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INVARIANT SUBSPACES FOR FINITE INDEX SHIFTS IN HARDY SPACES

FILIPPO BRACCI AND EVA A. GALLARDO-GUTIÉRREZ

ABSTRACT. Let H be the finite direct sums of H2(D). In this paper, we give a characteriza-

tion of the closed subspaces of H which are invariant under the shift, thus obtaining a concrete

Beurling-type theorem for the finite index shift. This characterization presents any such a sub-

space as the finite intersection, up to an inner function, of pre-images of a closed shift-invariant

subspace of H2(D) under “determinantal operators” from H to H
2(D), that is, continuous linear

operators which intertwine the shifts and appear as determinants of matrices with entries given

by bounded holomorphic functions. With simple algebraic manipulations we provide a direct

proof that every invariant closed subspace of codimension at least two sits into a non-trivial

closed invariant subspace. As a consequence every bounded linear operator with finite defect

has a nontrivial closed invariant subspace.
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1. INTRODUCTION

Let H2(D) be the classical Hardy space on the unit disc D. Beurling’s theorem [5, 6] states

that every closed subspace of H2(D) invariant under the shift are of the form φH2(D), where φ
is either identically 0 or an inner function.

Beurling’s Theorem is a cornerstone in the theory of function spaces. It has been extended to

broader classes of operators, with significant advancements achieved through the development

of sophisticated tools in related fields such as Harmonic Analysis, Function Theory, and finite-

dimensional Linear Algebra within the framework of Operator Theory (see, e.g., [9, 7, 18, 1, 2,

17, 16, 14, 15]).

The importance of understanding the lattice of invariant subspaces for the shift operators,

besides its intrinsic interest, lies in the universality property of their adjoints (see, e.g., [18,

Section 1.5]). Specifically, every continuous endomorphism of defect δ in a Hilbert space can

be modeled through the restriction to an invariant subspace of any backward shift of index at

least δ. From Beurling’s theorem, it is straightforward to understand the lattice of invariant

subspaces of the shift of index one. Via the universality property, this provides an affirmative

solution to the invariant subspace problem for bounded linear operators with defect ≤ 1.

Beurling’s Theorem can be viewed as stating that every non-trivial closed invariant subspace

for the shift in H2(D) is the image of an isometry which commutes with the shift. From this

perspective, Lax [13] (for finite index shifts), along with Halmos [12] and Rovnyak [19] (for

infinite index shifts), extended Beurling’s theorem to what is now known as the Beurling-Lax

Theorem (see also [18, Section 1.12]). They proved that every closed subspace of a Hilbert

space, invariant under a shift, is the image of a quasi-isometry that commutes with the shift.

While the Beurling-Lax Theorem fully characterizes closed invariant subspaces for the shift

in any Hilbert space, its generality and abstraction can pose challenges when working with

specific cases.

For instance, directly from this theorem, it seems difficult to obtain information about maxi-

mal invariant subspaces for the shift, even for finite index shifts. In fact, by a result of Atzmon

[4], it is known that maximal invariant subspaces for finite index shifts have codimension one—

this also follows from Guo, Hei and Hou [11], who proved a similar statement for the restriction

of the multiplication on the Bergman space to a finite index invariant subspace, and hence the

result follows by the “universality” of the lattice of invariant subspaces of such an operator

[3, Corollary 3.4]. However those proofs are non constructive and could be very difficult to

generalize to infinite index shifts.

In this paper, we present a novel approach to describing closed invariant subspaces for the

finite index shift on the direct sum of Hardy spaces. This approach proves to be “effective’ in

the sense that, starting from this characterization, we can easily demonstrate through simple

algebraic manipulations that the only maximal invariant subspaces have codimension one.

In order to state our main result, we need to introduce some notations (see Section 3 for details

and precise statements). Let d be a positive integer and let H be the Hilbert space given by the

direct sum of d copies of the Hardy space H2(D). The elements of H are d-tuple of functions
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in H2(D), and we write F ∈ H if F (z) = f1(z)e1 + . . .+ fd(z)ed, z ∈ D and fj ∈ H2(D). Let

S : H → H be the shift operator, defined as S(F )(z) = zF (z) = zf1(z)e1 + . . . + zfd(z)ed,

z ∈ D. We write S1 := S if d = 1.

The basic observation is that if R : H → H2(D) is a bounded linear operator such that

R ◦ S = S1 ◦ R and φ is a inner function, then M := R−1(φH2(D)) is an S-invariant closed

subspace of H. Our main result is that every closed S-invariant subspace of H are, up to an

inner function, finite intersections of subspaces like M . From this perspective, our approach

also makes sense for d = ∞. Indeed, the basic question is whether the same conclusion holds

in such a case (possibly with infinitely many intersections). In fact, we also specify the form

of the operators R, which turns out to be what we call “determinantal operators”, and we now

describe them in detail.

Let 1 ≤ m ≤ d be an integer number and let A = (ajk) be a m×m matrix whose entries are

bounded holomorphic functions in D (that is, elements of H∞(D)). Let 1 ≤ s1 < . . . < sm ≤ d.

Let j ∈ {1, . . . , m}. A determinantal operator is any linear operator L : H → H2(D) of the

form

L(f1e1 + . . .+ fded) := det























a11 . . . a1m
...

...
...

aj−1,1 . . . aj−1,m

fs1 . . . fsm
aj+1,1 . . . aj+1,m

...
...

...

am1 . . . amm























.

Let V ⊆ H2(D) be a closed S1-invariant subspace. Hence, there exists ϕ which is either

identically zero or a inner function, such that V = ϕH2(D). A determinantal brick Qϕ based

on ϕ is any set of the form

Qϕ := L−1(ϕH2(D)) = {F ∈ H : L(F ) ∈ ϕH2(D)},
where L is a determinantal operator. The set Qϕ is a closed S-invariant subspace of H. A

determinantal space Qϕ based on ϕ is the intersection of a finite number of determinantal bricks

based on ϕ, that is,

Qϕ = Q1
ϕ ∩ . . . ∩Qn

ϕ,

where Qj
ϕ is a determinantal brick based on ϕ, j = 1, . . . , n. With these definitions at hand, the

main result of the paper can then be stated as follows:

Theorem 1.1. Let N 6= {0} be a closed subspace of H. Then N is S-invariant if and only if

there exist inner functions ϕ, φ and determinantal subspaces Qϕ and Q0 such that either

N = φ (Qϕ ∩ Q0) ,

or

N = φQϕ.
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In the previous statement, it might happen that either Qϕ = H or Q0 = H (or both, in case

N = H). Note also that, in case d = 1, the previous theorem reduces to the classical Beurl-

ing’s Theorem. Indeed, in that case, the only determinantal operator is the identity opeartor

L(f1e1) = f1 and hence the determinantal bricks are of the form Qϕ = ϕH2(D) and Q0 = {0}.

Theorem 1.1 follows at once from Theorem 6.1 (where a more precise statement is given).

The starting point of the proof is the Beurling-Lax theorem (see Section 5): any closed S-

invariant subspace of H is the image of a so-called S-inner operator of H. Such an operator

is actually given by the a d × d matrix with entries in H∞(D). This is the matrix from which

we define the determinantal subspaces associated to a closed S-invariant subspace. The two

different cases in the theorem depends on whether the determinant of such a matrix is identically

zero or not.

