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CORONAS AND STRONGLY SELF-ABSORBING

C∗-ALGEBRAS

ILIJAS FARAH AND GÁBOR SZABÓ

Abstract. Let D be a strongly self-absorbing C∗-algebra. Given any
separable C∗-algebra A, our two main results assert the following. If A
is D-stable and non-unital, then the corona algebra of A is D-saturated,
i.e., D embeds unitally into the relative commutant of every separable
C∗-subalgebra. Conversely, assuming that the stable corona of A is sep-
arably D-stable, we prove that A is D-stable. This generalizes recent
work by the first-named author on the structure of the Calkin algebra.
As an immediate corollary, it follows that the multiplier algebra of a sep-
arable D-stable C∗-algebra is separably D-stable. Appropriate versions
of the aforementioned results are also obtained when A is not necessarily
separable. The article ends with some non-trivial applications.
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Introduction

Within the structure and classification theory of C∗-algebras, the so-called
strongly self-absorbing C∗-algebras have historically emerged as important
cornerstone objects. This was initially the case by example: The special
Cuntz algebras O∞ and O2 were shown by Kirchberg–Phillips [37] to be,
in an appropriate sense, the initial and final object (respectively) in the
category of separable simple unital nuclear purely infinite C∗-algebras (the
so-called Kirchberg algebras). Although it was not originally phrased in
that (not yet existing) framework at the time, Phillips’ proof [44] of the
Kirchberg–Phillips classification theorem [35, 34] made crucial use of the
properties of O∞ that make it a strongly self-absorbing C∗-algebra from
today’s point of view. Towards the end of the 1990s, Jiang and Su [30]
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constructed the C∗-algebra Z now named after them, intended as a stably
finite analog of O∞, and showed that it is strongly self-absorbing.

Finally, the behavior of these interesting examples was unified in the ab-
stract theory of strongly self-absorbing C∗-algebras (recalled in the prelimi-
nary section) in the mid 2000s, by Toms–Winter [54] and Kirchberg [36]. Let
D be a strongly self-absorbing C∗-algebra. One of the most appealing aspects
of the associated abstract theory is that given any separable C∗-algebra A,
one can characterize the existence of an isomorphism A ∼= A ⊗ D (this is
called D-stability) as an internal local approximation property of A via a
so-called McDuff-type criterion, inspired by a related result [42] for von Neu-
mann algebras that served as the original inspiration. This has the advan-
tage of making D-stability a reasonably verifiable condition in many contexts
and moreover implies that D-stability is preserved under various elementary
constructions. Subsequently, strongly self-absorbing C∗-algebras had been
recognized both as interesting test cases for hard open problems (see [60, 48])
and as objects in their respective categories playing a facilitating role for cer-
tain classification problems [59]. Given that Z has been shown in [57] to be
the initial object in the category of strongly self-absorbing C∗-algebras, the
property of tensorially absorbing Z (called Jiang–Su stability) has a special
significance. In the history of the subject, it has emerged as a well-studied
property both in examples [53, 15, 32, 33, 23, 43] and abstractly within the
work on the Toms–Winter conjecture [16, 56, 58, 40, 51, 41, 5, 10, 9] (the
given references are not exhaustive). Indeed, the most satisfactory state-of-
the-art classification theorem in the context of the Elliott program concerns
the category of separable simple nuclear Jiang–Su stable C∗-algebras satisfy-
ing the universal coefficient theorem [25, 26]; see [8] and the more elaborate
discussion therein about the history of classification.

The present work is a continuation and strengthening of the recent ar-
ticle [18] by the first named author, motivated by the Brown–Douglas–
Fillmore question whether the Calkin algebra can have a K-theory revers-
ing automorphism. In this work a new connection was discovered between
strongly self-absorbing C∗-algebras and the stucture of corona algebras. Re-
call that for a C∗-algebra A with associated multiplier algebra M(A), the
quotient Q(A) := M(A)/A is called the corona algebra of A. Before resum-
ing the discussion, we recall a concept frequently occurring in this article:

Definition. Let B and C be unital C∗-algebras with B separable. We say
that C is B-saturated if for every separable C∗-subalgebra A ⊆ C, there is
a unital, injective ∗-homomorphism from B to C ∩A′.

In simplified terms, the two main insights in [18, Theorems B+C] can be
summarized by the following statements: If D is strongly self-absorbing and
a separable unital C∗-algebra A is D-stable, then Q(K⊗A) is D-saturated;
the Calkin algebra Q(H) := Q(K), however, is not D-saturated. As an
immediate consequence, it followed (among other things) that the Calkin
algebra is not isomorphic to the corona Q(K ⊗ O∞), which answered a
previously open question.

In this article, we generalize both of these insights to the most general
setting in which they are plausible. In order to extend the theory beyond the
separable case, we work with the concept of separable D-stability from [49].
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A C∗-algebra A is called separably D-stable if every separable C∗-subalgebra
of A is included in a separable D-stable C∗-subalgebra of A.

Our first main result (proven in Section 2 as Theorem 2.5) gives a gener-
alization of [18, Theorems C] by removing a number of prior assumptions.

Theorem A. Suppose that D is a strongly self-absorbing C∗-algebra and
that A is a σ-unital C∗-algebra that is separably D-stable. Then Q(A) is
D-saturated.

The assumption of σ-unitality is not only essential in our proof of Theo-
rem A, but taking a closer look at a class of non-σ-unital C∗-algebras studied
by Sakai (discussed in Example 2.7) demonstrates that there exist separably
Z-stable C∗-algebras with one-dimensional corona algebras.

Our second main result, to be understood as a powerful generalization of
both main results in [18], provides a partial converse of the above and entails
a new characterization of (separable) D-stability, also having consequences
to the structure of the multiplier algebra. It fully confirms and extends [18,
Conjecture 6.2].

Theorem B. Suppose that D is a strongly self-absorbing C∗-algebra and
A is a σ-unital C∗-algebra. Then the following are equivalent:

(1) A is separably D-stable.
(2) Q(K ⊗A) is separably D-stable.
(3) M(A) is separably D-stable.

Apart from Theorem A covering the implication (1)⇒(2), the most novel
aspect in the proof of Theorem B concerns the implication (2)⇒(3). This im-
plication is true even without σ-unitality and arises as the consequence of a
deeper principle that allows us to transfer (relatively) approximately central
sequences from Q(K⊗A) to M(A); see Definition 1.8 and Corollary 4.5 for
details. This is achieved in Sections 3 and 4 based on studying the relative
positions of certain unitary representations of property (T) groups inside
the stable corona Q(K ⊗A) akin to [18, Theorem B], with a few upgrades.
Although we currently have no definitive evidence of this claim, we believe
that a further generalization of implication (2)⇒(1) cannot be expected in
any reasonable generality if one only makes a structural assumption about
Q(A) without also assuming that A is stable or simple. This is demonstrated
by various easy examples such as A := C⊕ (K ⊗D).

