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Abstract

We present exact pole dynamics solutions to the generalized Constantin-Lax-Majda (gCLM)
equation in a periodic geometry with dissipation −Λσ, where its spatial Fourier transform is
Λ̂σ = |k|σ. The gCLM equation is a simplified model for singularity formation in the 3D
incompressible Euler equations. It includes an advection term with parameter a, which allows
different relative weights for advection and vortex stretching. There has been intense interest in
the gCLM equation, and it has served as a proving ground for the development of methods to
study singularity formation in the 3D Euler equations. Several exact solutions for the problem
on the real line have been previously found by the method of pole dynamics, but only one such
solution has been reported for the periodic geometry. We derive new periodic solutions for a = 0
and 1/2 and σ = 0 and 1, for which a closed collection of (periodically repeated) poles evolve in
the complex plane. Self-similar finite-time blow-up of the solutions is analyzed and compared
for the different values of σ, and to a global-in-time well-posedness theory for solutions with
small data presented in a previous paper of the authors. Motivated by the exact solutions, the
well-posedness theory is extended to include the case a = 0, σ ≥ 0. Several interesting features
of the solutions are discussed.

Keywords— fluid dynamics, self-similar finite-time singularity formation, complex singularities, global

existence, pole solutions, pole dynamics

1 Introduction

The question of whether solutions to the 3D incompressible Euler and Navier-Stokes equations
develop a finite-time singularity from smooth initial data is one of the most important problems in
mathematical fluid dynamics. There has been exciting recent progress on this question for the 3D
Euler equations, most notably by Elgindi [1], who shows finite-time singularity formation for C1,α
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initial velocity data, and Chen and Hou [2], who give a computer-aided proof of finite-time blowup
for C∞ initial data. These results have directly stemmed from ideas and techniques developed in
the analysis of simplified 1D models. One of the earliest and most important of the 1D models is
the Constantin-Lax-Majda (CLM) equation.

The CLM equation was proposed in [3] as a model for vortex stretching and singularity for-
mation in the 3D Euler equations. It was later generalized by DeGregorio [4], Okamoto et al. [5],
and Schochet [6] to include advection and dissipation. In this paper we consider the generalized
Constantin-Lax-Majda (gCLM) equation with dissipation, which is given by

ω̃t = −auω̃x + ω̃Hω̃ − νΛσω̃, ω̃ ∈ R, x ∈ S, t > 0,

ux = Hω̃,

ω̃(x, 0) = ω̃0(x),

(1)

where the first, second, and third terms on the right-hand side of the first line represent advection,
vortex stretching, and dissipation, respectively. This equation is often considered on the real line
but here we take the domain to be the circle S, i.e., the interval x ∈ [−π, π], extended periodically.
The ‘vorticity’ is decomposed as

ω̃(x, t) = ωav(t) + ω(x, t), (2)

where ωav(t) denotes the average of ω over [−π, π]. The operator H is the Hilbert transform, which
in the periodic case takes the form

Hf(x) =
1

2π
PV

∫ π

−π
f(x′) cot

(
x− x′

2

)
dx′. (3)

The Hilbert transform has Fourier symbol

Ĥ = −isgn(k),

which also implies that H has the representation

Hf = −i(f+ − f−), (4)

where f+ =
∑

k>0 f̂ke
ikx and f− =

∑
k<0 f̂ke

ikx are projections onto the upper and lower complex
analytic components of f , respectively, in the complex analytic extension of the real line of x into
the complex plane. The term −Λσω̃ represents a generalized dissipation, in which the operator Λ
is given by H∂x so that the symbols of Λ and Λσ are

Λ̂(k) = |k|, Λ̂σ(k) = |k|σ.

Note that −Λ2 gives the usual diffusion operator ∂xx. The equation ux = Hω̃ defines u up to its
mean, and unless stated otherwise we take the mean of u to equal zero. The parameters a, σ and
ν satisfy a ∈ R, σ ≥ 0 and ν ≥ 0.

Note that for any periodic function f, we have
∫
S fH(f) dx = 0 and additionally uω̃x =

(uω̃)x− ω̃Hω̃ has zero mean. Thus when σ > 0 the mean of ω̃ is preserved under the evolution (1),
but for σ = 0 the mean generally evolves with time. Since (ωav)x = H(ωav) = 0 we can use (2) to
rewrite (1) as

(ω + ωav)t + auωx = ωHω + ωavHω − νΛσ(ω + ωav) and ux = Hω,
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with initial data ω(x, 0) = ω0(x) and ωav(0), which are sometimes used instead of (1).
The gCLM model (1) arises in several contexts beyond singularity formation in the 3D Euler

equations. It is an exact 1D model for the evolution of stress in an Oldroyd B fluid [7], and is
equivalent to a version of the surface quasi-geostrophic equation from geophysics [8]. The advection
term with parameter a was introduced by Okamoto et al. [5] to study different relative weights of
advection and vortex stretching, ω̃Hω̃. This is motivated by studies of singularity formation in
fluid systems which show that advection can have an unexpected smoothing effect [9, 10, 11, 12].
In this paper, we consider specific values of the dissipation exponent, σ = 0 and 1. The ‘marginal’
dissipation σ = 0 has a physical significance; it arises in the aforementioned 1D model for the
evolution of stress in an Oldroyd B fluid [7]. We generally allow nonzero values of the average
ωav(t). This is also relevant to the Oldroyd B model, which has an extra constant ‘forcing’ term
on the right-hand side of (1) that generates a nonzero average in ω̃.

There has been strong interest in elucidating solutions to (1) which exhibit finite-time singularity
formation. Such singularities are often found to be locally self-similar with the form (see, e.g.,
[13, 14, 15])

ω =
1

τβ
f (ξ) , ξ =

x− xc
τα

, τ = tc − t, (5)

in a space-time neighborhood of (xc, tc), where tc > 0 is the singularity time, xc ∈ R is its location,
and α, β are real similarity parameters.

When a = 0, Constantin, Lax, and Majda [3] obtained a closed form solution to (1) for the
inviscid problem (with ν = 0) which is valid in both the real line and periodic geometry. Their
solution exhibits finite time singularity formation of the form (5) for a large class of initial data.
Since the original work of [3], several exact solutions for the real line problem have been found by
the method of pole dynamics. There are numerous examples of pole dynamics solutions in both
Hamiltonian and dissipative systems, see, e.g., [16, 17, 18, 19, 20].

The exact solutions of the gCLM equation have played an important role in more general
analysis of finite-time singularity formation. Elgindi and Jeong [21] and Chen et al. [22] prove that
for ϵ−small values of a > 0 and ν = 0, there exists singularities of the form (5) with β = 1 and α
approaching 1 in the limit a → 0+. Their method involves showing the nonlinear stability of an
approximate self-similar profile when a > 0, with the approximate profile provided by the exact
a = 0 solution of [3]. Similarly, Chen [13] shows that for the problem on the real line, there exists
self-similar blowup when a is close to 1/2 and σ = 2. His method is also based on establishing
nonlinear stability of an approximate self-similar solution. The approximate profile is provided
by an exact pole dynamics solution of the inviscid problem for a = 1/2 [13, 14]. These results
highlight the importance of exact solutions in analysis of finite-time singularity formation for the
gCLM model.

There is a rather large literature on finite time singularity formation in the inviscid problem for
(1) in which ν = 0. Recently, extensive numerical and analytical results on singularity formation
covering a wide range of the advection parameter a have been obtained by [14] and [23]. We refer
the reader to those papers for reviews of the latest developments in the inviscid problem.

The current paper focuses on the problem with nonzero dissipation (ν ̸= 0) for which less is
known about solutions to (1). Schochet [6] constructs an explicit pole dynamics solution on the
real line for a = 0 and σ = 2 which blows up in finite time. When a = −1, for which (1) is
equivalent to the Cordoba-Cordoba-Fontelos equation [24], finite time blowup is shown to occur
for σ < 1/2 [25, 26, 27], whereas global well-posedness is known for σ ≥ 1 [24, 28, 25]. Chen [13]
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shows that for the problem on the real line, there exists a self-similar blowup when a is close to 1/2
and σ = 2, and global well-posedness for σ ∈ [|a|−1, 2] with a < −1. Ambrose et al. [15] consider
(1) in the periodic setting for initial data in L2 or in a Wiener algebra B0, which describes the set
of functions with Fourier coefficients in l1. They prove global-in-time existence of solutions with
small-ω data and all a when (i) σ ≥ 1 and the initial data is in B0, and (ii) σ > 1 and the data
is in L2. Solutions become analytic (or C∞ in the case of L2 data) for t > 0. We emphasize that
only data for the spatially varying component ω needs to be small for this result to apply; ωav can
have any magnitude. Ambrose et al. [15] also derive a new pole dynamics solution to the periodic
problem for a = 0 and σ = 0 which consists of a periodic array of complex conjugate (c.c.) pole
singularities. This solution can form a finite-time singularity of the form (5), even for data which
is arbitrarily small in L2, and provides a contrast to the global existence theory for σ ≥ 1.

Other than the exact solution for a = 0 in the original paper of Constantin, Lax, and Majda
and the aforementioned construction of [15], we are unaware of any explicit solutions to (1) in a
periodic setting. The focus of this paper is to derive new periodic pole dynamics solutions which
provide further insight on the conditions for which (1) is well-posed globally in time. The new
results include: (i) solutions for a = 0 and σ = 0 and 1 expressed as a periodic array of c.c. poles
in ω, and (ii) solutions for a = 1/2 and σ = 0 and 1 expressed as a periodic array of c.c. simple
and double poles.

A challenge in constructing pole dynamics solutions is obtaining a closed collection of complex
singularities that exactly represent the dynamics. In particular, higher order poles that are gener-
ated by derivatives and nonlinearities must be avoided. We do this by making the special choice
a = 0 or 1/2 and σ = 0 or 1, for which higher order poles cancel out. When a = 1/2, the advection
term generates log singularities out of poles, which cause additional difficulties. We avoid these by
utilizing a special combination of single and double poles in ω for which the log singularities cancel
out.

Our pole dynamics solutions are specified in terms of nonlinear systems of ODEs that give the
pole locations and amplitudes. In most cases we explicitly solve the ODEs and characterize the
similarity exponents. For one case, a = 1/2 and σ = 0, the exact solution is derived in implicit form,
and substantial additional analysis is performed to obtain information on singularity formation.
When an explicit solution is not available, phase-plane analysis is employed to characterize the
dynamics. A difficulty in this analysis is the presence of ‘pathological’ trajectories, which can exit
regions which are otherwise invariant under the dynamics. The phase-plane analysis is facilitated
by a transformation to special variables which avoids the problematic trajectories and clarifies the
dynamics.

We find that global existence versus finite-time singularity formation for our pole dynamics
solutions depends on the initial location and amplitude of poles in C. When σ = 1 the solutions
determined here exist globally in time for all sufficiently small data in L2 and in B0, but blow up
in finite time for large enough data. This result is consistent with the theory of [15] and further
proves that blowup can and does occur for sufficiently large data. It also illustrates a difference
with the problem on R, in which exact pole dynamics solutions constructed in [15] can blow up for
arbitrarily small data in L2 and in B0.

In contrast, we find finite-time blowup in the periodic problem for arbitrarily small L2 initial
data when σ = 0. We still find global existence for sufficiently small data in the Wiener norm for
σ = 0. This motivates revisiting the B0 global existence theory from [15], which there applies for
σ ≥ 1. We show that a = 0 is a special case in which the B0 theory for the periodic problem can be
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extended to σ ≥ 0 (our proof also applies to the real-line problem for a = 0, σ = 0). Overall, our
analysis provides insight into the effect of dissipation on finite-time singularity formation in (1).

The rest of this paper is organized as follows: Section 2 develops pole dynamics solutions and
more general analysis for a = 0. This includes closed-form exact solutions for a = 0, σ = 0 in §2.1,
and extension to a = 0 of the small-data well-posedness theory from [15] (Sections 2.2 and 2.3).
Pole dynamics solutions for a = 0, σ = 1 are derived and analyzed in §2.4. Section 3 considers
pole dynamics solutions for a = 1/2. In §3.1, complete analysis of an exact implicit solution for
a = 1/2, σ = 0 is provided. Section 3.2 presents the governing ODEs for the pole dynamics solution
in the case a = 1/2, σ = 1, which are studied by a phase-plane analysis in §3.2.1. Concluding
remarks are given in §4. Appendix A presents a phase-plane analysis for a = 1/2, σ = 0, as a
complement to the implicit solution in §3.1.

2 Pole dynamics solutions and analysis for a = 0

When a = 0 the nonlinear advection term auωx in (1) is absent which greatly simplifies the
construction of pole dynamics solutions. We begin with this simplified case and derive exact
solutions for a single pair of c.c. poles, for which a rather complete analysis of finite-time singularity
formation can be provided. The governing PDE also allow for pole dynamics solutions consisting of
N pairs of complex conjugate poles evolving in C for any integer N ≥ 1, and we provide evolution
equations for the pole locations and amplitudes in this general case.