The concrete form given by Theorem 1.1 allows us to prove directly the following result (cfr.

[4]):

Theorem 1.2. Let N ( H be a closed S-invariant subspace. Suppose that dimN⊥ ≥ 2. Then

there exists a closed S-invariant subspace M ( H such that N ( M .

This theorem follows immediately from Proposition 4.1, Proposition 4.2 and Theorem 6.1.

As we stated in the introduction, Theorem 1.2 allows to give an affirmative answer to the

invariant subspace problem for finite defect operators (for an account history and circle of ideas

related to the subspace invariant problem see, e.g., [8, 10]). Namely, let H be a separable Hilbert

space, and let T : H → H be a bounded linear operator. The defect of T is

δ(T ) := dim (I − T ∗T )H.

Roughly speaking, δ(T ) “measures” how much far from an isometry T is. By the universality

of the shifts (see, e.g., [18, Section 1.5]), every operator T : H → H with δ(T ) ≤ d is unitarily

equivalent to the restriction of the backward shift S∗ to some of its invariant closed subspaces.

By Theorem 1.2, the backward shift S∗ : H → H does not have non-trivial minimal invariant

closed subspaces of dimension greater than 1. Hence, we have

Corollary 1.3. Let H be a separable Hilbert space. Let T : H → H be a bounded linear

operator such that δ(T ) < ∞. Then there exists a closed subspace M ( H , M 6= {0} such

that T (M) ⊆ M .
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2. PRELIMINARIES

Let d be a positive integer and let H be the Hilbert space given by the direct sum of d copies

of the Hardy space H2(D). It is convenient to write

H = H2(D)e1 ⊕ . . .⊕H2(D)ed,

where ej = (0, . . . , 0, 1, 0, . . . , 0), with 1 in the j-th position, j = 1, . . . , d.

The elements of H are given by
∑d

j=1 fjej where fj ∈ H2(D), j = 1, . . . , d. The vector

space H is a (separable) Hilber space with Hermitian product given by

〈
d
∑

j=1

fjej ,

d
∑

j=1

gjej〉 :=
d
∑

j=1

〈fj, gj〉H2(D).

The shift operator S : H → H is defined as

S(f1(z)e1 + . . .+ fd(z)ed) := zf1(z)e1 + . . .+ zfd(z)ed.

As a convenient notation, throughout the paper the shift operator for d = 1, i.e., H = H2(D),
will be denoted by S1, i.e., S1(f(z)) := zf(z), f ∈ H2(D).

As customary, if X is a Hilbert space and T : X → X is a bounded linear operator, we say

that a closed subspace Y ⊂ X is T -invariant is T (Y ) ⊆ Y .

Given a bounded function g ∈ H∞(D), if V ⊂ H is a closed subspace, we denote by gV the

image of V via the continuous linear operator of H into H given by

f1e1 + . . .+ fded 7→ gf1e1 + . . .+ gfded.

In general, gV is not closed. However, if g is inner (that is, g : D → D is a holomoprhic

function such that limr→1− |g(reiθ)| = 1 for a.e. θ ∈ [0, 2π]), then the operator H ∋ F 7→ gF
is an isometry and if V is closed subspace of H, then so is gV .

The algebra of inner functions is well studied (see, e.g., [7] and references therein). As

customary, we say that a inner function φ is invertible or constant if φ(z) = λ for all z ∈ D

and some unimodular constant λ. We say that an inner function φ divides a inner function ϕ
provided φ

ϕ
is a inner function. Given any family {φj}j∈I of inner functions, there exists a inner

function φ, unique up to multiplication by a unimodular constant, such that φ divides φj for all

j ∈ I and, if ϕ is a inner function that divides all elements of {φj}j∈I , then ϕ divides φ. The

function φ is called the greatest common divisor of {φj}j∈I—strictly speaking, φ is not unique,

which introduces some ambiguity in the choice. However, since it is unique up to multiplication

by a unimodular constant, this ambiguity is inconsequential. Two inner functions are coprime

if their greatest common divisor is 1.

By the classical Beurling theorem [5] (or see, e.g., [7, 9]), a closed subspace V of H2(D) is

S1-invariant if and only if there exists φ ∈ H∞(D) an inner function, such that V = φH2(D).
The following lemma is well known, and we omit the proof:
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Lemma 2.1. Let ϕ be an inner function. Suppose that dim(ϕH2(D))⊥ ≥ 2. Then there exists

a not constant inner function ϕ̃ such that ϕ̃ divides ϕ and ϕ does not divide ϕ̃. In particular,

ϕH2(D) ( ϕ̃H2(D) ( H2(D).

We will make use of the inner-outer factorization of a holomorphic function (see, e.g., [9]):

Definition 2.2. For any f ∈ H2(D), f 6≡ 0, we write f = I(f)O(f) for the inner-outer

factorization, where I(f) is inner and O(f) ∈ H2(D) is outer.

For the aim of this paper, the only relevant property of an outer function is that it is S1 cyclic.

That is, if O ∈ H2(D) is an outer function,

span{Sn(O) : n ∈ N}H
2(D)

= {pO : p polynomial} = H2(D).

In the following sections, we will need the lemma below, for which we provide a proof due

to the lack of a direct reference.

Lemma 2.3. Let φ1, . . . , φm be inner functions. Let φ be the (inner function) greatest common

divisor of φ1, . . . , φm. Then there exist m sequences {hj
n}n∈N ⊂ H2(D), j = 1, . . . , m such

that {∑m
j=1 h

j
nφj} converges to φ in H2(D).

Proof. We have that V :=
∑m

j=1 φjH
2(D) ⊂ φH2(D). Thus V

H2(D) ⊆ φH2(D). Since V is

S1-invariant, by Beurling Theorem there exists a inner function ϕ such that V
H2(D)

= ϕH2(D).
Hence, ϕ divides φ1, . . . , φm. In particular, ϕ divides φ. Thus,

V
H2(D) ⊆ φH2(D) ⊆ ϕH2(D) = V

H2(D)
,

and the result follows. �

3. CLOSED S-INVARIANT SPACES ASSOCIATED TO MATRICES

In this section we associate to every d × d matrix whose entries are in H∞(D) a closed

S-invariant subspace of H. We start with some general preliminaries.

Definition 3.1. For positive integers m,n, we denote by M∞(m × n) the set of all m × n
matrices whose entries are in H∞(D). In other words, B ∈ M∞(m × n) if there exist bjk ∈
H∞(D), j = 1, . . . , m, k = 1, . . . , n, such that

B =





b11 . . . b1n
. . . . . . . . .
bm1 . . . bmn



 .