The last Section 5 is concerned with applications of our main results. We
present an application of Theorem A, whereby the Calkin algebra does not
have the same first-order theory as any nuclear C∗-algebra (i.e., is not ele-
mentarily equivalent to a nuclear C∗-algebra); see Theorem 5.1. Also, if A
is any σ-unital C∗-algebra and Q(A) is isomorphic to the Calkin algebra,
then A cannot be separably Z-stable (Corollary 5.4). Another application
is a partial positive result to a question attributed to Sakai in [14], asking
whether non-unital simple separable C∗-algebras are isomorphic if and only
if their coronas are isomorphic (see [19, Question 4.19]). It is an imme-
diate consequence of Theorem B that coronas of stabilizations of strongly
self-absorbing C∗-algebras are isomorphic if and only if the algebras are iso-
morphic. Next, we observe that multiplier algebras of separably Z-stable
C∗-algebras have strict comparison, which is related to earlier results in the
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literature obtained under comparably more restrictive assumptions. Lastly,
we can give a partial positive answer to [8, Question 5.17] and give an im-
proved version of the recent Z-stable KK-uniqueness theorem therein; see
Theorem 5.5 for details.
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1. Preliminaries

For what follows below, we fix an arbitrary C∗-algebra A, on which we
may impose further assumptions when necessary. Consider the multiplier
algebra M(A) of A and its corona Q(A) := M(A)/A.

1.1. Clubs and reflection. Reflection is the phenomenon (well-studied in
set theory; see e.g., the introduction to [22] or [38]) when properties of an
uncountable (more generally nonseparable) structure reflect to its small (for
example, countable or separable) substructures. In C∗-algebras reflection
is usually obtained by Blackadar’s method (see the discussion of separably
inheritable properties in [4, §II.8.5]) and in a more general case by the Down-
ward Löwenheim–Skolem theorem from model theory (see e.g., [11, Corol-
lary 2.1.4] for the general statement, [3, Proposition 7.2] for the continuous
logic, and [20, §2.6] or [17, Appendix D] for C∗-algebras). An in-depth dis-
cussion of reflection phenomena for C∗-algebras can be found in [17, §7.3 and
§7.4]. To give a more precise definition of the reflection that we will be using,
we need the notion of an elementary submodel. If A ⊆ B are C∗-algebras,
then A is an elementary submodel of B if for every first-order formula ϕ(x̄)
and every tuple ā in A of the same sort as x̄ the evaluations of ϕ(ā) in A and
in B agree ([20, Definition 2.3.3] or [17, §7.1, also §D.1]). A familiar example
is provided by  Loś’s Theorem (e.g., [20, Theorem 2.3.1]): the diagonal copy
of A in its ultrapower AU is an elementary submodel. Properties captured
by the first-order theory are called axiomatizable or elementary. See [20,
Theorem 2.5.1] for numerous examples.

An elementary submodel inherits all axiomatizable properties of the origi-
nal algebra as well as many non-axiomatizable properties (such as nuclearity
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and other properties definable by uniform families of formulas, see [20, The-
orem 5.7.3]). The following definitions are standard ([17, Definition 6.2.6,
Example 6.2.5]).

Definition 1.1. For a C∗-algebra C let Sep(C) denote the poset of its
separable C∗-subalgebras ordered by the inclusion. A subset of Sep(C) that
is cofinal and σ-closed (i.e., closed under taking direct limits of increasing
sequences) is, for historical reasons, (misleadingly) known as a closed and
unbounded set or a club.

By the Downwards Löwenheim–Skolem theorem (as stated in [17, The-
orem 7.19]), for every nonseparable C∗-algebra, its separable elementary
submodels form a club. This is the simplest form of reflection to separable
substructures. An important (yet not difficult to prove) feature of clubs is:

Lemma 1.2 (see [17, Proposition 6.2.9]). Let C be C∗-algebra. Any inter-
section of countably many clubs in Sep(C) is a club.

In other words, subsets of Sep(C) that include a club form a σ-filter. The
following reflection property of clubs requires a proof.

Lemma 1.3. Suppose that A ⊆ B are nonseparable C∗-algebras. If C in-
cludes a club in Sep(B), then {A ∩ C | C ∈ C} includes a club in Sep(A).

Proof. We will use a well-known fact about clubs in discrete structures. If X
is an uncountable set then [X]ℵ0 is the poset of all countable subsets of X.
A club in this poset is a cofinal family closed under countable increasing
unions. By a corollary to Kueker’s characterization of clubs in [X]ℵ0 ([17,
Corollary 6.4.2]), if Y ⊆ X are uncountable sets and E is a club in [X]ℵ0 ,
then {p ∩ Y | p ∈ E} includes a club in [Y]ℵ0 .

Assume A ⊆ B are nonseparable C∗-algebras. By [17, Proposition 7.2.7]
there is a dense subset DB ⊆ B such that the set of relatively closed count-
able subsets of DB , {p ∈ [DB ]ℵ0 | p ∩ DB = p}, includes a club in [DB]ℵ0 .
This implies that, for any C ⊆ Sep(B), C includes a club in Sep(B) if and
only if the set {C ∩ DB | C ∈ C} includes a club in [DB ]ℵ0 ([17, Corol-
lary 7.2.8]). Again by [17, Proposition 7.2.7] fix a dense subset DA of A such
that the set of countable relatively closed subsets of DA includes a club.
Then D := DA ∪ DB also has the property that the family of its countable
relatively closed subsets includes a club.

Finally, consider a subset C of Sep(B) that includes a club. By Lemma 1.2,
{C ∩ D | C ∈ C} includes a club in [D]ℵ0 . As pointed out above, [17,
Corollary 6.4.2] implies that {C ∩ DA | C ∈ C} includes a club in [DA]ℵ0 .
Again by [17, Corollary 7.2.8], {C ∩A | C ∈ C} includes a club, as required.

�

Needless to say, this proof shows that Lemma 1.3 is true for arbitrary
metric structures.

1.2. Strongly self-absorbing C∗-algebras and separable absorption.

A separable unital C∗-algebra D is said to be strongly self-absorbing if D ≇ C

and there exists an isomorphism D → D⊗D that is approximately unitarily
equivalent to the embedding d 7→ d ⊗ 1D. All strongly self-absorbing C∗-
algebras are nuclear and simple, and they satisfy D ∼= D⊗∞; see [54]. By
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[57, Remark 3.3], it automatically follows that D is K1-injective and this
property is redundant despite being explicitly assumed in early literature
about strongly self-absorbing C∗-algebras.

The known strongly self-absorbing C∗-algebras are the Jiang–Su algebra
Z [30], UHF algebras of infinite type, the Cuntz algebra O∞, tensor prod-
ucts of UHF algebras of infinite type with O∞, and the Cuntz algebra O2

[12]. If all separable nuclear C∗-algebras satisfy the Universal Coefficient
Theorem then there are no other strongly self-absorbing C∗-algebras ([52,
Corollary 6.7])

We recall the common characterizations of D-stability for separable C∗-
algebras. In the following A∞ denotes the (asymptotic) sequence algebra
ℓ∞(A)/c0(A) and A⊥ denotes the two-sided annihilator of A in the ambient
C∗-algebra.

Theorem 1.4. Let A be a separable C∗-algebra and D a strongly self-
absorbing C∗-algebra. The following are equivalent:

(1) A ∼= A⊗D.
(2) There exists a unital ∗-homomorphism D → (A∞ ∩A′)/(A∞ ∩A⊥).
(3) There exists a sequence of unital ∗-homomorphisms πn : D → M(A)

with ‖[πn(d), a]‖ → 0 for all d ∈ D and a ∈ A.