We use a decomposition of ω as follows

ω = ω+ + ω−, (6)

where ω+ and ω− are projections onto the upper and lower analytic components of ω, respectively,
and recall the solution ω̃ to (1) is given by (2). The real-valuedness of ω̃ together with (2) implies
that

ω+(x, t) = ω−(x, t) (7)

and that ωav(t) is real, where the overbar denotes complex conjugate. Therefore the solution is
completely specified by, say, ω− and ωav. Noting that the transformation q = tan(x2 ) maps [−π, π]
to the real line, we look for a real-valued solution of (1) in the form of a simple pole in the upper
half-plane of tan(x2 ), which is the periodic analogue of a simple pole in q:

ω−(x, t) = ω−1(t)

[
1

tan(x2 )− ivc(t)
− 1

−i− ivc(t)

]
, ω+(x, t) = ω−(x, t) (8)

where ω−1(t), and vc(t) are smooth complex valued functions of t with Re[vc(t)] ≥ 0. The term
1

−i−ivc(t)
is subtracted inside the square brackets so that ω−(x, t) has zero mean on x ∈ [−π, π],

i.e.,
∫ π
−π ω−(x, t)dx = 0. A simple pole to ω+ exists at a complex conjugate location in the lower

half-plane.
Collapse can occur when Re[vc(tc)] = 0 or Re[vc(tc)] = ∞ at some tc, so that tan(x2 )−ivc(tc) = 0

at some real x = xc. In both instances the pole impinges on the real line in complex x-space. When
vc is real, xc is pure imaginary for 0 < vc < 1 and xc = ±π + iIm(xc) for 1 < vc < ∞, with
Im(xc) → 0 as vc → 0 or ∞ and Im(xc) → ∞ as vc → 1.
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We compute the norms of ω = ω+ + ω− that are relevant in the well-posedness theory of [15],
with ω−(x, t) as in (8) and ω+(x, t) = ω−(x, t). These are

∥ω(·, t)∥2L2 = 4π
|ω−1(t)|2

Re[vc(t)]|1 + vc(t)|2

∥ω(·, t)∥B0 =
|ω−1(t)|
Re[vc(t)]

(∣∣∣∣1− vc(t)

1 + vc(t)

∣∣∣∣+ 1

)
.

(9)

Following [15], we are interested in whether a solution with arbitrarily small initial data in
these norms can blowup in finite time. We observe that the norm of the initial data can be made
arbitrarily small by choosing Re[vc(0)] large enough.

2.1 a = 0 and σ = 0

We take a = 0 and σ = 0 in which case (1) becomes

ω̃t = ω̃H(ω̃)− νω̃. (10)

Using ω̃ = ω+ + ω− + ωav and the Hilbert transform representation (4) we can rewrite (10) as:

(ω−)t = iω2
− + (iωav − ν)ω−, (ω+)t = −iω2

+ + (−iωav − ν)ω+, (ωav)t = −νωav, (11)

One pair of c.c. poles (N=1). Substitute the first equation from (8) into the first equation in
(11) and equate like order poles to get the following equations for the pole amplitude and location
in the upper half-plane:

dω−1(t)

dt
= (iωav(t)− ν)ω−1(t) +

2ω2
−1(t)

1 + vc(t)
,

dvc(t)

dt
= ω−1(t),

dωav(t)

dt
= −νωav(t). (12)

Equations (12) have a solution

ω−1(t) =
ω−1(0)e

−νtζ(t)(
1− ω−1(0)

iωav(0)(1+vc(0))
(ζ(t)− 1)

)2 , vc(t) =
vc(0) + 1(

1− ω−1(0)
iωav(0)(1+vc(0))

(ζ(t)− 1)
) − 1,

ωav(t) = ωav(0)e
−νt, where ζ(t) = ei

ωav(0)
ν

(1−e−νt). (13)

This generalizes the solution presented in [15] to include nonzero mean. It can be verified that in
the limit ωav(0) → 0 this solution reduces to

ω−1(t) =
ω−1(0)e

−νt(
1− ω−1(0)

ν(1+vc(0))
(1− e−νt)

)2 , vc(t) =
vc(0) + 1(

1− ω−1(0)
ν(1+vc(0))

(1− e−νt)
) − 1, (14)

which is the same as the zero mean solution (eq. (82)) from [15].
Inviscid problem (ν = 0). Equations (14) for ν = 0 reduce to:

ω−1(t) =
ω−1(0)

(1− ω−1(0)
1+vc(0)

t)2
, vc(t) =

vc(0) +
ω−1(0)
1+vc(0)

t

1− ω−1(0)
1+vc(0)

t
. (15)
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Then we always have a collapsing solution at t = tc (even for arbitrarily small data) with collapse
location

x = xc = 2arctan(ivc(tc)). (16)

In case of collapse with Re[vc(tc)] = 0, the singularity approaches the real line in x-space at
xc = 2arctan(−Im[vc(tc)]) and reaches it at the time

tc =
Y +

√
4|ω−1(0)|2Re[vc(0)](|vc(0)|2 + 1 + 2Re[vc(0)]) + Y 2

2|ω−1(0)|2
, (17)

where

Y = Re[ω−1(0)](1 + Im[vc(0)]
2 −Re[vc(0)]

2)− 2Im[ω−1(0)]Im[vc(0)]Re[vc(0)].

In the collapse case where Re[vc(tc)] = ∞, the singularity approaches the real line in x-space at
xc = ±π and reaches it at the time

tc =
1 +Re[vc(0)]

Re[ω−1(0)]
, (18)

when the condition Im[ω−1(0)]Re[1 + vc(0)] = Re[ω−1(0)]Im[vc(0)] is satisfied.
For purely real vc(0) > 0 and ω−1(0) equations (17), (18) and (16) reduce to

tc = −vc(0)(1 + vc(0))

ω−1(0)
, xc = 0(vc → 0) for ω−1(0) < 0,

tc =
1 + vc(0)

ω−1(0)
, xc = ±π(vc → ∞) for ω−1(0) > 0.

The solution (8), (15) is a pole dynamics analog of the original solution in [3] as well as a
spatially periodic version of equation (32) in [14], which describes self-similar blowup in the inviscid
problem on the real line. Finite-time collapse in (8), (15) is of the general self-similar form (5) with
α = β = 1. However, when ωav(0) ̸= 0 the solution (14) can have different similarity exponents
and exhibit new behavior, even for ν = 0. This includes solutions which collapse then smooth out
periodically in time, as described in Figure 1 and below.

Dissipative problem (ν > 0). When ν > 0 and ωav(0) = 0 finite-time singularity formation in
the solution (8), (14) occurs in two ranges of initial data (outside of these ranges we have global-
in-time existence). An analysis of this singularity formation appears in Section 5.4 of [15], which
we summarize in the next paragraph. For simplicity, we assume that ω−1(0) and vc(0) are purely
real.

The first range of initial data which leads to finite-time collapse is ω−1(0) < −νvc(0)(1+vc(0)),
for which the poles reach the real axis at vc(tc) = 0, xc = 0, where

tc =
1

ν
ln

(
ω−1(0)

ω−1(0) + νvc(0)(1 + vc(0))

)
.

The initial data which leads to this type of blowup satisfies

∥ω(·, 0)∥L2 > 2ν
√

πvc(0),

∥ω(·, 0)∥B0 > 2ν, if vc(0) < 1, ∥ω(·, 0)∥B0 > 2νvc(0), if vc(0) ≥ 1.

7



We therefore see that collapse can be made to occur for arbitrarily small ∥ω(·, 0)∥L2 by choosing
small enough vc(0), but ∥ω(·, 0)∥B0 must be greater than 2ν for blow up. The second range of
initial data which leads to finite-time collapse is ω−1(0) > ν(1 + vc(0)) for which the poles reach
the real axis at vc(tc) = ∞, xc = ±π at the time

tc =
1

ν
ln

(
ω−1(0)

ω−1(0)− ν(1 + vc(0))

)
.

The initial data which leads to this type of blowup satisfies

∥ω(·, 0)∥L2 > 2ν

√
π

vc(0)
,

∥ω(·, 0)∥B0 > 2
ν

vc(0)
, if vc(0) < 1, ∥ω(·, 0)∥B0 > 2ν, if vc(0) ≥ 1,

We again see that collapse can be made to occur for arbitrarily small ∥ω(·, 0)∥L2 by choosing large
enough vc(0), whereas ∥ω(·, 0)∥B0 must be sufficiently large for blow up.

In both cases, the collapse is self-similar and the solution (8) belongs to the general self-similar
form (5). As is shown below, different values of the similarity exponents α and β are possible,
depending on the data. Generically, however, α = β = 1, which follows from ω−1(tc) ̸= 0 and
vc ∼ (tc − t) in the collapse case when vc → 0, and ω−1 ∼ (tc − t)−2 and vc ∼ (tc − t)−1 in the case
when when vc → ∞.

An interesting new observation is that the pole trajectories of N = 1 solutions for a = 0, σ = 0
lie on circles or lines in tan(x2 )-space. This follows from a nontrivial calculation which shows that
vc(t) from (14) can be rewritten as

vc(t) = i
Ω + vc(0)Ω̄

2Im[Ω]
+

∣∣∣∣(vc(0) + 1)Ω

2Im[Ω]

∣∣∣∣ ei(arg[vc(0)+1]+arg[Ω]−2 arg[Ωθ(t)−1]−sgn(Im[Ω])π/2),

where Ω =
ω−1(0)

1 + vc(0)
, θ(t) =

1− e−νt

ν
(= t when ν = 0).

(19)

Only the phase is time-dependent so that when Im[Ω] ̸= 0 (19) describes a circle. In the case
Im[Ω] = 0 a separate calculation starting from (14) shows that vc(t) lies on a line. The more
general solution (13) for ωav(0) ̸= 0, ν ≥ 0 also has pole trajectories lying on circles and lines in
tan(x2 )-space.

Figure 1 shows example pole trajectories in tan(x2 )-space that result in collapsing solutions with
different similarity exponents. In Figure 1(a) the pole crosses the real-tan(x2 ) line (i.e., Re[vc] = 0)
with scaling Re[vc] ∼ tc − t for t near tc, so that the similarity exponents are α = β = 1. The
solution on x ∈ [−π, π] is ill-defined after the pole passes through the real tan(x2 )-line, i.e., for
Re[vc] < 0, shown in red. In Figure 1(b) the pole reaches the real tan(x2 )-line when t → ∞,
corresponding to infinite time collapse. In Figures 1(c) and (d) the pole touches the real line with
dRe[vc(t)]/dt = 0 so that the similarity exponent β = 2. The solution in Figure 1(c) collapses
at t = tc but immediately regularizes and is smooth again for t > tc. This ‘collapse followed
by smoothing’ occurs multiple times in Figure 1(d). When ν = 0 and ωav ̸= 0, one can find a
circular trajectory like that in Figure 1(d) that is periodically traversed in time, i.e., a periodically
collapsing solution. Figure 2 shows an example of a degenerate pole trajectory that results in a
collapsing solution with Re[vc(tc)] = ∞ and xc(tc) = ±π. Here vc ∼ 1/(t − tc) as t → tc, and
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the similarity exponents are α = β = 1. The solution for Im(xc) < 0 (shown in red) is ill-defined
on the real-x line. (We note that this phenomenon of singularities which come and go in time is
qualitatively similar to the dispersive blowup phenomenon studied in [29], [30]; in these works, it is
shown that while dispersive equations propagate Sobolev regularity, solutions can momentarily lose
their highest Ck regularity. Thus, for dispersive equations, solutions are able to continue through
such singularities and become regular again.)
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Figure 1: Pole trajectories for N = 1, a = 0, σ = 0 in tan(x2 )-space. Initial data is vc(0) = 0.5 − i
and ω−1(0) = 0.5 − 0.25i, with different ν and ωav(0). (a) ν = 0.2, ωav(0) = 0: The pole crosses

the real-tan(x2 ) line with dRe[vc(tc)]
dt ̸= 0. (b) ν ≈ 0.2865, ωav(0) = 0: The pole tends to the real

line as t → ∞. (c) ν = 0.1, ωav(0) ≈ 0.543: The pole touches the real line with dRe[vc(t)]
dt = 0. (d)

ν = 0.01, ωav(0) ≈ 0.543: The pole traverses a circle touching the real line multiple times before
it settles at a final location. Grid points shown on the trajectories are equispaced in t and cluster
near the final location of the trajectories.
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Figure 2: Degenerate pole trajectory for N = 1, a = 0, σ = 0. Initial data is vc(0) = 0.5 − i,
ω−1(0) = 1.5 − i, ωav(0) = 0, ν = 0. (a) The trajectory in tan(x2 )-space. The pole moves to
Re[vc(t)] → ∞ as t → tc (blue line) and continues from Re[vc(t)] = −∞ to its final point vc(∞) =
−1 as t → ∞ (red line). (b) The same trajectory in x-space. The pole trajectory xc(t) crosses the

real line at x = ±π with dIm[xc(tc)]
dt ̸= 0. Grid points shown are as in (a).

N > 1 pairs of c.c. poles. We look for a solution of the form

ω−(x, t) =
N∑
k=1

ω−1,k(t)

[
1

tan(x2 )− ivc,k(t)
− 1

−i− ivc,k(t)

]
, Im[ωav(t)] = 0, (20)

generalizing (8). Plug this into the first equation in (11), separate products of poles into sums
of poles using a partial fraction expansion, and equate like power poles to obtain the following
evolution equations for the (generally complex) pole amplitudes and positions:

dω−1,k

dt
=

2

1 + vc,k
ω2
−1,k + 2ω−1,k

N∑
l=1
l ̸=k

ω−1,l

(
1

vc,k − vc,l
+

1

1 + vc,l

)
+ (iωav − ν)ω−1,k, (21)

dvc,k
dt

= ω−1,k,

where k = 1 . . . N . The term ωav still satisfies (11), (12). Note that this reduces to (12) when
N = 1, in which case the sum on the right-hand side of (21) is absent.

These equations are difficult to solve analytically when N ≥ 2, although it is straightforward to
obtain numerical solutions. Analytical solutions for two pairs of poles in the real line geometry are
obtained in [15], and can exhibit collapse with different similarity exponents depending on the data.
A numerical example of non-generic collapse for N = 2 is given below in the case of a = 0, σ = 1.
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2.2 A global existence theorem for a = 0, σ = 0, ν > 0

The results of Section 2.1 include that the blowup solutions found there do not have arbitrarily
small Wiener norm. We show here that this is because solutions with small Wiener norm (in this
case a = 0, σ = 0, and ν > 0) exist for all time.

In the present section, since σ = 0, the mean of ω̃ is not conserved; therefore we will work here
directly with ω̃ rather than ω. In the case a = 0, σ = 0, equation (1) becomes

ω̃t = ω̃H(ω̃)− νω̃.