For square matrices we can associate certain operators which will be crucial for our charac-

terization of closed S-invariant spaces:
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Definition 3.2. Let m ∈ {1, . . . , d}. Let j ∈ {1, . . . , m} and let J = {j1, . . . , jm} with

1 ≤ j1 < . . . < jm ≤ d. Let B ∈ M∞(m×m). The (j, J)-determinantal operator associated

to B is the operator LB,j,J : H → H2(D) defined as follows:

LB,j,J(f1e1 + . . .+ fded) := det



















b11 . . . b1m
. . . . . . . . .

b(j−1)1 . . . b(j−1)m

fj1 . . . fjm
b(j+1)1 . . . b(j+1)m

. . . . . . . . .
bm1 . . . bmm



















In case m = d (hence J = {1, . . . , d}) we simply denote LB,j,J by LB,j .

Lemma 3.3. Let m ∈ {1, . . . , d}. Let B ∈ M∞(m × m). For every j ∈ {1, . . . , m} and

J = {j1, . . . , jm} with 1 ≤ j1 < . . . < jm ≤ d, the operator LB,j,J : H → H2(D) is

continuous and LB,j,J ◦ S = S1 ◦ LB,j,J .

Proof. Let F1, F2 ∈ H. Since the determinant is m-multilinear on the rows, it follows that

LB,j,J(F1 + F2) = LB,j,J(F1) + LB,j,J(F2) and LB,j,J(zF1) = zLB,j,J(F1). Therefore the

operator LB,j,J is linear and intertwines S and S1. Finally, using the Laplace expansion of the

determinant with respect to the j-th row, we see that, if F = f1e1 + . . .+ fded ∈ H,

(3.1) LB,j,J(F ) =

d
∑

k=1

(−1)k+jfjk det(B
jk),

where Bjk is the (m− 1)× (m− 1) matrix obtained from B by removing the j-th row and the

k-th column. Note that det(Bjk) is a polynomial in the blm’s. Since blm ∈ H∞(D), it follows

that there exists C > 0 such that ‖ det(Bjk)‖∞ ≤ C for all k = 1, . . . , m. Therefore,

‖LB,j,J(F )‖H2(D) ≤ C
m
∑

k=1

‖fjk‖H2(D) ≤ C
√
m

√

√

√

√

m
∑

k=1

‖fjk‖2H2(D) ≤ C
√
m‖F‖H,

hence LB,j,J is bounded. �

A first consequence of this lemma, recalling the definition of determinantal subspaces from

the introduction is the following:

Corollary 3.4. Every determinantal subspace of H is closed and S-invariant.

Now we go on with our construction:

Definition 3.5. Let A ∈ M∞(d × d). Let A(A) = {ajk : ajk 6≡ 0}. If A is not the zero

matrix—hence A(A) 6= ∅—we denote by φA the (inner function) greatest common divisor of

{I(ajk) : ajk ∈ A(A)}. We call φA the inner greatest common divisor of A.



8 F. BRACCI AND E. A. GALLARDO-GUTIÉRREZ

Finally for every j, k ∈ {1, . . . , d} let

âjk :=
ajk
φA

.

Note that âjk ∈ H∞(D) for all j, k = 1, . . . , d.

Definition 3.6. We call the matrix Â := (âjk)j,k=1,...,d ∈ M∞(d× d) the reduced matrix of A.

3.1. Case detA 6≡ 0. Let A ∈ M∞(d× d) and assume detA 6≡ 0. Clearly det Â 6≡ 0. Hence,

it is well defined

ϕA := I(det Â),

the inner factor of det Â.

Recall that, if L : H → H2(D) is a linear operator and V ⊆ H2(D), the fiber of L over V is

defined as

L−1(V ) := {F ∈ H : L(F ) ∈ V }.
Clearly, if L is continuous and V is closed in H2(D), then L−1(V ) is closed in H.

Definition 3.7. Let A ∈ M∞(d× d), and assume detA 6≡ 0. We let

NA := φA

(

d
⋂

j=1

L−1

Â,j
(ϕAH

2(D))

)

,

and call it the closed S-invariant space associated to A.

With the notation introduced in the Introduction,

NA = φAQϕA
,

where QϕA
is a determinantal space.

3.2. Case detA ≡ 0. Let A ∈ M∞(d× d) and assume detA ≡ 0.

As a matter of notation, let m,n be positive integers. If z ∈ D, and B ∈ M∞(m × n), we

denote by B(z) the m × n matrix whose entries are the complex numbers given by evaluating

the entries of B at z.

Definition 3.8. Let B ∈ M∞(m × n) where m,n are positive intergers. We say that B has

rank k ∈ {0, . . . ,min{m,n}} if rank(B(z)) ≤ k for all z ∈ D and if there exists z0 ∈ D such

that rank(B(z0)) = k.

Remark 3.9. Note that if A ∈ M∞(d × d) then A has rank d if and only if detA 6≡ 0. On the

other hand, by Kronecker’s theorem, the rank of A is k < d if and only if there exists a k × k
matrix B obtained by removing d − k rows and d − k columns from A such that detB 6≡ 0,

and all matrices containing B and obtained from A by removing d− k − 1 rows and d− k − 1
columns have determinants identically zero.
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Remark 3.10. Clearly, A is the zero matrix (that is the d × d matrix whose entries are the

identically 0 function) if and only if rank(A) = 0. On the other hand, if A is not the zero

matrix, then A = φAÂ and, since φA has at most a discrete set of zeros in D, it is clear by the

previous observation that rank(Â) = rank(A).

Definition 3.11. Let A ∈ M∞(d× d), and assume that rank(A) = k ∈ {1, . . . , d− 1}. We let

R(A) be the set of all f1e1 + . . .+ fded ∈ H such that

(3.2) rank









f1 . . . fd
â11 . . . â1d

... . . .
...

âd1 . . . âdd









= k.

Lemma 3.12. Let A ∈ M∞(d × d), and assume that rank(A) = k ∈ {1, . . . , d − 1}. Then

R(A) is a closed S-invariant subspace of H. Moreover, R(A) is a determinantal space of the

form Q0.

Proof. Since the rank is invariant by switching rows or columns, we can assume that

det





â11 . . . â1k
... . . .

...

âk1 . . . âkk



 6≡ 0.

By Kronecker’s theorem (see Remark 3.9) the condition (3.2) is equivalent to

(3.3) Rm(f1e1 + . . .+ fded) := det









f1 . . . fk fm
â11 . . . â1k â1m

... . . .
...

...

âk1 . . . âkk âkm









≡ 0, m = k + 1, . . . d.

By Lemma 3.3, Rm : H → H2(D) is a continuous linear operator and Rm ◦ S = S1 ◦ Rm,

m = k + 1, . . . d. Hence,

R(A) =
d
⋂

m=k+1

R−1
m ({0}),

is a closed, S-invariant subspace of H, and it is actually a determinantal space of the form

Q0. �

Recalling from Remark 3.10 that A and Â have the same rank, we give the following:

Definition 3.13. Let A ∈ M∞(d×d) and assume detA ≡ 0 and rank(A) = k ∈ {1, . . . , d−1}.

We say that J = {j1, . . . , jk : 1 ≤ j1 < . . . < jk ≤ d} is a good multi-index of Â if there

exists S = {s1, . . . , sk : 1 ≤ s1 < . . . < sk ≤ d} such that the minor ÂS,J ∈ M∞(k × k) of

Â obtained from Â by removing the rows s 6∈ S and the columns j 6∈ J has the property that

det ÂS,J 6≡ 0.
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The set of all indices S which satisfy the previous condition with respect to J is denoted by

JJ(Â).

