2H2(Dn). We recall, based on the
construction of the set IT ∗ , that

ranT ∗ ⊆ ranT ∗ ⊆ ϕT ∗H2(Dn),

so that

(5.3) PranT ∗ = PϕT∗H2(Dn)PranT ∗ .

In particular, P ∗

ranT ∗
= PranT ∗ , or even the simple property of projections or set inclusions,

implies that

PϕT∗H2(Dn)PranT ∗ = PranT ∗PϕT∗H2(Dn).
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Similar to (5.3), or simply because ranT ∗ ⊆ ϕT ∗H2(Dn), we have

TPϕT∗H2(Dn) = PranT ∗PϕT∗H2(Dn),

and then PϕT∗H2(Dn)PranT ∗ = PranT ∗PϕT∗H2(Dn) implies

TPϕT∗H2(Dn) = TPϕT∗H2(Dn)PranT ∗ .

But, then (5.3) yields

TPϕT∗H2(Dn) = TPranT ∗ .

Since T |kerT = 0, we immediately conclude that

T = TPϕT∗H2(Dn).

This identity is true for all nonzero T ∈ B(H2(Dn)). Consequently, if we apply this to T ∗,
then we see that

T ∗ = T ∗PϕTH2(Dn).

Now, we first take the adjoint of this, and then apply the identity T = TPϕT∗H2(Dn) to deduce
that

T = PϕTH2(Dn)TPϕT∗H2(Dn).

Because we began with the factorization T = Pϕ1H2(Dn)Pϕ2H2(Dn), for some inner functions
ϕ1, ϕ2 ∈ H∞(Dn), we finally came to see that

T = PϕTH2(Dn)(Pϕ1H2(Dn)Pϕ2H2(Dn))PϕT∗H2(Dn).

In addition, we are aware that ϕ1 divides ϕT and ϕ2 divides ϕT ∗ because of the property of
lcm. This is equivalent to saying that

PϕTH2(Dn)Pϕ1H2(Dn) = PϕTH2(Dn),

and

Pϕ2H2(Dn)PϕT∗H2(Dn) = PϕT∗H2(Dn).

As a result, we conclude that T = PϕTH2(Dn)PϕT∗H2(Dn), which wraps up the proof of the
theorem.

We conclude this section with the canonical decompositions of operators that result from
products of inner projections, allowing us to once more link orthogonal decompositions with
analytic objects. Let T ∈ B(H2(Dn)) be a product of inner projection. By (3.4), we know
that H2(Dn)u = ϕTH

2(Dn) ∩ ϕT ∗H2(Dn). Now, we know that

ψT := gcd{ϕT , ϕT ∗},

is an inner function in H∞(Dn), and consequently, with respect to the Hilbert space decom-
position H2(Dn) = ψTH

2(Dn)⊕QψT , we can write

T =

[

IψTH2(Dn) 0
0 T |QψT

]

.

This decomposition bears some resemblance to the structure of matrices that result from the
finite products of projections (see Wu [22, Theorem 4.6] and Oikhberg [14]).
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6. Model projections

Recall that the model space Qϕ corresponding to an inner function ϕ ∈ H∞(Dn) is the
quotient space defined by

Qϕ = H2(Dn)/ϕH2(Dn).

We refer to PQϕ the projection onto the model space Qϕ as a model projection. This section
seeks to understand operators that can be represented as products of two model projections.
Similarly to inner projections, if a nonzero operator T ∈ B(H2(Dn)) can be represented as a
product of two model projections, we can conclude that both the ranT and ranT ∗ are nonzero.
For each nonzero T ∈ B(H2(Dn)), we define

JT = {ϕ ∈ H∞(Dn) : ϕ is inner and ϕH2(Dn) ⊆ ker T ∗}.

Clearly, the set JT defined above could potentially be empty (for instance, whenever T is a
co-isometry). However, if the set is not trivial, then, as shown in the proof of Lemma 5.2,
one may conclude that the gcd of JT exists.

Definition 6.1. Given a collection of inner functions {ϕα}α∈Λ ⊆ H∞(Dn), an inner function
ϕ ∈ H∞(Dn) is said to be the greatest common divisor (or gcd in short) of {ϕα}α∈Λ if

(1) ϕ divides ϕα for all α ∈ Λ, and
(2) if an inner function ψ ∈ H∞(D) divides ϕα for all α ∈ Λ, then ψ also divides ϕ.