We write this, with initial data ω̃0, in Duhamel form as

ω̃(·, t) = e−νtω̃0 +

∫ t

0
e−ν(t−s)ω̃(·, s)H(ω̃)(·, s) ds. (22)

We let B0 be the Wiener algebra; on R, this is the space of functions with Fourier transform in L1,
and on S, this is the space of functions with Fourier series in ℓ1. We assume ω̃0 ∈ B0.

We need space-time versions of B0. We denote these by B0(R) and B0(S), in the real-line and
periodic cases, respectively. The norms are defined as

∥f∥B0(R) =

∫
R

sup
t∈[0,∞)

|f̂(ξ, t)| dξ,

∥f∥B0(S) =
∑
k∈Z

sup
t∈[0,∞)

|f̂(k, t)|.

Note that B0 is an algebra,
∥fg∥B0 ≤ ∥f∥B0∥g∥B0 ,

where B0 denotes either B0(R) or B0(T). This algebra property is inherited from the Wiener algebra,
B0.

In what follows, all statements are true in both B0(R) and B0(S), but we will focus the proof
on the B0(R) case.

Theorem 2.1. Let a = 0, σ = 0, and ν > 0. Let ω̃0 ∈ B0(R) or ω̃0 ∈ B0(S). Assume ∥ω̃0∥B0 < ν
4 .

Then there exists a global mild solution ω̃ ∈ B0 of (1). That is, this ω̃ satisfies (22) for all t ≥ 0.

Proof. As we have said, we will only carry out the case on the real line, but proof in the case on S
is identical, just replacing integrals with sums.

We show that the semigroup maps B0 to B0. We let ω̃0 ∈ B0(R), and we compute the norm of
e−νtω̃0 :

∥e−νtω̃0∥B0(R) =

∫
R

sup
t∈[0,∞)

e−νt
∣∣∣̂̃ω0(ξ)

∣∣∣ dξ =

∫
R

∣∣∣̂̃ω0(ξ)
∣∣∣ dξ = ∥ω̃0∥B0(R).

We define the mapping I+ to be

(I+h)(·, t) =
∫ t

0
e−ν(t−s)h(·, s) ds.
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We now show that I+ is a bounded linear operator from B0(R) to B0(R). We begin by letting
h ∈ B0(R), and we express the norm of I+h :

∥I+h∥B0(R) =

∫
R

sup
t∈[0,∞)

∣∣∣∣∫ t

0
e−ν(t−s)ĥ(ξ, s) ds

∣∣∣∣ dξ.

We use the triangle inequality and introduce another supremum to bound this as

∥I+h∥B0(R) ≤
∫
R

sup
t∈[0,∞)

∫ t

0
e−ν(t−s)

[
sup

τ∈[0,∞)
|ĥ(ξ, τ)|

]
ds dξ.

Rearranging, this becomes

∥I+h∥B0(R) ≤

(∫
R

sup
τ∈[0,∞)

|ĥ(ξ, τ)| dξ

)(
sup

t∈[0,∞)

∫ t

0
e−ν(t−s) ds

)
. (23)

The first factor on the right-hand side is just ∥h∥B0(R), and we can compute that the second factor
equals 1/ν :

∥I+h∥B0(R) ≤
∥h∥B0(R)

ν
.

We define the mapping T to be

T ω̃ = e−νtω̃0 + I+(ω̃H(ω̃)).

Then a mild solution of the a = 0, σ = 0 problem is a fixed point of T . We define r0 > 0 to be
r0 = ∥e−νtω̃0∥B0(R), and we let X be the closed ball in B0(R) centered at e−νtω̃0, with radius r1.
We will show that for appropriate choices of r0 and r1, that T is a contraction on X. Note that for
any f ∈ X, we have ∥f∥B0(R) ≤ r0 + r1.

We first must show that T maps X to X. We let f ∈ X be given. We compute as follows:

∥T f − e−νtω̃0∥B0(R = ∥I+(fH(f))∥B0(R) ≤
∥f∥2B0(R)

ν
≤ (r0 + r1)

2

ν
.

If we have
(r0 + r1)

2

ν
≤ r1, (24)

then, indeed, T maps X to X.
We now consider the contraction property. Let f and g both be in the ball X; then we may

estimate T f − T g as

∥T f − T g∥B0(R) = ∥I+(fH(f)− gH(g))∥B0(R) ≤
∥fH(f)− gH(g)∥B0(R)

ν
.

By adding and subtracting, we find the following bound:

∥T f − T g∥B0(R) ≤
2(r0 + r1)

ν
∥f − g∥B0(R).

Clearly, then, this is contracting as long as

2(r0 + r1)

ν
< 1. (25)

Taking r0 = r1 <
ν
4 , then both of (24) and (25) are satisfied. This completes the proof.
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2.3 A global existence theorem for a = 0, σ > 0, ν > 0

We remark that in the periodic case, we can also prove the same theorem for σ > 0. In this case
the norm is preserved, so we deal with ω rather than ω̃.

Theorem 2.2. Let a = 0, σ > 0, and ν > 0. Let ωav ∈ R be given. Let ω0 ∈ B0(S). Assume
∥ω0∥B0(S) <

ν
4 . Then there exists ω ∈ B0 such that ω̃ = ω + ωav is a global mild solution of (1).

That is, this ω̃ satisfies (22) for all t ≥ 0.

Proof. We only remark on where the proof differs from the above. The definition of I+ becomes

(I+h)(·, t) =
∫ t

0
e−ν(t−s)Λσ

h(·, s) ds.

Then the analogue of (23) is

∥I+h∥B0(S) ≤

 ∑
k∈Z\{0}

sup
τ∈[0,∞)

|ĥ(k, τ)|

( sup
k∈Z\{0}

sup
t∈[0,∞)

∫ t

0
e−ν|k|σ(t−s) ds

)
.

On the right-hand side we recognize that the first factor is the norm of h, and we evaluate the
integral in the other factor. This yields

∥I+h∥B0(S) ≤ ∥h∥B0

(
sup

k∈Z\{0}
sup

t∈[0,∞)

1− e−ν|k|σt

ν|k|σ

)
=

∥h∥B0(S)

ν
.

Then, the proof proceeds as in the previous theorem. Notice that in the continuous case (if k ∈ R
instead of k ∈ Z), this double supremum would not be finite.

2.4 a = 0 and σ = 1

We next derive pole dynamics solutions for a = 0, σ = 1 in which case (1) becomes

ω̃t = ω̃H(ω̃)− νH(ω̃x). (26)

Using ω̃ = ω+ + ω− + ωav and the Hilbert transform representation (4) we can rewrite (26) as:

(ω−)t = iω2
− + iωavω− − iν(ω−)x, (ω+)t = −iω2

+ − iωavω+ + iν(ω+)x, (ωav)t = 0. (27)

One pair of c.c. poles (N=1). We look for a real-valued solution to the above equations in the
form of (8). Substituting (8) into (27) and equating like power poles gives evolution equations for
the position and amplitude of the pole in the upper half-plane

dω−1(t)

dt
= (iωav(t)− νvc(t))ω−1(t) +

2ω2
−1(t)

1 + vc(t)
,

dvc(t)

dt
= ω−1(t) +

ν

2
(1− v2c (t)),

dωav(t)

dt
= 0.

(28)
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Solving the above equations gives:

ω−1(t) =
ω−1(0)e

(ν+iωav(0))t

Z2
+(t)

, vc(t) = −Z−(t)

Z+(t)
, (29)

where Z±(t) = 1− ω−1(0)

1 + vc(0)

eiωav(0)t − 1

iωav(0)
+

±eνt − 1

2
(1 + vc(0)), ωav(t) = ωav(0).

Alternatively, to get the solution (29), one can change variables t̃ = t, x̃ = x − iνt and rewrite
(27) as

(ω−)t̃ = iω2
− + iωavω−, (30)

which is the same as (11) for ν = 0. Therefore the solution of (27) is

ω−(x, t) = ω̃−1(t)

[
1

tan(x−iνt
2 )− iṽc(t)

− 1

−i− iṽc(t)

]

= ω−1(t)

[
1

tan(x2 )− ivc(t)
− 1

−i− ivc(t)

]
, (31)

where

ω−1(t) = ω̃−1(t)
1− χ2(t)

(1 + ṽc(t)χ(t))2
, vc(t) =

ṽc(t) + χ(t)

1 + ṽc(t)χ(t)
, χ(t) = tanh

(
νt

2

)
, (32)

and ω̃−1(t), ṽc(t) is a solution of (30), which we can obtain by letting ν → 0 in (13), that is

ω̃−1(t) =
ω−1(0)e

iωav(0)t(
1− ω−1(0)

1+vc(0)
eiωav(0)t−1
iωav(0)

)2 , ṽc(t) =
vc(0) +

ω−1(0)
1+vc(0)

eiωav(0)t−1
iωav(0)(

1− ω−1(0)
1+vc(0)

eiωav(0)t−1
iωav(0)

) , ωav(t) = ωav(0). (33)

Rewriting (32) with (33) gives the solution (29).
In the limit ωav(0) → 0 the solution (29) reduces to

ω−1(t) =
ω−1(0)e

νt

(1− ω−1(0)
1+vc(0)

t+ eνt−1
2 (1 + vc(0)))2

, vc(t) =
−1 + ω−1(0)

1+vc(0)
t+ eνt+1

2 (1 + vc(0))

1− ω−1(0)
1+vc(0)

t+ eνt−1
2 (1 + vc(0))

. (34)

When ν = 0 the solution (34) is reduced to (15).
We analyze (29) to characterize collapsing solutions. For simplicity, we consider the case with

ωav(0) = 0. Inspection of vc(t) in (34) for real ω−1(0) and vc(0) shows that collapse is possible
when (i) vc(tc) = 0 for ω−1(0) < 0 and vc(0) > 0 or (ii) vc(tc) = ∞ for ω−1(0) > 0 and vc(0) > 0.
We consider these two cases in more detail.

(i) ω−1(0) < 0 and vc(0) > 0: both denominators of (34) are positive for all t > 0. Consider
two parts of the numerator of vc(t) in (34):

N1(t) = −1− |ω−1(0)|
1 + vc(0)

t, N2(t) =
eνt + 1

2
(1 + vc(0)), (35)

so that numerator is 0 whenever −N1(t) = N2(t) and a solution is a collapsing solution. Both
−N1(t) and N2(t) are increasing functions and the equation −N1(t) = N2(t) can have 0, 1 or 2
solutions depending on |ω−1(0)|. We fix vc(0) and find the smallest possible |ω−1(0)| (i.e., the
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largest ω−1(0)) so that there is a collapsing solution. In this case the equation −N1(t) = N2(t) has
one solution and we have two conditions at the collapse time t = tc:

−N1(tc) = N2(tc), −N ′
1(tc) = N ′

2(tc). (36)

Solving these two equations gives

eνtc(1− νtc) =
1− vc(0)

1 + vc(0)
, ωl

−1(0) = −ν

2
(1 + vc(0))

2eνtc . (37)

where the superscript l denotes that this is the largest such ω−1(0) leading to a collapsing solution.
With this ωl

−1(0) we get from (9)

∥ω(·, 0)∥B0 =
|ω−1(0)|
vc(0)

(
|1− vc(0)|
1 + vc(0)

+ 1

)
≥ ν

2
(1 + vc(0))

(
|1− vc(0)|+ 1 + vc(0)

vc(0)

)
eνtc ≥ 2eν,

where the last inequality is obtained by minimizing the previous expression, taking into account
relation (37) between vc(0) and νtc. This minimum is at vc(0) = 1, νtc = 1.

For the L2-norm we get from (9)

∥ω(·, 0)∥L2 = 2
√
π

|ω−1(0)|√
vc(0)(1 + vc(0))

≥ 2
√
π

|ωl
−1(0)|√

vc(0)(1 + vc(0))
=

√
πν

(1 + vc(0))√
vc(0)

eνtc =
2
√
πν√

e−2νtc − (1− νtc)2
≥ 2

√
πν√

e−2m − (1−m)2
≈ 8.81ν,

where νtc = m = 0.7968 . . . minimizes the second to last expression in the above inequality. This
shows that B0 and L2 norms of the initial data of a collapsing solution cannot be made arbitrarily
small. Collapsing solutions exist for all ω−1(0) ≤ ωl

−1(0) defined in (37).
(ii) ω−1(0) > 0 and vc(0) > 0. Note that the numerator of (34) is positive for all t > 0. Consider

two parts of the denominator of (34):

D1(t) = 1− ω−1(0)

1 + vc(0)
t, D2(t) =

eνt − 1

2
(1 + vc(0)),

so that the denominator of (34) is 0 whenever −D1(t) = D2(t) and the solution is a collapsing
solution. Both −D1(t) and D2(t) are increasing functions and the equation −D1(t) = D2(t) can
have 0, 1 or 2 solutions depending on ω−1(0). Fix vc(0) and find the smallest possible ω−1(0) so
that we have a collapsing solution. In this case the equation −D1(t) = D2(t) has one solution and
we have two conditions at the collapse time t = tc:

−D1(tc) = D2(tc), −D′
1(tc) = D′

2(tc).

Solving these two equations gives

eνtc(νtc − 1) =
1− vc(0)

1 + vc(0)
, ωs

−1(0) =
ν

2
(1 + vc(0))

2eνtc . (38)

where the superscript s denotes that this is the smallest ω−1(0) leading to collapse.
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Inserting ωs
−1(0) into (9) we get

∥ω(·, 0)∥B0 =
|ω−1(0)|
vc(0)

(
|1− vc(0)|
1 + vc(0)

+ 1

)
≥ ν

2
(1 + vc(0))

(
|1− vc(0)|+ 1 + vc(0)

vc(0)

)
eνtc ≥ 2eν,

where the last inequality is obtained by minimizing the previous expression, taking into account
relation (38) between vc(0) and νtc. The minimum is at vc(0) = 1, νtc = 1.