Note that, by Remark 3.9, if A has rank k there exists at least one good multi-index for Â.

Example 3.14. Let

A =





φ 0 0
0 ϕ ϕ
0 1 1



 ,

where φ, ϕ are non-invertible inner functions. Clearly, A = Â and rank(A) = 2. The good

multi-indices of Â are J1 = {1, 2} and J2 = {1, 3}. Moreover, JJ1(Â) = JJ2(Â) =
{{1, 2}, {1, 3}}. Also,

Â{1,2},J1 = Â{1,2},J2 =

(

φ 0
0 ϕ

)

, Â{1,3},J1 = Â{1,3},J2 =

(

φ 0
0 1

)

.

Definition 3.15. Let A ∈ M∞(d×d) and assume detA ≡ 0 and rank(A) = k ∈ {1, . . . , d−1}.

Let J be a good multi-index of Â. We let ϕJ,A to be the (inner function) greatest common divisor

of the inner factors of det ÂS,J , when S varies in JJ(Â). That is,

ϕJ,A := g.c.d{I(det ÂS,J) : S ∈ JJ(Â)}.
Now we are ready to define a closed S-invariant subspace associated to A in case detA ≡ 0:

Definition 3.16. Let A ∈ M∞(d×d) and assume detA ≡ 0 and rank(A) = k ∈ {1, . . . , d−1}.

Let J be a good multi-index of Â. We let

NA,J := φA









⋂

S∈JJ(Â),j=1,...,k

L−1

ÂS,J ,j,J
(ϕJ,AH

2(D))



 ∩ R(A)



 .

It follows at once from Lemma 3.3 and Lemma 3.12 that NA,J is a closed S-invariant sub-

space of H for every good multi-index J of Â. Also, note that, in the terminology of the

Introduction,

NA,J = φA(QϕJ,A
∩Q0).

Remark 3.17. Let A ∈ M∞(d× d) and assume detA ≡ 0 and rank(A) = k ∈ {1, . . . , d− 1}.

Let J, J ′ be a good multi-indices of Â. We will show (see the proof of Theorem 6.1) that actually

NA,J = NA,J ′. In fact, we show that, for every J good multi-index of Â, we have

NA,J = span{Sn(a11e1 + . . .+ a1ded), . . . , Sn(ad1e1 + . . .+ added) : n ∈ N}H.
Example 3.18. Let

A =





φ 0 0
0 ϕ 0
0 0 0



 ,
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with ϕ, φ two non-invertible inner functions, coprime. Hence, A = Â, rank(A) = 2 and the

(only) good multi-index is J = {1, 2}. Also, JJ(Â) = {J}. We have ϕJ,A = φϕ. Hence,

L−1

ÂJ,J ,1,J
(φϕH2(D)) = {f1e1 + f2e2 + f3e3 ∈ H : f1ϕ ∈ φϕH2(D)}

= {f1e1 + f2e2 + f3e3 ∈ H : f1 ∈ φH2(D)},
and, similarly,

L−1

ÂJ,J ,2,J
(φϕH2(D)) = {f1e1 + f2e2 + f3e3 ∈ H : f2 ∈ ϕH2(D)}.

Also, by (3.3),

R(A) = H2(D)e1 ⊕H2(D)e2,

so that

NA = φH2(D)e1 ⊕ ϕH2(D)e2.

Example 3.19. Let

A =





1 0 0
0 0 0
0 0 0



 .

Hence, A = Â, rank(A) = 1 and the (only) good multi-index is J = {1}. Also, JJ(Â) = {J}.

We have ϕJ,A = 1. Hence,

L−1

ÂJ,J ,1,J
(H2(D)) = {f1e1 + f2e2 + f3e3 ∈ H : f1 ∈ H2(D)} = H.

Also, by (3.3),

R(A) = H2(D)e1,

so that

NA = H2(D)e1.

4. THE SPACES NA AND NJ,A ARE NOT MAXIMAL FOR THE SHIFT

In this section we prove an analogue of Lemma 2.1 for the spaces defined in the previous

section.

Proposition 4.1. Let A ∈ M∞(d×d), detA ≡ 0. Suppose A is not the identically zero matrix.

Let J be a good multi-index of Â. Then dim(NA,J)
⊥ = ∞ and there exists a closed S-invariant

subspace M ( H such that NA,J ( M .

Proof. Let A = (ajm), j,m ∈ {1, . . . , d} and ajm ∈ H∞(D).

Let k ∈ {1, . . . , d − 1} be the rank of A–and hence of Â. In order to simplify notation, and

without loss of generality, we can assume that J = {1, . . . , k} is a good multi-index of Â and

that J ∈ JJ(Â). Thus, det ÂJ,J 6≡ 0.
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Now, for every θ ∈ H2(D),

(4.1) det









0 . . . 0 θ
â11 . . . â1k â1d

... . . .
...

...

âk1 . . . âkk âkd









= (−1)kθ det ÂJ,J .

In particular, if θ 6≡ 0, by (3.3), θed 6∈ R(A) and, hence R(A) 6= H. Note that this also implies

that dim(H/R(A)) = ∞—hence, dim(R(A))⊥ = ∞ and hence dim(NA,J)
⊥ = ∞—because

[θed] = [0] in H/R(A) if and only if θ ≡ 0 and thus H2(D) ∋ θ 7→ [θed] ∈ H/R(A) is a linear

injective operator.

We know that NA,J ⊆ φAR(A) and, clearly, φAR(A) ⊆ R(A). Thus, if NA,J 6= R(A),
we can take M = R(A) and we are done since R(A) is a closed S-invariant subspace of H.

Therefore, we can assume that

NA,J = R(A).

Now, let θ be an inner function and consider the matrix B ∈ M∞(d× d) given by

B :=









0 . . . 0 θ
â11 . . . â1,d−1 â1d

... . . .
...

...

âd−1,1 . . . âd−1,d−1 âd−1,d









.

By (4.1), the rank of B is k + 1.

1. Case k + 1 < d.

We claim that R(A) ( R(B) ( H. If this is so, taking into account that R(B) is closed

and S-invariant, we can take M = R(B) and we are done. Indeed, arguing as before, we see

that R(B) ( H. On the other hand, let f1e1 + . . . + fded ∈ R(A). By (3.3), we have for

m = k + 1, . . . , d− 1,

det













f1 . . . fk fm fd
0 . . . 0 0 θ
â11 . . . â1k â1m â1d

... . . .
...

...

âk1 . . . âkk akm âk,d













= (−1)kθ det









f1 . . . fk fm
â11 . . . â1k â1m

... . . .
...

...

âk1 . . . âkk akm









≡ 0,

which, by (4.1) and Kronecker’s Theorem (see Remark 3.9) implies that

rank













f1 . . . fd−1 fd
0 . . . 0 θ
â11 . . . â1,d−1 â1d

... . . .
...

...

âd−1,1 . . . ad−1,d−1 âd−1,d













= k + 1,



INVARIANT SUBSPACES FOR FINITE INDEX SHIFTS 13

that is, f1e1 + . . .+ fded ∈ R(B). Hence, R(A) ⊂ R(B). It is clear that R(A) 6= R(B), since

θed ∈ R(B) but θed 6∈ R(A).