Proof. The equivalence (1)⇔(2) can be deduced as the consequence of either
[54, Theorem 2.3] or of [36, Proposition 4.4]. Since D ∼= D⊗∞, it is immediate
to verify the implication (1)⇒(3) by hand. The implication (3)⇒(1) follows
from [54, Proposition 1.5] and [45, Theorem 7.2.2]. �

The following concept has been circulating within the C∗-community for a
long time under various similar names. For instance, for unital C∗-algebras
it has been called “potentially D-absorbing” in [21]. In the stated generality,
we use the name as coined by Schafhauser in [50, Definition 1.4]:

Definition 1.5. Let A be a C∗-algebra and D a strongly self-absorbing
C∗-algebra. We say that A is separably D-stable if for every separable C∗-
subalgebra C0 ⊆ A, there exists a separable C∗-algebra C1 ⊆ A containing
C0 and C1

∼= C1 ⊗D.

Given that the category of separable D-stable C∗-algebras is closed under
direct limits ([54, Corollary 3.4]), we get:

Proposition 1.6. A C∗-algebra A is separably D-stable if and only if the
separable D-stable C∗-subalgebras of A form a club in Sep(A).

Notice that when a C∗-algebra A is genuinely D-stable, say via an isomor-
phism ϕ : A ⊗ D → A, then the collection {ϕ(C ⊗ D) | C ∈ Sep(A)} forms
a club of separable D-stable subalgebras of A, so A is separably D-stable.
Separable D-stability is clearly equivalent to tensorial D-absorption when A
is separable, but is weaker and more common than D-absorption for nonsep-
arable C∗-algebras. As a matter of fact, coronas of σ-unital C∗-algebras and
nontrivial ultraproducts are tensorially indecomposable, and are therefore
not D-absorbing ([24], see also [17, Theorem 15.4.5]).

Separable D-stability is a first-order property of a C∗-algebra (in other
words, it is axiomatizable; see [20, §2.4]) which, together with  Loś’s The-
orem, explains why it is preserved by ultraproducts. We shall study the
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concept of separable D-stability further and put it into a broader context
that is meaningful for not necessarily strongly self-absorbing C∗-algebras.

In the following we will also appeal to the reduced product construction
related to a filter on a set. Given a filter F on a set I, the reduced product
CF is defined in e.g., [17, Definition 16.2.1] (see also the remark about dual
filters following this definition). Upon applying this construction to the
Fréchet filter on N (usually denoted by the symbol ∞), one recovers the
asymptotic sequence algebra.

Proposition 1.7. Let B and C be C∗-algebras such that B is separable and
unital. The following are equivalent.

(1) For every separable C∗-subalgebra A ⊆ C∞, there exists a unital
∗-homomorphism from B to (C∞ ∩A′)/(C∞ ∩A⊥).

(2) For every separable C∗-subalgebra A ⊆ C, there exists a unital ∗-ho-
momorphism from B to (C∞ ∩A′)/(C∞ ∩A⊥).1

(3) There exists some non-empty set I and a filter F on I such that
for every separable C∗-subalgebra A ⊆ C, there exists a unital ∗-
homomorphism from B to (CF ∩A′)/(CF ∩A⊥).

(4) For every ε > 0, every self-adjoint finite subset F ⊂ C and every
finite-dimensional, unital, self-adjoint subspace S ⊂ B, there exists
a ∗-linear map κ : S2 → C such that for all c ∈ F and b, b1, b2 in S
the following conditions hold.

• ‖κ(b)‖ ≤ (1 + ε)‖b‖
• ‖[κ(b), c]‖ ≤ ‖b‖ε
• ‖(κ(b1)κ(b2) − κ(b1b2))c‖ ≤ ‖b1‖‖b2‖ε
• ‖(1 − κ(1))c‖ ≤ ε.

Definition 1.8. Let B and C be C∗-algebras such that B is separable and
unital. We say that C admits large approximately central maps from B if
the equivalent conditions in Proposition 1.7 are satisfied.

Proof of Proposition 1.7. The implications (1)⇒(2)⇒(3) are trivial.
(3)⇒(4): Let the triple (ε, F, S) be given. Let A ⊆ C be the C∗-algebra

generated by F . By assumption, there exist filter F on a set I and a unital
∗-homomorphism

ψ : B → (CF ∩A′)/(CF ∩A⊥).

We can view the codomain as a quotient of

E = {(xi)i ∈ ℓ∞(I, C) | lim
i→F

‖[xi, a]‖ = 0 for all a ∈ A.}

Let π : E → (CF ∩ A′)/(CF ∩ A⊥) be the quotient map. By basic linear
algebra and by applying the axiom of choice to a Hamel basis consisting
of self-adjoint elements in B, we may find a (not necessarily continuous)
∗-linear map ϕ0 : B → E with π ◦ϕ0 = ψ. If (eλ)λ is any increasing approx-
imate unit of the ideal ker(π) in E, then it follows by the characterization
of quotient norms of C∗-algebras that

lim
λ

‖(1 − eλ)ϕ0(b)‖ = ‖ψ(b)‖ ≤ ‖b‖, b ∈ B.

1Here A is identified with a C∗-subalgebra of the diagonal copy of C inside C∞.
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Using the fact that S is a finite-dimensional normed vector space and hence
has a compact unit ball, we may choose (as a consequence of Dini’s theorem)
an index λ such that the map

ϕ = (1 − eλ) · ϕ0( ) · (1 − eλ) : B → E

has operator norm at most 1 + ε when restricted to S. Since E ⊆ ℓ∞(I, C),
we may represent ϕ by a family of ∗-linear maps κi : B → C for i ∈ I. Then
there is a set I0 ∈ F such that ‖κj(b)‖ ≤ (1 + ε)‖b‖ for all b ∈ S and j ∈ I0,

and furthermore [(κi(b))i] ∈ CF ∩ A′ and [(κi(b))i] + (CF ∩ A⊥) = ψ(b) for
all b ∈ S. The former condition implies that for all b ∈ S and a ∈ A we
have lim supi→F ‖[κi(b), a]‖ = 0. The fact that ψ is a unital map translates
to lim supi→F κi(1)a = a for all a ∈ A. The fact that ψ is multiplicative
translates to lim supi→F ‖(κi(b1)κi(b2) − κi(b1b2))a‖ = 0 for all a ∈ A and
b1, b2 ∈ S. Putting all this together, we can see from A ⊃ F that there
exists some element i ∈ I0 such that the ∗-linear map κ = κi|S2 satisfies the
desired properties for the triple (ε, F, S).

(4)⇒(1): Throughout the argument that follows, we fix an increasing
sequence of finite-dimensional subspaces 1 ∈ Sn = S∗

n ⊂ B satisfying S2
n ⊆

Sn+1 for all n ≥ 1 and such that the union
⋃

n≥1 Sn is dense in B. It follows

readily from these properties that the union B0 =
⋃

n≥1 Sn is a dense unital
∗-subalgebra of B.