For the L2-norm we get from (9)

∥ω(·, 0)∥L2 = 2
√
π

|ω−1(0)|√
vc(0)(1 + vc(0))

≥ 2
√
π

ωs
−1(0)√

vc(0)(1 + vc(0))

=
√
πν

(1 + vc(0))√
vc(0)

eνtc =
2
√
πν√

e−2νtc − (1− νtc)2
≥ 2

√
πν√

e−2m − (1−m)2
≈ 8.81ν,

where νtc = m = 0.7968 . . . minimizes ∥ω(·, 0)∥L2 . This shows that B0 and L2 norms of the
initial data of a collapsing solution are bounded from below, i.e., cannot be made arbitrarily small.
Additionally, we find that collapsing solutions exist for all ω−1(0) ≥ ωs

−1(0) defined in (38).
In both (i) and (ii), the generic collapse belongs to the general self-similar form (5) with α =

β = 1 and ∥ω(·, t)∥B0 , ∥ω(·, t)∥L2 → ∞ as t → tc. This follows from ω−1(tc) ̸= 0 and vc ∼ (tc − t)
in (i), and ω−1 ∼ (tc − t)−2 and vc ∼ (tc − t)−1 in (ii). However, there can also be non-generic
collapse with different α and β.

When the initial data does not fall into case (i) or (ii), the solution exists globally in time. More
precisely, if ωs

−1(0) < ω−1(0) < ωl
−1(0) then from (34) we have 0 < vc(t) < ∞ for all t > 0 and the

solution (31), (34) exists for any t > 0.
An exact pole dynamics solution to the problem on R for a = 0, σ = 1, which similarly consists

of a pair of c.c. poles, was constructed in [15]. This solution can blow up for arbitrarily small B0

and L2 data, illustrating a contrast between the problems on R and S.
N > 1 pairs of c.c. poles. We again look for a solution of the form (20). Substitute this into

the first equation of (27) and separate products of poles into sums of poles using a partial frac-
tion expansion. Note that the presence of the derivative term (ω−)x leads to factors of the form
sec2(x)/(tan(x2 )−ivc,k)

2, which need to be reexpressed as a sum of simple and double poles like those
in (20). This is done using tan(x2 ) = tan(x2 )−ivc,k+ivc,k to rewrite the identity sec2(x2 ) = 1+tan2(x2 )
as

sec2
(x
2

)
=
(
tan

(x
2

)
− ivc,k

)2
+ 2ivc,k

(
tan

(x
2

)
− ivc,k

)
+ 1− v2c,k,

which immediately gives the desired representation. Equating like power poles then gives evolution
equations for the complex pole amplitudes and positions:

dω−1,k

dt
=

2

1 + vc,k
ω2
−1,k + 2ω−1,k

N∑
l=1
l ̸=k

ω−1,l

(
1

vc,k − vc,l
+

1

1 + vc,l

)
+ (iωav − νvc,k)ω−1,k

dvc,k
dt

= ω−1,k +
ν

2
(1− v2c,k),

(39)

for k = 1, . . . N , while ωav satisfies the second equation of (28), so that ωav(t) = ωav(0). Note that
(39) reduces to (8) when N = 1.
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An example numerical solution for N = 2 with real-valued ω−1,k and vc,k is shown in Figure
3. The example illustrates nongeneric singularity formation in which vc,1(t) → 0 as t → tc with
dvc,1(tc)/dt = 0. In this case the pole ‘bounces off’ the real line, and (20) implies that ω(0, t) ∼
(tc − t)−2 as t → tc since vc,1 ∼ (tc − t)2 near the singularity time. It follows that the similarity
exponents are α = β = 2. More typically a pole reaches the real line with vc,1 ∼ t − tc as t → tc,
so that α = β = 1. This again shows singularity exponents are data dependent.
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Figure 3: N = 2 solution for ω−1,1(0) = −2, ω−1,2(0) = 2, vc,1(0) = 0.095122465, vc,2(0) = 0.17.
(a) Time evolution of the pole amplitudes. (b) Time evolution of the pole positions. Inset: |ω(0, t)|
versus dvc,1/dt ∼ (tc − t) (dashed blue curve), which approaches slope −2 (solid red curve) as
t → tc. This shows the similarity exponent β = 2 in this example.

3 Pole dynamics solutions for a = 1/2

When a = 1/2 the presence of the nonlinear advection term auωx in (1) generates logarithmic
singularities (starting from initial poles) which complicates finding a closed collection of dynamically
evolving complex singularities. Instead of a simple pole, we look for a solution of (1) as ω̃ =
ω+ +ω− +ωav from (6) and (7) with ω− a sum of a double pole and a simple pole in tan(x2 )-space:

ω−(x, t) = ω−1(t)

[
1

tan(x2 )− ivc(t)
− 1

−i− ivc(t)

]
+ ω−2(t)

[
1

(tan(x2 )− ivc(t))2
− 1

(−i− ivc(t))2

]
, (40)

where ω−1(0), ω−2(0) and vc(0) are arbitrary complex constants with Re[vc(0)] > 0 and ω−1(t),
ω−2(t) ∈ C, c(t) ∈ R are arbitrary smooth functions of time. The terms 1

−i−ivc(t)
and 1

(−i−ivc(t))2
in

(40) are subtracted in square brackets such that ω−(x, t) has zero spatial mean value. As before, we
supplement ω−(x, t) from (40) with the property (7) to get a real-valued solution ω = ω− + ω+ of
(43). We will see that a special choice of ω−1(t), given in (47) below, is required to avoid logarithmic
singularities.
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We compute the norms of ω = ω+ + ω−, assuming (7), (40), and (47):

∥ω(·, t)∥2L2 = 2π|ω−2(t)|2
(

1 + |vc(t)|2

Re[vc(t)]3((1 + |vc(t)|2)2 − 4Re[vc(t)]2)

)
∥ω(·, t)∥B0 =

|ω−2(t)|
2Re[vc(t)]2

(∣∣∣∣1− vc(t)

1 + vc(t)

∣∣∣∣+ 1

)(∣∣∣∣1 + vc(t)

1− vc(t)

∣∣∣∣+ 1

)
.

(41)

In the special case of purely imaginary ω−2(t) and purely real vc(t), i.e.,

ω−2(t) = iω−2,i(t), Im(ω−2,i(t)) = 0, Im(vc(t)) = 0,

we find that the norms (41) simplify to

∥ω(·, t)∥2L2 = 2πω2
−2,i

(
1 + v2c

v3c (1− v2c )
2

)
∥ω(·, t)∥B0 =

2|ω−2,i(t)|
v2c (t)(1− v2c (t))

{
1, for 0 < vc ≤ 1
v2c (t), for vc > 1.

(42)

3.1 a = 1/2 and σ = 0

We take a = 1/2, σ = 0, ν > 0, in which case (1) becomes

ω̃t = −1

2
uω̃x + ω̃H(ω̃)− νω̃, ux = Hω̃. (43)

Using the second equation in (43), we recover u(x, t) by integration as

u(x) =

∫ x

x0(t)
H(ω(x′, t))dx′, (44)

where ω = ω− + ω+ with ω− given by (40) and ω+ recovered from (7). Also x0(t) ∈ R is an
arbitrary smooth function of time. Note that one can also assume that x0(t) ∈ C which generalizes
u to complex values, which is beyond the scope of this paper. Generally, the integration in (44)
results in logarithmic terms. These logarithmic terms show up only in the term −1

2uωx in (43) thus
they cannot be canceled out with other terms which generally prevents (40) from being the exact
solution of (43). Thus we look for a restriction on values of ω−1(0) and ω−2(0) which ensures a
vanishing of logarithmic terms. We perform a change of variable X := tan(x2 ) in (44) resulting in

u(x, t) =

∫ X

X0(t)
H(ω(x, t))

2

X2 + 1
dX, (45)

where X0(t) = tan
(
x0(t)
2

)
.

A partial fraction expansion of the integrand H(ω(x)) 2
X2+1

of (45) together with (4) and (40)
reveal that the only source of the logarithmic singularity in the upper half-plane are the terms

−4iω−2(t)vc(t)

[X − ivc(t)][1− v2c (t)]
2
+

2ω−1(t)

[X − ivc(t)][1− v2c (t)]
(46)
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which cancel out under the condition

ω−1(t) =
2ivc(t)

1− v2c (t)
ω−2(t). (47)

We additionally wish to avoid a constant term in the integrand of (44) because it results
in a term ∝ x in u which prevents (40) from being the exact solution of (43). Therefore, in
the integrand H(ω(x)) 2

X2+1
of (45), we want to remove terms ∝ 1

X2+1
after the partial fraction

expansion. However, condition (47) also ensures that removal. Then the integrand H(ω(x)) 2
X2+1

in (45) is given by

H(ω(x, t))
2

X2 + 1
=

2iω−2(t)

[X − ivc(t)]2[1− v2c (t)]
− 2iω̄−2(t)

[X + iv̄c(t)]2[1− v̄2c (t)]
(48)

which is immediately integrated in X giving

u(x, t) =
−2iω−2(t)

[X − ivc(t)][1− v2c (t)]
+

2iω̄−2(t)

[X + iv̄c(t)][1− v̄2c (t)]
+ q(t), (49)

where q(t) ∈ R is an arbitrary smooth function of time determined by X0(t) of (45). It is convenient
to rewrite (49) in the following equivalent form

u(x, t) =
−2iω−2(t)

[1− v2c (t)]

[
1

X − ivc(t)
− 1

−i− ivc(t)

]
+

2iω̄−2(t)

[1− v̄2c (t)]

[
1

X + iv̄c(t)
− 1

i + iv̄c(t)

]
+ q̃(t), (50)

where any nonzero mean value 1
2π

∫ π
−π u(x, t)dx of u(x, t) is absorbed into a term q̃(t) such that

q̃(t) =
−2iω−2(t)

[1− v2c (t)]

1

[−i− ivc(t)]
+

2iω̄−2(t)

[1− v̄2c (t)]

1

[i + iv̄c(t)]
+ q(t). (51)

Equation (1) is not affected by any choice of q(t), thus it is matter of convenience to use either
q(t) or q̃(t). While q̃(t) might be fixed by a specific physical application of (43), the easiest choice
is to set q̃(t) ≡ 0 with (51) then providing the explicit form for q(t).

Equations (4), (7) (40), (45)-(50) result in terms proportional of different powers of [X − ivc(t)]
in (43). The most singular term ∝ [X − ivc(t)]

−3 vanishes provided

dvc
dt

= −
i
(
1− v2c

)
ω̄−2

2 (1− v̄2c ) (vc + v̄c)
+ ω−2

ivc
2(1− v2c )

− iq(t)

4
(1− v2c ). (52)

The next order singular term ∝ [X − ivc(t)]
−2 vanishes provided

dω−2

dt
=

i
(
1− 2v2c

)
ω2
−2

(1− v2c )
2 + [−ν + iq(t)vc + iωav(t)]ω−2

+i|ω−2|2
[

1

(vc + v̄c)2
+

1

1− v̄2c

]
. (53)
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The function ωav(t) is determined at order ∝ [X − ivc(t)]
0 as dωav/dt = −νωav, i.e.

ωav(t) = ωav(0)e
−νt. (54)

In summary, (52)-(54) together with initial conditions ω−2(0), vc(0) ∈ C and ωav(0) ∈ R, define
the initial value problem to determine ω−2(t) and vc(t). Equations (52)-(54) define a system of two
complex-valued ODEs, or, equivalently, a system of four real-valued ODEs. That system includes
an arbitrary smooth function q(t) which can be fixed only if we use a physical interpretation of the
velocity u(t), e.g., one can set q̃(t) ≡ 0 together with (51).

3.1.1 Implicit solution of (52)-(54)

A particular reduction of the ODE system (52)-(54) occurs for purely imaginary ω−2(t) and purely
real vc(t), i.e.,

ω−2(t) = iω−2,i(t), Im(ω−2,i(t)) = 0, Im(vc(t)) = 0. (55)

Then (52)-(53) imply ωav(t) ≡ q(t) ≡ 0. Equations (52)-(55) result in the real-valued ODE system

dω−2,i

dt
= ω2

−2,i

(1− 2v2c + 5v4c )

4v2c (1− v2c )
2

− νω−2,i,
dvc
dt

= −ω−2,i
1 + v2c

4vc(1− v2c )
, (56)

After rewriting the first equation in (56) as

d(log(ω−2,i) + νt)

dt
= ω−2,i

(1− 2v2c + 5v4c )

4v2c (1− v2c )
2

and dividing it by the second equation to exclude ω−2,i we obtain that

d(log(ω−2,i) + νt)

dt
= − (1− 2v2c + 5v4c )

vc(1− v2c )(1 + v2c )

dvc
dt

=

(
1

vc − 1
+

1

vc + 1
− 1

vc
+

4vc
1 + v2c

)
dvc
dt

,

which has a solution

ω−2,i(t) = ω−2,i(0)e
−νt vc(0)

vc(t)

(
v2c (t)− 1

v2c (0)− 1

)(
v2c (t) + 1

v2c (0) + 1

)2

. (57)

Substituting in (56) we find that

dvc
dt

=
ω−2,i(0)vc(0)

(v2c (0)− 1)(v2c (0) + 1)2
e−νt (v

2
c (t) + 1)3

4v2c (t)
, (58)

and solving it for vc(t) we obtain an implicit solution

vc(t)(v
2
c (t)− 1)

(v2c (t) + 1)2
+ arctan[vc(t)]

=
vc(0)(v

2
c (0)− 1)

(v2c (0) + 1)2

(
1 +

2ω−2,i(0)(1− e−νt)

ν(v2c (0)− 1)2

)
+ arctan[vc(0)]. (59)

If ν = 0, then the expression (1−e−νt)/ν is replaced by t. Here and below without loss of generality
we assume a principle branch of arctan.
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3.1.2 Collapse vs. global existence

We now analyze (59) to find conditions for collapse vs. global existence of the solution (40).
There are two possibilities for collapse at the collapse time t = tc : either (A) vc(t) → 0+, or (B)
vc(t) → +∞ as t → t−c (for the second case a singularity in the complex x-plane approaches the
real line Re(x) = x at x = ±π since | tan(x2 )|x→±π → ∞). In either case, |ω−2,i(t)| → ∞ diverges
as t → t−c which immediately follows from (57). It is also implied by (57) that |ω−2,i(t)| diverges
if and only if either (A) or (B) are satisfied. Thus it is sufficient to consider only cases (A) and
(B) to fully characterize blowup of solutions to equations (57) and (59); we describe these cases as
blowup A and blowup B, respectively.