1. Case k + 1 = d.

Since k = d − 1, we have that J = {1, . . . , d − 1} (and we are assuming det ÂJ,J 6≡ 0).

Let θ be a non-invertible inner function coprime with the inner part I(det ÂJ,J) of det ÂJ,J (for

instance, if I(det ÂJ,J)(z0) 6= 0 and for some z0 ∈ D, we can take θ(z) = z0−z
1−z0z

, z ∈ D). Let

M :=
d
⋂

j=1

L−1
B,j(θH

2(D)).

Note that M is a determinantal space, so it is closed and S-invariant. We have

LB,1(ed) = det









0 . . . 0 1
â11 . . . â1,d−1 â1d

... . . .
...

...

âd−1,1 . . . âd−1,d−1 âd−1,d









= (−1)d+1 det ÂJ,J .

Taking into account that θ is coprime with I(det ÂJ,J), it follows that LB,1(ed) 6∈ θH2(D).
Thus, M 6= H.

Clearly, θed ∈ M , since LB,j(θed) ≡ 0 for j = 2, . . . , d and

LB,1(θed) = (−1)d+1θ det ÂJ,J ∈ θH2(D).

While, as we already noticed, θed 6∈ R(A). Therefore, M 6= R(A). So, in order to complete

the proof, we are left to show that

R(A) ⊂ M.

Let f1e1 + . . .+ fded ∈ R(A). Hence, by Kronecker’s Theorem (see Remark 3.9), LB,1(f1e1 +
. . .+ fded) = 0. While, for j ∈ {2, . . . , d} we have

LB,j(f1e1 + . . .+ fded) = (−1)d+1θ det























â11 . . . â1,d−1
...

...
...

âj−1,1 . . . âj−1,d−1

f1 . . . fd−1

âj+1,1 . . . âj+1,d−1
...

...
...

âd−1,1 . . . âd−1,d−1























∈ θH2(D).

Therefore, f1e1 + . . .+ fded ∈ M , and we are done. �

Proposition 4.2. Let A ∈ M∞(d×d), detA 6≡ 0 and suppose that dim(NA)
⊥ ≥ 2. Then there

exists a closed S-invariant subspace M ( H such that NA ( M .
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Proof. Let

QϕA
:=

d
⋂

j=1

L−1

Â,j
(ϕAH

2(D)).

By the very definition, NA := φAQϕA
.

Suppose first that QϕA
= H. Hence, NA = φAH. Since we are assuming that dim(NA)

⊥ ≥
2, it follows that φA is not invertible. If d = 1, the result follows from Lemma 2.1, so we can

assume d ≥ 2. In this case, let

M :=
(

φAH
2(D)

)

e1 ⊕H2(D)⊕ . . .⊕H2(D).

Clearly M is closed, S-invariant, φAH ( M ( H, and we are done.

Therefore, we can assume that QϕA
6= H. Hence, there exists j such that L−1

Â,j
(ϕAH

2(D)) 6=
H. Without loss of generality, we can assume j = d. Since NA ⊆ φAL

−1

Â,d
(ϕAH

2(D)) and

clearly φAL
−1

Â,d
(ϕAH

2(D) ⊆ L−1

Â,d
(ϕAH

2(D)), if NA 6= L−1

Â,d
(ϕAH

2(D)), we can take M =

L−1

Â,d
(ϕAH

2(D)). By Corollary 3.4, M is closed and S-invariant, and we are done.

Therefore, we are left to assume

NA = L−1

Â,d
(ϕAH

2(D)).

Fix j ∈ {1, . . . , d} and let Sj = {1, . . . , d} \ {j}. Let J = {1, . . . , d − 1}. Also, let θ̃j be

the (inner function) greatest common divisor of ϕA and the inner part I(det ÂJ,Sj ) of det ÂJ,Sj .

Let θj be an inner function (unique up to multiplication by a unimodular constant) such that

(4.2) ϕA = θ̃jθj .

Hence

LÂ,d(θjej) = det









â11 . . . â1,j−1 â1,j â1,j+1 . . . â1,d
...

...
...

...

âd−1,1 . . . âd−1,j−1 âd−1,j âd−1,j+1 . . . âd−1,d

0 . . . 0 θj 0 . . . 0









= (−1)d+jθj det Â
J,Sj ∈ ϕAH

2(D).

(4.3)

This in particular implies that

(4.4) Z := θ1H
2(D)⊕ . . .⊕ θdH

2(D) ⊆ L−1

Â,d
(ϕAH

2(D)).

Case 1. There exists j ∈ {1, . . . , m} such that θj is neither invertible nor a Blaschke product

with a simple pole.

We can assume j = 1, the other cases being similar. In this case, by Lemma 2.1, there exists

a not invertible inner function ϕ1 such that ϕ1 divides θ1 and θ1 does not divide ϕ1. Let

M := L−1

Â,d
(ϕ1H

2(D)).
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Note that M is closed and S-invariant. Since ϕ1 divides θ1, and hence, by (4.2), it divides ϕA,

it follows easily that L−1

Â,d
(ϕAH

2(D)) ⊂ M . Moreover, since for every h ∈ H2(D),

LÂ,d(he1) = (−1)d+1h det ÂJ,S1 ,

and since ϕ1 and I(det ÂJ,S1) are coprime, it follows that ϕ1e1 ∈ M but ϕ1e1 6∈ L−1

Â,d
(ϕAH

2(D)),

and that e1 6∈ M . That is, M 6= H and M properly contains L−1

Â,d
(ϕAH

2(D)).

Case 2. For all j ∈ {1, . . . , m} either θj is a Blaschke product with a simple pole or θj is

invertible.

Since L−1

Â,d
(ϕAH

2(D)) 6= H, there exists at least one j such that θj is not invertible. To

simplify readability, we assume that θ1, . . . , θm are Blaschke products with a simple pole and

θm+1, . . . , θd are invertible, for some 1 ≤ m ≤ d (the other cases are similar).

Let Q := L−1

Â,d
(ϕAH

2(D)). By (4.4), Z ⊆ Q. Since Z is an orthogonal direct sum, it is easy

to see that there is a natural isometrical isomorphim between H/Z and

E :=
(

H2(D)/(θ1H
2(D))

)

e1 + . . .+
(

H2(D)/(θmH
2(D))

)

em,

given by

E ∋ [f1]e1 + . . .+ [fm]em 7→ [f1e1 + . . .+ fmem] ∈ H/Z.

Since θj is a Blaschke product with a simple pole it follows that H2(D)/(θjH
2(D)) is a one-

dimensional space for j = 1, . . . , m,. Hence, dimH/Z = dimE = m. Taking into account

that H/Z is isometrically isomorphic to Z⊥, it follows that dimZ⊥ = m.

From Z ⊆ Q, we have that Q⊥ ⊆ Z⊥, hence, dimQ⊥ ≤ m. Note that Q⊥ 6= {0} (because

Q 6= H) and Q⊥ is S∗-invariant (because Q is S-invariant).