Similar to the proof of Lemma 5.2, we also have the following existential result. However, in
this case, it is necessary to assume that the set JT is nonempty (note that IT is automatically
nonempty).

Lemma 6.2. Let T ∈ B(H2(Dn)). If JT 6= ∅, then

ψT := gcdJT ,

exists.

We are now prepared to present the result related to the products of model operators. The
proof most often deviates from that of Theorem 5.3. Also note that ψT ∗ is the gcd of JT ∗

(the adjoint version of JT ).

Theorem 6.3. Let T ∈ B(H2(Dn)) be a nonzero operator. Then T is a product of two model

projections if and only if

T = PQψT
PQψT∗

.

Proof. Suppose there are inner functions ϕ1, ϕ2 ∈ H∞(Dn) such that T = PQϕ1
PQψϕ2

. In this

case, ϕ1 ∈ JT (note that Qϕ1
= (ϕ1H

2(Dn))⊥) and ϕ2 ∈ JT ∗ together imply that JT and JT ∗

are nonempty sets, and hence, Lemma 6.2 implies that ψT and ψT ∗ are nonzero inner functions
in H∞(Dn). Since ψT in JT , and an inner function, it follows that ψTH

2(Dn) ⊆ ker T ∗, and
hence

ranT = (ker T ∗)⊥ ⊆ QψT ,

that is, ranT ⊆ QψT . Now, we know in general that ran(TPQT∗ ) ⊆ ranT , which immediately
implies that ran(TPQψT∗

) ⊆ QψT , and hence we have the identity

PQψT
TPQψT∗

= TPQψT∗
.

Again, we know the general fact that T = TP(ker T )⊥. The above identity implies

TPQψT∗
= TP(ker T )⊥PQψT∗
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Next, as ψT ∗ ∈ JT ∗, we have ψT ∗H2(Dn) ⊆ ker T , equivalently, (ker T )⊥ ⊆ QψT∗ . This implies
PQψT∗

P(ker T )⊥ = P(ker T )⊥, and hence

TPQψT∗
= TP(ker T )⊥ = T.

This combined with PQψT
TPQψT∗

= TPQψT∗
yields

T = PQψT
TPQψT∗

.

Now, as we know that T is a product of projections T = PQϕ1
PQψϕ2

, the above implies

T = PQψT
PQϕ1

PQψϕ2
PQψT∗

.

Looking at the product of two projections PQψT
PQϕ1

, we observe that both ψT and ϕ1 are in
JT , which implies by the definition of gcd that ϕ1 divides ψT ; equivalently, QψT ⊆ Qϕ1

. This
gives PQψT

PQϕ1
= PQψT

, and also, similarly, PQψϕ2
PQψT∗

= PQψT∗
. This completes the proof

of the fact that T = PQψT
PQψT∗

.

At this time, we will make a general observation regarding kernels of product of two pro-
jections: When T ∈ B(H) is expressed as a product of two projections, T = P1P2, we obtain:

(6.1) ker(P1P2) = [ran(I − P1) ∩ ranP2]⊕ ran(I − P2).

Indeed, if P1P2h = 0 for some h ∈ H, then we write h = hr ⊕ hn ∈ ranP2 ⊕ kerP2. Therefore

0 = P1P2h = P1hr,

implies (I − P1)hr = hr ∈ ranP2, and consequently

h = hr ⊕ hn ∈ [ran(I − P1) ∩ ranP2]⊕ ran(I − P2),

proving that ker T is contained in the right side subspace of (6.1). The reverse set inclusion
is straightforward.

This, when combined with Proposition 2.4 in the context of inner projections, results in
the following characterization of operators as products of two inner projections:

Theorem 6.4. Let T ∈ B(H2(Dn)). Then T is a product of two inner projections if and only

if

TT ∗ = PϕTH2(Dn)T
∗,

and

ker T = [ϕT ∗H2(Dn) ∩ QϕT ]⊕QϕT∗ .

Proof. If T is a product of two inner projections, then Theorem 5.3 implies

T = PϕTH2(Dn)PϕT∗H2(Dn).