Equation (40) requires that vc(0) > 0. Thus we look for blowup in the parametric half-plane
(vc(0), ω−2,i(0)) of all possible initial conditions with vc(0) > 0. That half-plane is divided into four
sectors as we now describe.

Sector (1): ω−2,i(0) > 0, 0 < vc(0) < 1. (60)

Then (58) implies that dvc
dt < 0 for any t ≥ 0 at which a solution exists, i.e. vc(t) monotonically

decreases. Thus only the type A blowup is allowed in that case. There are only three possibilities
due to that monotonicity: (1.a) vc(tc) = 0 for some 0 < tc < ∞; (1.b) 0 < lim

t→+∞
vc(t) < 1;

(1.c) lim
t→+∞

vc(t) = 0. Case (1.a) is by definition type A blowup of the solution (40). Cases (1.b) and

(1.c) imply global existence of the solution (40).

Sector (2): ω−2,i(0) > 0, vc(0) > 1.

Then (58) implies that dvc
dt > 0 for any t ≥ 0 at which a solution exists, i.e., vc(t) monotonically

increases. Thus only type B blowup is allowed in that case. There are only three possibilities
due to that monotonicity: (2.a) vc(tc) = ∞ for some 0 < tc < ∞; (2.b) 1 < lim

t→+∞
vc(t) < ∞;

(2.c) lim
t→+∞

vc(t) = ∞. Case (2.a) is type B blowup of the solution (40). The cases (2.b) and (2.c)

imply global existence of the solution (40).

Sector (3): ω−2,i(0) < 0, 0 < vc(0) < 1.

Then (58) implies that dvc
dt > 0 for any t ≥ 0 at which a solution exists, i.e., vc(t) monotonically

increases. Thus only the type B blowup is allowed in that case. There are only three possibilities
due to that monotonicity: (3.a) vc(t1) = 1 for some 0 < t1 < ∞; (3.b) 0 < lim

t→+∞
vc(t) < 1;

(3.c) lim
t→+∞

vc(t) = 1. The cases (b) and (c) imply global existence of the solution (40). The case

(3.a) implies that the solution vc(t) extends into vc(t) > 1 for t > t1. To prove that we use (58)

at t = t1 giving dvc
dt

∣∣
t=t1

=
ω−2,i(0)vc(0)

(v2c (0)−1)(v2c (0)+1)2
e−νt1 > 0, i.e., vc(t) crosses t = t1 with finite positive

speed. Then one can use an arbitrary small positive constant ε to define new initial conditions
vc(t1+ ε) = 1+ ε dvc

dt

∣∣
t=t1

+O(ε2) > 1 and ω−2,i(t1+ ε) > 0 (determined by (57)) at t = t1+ ε thus

reproducing the case of Sector (2) with new initial conditions.

Sector (4): ω−2,i(0) < 0, 1 < vc(0). (61)

Then (58) implies that dvc
dt < 0 for any t ≥ 0 at which a solution exists, i.e. vc(t) monotonically

decreases. Thus only the type A blowup is allowed in that case. There are only three possibilities due
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to that monotonicity: (4.a) vc(t1) = 1 for some 0 < t1 < ∞; (4.b) 1 < lim
t→+∞

vc(t); (4.c) lim
t→+∞

vc(t) =

1. Cases (4.b) and (4.c) imply global existence of the solution (40). Case (4.a) implies that the
solution vc(t) extends into vc(t) < 1 for t > t1. To prove that we use (58) at t = t1 giving
dvc
dt

∣∣
t=t1

=
ω−2,i(0)vc(0)

(v2c (0)−1)(v2c (0)+1)2
e−νt1 < 0, i.e. vc(t) crosses t = t1 with finite negative speed. Then

one can use an arbitrary small positive constant ε to define new initial conditions vc(t1 + ε) =
1+ ε dvc

dt

∣∣
t=t1

+O(ε2) < 1 and ω−2,i(t1+ ε) < 0 (determined by (57)) at t = t1+ ε thus reproducing

the case of Sector (1) with new initial conditions.
To complete our analysis in Sectors (1)-(4) above we have to determine exact boundaries between

blowup and global existence in the parametric half-plane (vc(0), ω−2,i(0)) using the implicit solution
(59).

3.1.3 Necessary conditions for the type A blowup

It will be helpful to consider the function

f0(x) := (x2 − 1)2 +
(x2 + 1)2

x
(x2 − 1) arctan(x), (62)

for x ≥ 0. We define f0(0) = 0, as this is the limit from the interior of the domain. Furthermore,
it is clear that f0(1) = 0. A plot of f0 is shown in Fig. 4 with

−0.73040598 . . . < f0(vc(0)) < 0 for 0 < vc(0) < 1 and f0(vc(0)) > 0 for vc(0) > 1. (63)

A minimum of f0 is located at

0.2 0.4 0.6 0.8 1.0 1.2
vc(0)

-0.5

0.5

1.0

1.5

2.0

f0

Figure 4: Plot of f0(vc(0)) from (62) with x = vc(0).

vc(0) = v0,min = 0.7211367 . . . (64)

as obtained from a solution of the transcendental equation f ′
0(v0,min) = 0 with

f0(v0,min) = −0.73040598 . . . (65)

Lemma 3.1. The only zeros of f0(x) for x ≥ 0 are x = 0 and x = 1. Also f0(x) < 0 if and only
if x ∈ (0, 1) and f0(x) > 0 if and only if x ∈ (1,∞).
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Proof. To begin we consider x ∈ (0, 1), and on this interval we expect f0(x) < 0. To establish this
is equivalent to establishing

(x2 − 1)2 < (1− x2)
(x2 + 1)2

x
arctan(x), (66)

which in turn is equivalent to establishing

(1− x2)x

(x2 + 1)2
< arctan(x). (67)

Notice that both sides are equal to zero at x = 0. It is therefore sufficient to establish that the
derivative of the left-hand side is less than the derivative of the right-hand side. Differentiating, we
see that it is enough to show

x4 − 6x2 + 1

(x2 + 1)3
<

1

x2 + 1
.

Rearranging factors from the denominators, we see that we are simply trying to demonstrate

x4 − 6x2 + 1 < (x2 + 1)2 = x4 + 2x2 + 1,

which is clearly true. This demonstrates that (67) holds for all x > 0. This then implies (66) for
all x ∈ (0, 1). The same argument, adjusting for the sign of 1− x2, shows that f0(x) > 0 for x > 1.
We conclude f0(x) < 0 if and only if x ∈ (0, 1) and f0(x) > 0 if and only if x ∈ (1,∞).

Lemma 3.2. If type A blowup occurs, then it must either be the case that

0 < vc(0) < 1 and ω−2,i(0) > −ν

2
f0(vc(0)), (68)

or
vc(0) > 1 and ω−2,i(0) < −ν

2
f0(vc(0)). (69)

Proof. If we assume that the type A blowup occurs, then there exists t = tc with 0 < tc < ∞, such
that vc(tc) = 0. Plugging these conditions into (59) and solving for e−νtc results in

e−νtc − 1 =
ν

2ω−2,i(0)
f0(vc(0)), (70)

where f0 is defined in (62). The blowup condition 0 < tc < ∞ implies that the left-hand side of
(70) must be between −1 and zero because ν > 0, i.e.,

−1 <
ν

2ω−2,i(0)
f0(vc(0)) < 0. (71)

Thus, to look for a solution which blows up, one must first satisfy the second inequality of (71)
by choosing the opposite sign of ω−2,i(0) compared with the sign of f0(vc(0)) to ensure that the
right-hand side of (70) is negative. Such a choice of sign is always possible because the solution
ansatz (40) allows any sign of ω−2,i(0) (while restricting to vc(0) > 0). The first inequality of (71)
must be also satisfied for blowup.

Assume that 0 < vc(0) < 1. Then ω−2,i(0) > 0 by the condition (71) together with (63). It
implies the solution lies in Sector (1) given by (60). The condition (71) together with (63)-(65)
gives the necessary conditions for the type A blowup, specified in (68). If instead vc(0) > 1, then
the condition (71) together with (63) results in ω−2,i(0) < 0. This implies the solution is in Sector
(4) given by (61). The condition (71) together with (63)-(65) gives the necessary conditions for the
type A blowup, specified in (69).
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The yellow area in Fig. 5 shows the region determined by (68). We define

0.4 0.6 0.8 1.0 1.2 1.4 1.6
vc(0)

-4

-3

-2

-1

1

2

ω-2 (0)/ν

Figure 5: A summary of behavior for the implicit solution (59) on the half-plane of vc(0) > 0 vs.
ω−2,i(0)/ν. Colored areas designate blowup regions and non-colored regions correspond to global
existence of solutions. In particular, the yellow region corresponds to (68), the green region to (69),
the magenta region to (78) and the gray region to (79). Blue and red lines separate these regions
and correspond to infinite time blowup.

ω−2,i,min,0(vc(0)) := −ν

2
f0(vc(0)),

and note the largest value of ω−2,min(vc(0)) is achieved at v0,min = 0.7211367 . . . so that

max
0<vc(0)<1

ω−2,i,min,0(vc(0)) = −ν

2
f0(v0,min) = ν · 0.36520299 . . .

as follows from (64) and (65). In the case vc(0) > 1, we may similarly define

ω−2,i,max,0(vc(0)) := −ν

2
f0(vc(0)) < 0,

and plot the region determined by (69), i.e., ω−2,i(0) < ω−2,i,max,0(vc(0)) < 0. We do so with the
green area in Fig. 5.

Considering the contrapositive of Lemma 3.2, if we instead have either

ω−2,i(0) ≤ ω−2,i,min,0(vc(0)), 0 < vc(0) < 1, (72)

or
ω−2,i(0) < ω−2,i,max,0(vc(0)) and vc(0) > 1, (73)
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then type A blowup does not occur since there exists no finite tc satisfying (70) (in fact, the solutions
will exist globally in time).

The above results can be understood as follows. As noted, dvc
dt < 0 both for ω−2,i(0) > 0,

0 < vc(0) < 1 and ω−2,i(0) < 0, vc(0) > 1. Thus vc(t) monotonically decreases. In cases (72) and
(73), the dissipative decay factor e−νt on the right-hand side of (58) dominates over the growth
factor 1/v2c (t) and prevents the solution vc(t) from reaching the origin vc = 0 in finite time, thus
insuring global existence of the solution (40). In the complementary cases (68) and (69), the growth
factor 1/v2c (t) instead dominates the decay factor e−νt, so that the speed dvc

dt → −∞ as vc(t) → 0.
That speed guarantees that collapse occurs, i.e., vc(t) → 0 in finite time with tc given by (70). A
Taylor series expansion of (59) immediately gives that

vc(t) ∝ (tc − t)1/3 +O((tc − t)4/3)

quantifying this “fall into the origin” at infinite speed.
The boundary cases are

0 < vc(0) < 1 and ω−2,i(0) = −ν

2
f0(vc(0)), (74)

or
vc(0) > 1 and ω−2,i(0) = −ν

2
f0(vc(0)). (75)

In both these cases we expand (59) into Taylor series at vc(t) = 0 and solve the resulting equation
for vc(t) using either (74) or (75) which gives at the leading order for t → +∞ that

vc(t) =
31/3

2
e−νt/3

(
arctan[vc(0)] + vc(0)

vc(0)
2 − 1

[1 + vc(0)2]2

)1/3

+O(e−νt) (76)

which holds both for 0 < vc(0) < 1 and vc(0) > 1. Here the principal root of the power 1/3 is
chosen which ensures that vc(t) > 0 because the corresponding radicand fa := arctan[vc(0)] +

vc(0)
vc(0)2−1

[1+vc(0)2]2
> 0 for vc(0) > 0. The positivity of fa follows by calculating a derivative dfa

dvc(0)
=

8vc(0)2

[1+vc(0)2]3
which is positive for vc(0) > 0 together with fa = 0 at vc(0) = 0.

Thus solutions both for (74) and (75) exist globally for t > 0 while vc(0) = 0 is reached at
infinite time t = +∞. We therefore refer to the boundary cases as infinite time blowup.

3.1.4 Necessary conditions for the type B blowup

As in the case of type A blowup, before proving a necessary condition for type B blowup we need
to first study an auxiliary function. We consider the function f∞, defined by

f∞(x) := (x2 − 1)2 +
(x2 + 1)2

x
(x2 − 1)(arctan(x)− π/2), x > 0. (77)

A plot of f∞ is shown in Fig. 6.

Lemma 3.3. The auxiliary function f∞(x) = 0 only for x = 1, f∞(x) > 0 for x ∈ (0, 1), and
f∞(x) < 0 for all x > 1.
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Figure 6: A plot of f∞(vc(0)) from (77) with x = vc(0).