Therefore, S∗|Q⊥ : Q⊥ → Q⊥ is a linear endomorphism of a finite dimensional space and

2 ≤ dimQ⊥ ≤ m. Hence, there exists a subspace V 6= {0} such that V ( Q⊥ and S∗(V ) ⊆ V .

Given such a V , we let M = V ⊥. Thus, M is a closed S-invariant subspace of H, Q ( M and

M 6= H. �

5. THE BEURLING-LAX MATRIX OF AN INVARIANT SUBSPACE

Let M ⊂ H be a closed S-invariant subspace. By the Beurling-Lax Theorem [5, 13] (see

also, e.g. [18, Section 1.12]), there exists a bounded linear operator Q : H → H (called an

S-inner operator) such that:

(1) there is a closed S-invariant orthogonal decomposition H = IQ
⊥
⊕ kerQ,

(2) A|IQ : IQ → Q(IQ) = Q(H) = M is an isometry,

(3) Q ◦ S = S ◦Q.

The following proposition can be deduced also from [18, Theorem B Section 1.15], but we

give a proof both for the sake of completeness and in order to fix some notations.
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Proposition 5.1. Let M ⊂ H be a closed S-invariant subspace. Then there exist ajk ∈ H∞(D),
with ‖ajk‖∞ ≤ 1, j, k = 1, . . . , k, such that

M =

{

d
∑

j=1

hj(aj1e1 + . . .+ ajded) : hj ∈ H2(D)

}

= span{Sn(a11e1 + . . .+ a1ded), . . . , Sn(ad1e1 + . . .+ added) : n ∈ N}H.

Proof. Let Q be a S-inner operator such that M = Q(H). Let k = 1, . . . , d. Since Q◦S = S◦Q,

it turns out that for every polynomial q,

Q(qek) = qQ(ek).

If f ∈ H2(D) and {qj} is a sequence of polynomials converging to f in H2(D), since Q is a

S-inner operator, we have

lim
j→∞

‖qjQ(ek)−Q(fek)‖H = lim
j→∞

‖Q(qjek − fek)‖H
≤ lim

j→∞
‖qjek − fek‖H = lim

j→∞
‖qj − f‖H2(D) = 0.

Therefore {qjQ(ek)} converges to Q(fek) in H.

Now, as a matter of notation, if F ∈ H, we write F = p1(F )e1 + . . .+ pd(F )ed. Note that, if

g ∈ H2(D) and gF ∈ H then pm(gF ) = gpm(F ), m = 1, . . . , d.

Since {qjQ(ek)} converges to Q(fek) inH it follows that {pm(qjQ(ek))} converges in H2(D)
to pm(Q(fek)), m = 1, . . . , d. Therefore, {pm(qjQ(ek))} converges uniformly on compacta to

pm(Q(fek)).
Now we show that {pm(qjQ(ek))} converges uniformly on compacta of D to pm(fQ(ek)),

m = 1, . . . , d, from which it follows that Q(fek) = fQ(ek). Indeed, let K ⊂⊂ D. Let

Cm := maxζ∈K |pm(Q(ek))(ζ)|, m = 1, . . . , d. Since {qj} converges uniformly to f on K, we

have

max
z∈K

|pm(qj(z)Q(ek)(z))− pm(f(z)Q(ek)(z))|
= max

z∈K
|qj(z)pm(Q(ek)(z))− f(z)pm(Q(ek)(z))| ≤ Cmmax

z∈K
|qj(z)− f(z)| → 0.

Therefore,

(5.1) Q(fek) = fQ(ek) ∀f ∈ H2(D), k = 1, . . . , d.

Now, for j = 1, . . . , d, we write

Q(ej) = aj1e1 + . . .+ ajded.

By (5.1), for all f ∈ H2(D),

p1(Q(fe1)) = fa11.
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Hence, taking into account that Q is S-inner we have for every f ∈ H2(D),

‖fa11‖2H2(D) ≤ ‖fa11‖2H2(D) + . . .+ ‖fa1d‖2H2(D) = ‖Q(fe1)‖2H
≤ ‖fe1‖2H = ‖f‖2H2(D).

(5.2)

Therefore, the multiplication operator H2(D) ∋ f 7→ a11f ∈ H2(D) is continuous and with

(operator) norm ≤ 1. By a standard result, a11 ∈ H∞(D) and ‖a11‖∞ ≤ 1. A similar argument

works for ajk, j, k ∈ {1, . . . , d}.

Now, every f ∈ M is given by f = Q(h) for some h ∈ H (actually, h ∈ IA). If we write

h = h1e1 + . . .+ hded, we have

f = Q(h) = h1Q(e1) + . . .+ hdA(ed) =
d
∑

j=1

hj(aj1e1 + . . . ajded),

and this proves the first part of the formula. As for the second, by Beurling theorem,

H = span{Sn(e1), . . . , Sn(ed) : n ∈ N}H.
Since Q ◦ S = S ◦Q, we have

Q(H) = span{Sn(Q(e1)), . . . , Sn(Q(ed)) : n ∈ N}H,
and we are done. �

There are a couple of interesting corollaries we need. Before that, we need a definition. Let

H∞ := {f1e1 + . . .+ fded : fj ∈ H∞(D), j = 1, . . . , d}.
Corollary 5.2. Let M,N be two closed S-invariant subspaces of H. Then M ⊆ N if and only

if M ∩H∞ ⊆ N .

Proof. Assume first that M ∩ H∞ ⊆ N . Let {ajk}j,k=1,...,d be the bounded functions given by

Proposition 5.1 for M . Hence aj1e1 + . . .+ ajded ∈ N for j = 1, . . . , d. Since N is S-invariant

and by Proposition 5.1, we have

M = span{Sn(a11e1 + . . .+ a1ded), . . . , Sn(ad1e1 + . . .+ added) : n ∈ N}H ⊆ N.

The other implication of the corollary is trivial. �

Proposition 5.3. Let M be a S-invariant subspace of H. Let O ∈ H∞(D) be outer. Then

OM
H
= M.

Proof. First we show that OM
H ⊆ M . Since M is closed, it is enough to show that OM ⊆ M .

Let F ∈ M . By Proposition 5.1, there exist sequences of polynomials {pn,j}n∈N, j = 1, . . . , d
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such that F is the limit in H of the sequence {Qn :=
∑d

j=1 pn,j(aj1e1 + . . . + ajdej)}. Now,

again by Proposition 5.1,

OQn = O

(

d
∑

j=1

pn,j(aj1e1 + . . .+ ajdej)

)

=

d
∑

j=1

pn,j (O(aj1e1 + . . .+ ajdej)) ∈ M,

therefore OQn ∈ M for every n. Since ‖OQn − OF‖H ≤ ‖O‖∞‖Qn − F‖H, it follows that

{OQn} ⊂ M converges to OF in H, hence OF ∈ M , and we are done.