Let A ⊂ C∞ be a separable C∗-subalgebra. Then we can find a family

of bounded sequences of self-adjoint elements {(a
(k)
n )n | k ≥ 1} such that

the resulting sequence a(k) := [(a
(k)
n )n] forms a dense subset of Asa. Given

m ≥ 1, we apply property (3) to ε = 1
m , Gm := {a

(k)
m | k ≤ m} in place of

F , and Sm in place of S in order to choose a ∗-linear map κm : S2
m → C

such that we have for all c ∈ Gm and b, b1, b2 ∈ Sm that

• ‖κm(b)‖ ≤ m+1
m ‖b‖.

• ‖[κm(b), c]‖ ≤ 1
m‖b‖.

• ‖(κm(b1)κm(b2) − κm(b1b2))c‖ ≤ 1
m‖b1‖‖b2‖.

• ‖(1 − κm(1))c‖ ≤ 1
m .

We consider the ∗-preserving map φ : B0 → ℓ∞(C) given by

φ(b)n =

{

0 , b /∈ Sn

κn(b) , b ∈ Sn.

For all pairs b1, b2 ∈ B0, there exists some m ≥ 1 with b1, b2 ∈ Sm. Since
each map κℓ is linear, this means that the induced map φ̄ : B0 → C∞ is a
linear contraction. We have for all b ∈ B0 and k ≥ 1 that

‖[φ̄(b), a(k)]‖ = lim sup
n→∞

‖[κn(b), a(k)n ]‖ = 0,

and

‖(1 − φ̄(1))a(k)‖ = lim sup
n→∞

‖(1 − κn(1))a(k)‖ = 0,

and

‖(φ̄(b1)φ̄(b2) − φ̄(b1b2))a
(k)‖ = lim sup

n→∞
‖(κn(b1)κn(b2) − κn(b1b2))a

(k)
n ‖ = 0.
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This implies that φ̄ takes values in C∞ ∩A′ and its induced map

ψ : B0 → (C∞ ∩A′)(C∞ ∩A⊥)

is a unital ∗-homomorphism. By continuity, it follows that ψ extends uniquely
to a unital ∗-homomorphism ψ : B → (C∞ ∩ A′)/(C∞ ∩ A⊥). Since A was
chosen arbitrarily, this shows the claim. �

Remark 1.9. Readers fluent in model theory will recognize (4)⇒(1) in the
proof above as an easy implication. To wit, consider a countable dense ∗-
Q + iQ-subalgebra B0 of B. Then (4) asserts that the quantifier-free type
of B0 is relatively consistent with the theory of (C∞ ∩ A′)/(C ∩ A⊥). By
a proof similar to that of [17, Proposition 16.5.3], the latter C∗-algebra is
countably quantifier-free saturated and the type is realized in it, giving a
unital isometric embedding of B0. Its continuous extension to B is the
required embedding. This framework underpins the proof of the corollary
below.

The following can be viewed as a generalization of [20, Theorem 2.5.2(21)].

Corollary 1.10. Suppose that B is a separable unital C∗-algebra.

(1) The property of admitting large approximately central maps from B
is axiomatizable in the language of C∗-algebras.

(2) Suppose that B = D is a strongly self-absorbing C∗-algebra. Let C be
an arbitrary C∗-algebra. Then C admits large approximately central
maps from D if and only if C is separably D-stable.

Proof. (1): Fix a countable dense ∗-Q + iQ-subalgebra {bn | n ∈ N} of B
enumerated so that b0 = 1 and b2n+1 = b∗2n for all n. For every m ≥ 1
consider the following sentence (x̄ and ȳ stand for 2m-tuples of variables
where xj range over the unit ball and yj is of the same sort as bj, i.e., it
ranges over the nj-ball where nj is the minimal natural number not smaller
than ‖bj‖).

ϕm := sup
‖x̄‖≤1

inf
ȳ

max

{

max
i,j<2m

‖[xi, yj ]‖,max
j<m

‖y∗2j − y2j+1‖,

max{‖yjyk − yl‖ | j, k, l < 2m, bjbk = bl},

max{‖yj − αyk‖ | j, k < 2m,α ∈ Q + iQ, bj = αbk}

}

.

Then ϕm has value 0 in C if and only if for every 2m-element subset F of
its unit ball and every ε > 0 there is a self-adjoint ε-approximately linear
map from the linear span Sm of {bj | j < 2m} into C such that the images
of bj, for j < 2m ε-commute with all elements of F .2 By compactness of the
unit ball of Sm, the map can be assumed to be linear.

By Proposition 1.7(4), the existence of such maps is equivalent to the C∗-
algebra C admitting approximately large central maps from B. Therefore
this property is axiomatized by the conditions ϕm = 0, for all m ≥ 1.

2An observant reader will notice that, because the inf is not necessarily attained, we
are getting only an approximately self-adjoint map. A moment of thought shows that it
can be easily perturbed to a self-adjoint map at the expense of increasing the ε.
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(2): First assume that C admits large approximately central maps from D.
Then every separable C∗-subalgebra of C is included in a separable elemen-
tary submodel A of C. Since then A also admits large approximately central
maps from D by part (1), it satisfies the conditions in Proposition 1.7. By
Theorem 1.4, A is D-absorbing.

Conversely, assume that C is separably D-absorbing. Since the inductive
limit of a sequence of separable, D-absorbing C∗-algebras is D-absorbing,
this implies that the D-absorbing C∗-algebras form a club in Sep(C). The
intersection of this club with the club of elementary submodels of C is a
club by Lemma 1.2. By Theorem 1.4 and considering that the conditions in
Proposition 1.7 hold for all members of such a club, it follows that C admits
large approximately central maps from D. �

Definition 1.11. Suppose that B and C are unital C∗-algebras such that B
is separable. We say that C is B-saturated if for every separable C∗-
subalgebra A of C there is a unital ∗-embedding from B to C ∩A′.

If the algebra B above is in fact a strongly self-absorbing C∗-algebra D,
then examples of D-saturated algebras are the ultrapower AU and the se-
quence algebra A∞ of a unital D-absorbing C∗-algebra A (see [13], [45,
Theorem 7.2.2], and [21]), path algebras of unital D-saturated C∗-algebras
([18, Corollary 5.3]) and coronas of σ-unital D-stable C∗-algebras as per
Theorem A.

The requirement that the *-homomorphism be unital is important in the
above definition. For example, it was proven in [18, Theorem B] that Q(H)
is not O∞-saturated while Voiculescu’s theorem easily implies that for every
separable C∗-subalgebra C of Q(H), the relative commutant Q(H) ∩ C ′

contains an isomorphic (but non-unital) copy of O∞.
If a separable C∗-algebraM is D-stable and A is a hereditary C∗-subalgebra

of M , then A is D-stable (this is [54, Corollary 3.1]).

Proposition 1.12. Suppose that D is strongly self-absorbing. If A is a
hereditary C∗-subalgebra of a separably D-stable C∗-algebra C, then A is
separably D-stable. In particular, if A is a C∗-algebra and M(A) is separably
D-stable, then so is A.

Proof. Suppose that C is separably D-stable. By Proposition 1.6, the col-
lection C of all separable D-stable C∗-subalgebras in C is a club.

Then the collection {A ∩ B | B ∈ C} includes a a club in Sep(A) by
Lemma 1.3. As pointed out above, it follows that A ∩ B is D-stable for all
B ∈ C, being a separable hereditary subalgebra of a D-stable C∗-algebra.
Hence A is separably D-absorbing. �

Proposition 1.13. Suppose that A is a C∗-algebra and D is strongly self-
absorbing.