Proof. We factor out x2 − 1, and write f∞(x) = (x2 − 1)g(x). We then wish to show that g(x) < 0
for all x > 0. This means that we wish to show

x2 − 1 <
(x2 + 1)2

x

(π
2
− arctan(x)

)
,

for all x > 0. This is the same as showing

(x2 − 1)x

(x2 + 1)2
<

π

2
− arctan(x),

for all x > 0. We call the function on the left-hand side h1(x), and we call the function on the
right-hand side h2(x). The derivatives of h1 and h2 are

h′1(x) = −x4 − 6x2 + 1

(x2 + 1)3
, h′2(x) = − 1

x2 + 1
= −x4 + 2x2 + 1

(x2 + 1)3
.

Notice that h′1(x) > h′2(x), for all x > 0. Furthermore, h1(0) = 0 and h2(0) =
π
2 . So, we see that

h2 begins larger than h1 but h1 always grows faster than h2. This implies that if the graphs of h1
and h2 ever cross, they may only cross one time. To determine whether this ever happens, it is
enough to determine which function is larger for large x (i.e., as x goes to infinity). We will use the
Laurent series of h1 and h2 for this purpose. We may express h1 and h2 with their Laurent series
as

h1(x) =
∞∑
k=1

(−1)k+1(2k − 1)

x2k−1
=

1

x
− 3

x3
+

5

x5
− · · · ,

h2(x) =
∞∑
k=1

(−1)k+1

(2k − 1)x2k−1
=

1

x
− 1

3x3
+

1

5x5
− · · · .

Notice that these are both alternating series, and notice that each are valid for all x satisfying
|x| > 1. Furthermore, the absolute value of the terms in each series goes monotonically to zero; this
is completely obvious for the series for h2, but also holds for the series for h1 for sufficiently large
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x (in fact, x > 2 is sufficient). We are interested in approximating each of h1 and h2 using the first
two terms of their respective Laurent series. We define the errors from this approximation to be

E1(x) = h1(x)−
1

x
+

3

x3
, E2(x) = h2(x)−

1

x
+

1

3x3
.

We recall the error estimate for alternating series, in which the error can be bounded by the absolute
value of the next term in the series. Thus, we have the bounds

|E1(x)| ≤
5

x5
, |E2(x)| ≤

1

5x5
.

We then may conclude

h2(x)− h1(x) =

(
1

x
− 1

3x3

)
+ E1(x)−

(
1

x
− 3

x3

)
+ E2

≥ 8

3x3
− |E1(x)| − |E2(x)| ≥

8

3x3
− 5

x5
− 1

5x5
> 0,

for all sufficiently large x.
We have shown that g(x) < 0 for all x > 0. Therefore f∞(x) = 0 only for x = 1, and f∞(x) > 0

for x ∈ (0, 1), and f∞(x) < 0 for all x > 1.

Lemma 3.4. If type B blowup occurs, then it must either be the case that

0 < vc(0) < 1, and ω−2,i(0) < −ν

2
f∞(vc(0)), (78)

or
vc(0) > 1, and ω−2,i(0) > −ν

2
f∞(vc(0)). (79)

Proof. If we assume that the type B blowup occurs, then there exists t = tc with 0 < tc < ∞,
such that vc(tc) = +∞, i.e., vc(t) → +∞ as t → t−c . That limit implies that arctan[vc(tc)] = π/2.
Plugging in these conditions to (59) and solving for e−νtc results in

e−νtc − 1 =
ν

2ω−2,i(0)
f∞(vc(0)). (80)

A blowup condition 0 < tc < ∞ implies that the left-hand side of (80) must be between −1 and
zero because ν > 0, i.e.,

−1 <
ν

2ω−2,i(0)
f∞(vc(0)) < 0. (81)

Thus, to look for a solution which blows up, one must first satisfy the second inequality of (81)
by choosing the opposite sign of ω−2,i(0) compared with the sign of f∞(vc(0)). Such a sign choice
is always possible because the solution ansatz (40) allows any sign of ω−2,i(0) (while restricting to
vc(0) > 0). The first inequality of (81) must be also satisfied for blowup.

Assume that 0 < vc(0) < 1. Then ω−2,i(0) < 0 by the properties we have established for f∞ in
Lemma 3.3. The necessary conditions (78) for the type B blowup can then be stated as follows:

ω−2,i(0) < ω−2,i,max,∞(vc(0)) := −ν

2
f∞(vc(0)) < 0, 0 < vc(0) < 1. (82)
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The magenta area in Fig. 5 shows the region determined by (82).
Next assume that vc(0) > 1. Then ω−2,i(0) > 0 by the condition (81) together with the properties

we have established for f∞ in Lemma 3.3. The necessary conditions (79) for the type B blowup in
this case are then

ω−2,i(0) > ω−2,i,min,∞(vc(0)) := −ν

2
f∞(vc(0)) > 0, vc(0) > 1. (83)

The gray area in Fig. 5 shows the region determined by (83).

Considering the contrapositive of Lemma 3.4, we see that if either

ω−2,i,max,∞(vc(0)) ≤ ω−2,i(0) ≤ 0, 0 < vc(0) < 1, (84)

or
0 ≤ ω−2,i(0) ≤ ω−2,i,min,∞(vc(0)), vc(0) > 1, (85)

then type B blowup does not occur, since (80) is not satisfied for any finite tc. In fact the solution
exists globally in time.

A qualitative understanding of the above results and the dynamics of vc(t) are obtained from
(58). We see that dvc

dt > 0 both for ω−2,i(0) < 0, 0 < vc(0) < 1 and ω−2,i(0) > 0, vc(0) > 1.
Thus vc(t) monotonically increases. In cases (84) and (85), the dissipative decay factor e−νt on the
right-hand side of (58) dominates over the growth factor v4c (t) and prevents vc(t) from reaching
vc = +∞ in finite time, thus insuring a global existence of the solution (40). For the complementary
cases (78) and (79), v4c (t) instead dominates over e−νt thus vc(t) → +∞ with a diverging speed at
a finite value of tc > 0. To quantify this, we expand (59) in powers of vc(t) → ∞ giving that

vc(t) ∝ (tc − t)−1/3 +O((tc − t)2/3).

This shows vc(t) “reaches infinity” in finite time tc, with infinite speed.
The boundary cases are

0 < vc(0) < 1, and ω−2,i(0) = −ν

2
f∞(vc(0)), (86)

and
vc(0) > 1, and ω−2,i(0) = −ν

2
f∞(vc(0)). (87)

In both these cases we expand (59) in powers of vc(t) → ∞ and solve the resulting equation for
vc(t) using either (86) or (87) which gives at the leading order for t → +∞ that

vc(t) = 3−1/32eνt/3
(
π

2
− arctan[vc(0)]− vc(0)

vc(0)
2 − 1

[1 + vc(0)2]2

)−1/3

+O(e−νt/3) (88)

both for 0 < vc(0) < 1 and vc(0) > 1. Here the principal root of the power 1/3 is chosen which

ensures that vc(t) > 0 because the corresponding radicand fb :=
π
2−arctan[vc(0)]−vc(0)

vc(0)2−1
[1+vc(0)2]2

>

0 for vc(0) > 0. The positivity of fb is ensured by calculating a derivative dfb
dvc(0)

= − 8vc(0)2

[1+vc(0)2]3
which

is negative for vc(0) > 0 together with fb = π/2 at vc(0) = 0 and fb = 0 at vc(0) = +∞.
Thus solutions for data satisfying (86) or (87) exist globally for t > 0 while vc(0) → +∞ as

t → +∞, so these boundary cases exhibit infinite time blowup. Fig. 5 summarizes the behavior of
the implicit solution (59) on the half-plane of vc(0) > 0 vs. ω−2,i(0)/ν.
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3.1.5 Sufficient conditions for blowup

We now prove that (68), (69), (78) and (79) provide not only necessary but also sufficient conditions
for blowup. We define auxiliary functions

f1(vc(t)) :=
vc(t)(v

2
c (t)− 1)

(v2c (t) + 1)2
+ arctan[vc(t)] (89)

representing the left-hand side of (59) as well as

f2(vc(0)) :=
vc(0)

(v2c (0)− 1)(v2c (0) + 1)2
. (90)

Differentiating (89) with respect to vc(t) gives that

df1(vc(t))

dvc(t)
:=

8v2c (t)

(v2c (t) + 1)3
> 0 for vc(t) ̸= 0, (91)

which ensures that f1(vc(t)) grows monotonically with vc(t). Because f1(0) = 0, we conclude that

f1(vc(t)) > 0 for vc(t) > 0 while f1(0) = 0. (92)

Using the definitions of f0, f1, and f2 (which are (62), (89), and (90), respectively) we can represent
(59) in the following compact form:

f1(vc(t)) = f0(vc(0))f2(vc(0)) +
2ω−2,i(0)

ν
f2(vc(0))(1− e−νt). (93)

Lemma 3.5. Either of (68) or (69) is a sufficient condition for type A blowup.

Proof. We begin by assuming (68). Assume for the sake of contradiction that 0 < vc(t) < ∞ for
all t > 0, i.e., a solution never reaches the origin in finite time if the initial conditions (68) are
satisfied. By Lemma 3.1 we see that that f0(vc(0)) < 0. From the definition of f2 we immediately
have f2(vc(0)) < 0. Since f0 and f2 evaluated at vc are initially negative, we see that the right-hand
side of (93) is initially (at t = 0) positive. Taking the limit as t → ∞ of this right-hand side,
however, yields (

f0(vc(0)) +
2ω−2,i(0)

ν

)
f2(vc(0)) < 0.

Here, we have used the second condition in (68) to see that the first factor is positive. We conclude
by a continuity of vc(t) that there must be a value of t for which f1(vc(t)) = 0; then, (92) implies
vc(t) = 0. This is the desired contradiction.

Now assume that the conditions (69) are satisfied instead of (68). Lemma 3.1 then implies
f0(vc(0)) > 0, and we see from the definition (90) of f2 that f2(vc(0)) > 0. The right-hand side of
(93) is then initially positive. Again taking the limit of the right-hand side of (93) as t → ∞, we
have (

f0(vc(0)) +
2ω−2,i(0)

ν

)
f2(vc(0)) < 0.

Here we have used the second condition in (69) to conclude that the first factor is negative. As in
the previous case, this again means that there exists a value t > 0 for which vc(t) = 0. This again
is the desired contradiction. This completes the proof.
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Lemma 3.6. Either of (78) or (79) is a sufficient condition for type B blowup.

Proof. Using f∞ instead of f0, we can rewrite (93) as

f1(vc(t)) = f∞(vc(0))f2(vc(0)) +
2ω−2,i(0)

ν
f2(vc(0))(1− e−νt) +

π

2
. (94)

Assume (78) is satisfied. Then by Lemma 3.3, we have f∞(vc(0)) > 0 and therefore ω−2,i < 0.
Then (58) implies that vc(t) grows monotonically with t. This combined with (91) implies that
f1(vc(t)) grows monotonically with t. The maximum of the function f1(vc(t)) for any value of vc(t)
is given by π/2, and this can only be reached asymptotically as vc(t) → +∞ as follows from the
monotonic growth (91) and (89). In other words, the maximum possible value of the left-hand side
of (94) is given by π/2. Taking the limit as t → +∞ of the right-hand side of (94), we get(

f∞(vc(0)) +
2ω−2,i(0)

ν

)
f2(vc(0)) +

π

2
>

π

2
. (95)

(Here we have used that (78) together with (90) implies that each of the two factors in the first
term on the left-hand side of this inequality are negative.) Therefore, equation (94) cannot be valid
in that limit t → +∞ and there must have been a finite value of tc for which vc(t) → +∞ as t → t−c .

Next, we assume (79) is satisfied instead of (78). We then have f∞(vc(0)) < 0 and ω−2,i > 0.
Then (58) again implies that vc(t) grows monotonically with t. Taking the limit as t → ∞ on the
right-hand side of (94), again yields (95) since now each of the two factors in the first term on
the left-hand side are positive. This again implies the existence of a finite value of tc for which
vc(t) → +∞ as t → t−c .

This completes the proof.

Combining Lemmas 3.2, 3.4, 3.5 and 3.6 we prove the following:

Theorem 3.7. (Necessary and sufficient condition of collapse). The conditions (68) or (69) are
necessary and sufficient for blowup of type A. The conditions (82) or (83) are necessary and suf-
ficient for blowup of type B. If any of the contrapositive conditions (72),(73),(84) and (85) are
satisfied then the solution exists globally for all t > 0.

Remark 1. Solutions of (56) for initial data at the boundary of the global existence domain,
shown by red and blue curves in Fig. 5, blow up in infinite time. The boundary of the global
existence domain is also revealed by numerical solution of (56), and gives excellent agreement with
the theoretical boundary determined by (74), (75), (86), (87), shown by red-dashed curves in Figure
13, Appendix A.1.

Remark 2. The particular initial condition vc(0) = 1 has a singularity in the implicit solution (59).
That singularity can be understood as a limit vc(0) → 1 while also taking the limit ω−2,i(0) → 0.
Depending on how these two limits are taken, the solution can approach the point (1, 0) in the
plane (vc(0), ω−2,i(0)) from the different sectors in Fig. 5 that surround the point (1, 0).

Remark 3. Theorem 3.7 shows that finite-time singularities for a = 1/2, σ = 0 can occur for
arbitrarily small L2 norm of ω(x, 0). This follows from the asymptotic behavior ω2,i ∼ (4/3)νv2c
of the boundary of the yellow blow-up region in Figure 5 when 0 < vc(0) ≪ 1. Thus from (42),
∥ω(·, 0)∥L2 can be made arbitrarily small in this blow-up region by taking vc sufficiently small. In
contrast, (42) implies the Wiener norm blows up only for sufficiently large data.
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3.1.6 Limit of the real line

To get solution on the real line one can look at the limit vc → 0 for which the influence of the 2π
periodicity is expected to be non-important. Then (56) is reduced to

dω−2,i

dt
= ω2

−2,i

1

4v2c
− νω−2,i,

dvc
dt

= −ω−2,i
1

4vc
,

which recovers (35) and (36) of [14].