Now we prove that M ⊆ OM
H

. Since the multiplication by O commutes with S, we have

that OM is S-invariant, and so is OM
H

. Therefore, by Corollary 5.2 it is enough to show that

M ∩ H∞ ⊆ OM
H

. To this aim, let F ∈ M ∩ H∞. Since O is outer, hence a cyclic vector

for S1, there exists a sequence of polynomials {pn} such that {pnO} converges to 1 in H2(D).
Since (pnO)F = O(pnF ) and pnF ∈ M , it follows that pnOF ∈ OM for all n. Now, write

F = f1e1 + . . . + fded, with fj ∈ H∞(D), j = 1, . . . , d. Let C > 0 be such that ‖fj‖∞ < C
for j = 1, . . . , d. Hence,

‖pnOF − F‖2H =
d
∑

j=1

‖(pnO − 1)fj‖2H2(D) ≤
d
∑

j=1

‖fj‖2∞‖pnO − 1‖2H2(D)

≤ dC2‖pnO − 1‖2H2(D).

Since limn→∞ ‖pnO−1‖2
H2(D) = 0, it follows that {pnOF} converges to F in H. But {pnOF} ⊂

OM , hence F ∈ OM
H

, and we are done. �

Definition 5.4. Let M ⊂ H be a closed S-invariant subspace, and let {ajk}j,k=1,...,d be given by

Proposition 5.1. The matrix AM = (ajk) ∈ M∞ is a Beurling-Lax matrix of M .

6. THE STRUCTURE THEOREM

Let N ⊂ H be a closed S-invariant subspace. Let A be a Beurling-Lax matrix associated to

N (see Definition 5.4). Note that A is the zero matrix if and only if N = {0}.

In case A is not the zero matrix, and detA 6≡ 0, we can associate to A the closed S-invariant

subspace NA (see Definition 3.7). In case detA ≡ 0 we can associate the closed S-invariant

subspace NA,J for every good multi-index of Â (see Definition 3.16).

The main result of this section (from which Theorem 1.1 follows at once) is the following:

Theorem 6.1. Let {0} ( N ( H be a closed S-invariant subspace. Let A be a Beurling-Lax

matrix associated to N . Then,

• if detA 6≡ 0,

(6.1) N = NA.

• While, if detA ≡ 0,

(6.2) N = NA,J ,
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for every good multi-index J of Â. In particular, NA,J = NA,J ′ for every J, J ′ good

multi-indices of Â.

Proof. Since N 6= {0}, A is not the matrix identically zero. Let Â be the reduced matrix of A
(see Definition 3.6). Hence, by Proposition 5.1

N = span{Sn(a11e1 + . . .+ a1ded), . . . , Sn(ad1e1 + . . .+ added) : n ∈ N}H

= span{φASn(â11e1 + . . .+ â1ded), . . . , φASn(âd1e1 + . . .+ âdded) : n ∈ N}H.
Let

W := span{Sn(â11e1 + . . .+ â1ded), . . . , Sn(âd1e1 + . . .+ âdded) : n ∈ N}H.
Bering in mind that the multiplication by φA is an isometry in H, we have

N = φAW.

Case A: detA 6≡ 0.

Fix j ∈ {1, . . . , d}. Let LA,j be the determinantal operator associated to A (see Defini-

tion 3.2). Since S1 ◦ LA,j = LA,j ◦ S, it follows that, for k ∈ {1, . . . , d} \ {j},

LA,j (span{Sn(âk1e1 + . . .+ âkded) : n ∈ N}) = {0},
hence, since LA,j is continuous,

LA,j(W ) = LA,j

(

span{Sn(âj1e1 + . . .+ âjded) : n ∈ N}H
)

.

Now, for every n ∈ N we have

LAj
(Sn(âj1e1 + . . .+ âjded)) = Sn

1 (det Â).

Recall that, by definition (and since det Â 6≡ 0) ϕA is the inner part of det Â. We let O to be the

outer part of det Â. Therefore, by Beurling theorem,

LAj
(W )

H2(D)
= LA,j

(

span{Sn(ϕAO) : n ∈ N}H
)H2(D)

= {span{Sn
1 (ϕAO) : n ∈ N}H

2(D)
= ϕAH

2(D).

From this it follows that W ⊆ L−1
A,j(ϕAH

2(D)) and then N ⊆ φAL
−1
A,j(ϕAH

2(D)), j = 1 . . . , d,

that is, N ⊆ NA.

Now, we show that NA ⊆ N . Since N = φAW and NA = φA

⋂d
j=1 L

−1
A,j(ϕAH

2(D)) , it is

enough to show that

Z :=

d
⋂

j=1

L−1
A,j(ϕAH

2(D)) ⊆ W.
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To this aim, let F = f1e1 + . . . fded ∈ H. By (3.1), F ∈ Z if and only if

LA,j(F ) =

d
∑

k=1

(−1)k+jfk det(Â
jk) ∈ ϕAH

2(D), j = 1, . . . d.

Since by Beurling theorem the closure of span{Sn
1 (ϕAO) : n ∈ N} is ϕAH

2(D), there exist

sequences of polynomials {pnj}n∈N, j = 1, . . . , d, such that

(6.3) lim
n→∞

‖ϕAOpnj −
d
∑

k=1

(−1)k+jfk det(Â
jk)‖H2(D) = 0, j = 1, . . . , d.

Taking into account that âjk ∈ H∞(D), j, k ∈ {1, . . . , d}—and hence if a sequence {hn} ⊂
H2(D) converges to h in H2(D) then {âjkhn} converges to âjkh in H2(D)—from (6.3) we have

for every m = 1, . . . , d

(6.4) lim
n→∞

‖
d
∑

j=1

âjmϕAOpnj −
d
∑

k=1

fk

(

d
∑

j=1

(−1)k+j âjm det(Âjk)

)

‖H2(D) = 0.

Now we claim that

(6.5)

d
∑

j=1

(−1)k+jâjm det(Âjk) =

{

ϕAO k = m

0 k 6= m

Assuming the claim for the moment, from (6.4) we have

lim
n→∞

‖ϕA

(

O
d
∑

j=1

pnjâjk −Ofm

)

‖H2(D) = 0, m = 1, . . . , d.

Since ϕA is inner, this implies that {O∑d

j=1 pnjâjm} converges to Ofm in H2(D), m =
1, . . . , d. In other words, if we let

Qn := pn1(â11e1 + . . .+ â1ded) + . . .+ pnd(âd1e1 + . . .+ âdded),

then {OQn} converges to O(f1e1 + . . . + fded) = OF in H. Note that Qn ∈ W , so that

OQn ∈ OW for all n. By Proposition 5.3, OW ⊆ W , hence, OQn ∈ W for all n. It follows

that OF ∈ W . By the arbitrariness of F , this means that OZ ⊂ W and, since W is closed,

OZ
H ⊆ W . Since Z is S-invariant, by Proposition 5.3 we have Z = OZ

H
, hence Z ⊂ W as

wanted.

We are thus left to prove (6.5). Let

U := {z ∈ D : det Â(z) 6= 0}.
Since detA 6≡ 0—hence det Â 6≡ 0—the set U is open, connected and dense in D. Let B the

d×d matrix whose (j, k) entry is (−1)j+k det Âkj . Then it follows from classical linear algebra

that, for all z ∈ U
Â(z) · B(z) = (det Â(z))Id,
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where Id is the d× d identity matrix. Expanding the previous equality one obtains (6.5) for all

z ∈ U . By analytic extension, it holds thus in D and we are done.