(1) If A is separably D-stable, then it follows for every C∗-algebra B that
A⊗max B is separably D-stable.

(2) A is separably D-stable if and only if K ⊗A is separably D-stable.

Remark. Regarding statement (1) above, notice that it also follows for any
C∗-algebra B and any C∗-crossnorm γ on A ⊙ B that A ⊗γ B is separably



CORONAS & STRONGLY SELF-ABSORBING C∗-ALGEBRAS 11

D-stable. This is because such C∗-algebras arise as quotients of A ⊗max B
and separable D-stability passes to quotients.

Proof of Proposition 1.13. (1): For C∗-subalgebras B0 ∈ Sep(B) and C ∈
Sep(A), we denote (ad-hoc) by C⊗•B the image of the unique ∗-homomorphism
C ⊗max B0 → A⊗max B given by π(c⊗ b) = c⊗ b for all c ∈ C and b0 ∈ B.3

Notice that if C ⊆ Sep(A) is any club, then the collection

{C ⊗• B0 | C ∈ C, B0 ∈ Sep(B)}

is also a club in A⊗maxB. So if A is separably D-stable, then we can choose
a club consisting of D-absorbing C∗-algebras, leading to A ⊗max B being
separably D-stable.

(2): This is a direct consequence of Proposition 1.12 and part (1) applied
to B = K. �

Lemma 1.14. Let D be a strongly self-absorbing C∗-algebra. Suppose A
is a C∗-algebra with a closed two-sided ideal I ⊆ A. Then A is separably
D-stable if and only if I and A/I are separably D-stable.

Proof. Let π : A→ A/I denote the quotient map. Let us first briefly argue
the “only if” part, so assume A is separably D-stable. As an ideal, I is also
hereditary and thus separably D-stable as a consequence of Proposition 1.12.
Furthermore, showing that A/I is separably D-stable is a trivial exercise,
given that quotients of separable D-stable C∗-algebras are D-stable.

For the “if” part, assume both I and A/I are separably D-stable. If
C ⊆ Sep(A) is a club it is then not difficult to see that {B ∈ Sep(A) |
π(B) ∈ C} is a club in Sep(A). Similarly, if C ⊆ Sep(I) is a club, then
{B ∈ Sep(A) | B ∩ I ∈ C} is a club. Let

C0 = {B ∈ Sep(A) | π(B) is D-stable},

C1 = {B ∈ Sep(A) | B ∩ I is D-stable}.

By the assumptions and Proposition 1.6, each one of C0 and C1 is a club, and
C0∩C1 is then a club by Lemma 1.2. By [54, Theorem 4.3], every B ∈ C0∩C1
is D-absorbing, hence A is separably D-stable by Proposition 1.6. �

Corollary 1.15. Let A be any C∗-algebra. Assume that D is strongly self-
absorbing and that both A and Q(A) are separably D-stable. Then M(A) is
separably D-stable.

2. On D-saturation of coronas

For proving the main result of this section we will need the existence
of quasi-central approximate units, which were introduced in [1]. We first
record a few basic facts about them. If E is an ideal in a C∗-algebra C
and X is a subset of C, then an approximate unit (eλ) for E is said to be
X-quasicentral if ‖[eλ, x]‖ → 0 for every x ∈ X (see e.g., [17, §1.9]). We
are interested in the case when E is σ-unital and the approximate unit is
countable. In this situation, a sequential X-quasicentral approximate unit
can be chosen for every separable subset X. We will need the following more
precise statement.

3We caution the reader that for certain choices of the involved algebras this map is not
necessarily an inclusion.
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Lemma 2.1. Suppose that E is a σ-unital C∗-algebra, X is a countable
subset of C, and εn > 0, for n ∈ N, are such that limn εn = 0. Then there
is an approximate unit en, for n ∈ N, of E such that the following holds.

(1) e0 = 0 and en+1en = en for all n.
(2) With

fn = (en+1 − en)1/2

the series
∑

n f
2
n strictly converges to 1M(E).

(3) fmfn = 0 whenever |m− n| ≥ 2.
(4) For every x ∈ X and all large enough n we have ‖[fn, x]‖ < εn.

Proof. The assertion is trivial when E is unital (take en = 1 for all n), and
we may assume E is not unital. Enumerate X as {xn | n ∈ N}. Fix an
approximate unit en, for n ∈ N, in E which is E ∪{xn | n ∈ N}-quasicentral
and such that en+1en = en for all n ([17, Proposition 1.9.3]). Note that this
sequence does not necessarily satisfy the requirements. In order to ensure
that all required conditions hold we will have to pass to a subsequence of
this approximate unit, also denoted (en). We may assume that e0 = 0. By
[17, Lemma 1.4.8] for each n there is δn > 0 such that for contractions a ≥ 0

and x we have that ‖[a, x]‖ < δn implies ‖[a1/2, x]‖ < εn. By going to a
subsequence we may assume that ‖[en, xj ]‖ < δn/2 for all j ≤ n. Let, for
n ≥ 0,

fn = (en+1 − en)1/2.

Clearly the series
∑

n f
2
n strictly converges to 1M(E). Also, if |m − n| ≥ 2

then f2mf
2
n = 0, and by applying continuous functional calculus one obtains

fmfn = 0. Also ‖[fn, xj ]‖ < εn for all j ≤ n, as required. �

Lemma 2.2. Suppose that fn, for n ∈ N, is a sequence of positive con-
tractions in a multiplier algebra M(E) such that the series

∑

n f
2
n strictly

converges to 1M(E).
Then for every Y ⊆ N the function ΨY : ℓ∞(M(E)) → M(E) defined by

ΨY ((an)) =
∑

n∈Y

fnanfn

is completely positive and contractive.

Proof. The sum in the definition of ΨY is strictly convergent ([17, Claim 1
on p. 370]), thus ΨY is well-defined. It is completely positive because each
of the summands is completely positive (this is similar to [17, Claim 2 on p.
370]). Since ΨY (1) =

∑

n∈Y f
2
n ≤ 1M(E), ΨY is contractive. �

The following is [39, Lemma 3.1] but we include a proof for the reader’s
convenience (π : M(E) → Q(E) denotes the quotient map).

Lemma 2.3. Suppose that E is σ-unital and fn, for n ∈ N, is a sequence
of positive contractions in E such that the sum

∑

n f
2
n strictly converges

to 1M(E) and fmfn = 0 if |m − n| ≥ 2. Then for every k ∈ Z and every
sequence (an) in ℓ∞(M(E)) the sum

∑

n fnanfn+k strictly converges to an
element of M(E) and ‖

∑

n fnanfn+k‖ ≤ supn ‖an‖. We also have

‖π(
∑

n fnanfn+k)‖ ≤ lim supn ‖an‖.
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Proof. Fix natural numbers i < j, and consider M(E)⊕(j−i) as a Hilbert
M(E)-module. Fix a contraction b ∈ M(E). By the generalized Cauchy–
Schwarz inequality we have the following.

‖
∑j

n=i fnanfn+k‖
2 ≤ ‖

∑j
n=i fnana

∗
nfn‖‖

∑j
n=i f

2
n+kb‖

≤ supn≥i ‖an‖
2‖

∑j
n=i f

2
n‖‖

∑j
n=i b

∗f2n+kb‖

≤ supn≥i ‖an‖
2.