The representation of ker T then follows from (6.1). For the other identity, we compute:

TT ∗ = PϕTH2(Dn)PϕT∗H2(Dn)PϕTH2(Dn) = PϕTH2(Dn)T
∗,

We now turn to prove the sufficient part. By Proposition 2.4 and TT ∗ = PϕTH2(Dn)T
∗, we

know that
T = PϕTH2(Dn)P(ker T )⊥ .

Define
T̃ = PϕTH2(Dn)PϕT∗H2(Dn).

We claim that T = T̃ . The given assumption about ker T and the identity (6.1) yield

ker T = ker T̃ .
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In particular, QϕT∗ ⊆ ker T , that is, (ker T )⊥ ⊆ ϕT ∗H2(Dn). This implies P(ker T )⊥ =
PϕT∗H2(Dn)P(ker T )⊥, and hence

T = PϕTH2(Dn)P(ker T )⊥ = PϕTH2(Dn)PϕT∗H2(Dn)P(ker T )⊥ = PϕTH2(Dn)PϕT∗H2(Dn) = T̃ .

This completes the proof of the theorem.

Finally, we again consider model projections. The proof in this case is similar to the
previous one.

Corollary 6.5. Let T ∈ B(H2(Dn). Then T is a product of two model projections if and only

if

JT ,JT ∗ 6= ∅,

and

TT ∗ = PQψT
T ∗,

and

ker T = [QψT∗ ∩ ψTH
2(Dn)]⊕ ψT ∗H2(Dn).

In the following section, we will use the identity (6.1) to concrete examples of projections.
We will see that this simple observation brings some quick answers to questions related to
the product of two projections.

7. Blaschke products

This section aims to provide concrete examples that illustrate some of the results obtained
thus far. Given α ∈ D, the function bα ∈ Aut(D) defined by

bα(z) =
z − α

1− ᾱz
(z ∈ D),

is popularly known as a Blaschke factor. A finite Blaschke product is an inner function
ϕ ∈ H∞(D) such that

ϕ =

m
∏

j=1

bαj ,

for some finite subset {αj}
m
j=1 ⊂ D. We set the zero set of ϕ as follows:

Z(ϕ) = {αj}
m
j=1,

counting the multiplicity. Blaschke products are important tools in Hilbert function spaces.
In our context, we recall that finite Blaschke products provide finite codimensional invariant
subspaces of H2(D). More specifically, if Qϕ is a model space for some inner function ϕ ∈
H∞(D), then

dimQϕ <∞,

if and only if ϕ is a finite Blaschke product. The lemma that follows is elementary but of
general interest and may have a broader scope when considered in its full generality. The
cardinality of a set A is denoted by the notation |A|.

Lemma 7.1. Let ϕ1 and ϕ2 be two finite Blaschke products. Then

Qϕ1
∩ ϕ2H

2(D) = {0},

if and only if

|Z(ϕ1)| ≤ |Z(ϕ2)|.
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Proof. Define mi := |Z(ϕi)| for i = 1, 2. We know that m1, m2 < ∞ (as ϕ1 and ϕ2 are finite
Blaschke products). Assume that m1 ≤ m2, and pick f ∈ Qϕ1

∩ ϕ2H
2(D). We claim that

f = 0. Let λ1, . . . , λt be the zeros of ϕ1 with multiplicities s1, . . . , st, respectively. In this
case, the model space Qϕ1

is given by

Qϕ1
=

{ g

(1− λ̄1z)s1 · · · (1− λ̄tz)st
: g ∈ C[z], degg ≤ m1 − 1

}

.

Since f ∈ Qϕ1
, there exists a polynomial F ∈ C[z] such that degF ≤ m1 − 1 and

f =
F

(1− λ̄1z)s1 · · · (1− λ̄tz)st
.

This implies, in particular, that |Z(f)| ≤ m1 − 1. On the other hand, f ∈ ϕ2H
2(D) implies

that, counted with multiplicities, f has at least m2 zeros (as |Z(ϕ2)| ≤ |Z(f)|). Therefore,
we have

m2 ≤ |Z(f)| ≤ m1 − 1,

and consequently, m2 < m1; a contradiction. This forces that f = 0. Now, we turn to prove
the converse direction. Let Qϕ1

∩ ϕ2H
2(D) = {0}, and suppose m1 > m2. Assume that

α1, . . . , αs are distinct zeros of ϕ2 with multiplicities n1, . . . , ns, respectively. Set

f =

∏s

j=1(z − αj)
nj

(1− ᾱ1z)n1 · · · (1− ᾱsz)ns
.