3.2 a = 1/2 and σ = 1

In the case a = 1/2, σ = 1, ν > 0, (1) becomes

ω̃t = −1

2
uω̃x + ω̃H(ω̃)− νH(ω̃x), ux = Hω̃. (96)

Similar to Section 3.1, we look for a solution to (96) of the form ω̃ = ω+ + ω− + ωav with ω− as in
(40), i.e., a sum of a double pole and a simple pole in X = tan(x2 )-space, and ω+(x, t) = ω−(x, t).

As before, the special choice (47) for ω−1 in (40) ensures logarithmic terms to cancel out.
Substituting (40) into (96) and performing a similar analysis as in Section 3.1, we obtain the
following equations for the complex quantities ω−2(t) and vc(t):

dvc
dt

=
ν

2
(1− v2c )−

i
(
1− v2c

)
ω̄−2

2 (1− v̄2c ) (vc + v̄c)
+ ω−2

ivc
2(1− v2c )

− iq(t)

4
(1− v2c ), (97)

and

dω−2

dt
= −2νvcω−2 +

i
(
1− 2v2c

)
ω2
−2

(1− v2c )
2 + [iq(t)vc + iωav(t)]ω−2

+i|ω−2|2
[

1

(vc + v̄c)2
+

1

1− v̄2c

]
, (98)

where q(t) ∈ C is an arbitrary smooth function of time and is related to the mean value of u(x, t)
that can be prescribed as in (51).

The function ωav(t) is required to be constant,

ωav(t) = ωav(0). (99)

A particular reduction of such ODE system occurs for purely imaginary ω−2(t) and purely real
vc(t) as

ω−2(t) = iω−2,i(t), Re(ω−2,i(t)) = ω−2,i(t), vc(t) = Re(vc(t)). (100)

Then (97)-(98) imply ωav(t) ≡ q(t) ≡ 0. Equations (97)-(100) result in the real-valued ODE system

dω−2,i

dt
= ω2

−2,i

(1− 2v2c + 5v4c )

4v2c (1− v2c )
2

− 2νvcω−2,i,
dvc
dt

=
ν

2
(1− v2c )− ω−2,i

1 + v2c
4vc(1− v2c )

. (101)

We are not able to find analytical solutions even to the simplified system (101). However, in the
next section we characterize initial data leading to finite-time singularity formation or alternatively
to global-in-time existence of solutions using a phase-plane analysis.
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3.2.1 Phase-plane analysis

In this section we develop the phase-plane analysis for a = 1/2, σ = 1, and in Appendix A we
provide the analysis for a = 1/2, σ = 0 to complement the results of Section 3.1. An advantage
of the phase-plane analysis is that it does not require closed form solutions, which are usually not
available.

We consider the real-valued ODE system (101) and first point out a difficulty in the phase-plane
analysis. Inspection of the right-hand side of the equation for dω−2,i/dt shows that it is positive
in the lower right quarter-plane ω−2,i < 0, vc > 0, indicating that trajectories approach ω2,i = 0
as t increases. Furthermore, the trajectories generally only reach ω−2,i = 0 in infinite time. Thus
at first glance the lower right quarter-plane of (vc, ω−2,i) space is an invariant domain in which
the solution exists globally in time. However, there exist ‘pathological’ trajectories which pass
through the point (vc, ω−2,i) = (1, 0) with ω2

−2,i/(1 − vc)
2 approaching a nonzero constant at that

point, since the right-hand side of the equation for dω2,i/dt is then O(1) as vc → 0, ω−2,i → 0.
These trajectories emerge in the upper right quadrant of (vc, ω−2,i) space where their behavior is
undetermined by the analysis.

As will be seen, this difficulty in the analysis can be avoided by using

p =
ω−2,i

vc(1− v2c )
, (102)

as an independent variable instead of ω−2,i. We continue to use vc as the second independent
variable.

We express the norms (42) in terms of p(t) and vc(t):

∥ω(·, t)∥2L2 = 2πp2(t)

(
1

vc(t)
+ vc(t)

)
∥ω(·, t)∥B0 =

{
2|p(t)|/vc(t), for 0 < vc ≤ 1

2|p(t)|vc(t), for vc > 1.

(103)

In terms of the variable p defined in (102) and vc, the system (101) becomes

dp

dt
:= J(vc, p) = p(pR− νQ),

dvc
dt

:= K(vc, p) = −p

4
(1 + v2c ) +

ν

2
(1− v2c ).

(104)

where

R =
1

2

(
1

vc
− vc

)
and Q =

1

2

(
1

vc
+ vc

)
. (105)

Henceforth let ν = 1, which is equivalent to a rescaling of t and ω. Note that

J(v−1
c ,−p) = −J(vc, p) and K(v−1

c ,−p) = −v−2
c K(vc, p), (106)

implying that (104) is invariant under the substitution vc → 1/vc and p → −p. Hence we need only
perform the phase-plane analysis for p ≥ 0, with the corresponding results for p < 0 following from
symmetry.
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We first consider the nullclines of the system (104), which are the curves in the p versus vc
phase plane where J(vc, p) = 0 and separately the curves where K(vc, p) = 0. The J-nullclines are
p = 0 and p = fJ(vc) where

fJ(vc) =

(
1 + v2c
1− v2c

)
,

for 0 < vc < ∞. These are shown by the dashed curves in Figure 7. The J-nullclines divide p ≥ 0
phase-space into two connected regions which differ in their sign of dp/dt:

(a)
dp

dt
> 0 for 0 < vc < 1 and fJ < p < ∞,

(b)
dp

dt
< 0 for 0 < vc < 1 and 0 < p < fJ or 1 ≤ vc < ∞ and 0 < p < ∞.

(107)

The K-nullcline is given by the curve p = fK(vc) where

fK(vc) = 2

(
1− v2c
1 + v2c

)
.

for 0 < vc < ∞. The direction field S, which prescribes the slopes of the trajectories in the phase
plane, is given by

S(vc, p) :=
J(vc, p)

K(vc, p)
=

p(pR−Q)

−p
4(1 + v2c ) +

1
2(1− v2c )

(108)

using (104). Given a piecewise smooth curve p = f(vc) in the phase plane we also define

T (vc, f(vc)) := −K(vc, f(vc))f
′(vc) + J(vc, f(vc)) (109)

for all vc ∈ (0,∞) at which f ′(vc) exists; otherwise T is defined to be the average T (vc, f(vc)) =
(1/2)(T (v+c , f(v

+
c ))+T (v−c , f(v

−
c ))). Note that T gives the component of the trajectory at (vc, f(vc))

in the direction of the upward pointing normal to the curve f(vc). If T is one-signed (i.e., has no
zeros) in 0 < vc < ∞ then the trajectories intersecting the curve f(vc) are transverse to that curve.

3.2.2 Global existence

We show that there is an invariant region Ω of the p versus vc phase plane in which the solution to
(104) exists globally in time (Theorem 3.8). At any point in the complement Ωc the solution may
blowup in finite time – indeed Theorem 3.9 guarantees it blows up in a subset of Ωc.

Define Ω to be the region of the phase plane that is bounded above and below by the curves

p1(vc) = 1 + c1H(vc − 1) · (vc − 1),

p2(vc) = −1− c1H(1− vc) · (v−1
c − 1),

(110)

for 0 < vc < ∞, where H(x) is the Heaviside function and 0 < c1 < (3 +
√
73)/8. The region Ω

is illustrated in Figure 7. Note that p2(vc) is obtained from p1(vc) using the symmetry (106), i.e.,
p2(vc) = −p1(v

−1
c ). We have for (vc(t), p(t)) satisfying (104):

Theorem 3.8. Global existence for a = 1/2, σ = 1. For all initial data (vc(0), p(0)) in Ω and
all t > 0, (vc(t), p(t)) ∈ Ω with vc(t) bounded away from zero and infinity. Hence the solution (40,
55) exists and is analytic for all t > 0. Furthermore p(t) → 0 and ω(x, t) → 0 as t → ∞.
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Figure 7: Phase plane for the system (104). Dashed lines are J-nullclines. A global existence region
Ω is shown with the direction field S overlaid on its boundary. A blow-up region Ωb is bounded by
a solid curve. There is another blowup region at lower right.

Proof. We show that Ω is an invariant subset under the dynamics given by (104) by demonstrating
that the trajectories, which have slope S(vc, p), are directed into the the interior of Ω (in view
of the symmetry (106), it is enough to consider only the upper and left boundaries of Ω). This
is a consequence of the following properties: (i) dp/dt < 0 at all points (vc, p1(vc)) on the upper
boundary of Ω, (ii) T (vc, p1(vc)) < 0 for 0 < vc < ∞, and (iii) v′c(t) > 0 for vc ≪ 1 and v′c(t) < 0 for
vc ≫ 1. Properties (i) and (ii) ensure that the trajectories are transverse to the upper boundary of
Ω (hence also the lower boundary) and directed into Ω. Property (iii) implies that vc can neither
tend to zero or infinity, so the singularity does not impinge on the imaginary axis or go off to
infinity. Figure 7 illustrates the domain Ω and direction field.

Property (i) follows from (107b), since 0 < p1(vc) < fp(vc) for 0 < vc < 1, and otherwise
0 < p1 < ∞. Property (ii) is a consequence of the following estimates, divided into two cases:

Case 1: 0 < vc ≤ 1. By direct calculation T (vc, p1(vc)) = −vc, which is strictly less than zero
for all vc in the indicated range. Thus trajectories are transverse to and directed into the upper
boundary of Ω.

Case 2: 1 < vc < ∞. We write

T (vc, p1(vc)) = −U(vc)

4vc
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where from (108) and (109), U(vc) := 2p21(vc)(v
2
c − 1) + 2p1(vc)(v

2
c + 1) − c1V (vc) with V (vc) :=

vc[p1(vc)(1 + v2c ) + 2(v2c − 1)]. We show that U(vc) can be made strictly positive with a suitable
choice of c1. Substitute for p1(vc) using (110) to find

U(vc) =

4∑
n=0

An(vc − 1)n (111)

where A0 = 4 − 2c1, A1 = 8 − 4c1 − 2c21, A2 = 4 + 3c1 − 4c21, A3 = 3c1 + c21, and A4 = c21. The

coefficients in (111) are all non-negative when 0 < c1 ≤ 3+
√
73

8 ≈ 1.443, in which case the zeros of
U(vc) can only occur for vc < 1. It follows that T (vc, p1(vc)) is negative for all vc in 1 < vc < ∞.
This finishes the verification of property (ii).

To verify property (iii), note from the second equation of (104) that K(vc, p) > 0 for (vc, p) ∈ Ω
with vc near zero. Hence trajectories are directed into the interior of Ω near the boundary vc = 0.
Similarly, K(vc, p) < 0 for (vc, p) ∈ Ω and vc >> 1. This establishes property (iii). It follows
that (vc(t), p(t)) ∈ Ω for all t > 0. Finally, p → 0 as t → ∞ since J(vc, p) in (104) is negative
(respectively positive) for (vc, p) ∈ Ω with p > 0 (respectively p < 0). As vc is bounded away from
0 or infinity, ω → 0 as t → ∞ follows. □

Remark. More generally, the upper boundary of Ω can be constructed to have the power law
behavior p1(vc) ∼ cvγc for constant c > 0. Then asymptotically for vc ≫ 0, T ∼ (γ − 2)cvγ−1

c /4,
and the choice 1 < γ < 2 implies that T < 0 for vc ≫ 0. We have constructed such p1(vc) so that
properties (i)-(iii) in the proof of Theorem 3.8 are satisfied in the entire range 0 < vc < ∞. This
gives an expanded domain Ω of global existence (see Figure 9).

A consequence of Theorem 3.8 is that the L2 and B0 norms of the initial data ω(x, 0) must
be sufficiently large for the solution (40) to blow up in finite time. This is because |p(0)| must be
large enough for the initial data to be in Ωc, outside of the region of global existence (see Figure 7).
Combined with (103), this implies that ∥ω(·, 0)∥L2 , ∥ω(·, 0)∥B0 are bounded from below in Ωc, and
hence there is no blowup for sufficiently small data. This contrasts the situation for a = 1/2, σ = 0
in which ∥ω∥L2 can blow up for arbitrarily small data, as noted in Remark 3 of §3.1.5. An analogous
‘double pole’ exact solution for the problem on R also blows up for arbitrarily small data [15].

3.2.3 Finite-time singularity formation

We next show that p blows up in finite time for initial data in the set Ωb shown in Figure 7. To
motivate this, note from (104) (with ν = 1) that if p(0) > 0 and

p(t)R(vc(t))−Q(vc(t)) > λp(t) + µ (112)

for constants λ, µ > 0 and t > 0, then p increases in time and dp/dt grows quadratically in p,
implying that p blows up in finite time. The key to showing finite-time blowup is to find λ and µ
such that the inequality (112) holds for all t > 0. We show this for the particular choice λ = 1/100
and µ = 1/5.

Theorem 3.9. Finite-time singularity formation for a = 1/2, σ = 1. Let Ωb be the region of

the upper-half phase plane lying on or above the curve pb(vc) =
Q(vc)+µ
R(vc)−λ for λ = 1/100 and µ = 1/5,

where 0 < vc <
√
1− 2λ. Then for initial data (vc(0), p(0)) ∈ Ωb, we have for t > 0

p(t) >
µDeµt

1− λDeµt
(113)

35



where D = p(0)/(λp(0) + µ). Hence p(t) → ∞, ∥ω∥L2 → ∞, and ∥ω∥B0 → ∞ in finite time
0 < tc < −(1/µ) ln(λD).

Remark. It follows from the symmetry (106) that p(t) → −∞ in finite time for p(0) < −Q(v−1
c (0))+µ

R(v−1
c (0))−λ

<

0 and vc(0) > (1 + 2λ)−1/2 in the lower half of (vc, p) space (see Figure 7).