With respect to the strict topology, we have limj→∞
∑j

n=i f
2
n = (1− ei) and

limj→∞
∑j

n=i b
∗f2n+kb = b∗(1 − ei+k)b. Since limi→∞ ‖b∗(1 − ei+k)b‖ = 0

when b ∈ E, the series is strictly convergent.
When inserting b = 1 and letting j → ∞, the above estimate shows

‖
∑

n≥i fnanfn+k‖ ≤ supn≥i ‖an‖ for all i. This implies both of the desired
norm estimates. �

Lemma 2.4. Let A be a σ-unital C∗-algebra. Given any strictly separable
subset X of M(A), there exists a nondegenerate separable C∗-subalgebra
B ⊆ A such that under the canonical inclusion M(B) ⊆ M(A), one has
X ⊆ M(B).

As a consequence, if C is any cofinal subset of Sep(A), then for any sep-
arable C∗-subalgebra C of Q(A) there exists B ∈ C with C ⊆ Q(B).

Proof. The “as a consequence” part follows from functoriality of the multi-
plier algebra under nondegenerate inclusions of C∗-algebras. First note that
since A is σ-unital, the set of B ∈ C that include an approximate unit for A
(and are therefore nondegenerate) is cofinal in C. Given a nondegenerate
inclusion B ⊆ A, if M(B) ⊆ M(A) is the induced inclusion, then the homo-
morphism theorem also gives us an inclusion Q(B) ⊆ Q(A). If the first part
of the statement holds and we pick a separable C∗-subalgebra C of Q(A),
then we may choose a separable subset X ⊆ M(A) whose image under the
quotient map is C, and apply the first part of the statement to find the
desired element B ∈ C.

Hence it suffices to prove the first part of the statement. We may assume
without loss of generality that X is self-adjoint and contains the unit. We
pick a countable approximate unit en ∈ A. Let B be the C∗-algebra gen-
erated by {xen | n ∈ N, x ∈ X}, which is norm-separable if X is strictly
separable. Evidently B is nondegenerate in A because it contains all en.
Furthermore, one has for all x, y ∈ X that

x(yen) = lim
m→∞

xemyen ∈ B.

In this way it follows that xB ⊆ B for all x ∈ X. Since X was self-adjoint,
we have also Bx ⊆ B for all x ∈ X. Hence every x ∈ X is automatically a
multiplier on B and the claim is proved. �

We can now prove Theorem A.

Theorem 2.5. Suppose that D is a strongly self-absorbing C∗-algebra and
that A is a σ-unital C∗-algebra that is separably D-stable. Then Q(A) is
D-saturated.
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Proof. Let h ∈ A be a strictly positive element. As A is separably D-
stable, the collection C ⊆ Sep(A) of separable D-stable C∗-subalgebras in A
containing h is a club. Such subalgebras are automatically nondegenerate.
By Lemma 2.4, we see that every separable C∗-subalgebra of Q(A) can be
seen as a subalgebra of Q(B) for some B ∈ C. Considering the definition of
D-saturation, it suffices to show that Q(B) is D-saturated for every B ∈ C.
To put it differently, it suffices to prove the conclusion of the theorem in
case when A is separable. Let us assume that as of now.

Suppose that B is any separable C∗-subalgebra of Q(A). By [28, Lem-
ma 6.8], there exists a unital ∗-homomorphism from D into Q(A)∩B′ if and

only if there exist two completely positive maps of order zero Ψ̃0, Ψ̃1 : D →
Q(A)∩B′ whose ranges commute pointwise and such that Ψ̃0(1)+Ψ̃1(1) = 1.
We proceed to find such maps.

Fix a countable subset {bn | n ∈ N} of the unit ball of M(A) whose image
under the quotient map is dense in the unit ball of B. By Lemma 2.1 there
is an approximate unit en, for n ∈ N, of A such that with

fn = (en+1 − en)1/2

the series
∑

n f
2
n strictly converges to 1M(A), fmfn = 0 whenever |m−n| ≥ 2,

and furthermore we have

(2.1) ‖[fn, bj ]‖ < 2−n for all 1 ≤ j ≤ n.

Fix an increasing sequence Fn, for n ∈ N, of finite subsets of the unit
ball of D with dense union. Since we assumed A to be separable, we have
A ∼= A ⊗ D. As D embeds approximately centrally into itself, we can find
a sequence of unital ∗-homomorphisms πn : D → M(A), for n ∈ N, such
that [πn(d), a] → 0 in norm for all a ∈ A and d ∈ D. By passing to a
subsequence, if necessary, we may ensure that the sequence πn satisfies the
following conditions for all n:

(i) ‖[πn(d), fm]‖ < 2−n for all d ∈ Fn and m ≤ n+ 1,
(ii) ‖[πn(d), fnbk]‖ < 2−n for all d ∈ Fn and k < n,
(iii) ‖[πn(d1), fjπj(d2)fj]‖ < 2−n for all d1, d2 ∈ Fn and j < n.

Define Ψi : D → M(A) for i = 0, 1 by

Ψi(d) :=

∞∑

n=0

f2n+iπ2n+i(d)f2n+i.

Each Ψi is well-defined and completely positive by Lemma 2.2. Clearly
Ψ0(1) + Ψ1(1) = 1. For i = 0, 1, let Ψ̃i : D → Q(A) be the composition with

the quotient map M(A) → Q(A). Then Ψ̃0 and Ψ̃1 are completely positive

maps from D into Q(A) such that Ψ̃0(1) + Ψ̃1(1) = 1.
First we observe for all n and k < n that

fnπn(d)fnbk ≈2−n f2nbkπn(d) ≈2−n+1 bkf
2
nπn(d) ≈2−n bkfnπn(d)fn.

Therefore ‖[fnπn(d)fn, bk]‖ < 2−n+2 and [Ψi(d), bk] ∈ A for i = 0, 1, all

d ∈
⋃

n Fn, and all k. By continuity, the range of the induced map Ψ̃i : D →
Q(A) is included in Q(A) ∩B′.
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Our next task is to prove that the ranges of Ψ0 and Ψ1 commute pointwise
modulo A. For all n and d ∈ Fn we have

f2n+1fnπn(d)fn ≈2−n+1 fnπn(d)fnf
2
n+1.

Finally, for all n and d1, d2 ∈ Fn we get

fn+1πn+1(d1)fn+1fnπn(d2)fn ≈2−n f2n+1πn+1(d1)fnπn(d2)fn

≈2−n f2n+1fnπn(d2)fnπn+1(d1)

≈2−n+1 fnπn(d2)fnf
2
n+1πn+1(d1)

≈2−n fnπn(d2)fnfn+1πn+1(d1)fn+1.

Since fmfn = 0 if |m − n| ≥ 2, this shows that for all m > n, d ∈ Fn,
and d′ ∈ Fm we have ‖[fmπm(d′)fm, fnπn(d)fn]‖ < 5 · 2−n. Since

⋃

n Fn is
dense in the unit ball of D, we get [Ψ0(d1),Ψ1(d2)] ∈ A for all d1, d2 ∈ D.