Since m1 > m2, it is evident that f ∈ Qϕ1
∩ ϕ2H

2(D), contradicting the fact that Qϕ1
∩

ϕ2H
2(D) = {0}. Therefore, m1 ≤ m2, which completes the proof of the lemma.

In the following, we relate canonical factorizations of the products of inner projections with
corresponding range spaces.

Proposition 7.2. Let ϕ1, ϕ2 ∈ H∞(D) be finite Blaschke products. Assume that

|Z(ϕ1)| 6= |Z(ϕ2)|.

Then there does not exist any T ∈ B(H2(D)) that is the product of two inner projections with

the property that

ranT = ϕ1H
2(D) and ranT ∗ = ϕ2H

2(D).

Proof. Let T ∈ B(H2(D)) be a product of two inner projections. Moreover, assume that
ranT = ϕ1H

2(D) and ranT ∗ = ϕ2H
2(D). Since ranT = ϕ1H

2(D), by the definition of lcm
(also see the construction of IT ), it follows that

ϕ2 = αϕT ,

for some α ∈ T. Similarly, we also have

ϕ1 = βϕT ∗,

for some β ∈ T. In particular, we have

ranT = ϕ2H
2(D) = ϕTH

2(D),

and
ranT ∗ = ϕ1H

2(D) = ϕT ∗H2(D).

The later identity implies ker T = QϕT∗ . By (6.1), we also know that

ker T = [QϕT ∩ ϕT ∗H2(D)]⊕QϕT∗ ,



20 BHATTACHARJEE AND SARKAR

and consequently

QϕT ∩ ϕT ∗H2(D) = {0}.

In other words, we have Qϕ2
∩ϕ1H

2(D) = {0}, and hence, Lemma 7.1 implies that |Z(ϕ2)| ≤
|Z(ϕ1)|. Similarly, as T ∗ is also a product of two inner projections, working as above, we find
that |Z(ϕ1)| ≤ |Z(ϕ2)|. This yields |Z(ϕ2)| = |Z(ϕ1)| – a contradiction, which completes the
proof of the proposition.

For operators that are products of two inner projections, the corresponding kernel spaces
have a specific relationship with the set of all inner functions.

Lemma 7.3. Let T ∈ B(H2(D)) be a product of two inner projections. Then there does not

exist any nonconstant inner function ϕ ∈ H∞(D) such that

ker T ⊆ ϕH2(D).

Proof. Suppose T is a product of two inner projections. We have, in particular, that T =
PϕTH2(Dn)PϕT∗H2(Dn). We again use the identity (6.1) and observe that

ker T = [QϕT ∩ ϕT ∗H2(D)]⊕QϕT∗ ,

In particular, QϕT ⊆ ker T , and hence, by assumption, QϕT ⊆ ϕH2(D). This can happen
only if ϕ is a constant function. Indeed, QϕT ⊆ ϕH2(D) implies that zmQϕT ⊆ ϕH2(D) for
all m ∈ Z+, and then

H2(D) = ∨m∈Z+
zmQϕT ⊆ ϕH2(D),

proves the fact that ϕ is a constant function.

As a result, we have the following result that says when an operator on H2(D) can’t be
represented as a product of two inner projections.

Corollary 7.4. Let T ∈ B(H2(D)) be a nonzero operator. If ker T is Tz-invariant, then T is

not a product of two inner projections.

Proof. Suppose T is a product of two inner projections. If there exists an inner function
ϕ ∈ H∞(D) such that ker T = ϕH2(D), then Lemma 7.3 will force that ϕ to be a constant
function, implying that T = 0.

For examples of bounded linear operators on H2(D) that meet the criteria stated in the
above result, we note that for every inner function θ ∈ H∞(D), there exists a Hankel operator
Hϕ, ϕ ∈ L∞(T), such that [20, page 15]

kerHϕ = θH2(D).

Clearly, there is now an abundance of examples of Hankel operators, as well as the operators
referenced in the above corollary.
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