Case B: detA ≡ 0.

Let

T (A) :=





⋂

S∈JJ(Â),j=1,...,k

L−1

ÂS,J ,j,J
(ϕJ,AH

2(D))



 ∩ R(A).

Since

NA,J = φAT (A)

(see Definition 3.16) and N = φAW , it is enough to show that W = T (A).
To simplify the readability, we can assume that J = {1, . . . , k}. This would not affect the

proof since, switching the columns j and m in Â corresponds to see the problem under the

isometric automorphism of H which switches the coefficients of ej and em.

Now, we claim that W ⊆ T (A). To this aim, because of the (multi-)linearity of the determi-

nant, it is enough to show that âm := âm1e1 + . . . + âmded ∈ T (A) for m = 1, . . . , d. So, fix

m ∈ {1, . . . , d}. Obviously, âm ∈ R(A). Next, let S = {1 ≤ s1 < . . . < sk ≤ d} ∈ JJ(Â)
and j ∈ {1, . . . , k}. We need to show that LÂS,J ,j,J(âm) ∈ ϕJ,AH

2(D). Now,

LÂS,J ,j,J(âm) = det



















âs11 . . . âs1k
. . . . . . . . .

âsj−11 . . . âsj−1k

âm1 . . . âmk

âsj+11 . . . âsj+1k

. . . . . . . . .
âsk1 . . . âskk



















.

There are two possibilities: either the determinant is identically zero—so that LÂS,J ,j,J(âm) ∈
ϕJ,AH

2(D)—or it is not identically zero. In the latter case it means that, up to reordering in

increasing way, the multi-index {s1, . . . , sj−1, m, sj+1, . . . , sk} ∈ JJ(Â). Hence, by definition

of ϕJ,A, it follows that ϕJ,A divides the inner part of LÂS,J ,j,J(âm), that is, LÂS,J ,j,J(âm) ∈
ϕJ,AH

2(D).

In order to show that T (A) ⊆ W , let S = {1 ≤ s1 < . . . < sk ≤ d} ∈ JJ(Â) and let

ÂS,J =





âs11 . . . âs1k
...

...
...

âsk1 . . . âskk



 .

Since det ÂS,J 6≡ 0 and det ÂS,J ∈ H∞(D), the inner part ϕS := I(det ÂS,J) of det ÂS,J is

well defined (and ϕJ,A divides ϕS by definition).
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We first prove that

(6.6) TS :=

(

⋂

j=1,...,k

L−1

ÂS,J ,j,J
(ϕSH

2(D))

)

∩R(A) ⊂ W.

Let f1e1 + . . .+ fded ∈ TS . Hence,

(6.7) rank









f1 . . . fd
âs11 . . . âs1d

... . . .
...

âsk1 . . . âskd









= k.

Let US be the open dense set of D such that det ÂS,J(z) 6= 0. Then, for every z ∈ US , by

classical linear algebra, there exist λj(z) ∈ C, j = 1, . . . , k such that

(6.8) fj(z) = λ1(z)âs1j(z) + . . .+ λk(z)âskj, j = 1, . . . , d.

Since det(ÂS,J(z)) 6= 0 (for z ∈ US), it follows by Cramer’s rule that for j = 1, . . . , k,

det(ÂS,J
S (z))λj(z) = det























âs11 . . . âs1k
... . . .

...

âsj−11 . . . âsj−1k

f1 . . . fk
âsj+11 . . . âsj+1k

... . . .
...

âsk1 . . . âskk























.

Since âjm ∈ H∞(D) and fj ∈ H2(D) (for all indices j,m), the right hand side of the previous

equation is in H2(D) and, since LÂS,J ,j,J(f1e1 + . . . + fded) ∈ ϕSH
2(D) for j = 1, . . . , k by

hypothesis, it follows that it is actually in ϕSH
2(D). Thus, if OS ∈ H∞(D) denotes the outer

part of det ÂS,J , we have that OSλj ∈ H2(D) for j = 1, . . . , k.

Therefore, from (6.8), we have that

OS(f1e1 + . . .+ fded) =
k
∑

m=1

OSλm(âsm1e1 + . . .+ âsmded) ∈ W.

In particular, it follows that OSTS ⊂ W . Taking into account that TS is a closed, S-invariant

subspace of H by Lemma 3.3 and Lemma 3.12, equation (6.6) follows at once from Corol-

lary 5.3.

Hence,

P :=
∑

S∈JJ (Â)

TS

H

⊆ W.
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On the other hand, note that P is closed and S-invariant (since it is the closure of the sum of

S-invariant spaces). Also, note that âm := âm1e1 + . . . + âmded belongs to some TS (indeed,

if m is part of some multi-index S ∈ JJ(Â) then âm ∈ TS , while, if m does not belong to any

multi-index S ∈ JJ(Â) then LÂS,J ,j,J(âm) ≡ 0 for all S ∈ JJ(Â) and j ∈ {1, . . . , k}, so that

âm ∈ TS for all S ∈ JJ(Â)). Thus, W ⊆ P and therefore

P = W.

We are thus left to show that

T (A) ⊆ P.

By Corollary 5.2, it is enough to show that T (A) ∩ H∞ ⊆ P . To this aim, let F := f1e1 +

. . . + fded ∈ T (A) ∩ H∞. For every S ∈ JJ(Â) let θS be the inner function (unique up to

multiplication by a unimodular constant) such that ϕS = ϕJ,AθS . Note that the (inner function)

greatest common divisor of {θS}S∈JJ(Â) is 1 (for otherwise ϕJ,A would not be the greatest

common divisor of the ϕS’s).

Fix S ∈ JJ(Â) and j ∈ {1, . . . , k}. Since by hypothesis LÂS,J ,j,J(F ) ∈ ϕJ,AH
2(D), it

follows by the (multi-)linearity of the determinant that

LÂS,J ,j,J(θSF ) ∈ ϕSH
2(D).

Thus, θSF ∈ P and, in particular, since F ∈ H∞, we have hθSF ∈ P for all h ∈ H2(D).

Hence, if for each S ∈ JJ(Â) we take a function hS ∈ H2(D), we have




∑

S∈JJ(Â)

hSθS



F ∈ P.

Now, let {hS
n} ⊂ H2(D) be the sequences given by Lemma 2.3 such that {∑S∈JJ(Â) h

S
nθS}

converges to 1 in H2(D), and let

Fn :=





∑

S∈JJ (Â)

hS
nθS



F ∈ P.

Taking into account that F ∈ H∞, it follows that {Fn} converges to F in H and hence F ∈ P ,

and we are done. �
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AND INSTITUTO DE CIENCIAS MATEMÁTICAS ICMAT(CSIC-UAM-UC3M-UCM),

MADRID, SPAIN

Email address: eva.gallardo@mat.ucm.es


	1. Introduction
	2. Preliminaries
	3. Closed S-invariant spaces associated to matrices
	3.1. Case A0
	3.2. Case A0

	4. The spaces NA and NJ,A are not maximal for the shift
	5. The Beurling-Lax matrix of an invariant subspace
	6. The structure theorem
	References