Equivalently, we get that the ranges of Ψ̃0 and Ψ̃1 commute pointwise.
We lastly verify that for i = 0, 1, Ψ̃i is of order zero. Let k ∈ N and

a, b ∈ Fk be two elements. Because fmfn = 0 if |m− n| ≥ 2, we have

Ψi(a)Ψi(b) =

∞∑

n=0

f2n+iπ2n+i(a)f22n+iπ2n+i(b)f2n+i.

Since ‖[fn, πn(a)]‖ < 2−n+1 for n + 1 ≥ k, and each πn is a unital ∗-
homomorphism, it follows that

Ψi(a)Ψi(b) − Ψ(1)Ψi(ab) =

∞∑

n=0

f2n+i[π2n+i(a), f22n+i]π2n+i(b)f2n+i ∈ A.

By continuity, we obtain the equality Ψ̃i(a)Ψ̃i(b) = Ψ̃i(1)Ψ̃i(ab) for all a, b

in D. In conclusion, Ψ̃i is of order zero.
By what we remarked earlier (using [28, Lemma 6.8]), it follows that there

exists a unital ∗-homomorphism from D to Q(A) ∩B′. Since B was chosen
arbitrarily, the proof is complete. �

Here is a partial converse to Proposition 1.12, which treats a consequence
of (separable) D-stability that has not been previously observed in the lit-
erature to the best of our knowledge.

Lemma 2.6. Suppose that D is strongly self-absorbing and A is a σ-unital
C∗-algebra. Then A is separably D-stable if and only if M(A) is separably
D-stable.

Proof. The “if” part is settled by Proposition 1.12. For the “only if” part,
assume A is separably D-stable. We give two different short proofs for this
implication using Theorem 2.5.

Firstly, by Theorem 2.5 we may conclude that Q(A) is D-saturated, so in
particular also separably D-stable. By Corollary 1.15, it follows that M(A)
is separably D-stable as well. Alternatively, we know by Proposition 1.13(1)
that c0(A) ∼= c0(N)⊗A is separably D-stable, hence by Theorem 2.5 it follows
that its corona Q(c0(A)) = ℓ∞(M(A))/c0(A) is D-saturated. The sequence
algebra M(A)∞ = ℓ∞(M(A))/c0(M(A)) is a quotient of this C∗-algebra
and hence also D-saturated, which is equivalent to M(A) being separably
D-stable via Proposition 1.7. �
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The conclusion of Theorem 2.5 may fail if A is not assumed to be σ-unital.

Example 2.7. Let U be the universal UHF algebra, given as the infinite
tensor product

⊕

n≥2Mn(C), which is strongly self-absorbing. There is a

separably U-stable C∗-algebra A such that Q(A) is one-dimensional and
hence not even separably Z-stable. Choose a nonprincipal ultrafilter U on
N and consider RU , the (tracial) ultrapower of the hyperfinite II1-factor R.
Since R is McDuff, it follows for any von Neumann subalgebra B of RU with
separable predual that RU ∩B′ includes a unital copy of U (and even of R).
This means that RU is U-saturated, so in particular separably U-stable as
a C∗-algebra. Let L be a maximal left ideal of RU and let A = L ∩ L∗.
This is a hereditary C∗-subalgebra of RU , and it is therefore separably U-
stable by Proposition 1.12. By [47, Theorem 1], it follows that Q(A) is
one-dimensional.

In relation to this example, we ought to mention that it is not known
whether R itself is (as a C∗-algebra) separably Z-stable. Our results do not
shed light on this problem, however.

3. A refinement of Schur’s Lemma for Property (T) groups

The main results of the present section are Lemma 3.3 and Lemma 3.4
and they will serve as the technical backbone for the next section.

Let A be a C∗-algebra. By S(A) we denote the space of states on A. In
the proofs of the lemmas below we use the theory of Hilbert modules. In
particular we will need the the fact that M(A) = LA(A) is nothing but
the algebra of all adjointable A-linear operators on A when we view it as a
Hilbert module over itself in a trivial way ([4, §II.7.3.11]). For m ≥ 1, we
denote by τm the tracial state on the scalar m×m matrices, and define the
faithful conditional expectation

(3.1) Em : Mm(A) = Mm ⊗A→ A via Em = τm ⊗ idA .

Note that Em extends to a conditional expectation Mm(M(A)) → M(A)
that is strictly continuous on norm-bounded sets. We make use of the
canonical identification Mm(M(A)) = LA(A⊕m), where the latter is the
set of all adjointable right A-linear endomorphisms on the right A-Hilbert
module A⊕m (see e.g., [4, §II.7.1]).

Notation. Let A be a C∗-algebra and m ≥ 2. Given any right A-Hilbert
module Y, we can put a norm on LA(A⊕m,Y) via

‖X‖m,A = ‖Em(X∗X)‖1/2.

(Note that for Y = A⊕m, we put this norm on Mm(A).)

We observe (as a consequence of the definition) that this norm obeys the
equality

(3.2) ‖1m ⊗ a‖m,A = ‖a‖

and for all a ∈ M(A), X ∈ LA(A⊕m,Y), and Y ∈ Mm(M(A)) the inequal-
ities

(3.3) ‖X(1 ⊗ a)‖m,A ≤ ‖a‖‖X‖m,A and ‖XY ‖m,A ≤ ‖X‖‖Y ‖m,A.

Here is another well-known fact included for reference.
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Lemma 3.1. Suppose that A is a C∗-algebra.

(1) Every state ϕ of A has a unique extension to a state ϕ̃ of M(A).

(2) For every T ∈ M(A) we have ‖T‖ = sup{ϕ̃(T ∗T )1/2 | ϕ ∈ S(A)}.

Proof. The first part follows e.g., from [17, Lemma 1.8.5]. For the second

part, fix an approximate unit (eλ) in A. Then T is a strict limit of e
1/2
λ T

and ‖T‖ = limλ ‖e
1/2
λ T‖. Since for every a in A there is a state of A such

that ϕ(a∗a) = ‖a‖2, for every λ there is ϕλ ∈ S(A) such that

‖T ∗eλT‖ = ϕλ(T ∗eλT ) ≤ ϕλ(T ∗T ),

and the conclusion follows. �

Remark. Although it is irrelevant to what follows below, we note that in the
second part of Lemma 3.1 the supremum is typically not attained. Choose
A to be an arbitrary non-unital but σ-unital C∗-algebra so that some stictly
positive contraction e ∈ A exists. Then T = (1 − e)1/2 ∈ M(A) has norm
one, but ϕ̃(T 2) < 1 for every ϕ ∈ S(A) since e is strictly positive.

For the reader’s convenience, in the following discussion we reiterate some
of the points from [18, §1.3]. Recall that a discrete group Γ has Kazhdan’s
property (T) if there are F ⋐ Γ and ε > 0 such that for every unitary
representation ρ of Γ on a Hilbert space H, if there is a vector ξ in H such
that

(3.4) max
g∈F

‖ρ(g)ξ − ξ‖ < ε‖ξ‖.

for all g ∈ F , (such ξ ∈ H is called (F, ε)-invariant), then there is a unit
vector in H that is invariant for ρ. The pair (F, ε) is called a Kazhdan pair
for Γ. Suppose ρ is an irreducible representation of Γ. Then ρ extends to a
representation of the full group C∗-algebra C∗(Γ) (see [6] for information on
group C∗-algebras). The central cover of ρ ([6, Definition 1.4.2]) is a Kazh-
dan projection in the second dual, C∗(Γ)∗∗. However, if Γ has Kazhdan’s
property (T) then pρ belongs to C∗(Γ) ([6, Definition 17.2.3 and Theorem
17.2.4]). Kazhdan projections associated to inequivalent irreducible repre-
sentations are orthogonal. See [2], [6] for property (T) groups and [6, §17],
[27, 3.7.6] for Kazhdan projections.