Proof. We have that fJ(vc) < pb(vc) < ∞ when 0 < vc <
√
1− 2λ, and thus the curve pb lies

above the upper J-nullcline. Hence dp/dt > 0 on the boundary of Ωb. The unique intersection of
pb(vc) with the K-nullcline occurs at vc = d ≃ 0.3734. Hence both dvc/dt and S evaluated on the
boundary of Ωb are negative when vc > d, and it follows that trajectories are transverse to this
part of the boundary and directed into Ωb. When 0 < vc ≤ d, transversality of the trajectories is
graphically verified. This is done in Figure 8 which shows that T (vc, pb(vc)) > 0 for 0 < vc ≤ d in
the particular case of λ = 1/100 and µ = 1/5. Since the definition (109) uses the upward pointing
normal, this implies the trajectories are directed into Ωb.

The above arguments show that Ωb is an invariant subset under the dynamics given by (104).
Since (112) is satisfied at all (vc, p) in Ωb, it follows from the invariance of Ωb that this inequality
holds for all t > 0 if it holds at t = 0. Therefore from (104) and (112) we have that

dp

dt
> p(λp+ µ) for t > 0, if (vc(0), p(0)) ∈ Ωb.

Integrating the above inequality with initial data p(0) gives (113). Finite-time blowup of the L2

and Wiener norms follows from (103). □.
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Figure 8: Plot showing T (vc, pb) > 0 for 0 < vc ≤ d, where d ≃ 0.3734 (shown by ‘×’) is the zero
of K(vc, pb). When vc > d, the trajectories and the boundary of Ωb are oppositely sloped, hence
transverse.
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3.2.4 Numerical solution of (104)

Figure 9: Comparison of numerical solution to (104) with the phase-plane analysis. Circles and
× markers are numerically determined regions of global existence and blowup, respectively. The
global existence region Ω is shaded, the red curves demarcate a larger region of global existence
obtained by a more detailed analysis, and dashed curves delineate the analytically determined
blowup regions.

Figure 9 compares the numerical solution to (104) with the phase-plane analysis. The blue
circles denote initial data (vc(0), p(0)) for which the numerical solution appears to exist globally in
time. This data is consistent with the global existence region Ω from the analysis of Section 3.2.2
(shaded), as well as a larger such region demarcated by red curves, determined from a more detailed
analysis in the spirit of the remark following Theorem 3.8. The ‘×’ markers denote initial data
for which the numerical solution blows up in finite time, which is consistent with the analytically
determined blowup regions indicated by dashed curves

We show these results in terms of the original variables ω and vc in Figure 10. The numerical
solution is computed from (101), and gives a ‘global existence’ region that is consistent with the
analysis. Analytically determined blowup regions are delineated by dashed curves and are also
consistent with the numerics. The blowup region in the lower half plane of ω−2,i in Figure 10
corresponds to ‘×’ markers in Figure 9 that lie between solid and dashed curves. These are blow-
up points that are not classified by the phase-plane analysis.
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Note that in Figure 10 the upper boundary of the gray-shaded region tends to zero as vc → 0,
linearly in vc, and both upper and lower boundaries tend to zero as vc → 1, linearly in 1 − vc.
However, the L2 and B0 norms of ω (cf. (103)) are bounded away from zero on these bound-
aries. In other words, ∥ω∥L2 and ∥ω∥B0 are large outside of the gray-shaded region, implying that
∥ω∥L2 , ∥ω∥B0 → ∞ in finite time only for sufficiently large data.

Figure 10: Numerical solution in the original variables ω and vc, plotted as in Figure 9 and compared
with the phase-plane analysis. The global existence region corresponding to Ω in Figure 7 is shaded;
analytically determined blowup regions are delineated by dashed curves.

4 Conclusions

Exact pole dynamics solutions have been presented for the generalized Constantin-Lax-Majda equa-
tions with dissipation on a periodic domain. The solutions are obtained for advection parameters
a = 0 and 1/2 and dissipation parameters σ = 0 and 1, for which there is a balance of singular
terms. When a = 0, the solutions consist of a periodic array of N complex conjugate simple pole
singularities with time-dependent positions and amplitudes. Closed form solutions for the singu-
larity positions and amplitudes are obtained in the case of a single (periodically repeated) c.c. pair
of singularities, which enables a rather complete analysis of finite-time singularity formation. We
find finite-time blowup occurs for arbitrarily small initial data ω(x, 0) in the L2 norm when σ = 0,
but only for sufficiently large data when σ = 1. In the case of the Wiener norm, the exact solutions
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exhibit finite-time singularity formation only for sufficiently large data for both σ = 0 and 1. This
result motivates revisiting the well-posedness theory for the Wiener algebra presented in [15], which
there applies for σ ≥ 1. We find that a = 0 is a special case in which the B0 theory in the periodic
problem can be extended to σ ≥ 0, for which we prove global well-posedness for small initial data
(our proof also applies to the real-line problem for σ = 0). Crucially, the pole dynamics solutions
show that the small data assumption in the global existence theory is necessary, as finite time
blowup provably occurs for sufficiently large data.

In the case a = 1/2, solutions are constructed as a sum of c.c. simple and double pole sin-
gularities which enables a problematic log singularity to be cancelled out. The analysis is more
delicate in this case. We find an implicit analytical solution for σ = 0, and a detailed analysis of
this solution gives a complete picture of singularity formation. When σ = 1 closed form analytical
solutions are not available, and we resort to a phase-plane analysis using special variables to obtain
useful information about singularity formation. The results are similar to a = 0: we find finite-time
blowup for arbitrarily small initial data in the L2 norm when σ = 0, but global existence for small
data when σ = 1. There is global existence for sufficiently small data in the Wiener norm for σ = 0
and 1. In both norms we prove that there is collapse for sufficiently large data when σ = 0 and 1.

When a = 0 and σ = 2, a pole dynamics solution for the problem on the real line was found
by Schochet [6]. Remarkably, this solution exhibits finite time blowup in both the L2 and Wiener
norms for all initial data. Despite significant effort, we have been unable to generalize this solution
to the periodic domain. However, the general theory developed here paradoxically shows that
collapse in the Wiener algebra occurs more readily for the problem on the real line with σ = 2 than
it does for σ = 0!

In future work, we intend to numerically investigate finite-time singularity formation in the
gCLM equation with dissipation over the full range of a and for more general values of σ, both for
problems on the real line and periodic domain. Several interesting questions arise. For example,
in the special case a = −1 (for which the gCLM equation is equivalent to the Cordoba-Cordoba-
Fontelos equation) global well-posedness in time is known for σ ≥ 1 and finite-time singularity
formation occurs for σ < 1/2, but the behavior for 1/2 ≤ σ < 1 is open [25]. Techniques developed
to study this problem can have ramifications on the question of finite-time singularity formation in
the Navier-Stokes equations [31]. The uniqueness of blow-up solutions is also of interest. Huang et
al. [23] find that for the nondissipative problem on the real line, there are countably infinite distinct
self-similar solutions which blow up in finite time. It is natural to ask whether such nonuniqueness
also occurs in the problem with dissipation.
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Appendix

A Phase-plane analysis for a = 1/2, σ = 0

We provide the phase-plane analysis for the the real-valued ODE system (56) to complement the
analysis of Section 3.1. Again make the substitution (102) for which (56) becomes

dp

dt
:= L(vc, p) = p(pR− ν),

dvc
dt

:= M(vc, p) = −p

4
(1 + v2c ).

(114)

where R is given by (105). These equations satisfy the same symmetry as (106), i.e.,

L(v−1
c ,−p) = −L(vc, p) and M(v−1

c ,−p) = −v−2
c M(vc, p). (115)

The direction field is

S :=
L(vc, p)

M(vc, p)
= −4(pR− ν)

1 + v2c
.

Similar to (109), we define

T (vc, f(vc)) := −M(vc, f(vc))f
′(vc) + L(vc, f(vc)) (116)

where p = f(vc) is any piecewise smooth curve in the phase plane. The L-nullclines are p = 0 and
p = fL(vc) where

fL(vc) =
2vc

1− v2c
.

The quantity |p| increases in time when |p| > |fL|, and in Theorem A.2 we find sets of initial data
where |p| → ∞ in finite time. We first show, however, that there is an invariant region Ω where
the solution exists globally in time.

We define Ω to be the region in the p versus vc phase plane that is bounded above and below
by the curves

q1(vc) = vc,

q2(vc) = −v−1
c ,

(117)

for 0 < vc < ∞. Note that q2(vc) is obtained from q1(vc) using the symmetry (115). Figure 11
illustrates the domain Ω, L-nullclines and direction field S. Taking ν = 1, we have:
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Theorem A.1. Global existence for a = 1/2, σ = 0. For all initial data (vc(0), p(0)) in Ω and
all t > 0, (vc(t), p(t)) ∈ Ω. Furthermore, vc(t) cannot equal zero or infinity in finite time (although
it can tend to zero or infinity in infinite time, while simultaneously p(t) → 0 and ∥ω∥L2 → 0).
Hence the solution ω(x, t) exists and is analytic for all 0 < t < ∞.

Proof. Substitution of (117) into (114) and (116) shows that dp/dt = −vc(1+v2c ) and T (vc, q1(vc)) =
−vc(1 + v2c )/4 on p = q1(vc). Hence phase trajectories are transverse to the upper boundary of Ω
and are directed into Ω (in view of the symmetry (115) we only need consider the upper and left
boundaries of Ω). When vc ≪ 1, we have from (114) that dvc/dt is positive when p < 0, so that
trajectories in the lower half phase-plane are directed away from the vc = 0 axis. However, phase
trajectories are directed toward this axis when p > 0. In this case dvc/dt ∼ −vc/4 for vc ≪ 1, and
hence vc can tend to zero in infinite time, while simultaneously p → 0 linearly in vc (cf. Figure 11)
and from (103) ∥ω∥L2 → 0. A similar argument applies for vc ≫ 1, in which case vc can tend to
infinity in infinite time when p < 0. □

We next show that p blows up in finite time for initial data in the set Ωb shown in Figure 11.
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Figure 11: Phase plane for the system (114). Dashed lines are L-nullclines. A global existence
region Ω is shown with the direction field S overlaid on its boundary. A blow-up region Ωb is
bounded by a solid curve. There is another blowup region at lower right.

Theorem A.2. Finite-time singularity formation for a = 1/2, σ = 0.
Let 0 < vc(0) < 1 and 0 < β < R(vc(0)) be given, and define Ωb be the region of the upper-half
phase plane lying above the curve

pb(vc) =
1

R(vc)− β
.
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Then for (vc(0), p(0)) ∈ Ωb, we have p(t) ≥ p(0)/(1−βp(0)t) and vc(t) < vc(0) (i.e., Ωb is invariant
under (114)). Thus p(t) → ∞, ∥ω∥L2 → ∞, and ∥ω∥B0 → ∞ at t = tc where tc ≤ 1/(p(0)β).

Remark. It follows from the symmetry (115) that for 1 < vc(0) < ∞ and p(0) < −pb(1/vc(0)) < 0,
we have p(t) ≤ p(0)/(1 − β|p(0)|t) where 0 < β < |R(vc(0))|. For this initial data, p(t) → −∞ at
t = tc where tc ≤ 1/(|p(0)|β).

Proof. By definition of pb we have that

p(t) >
1

R(vc(t))− β
(118)

at t = 0, since by assumption p(0) > pb(0). Assume (118) is satisfied up to time t = T . Since
dR/dvc < 0 for 0 < vc < 1, and also from (114) vc is a decreasing function of t, it follows that
R > β is increasing in t. Furthermore from (114) and (118) dp/dt > 0 at the time T . Hence (118)
holds for t > T and by extension for all t. Rewriting (118) as pR − 1 > βp and substituting into
(114) implies dp/dt > βp2. Integrating this inequality gives the result on p(t), with the blowup of
the norms following from (103). □

Theorem A.2 illustrates the difference between blowup of ∥ω∥L2 for σ = 0 and σ = 1. As noted
earlier, finite-time singularity formation for a = 1/2, σ = 0 can occur for arbitrarily small L2 norm
of ω(x, 0). In the phase-plane analysis this is seen from the asymptotic behavior pb(vc) ∼ 2vc of
the boundary of the blow-up region Ωb when vc ≪ 1. Thus from (103), ∥ω(x, 0)∥L2 can be made
arbitrarily small in Ωb. In contrast, when σ = 1 the solution (31) blows up only for sufficiently
large L2 data, per the comment following the proof of Theorem 3.8. The Wiener norm blows up
only for sufficiently large data in our pole dynamics solutions both for σ = 0 and σ = 1.

A.1 Numerical solution of (114)

Figure 12 compares the numerical solution to (114) with the phase-plane analysis. The blue circles
denote initial data (vc(0), p(0)) for which the numerical solution appears to exist globally in time,
and are consistent with the global existence region Ω from analysis. The ‘×’ markers denote
initial data for which the numerical solution blows up in finite time. These are consistent with the
analytically determined blowup regions indicated by dashed curves.

The numerical solution and invariant regions from the phase-plane analysis are depicted in the
original variables ω and vc in Figure 13. These are compared to the implicit solution from Section
3.1. The analytical results are again consistent with the numerics. In particular the boundary
between the global existence and blow-up regions from the implicit solution, indicated by the red-
dashed curves, is in excellent agreement with the numerical results.
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Figure 12: Comparison of numerical solution to (114) with the phase-plane analysis. Circles and
× markers are numerically determined regions of global existence and blowup, respectively. Solid
curves give the boundary of Ω, and dashed curves show the boundary of Ωb and second blow-up
region at lower right (cf. Figure 11).
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Figure 13: Numerical solution in the original variables ω and vc, plotted as in Figure 12. The shaded
domain and dashed-black curves demarcate the global existence region Ω and blowup regions,
respectively, from the phase-plane analysis. The red dashed curves indicate the boundary between
the global existence and blowup regions as determined by the implicit solution from Section 3.1
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