Suppose that ρ is an action of a discrete group Γ on a Hilbert space H.
Following [18], we say that ξ ∈ H is scaled (F, ε)-invariant if

(3.5) max
g∈F

‖ρ(g)ξ − ξ‖ < ε.

Clearly every ξ is scaled (F, ε)-invariant for any F and ε > 2‖ξ‖, but in this
case the estimate given in Lemma 3.2 below is vacuous.

Let qρ denote the orthogonal projection to the space of invariant vectors,

Hρ := {η ∈ H | ρ(g)η = η for all g ∈ Γ}.

The following is [6, Proposition 12.1.6] (with Γ = Λ) or [2, Proposition 1.1.9]
(the case when F is compact, and modulo rescaling).

Lemma 3.2. Suppose Γ is a group with Kazhdan’s property (T) and (F, ε) is
a Kazhdan pair for Γ. If Γ acts on a Hilbert space H then every scaled (F, δε)-
invariant vector ξ satisfies ‖ξ − qρξ‖ < δ.
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Suppose that K and H are Hilbert spaces. If K is finite-dimensional let
τK denote the normalized tracial state on B(K) and consider the normalized
Hilbert–Schmidt norm on B(K,H), defined by

‖T‖HS,K := τH(TT ∗)1/2.

With this norm, we note that B(K,H) becomes a Hilbert space. The lemma
below is a strengthening of [18, Lemma 1.2] which is in turn a minor variation
on Schur’s Lemma for property (T) groups ([27, Lemma 3.7.8]).

Lemma 3.3. Suppose Γ is a property (T) group with Kazhdan pair (F, ε)
and ρj is a unitary representation of Γ on a finite-dimensional Hilbert space Kj

for j = 1, 2. Define a unitary representation σ = σρ1,ρ2 of Γ on B(K1,K2)
(viewed as a Hilbert space via the Hilbert–Schmidt norm defined above) via

σg(T ) := ρ2(g)Tρ1(g)∗, T ∈ B(K1,K2).

Let H be another Hilbert space and let T ∈ B(K1,K2)⊗̂H satisfy

max
g∈F

‖(σg ⊗ 1H)(T ) − T‖ < εδ.

(1) If K1 = K2 and ρ1 = ρ2 is irreducible, then ‖T − (τ1⊗ 1H)(T )‖ < δ,
where τ1 is the normalized tracial state on B(K1).

4

(2) If ρ1, ρ2 have no isomorphic subrepresentations, then ‖T‖ < δ.

Proof. Since ‖ · ‖HS,1 ≤ ‖ · ‖, we have

(3.6) max
g∈F

‖Tρ1(g) − ρ2(g)T‖HS,1 < εδ

Consider the space B(K1,K2)σ of vectors invariant for σ, and let Q be the
projection to this space. Note that we have

(
B(K1,K2)⊗̂H

)σ⊗1H = B(K1,K2)σ⊗̂H

with orthogonal projection Q ⊗ 1H . Since (F, ε) is a Kazhdan pair for Γ,
by (3.6) and Lemma 3.2 we have

(3.7) ‖T − (Q⊗ 1H)(T )‖ < δ.

Now consider the two specific cases from the statement of the lemma.
(1): If ρ1 = ρ2 is irreducible, then (identifying scalars with scalar matri-

ces), Schur’s Lemma ([27, Lemma 3.7.7]) implies B(K1,K1)σ = C1K1
and

Q(T ) = τ1(T ). Therefore (3.7) reduces to ‖T − (τ1 ⊗ 1H)(T )‖ < δ.
(2): We claim B(K1,K2)σ = {0} or equivalently Q = 0. Since K1 is finite-

dimensional, ρ1 is a direct sum of irreducible representations, say (ρ1,K1) =
⊕k

ℓ=1(ρ
ℓ
1,K

ℓ
1). Then one gets a σ-equivariant direct sum decomposition

B(K1,K2) ∼=
⊕k

ℓ=1 B(Kℓ
1,K2), which in particular implies B(K1,K2)σ ∼=

⊕k
ℓ=1 B(Kℓ

1,K2)σ. Then Schur’s Lemma ([27, Lemma 3.7.7]) implies that

there are no nontrivial intertwiners for ρℓ1 and ρ2, ℓ = 1, . . . , k, which leads
to B(K1,K2)σ = {0}. Hence Q(T ) = 0 and (3.7) reduces to ‖T‖ < δ. �

4Note that ‖ · ‖ denotes the product Hilbert space norm and we view τ1 ⊗ 1H as the
orthogonal projection onto C1K1

⊗ H that is given on elementary tensors via a ⊗ ξ 7→
τ1(a)⊗ ξ.
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If A is a C∗-algebra, H is a Hilbert space, and K is the ideal of compact
operators on B(H), then B(H) ∼= M(K) can be identified with a subalgebra
of M(K ⊗A) for any C∗-algebra A via

(3.8) M(K) ⊗ 1M(A) ⊆ M(K ⊗A).

The special case A = C within the following lemma is included in the proof
of [18, Proposition 2.4].

Lemma 3.4. Suppose Γ is a property (T) group with Kazhdan pair (F, ε).
Let ρn : Γ → U(Hn) be a sequence of pairwise inequivalent irreducible uni-
tary representations with mn = dim(Hn) < ∞. Let ρ be the direct sum
representation on H =

⊕∞
n=1Hn and let pn be the orthogonal projection

onto Hn for each n ≥ 1. Let A be a C∗-algebra. As in (3.8), we identify
B(H) with a subalgebra of M(K ⊗ A) and, with a slight abuse of notation,
identify pn with pn ⊗ 1M(A). Suppose that n ≥ 1 is a natural number and a
multiplier T ∈ M(K ⊗A) satisfies

max
g∈F

‖
(
ρ(g)Tρ(g)∗ − T

)
pn‖ < εδ.

Then we have ‖Tpn − pn ⊗ Emn(pnTpn)‖mn,A ≤ 2δ.

Proof. Given that Emn is strictly continuous on bounded sets and PN :=
∑N

j=1 pj is an increasing sequence that strictly converges to the unit, for

any x ∈ M(K⊗A)pn we have that Emn(x∗PNx) is increasing and converges
to Emn(x∗x) strictly. Thus

lim
N→∞

‖PNx‖mn,A = lim
N→∞

‖Emn(x∗PNx)‖1/2 = ‖x‖mn,A, x ∈ M(K⊗A)pn.

Applying this to x = Tpn and given that the range of ρ pointwise commutes
with all the projections pj, it suffices to show the claim for N ≥ n and
T ∈ PNM(K⊗A)pn. So let us assume that this is the case, and let us fix the
numbers N and n for the rest of the proof. We may identify M(K⊗A) with
LA(H⊗CA), whereH⊗CA is to be understood as the internal tensor product

(see [4, §II.7.4]). Set K =
⊕N

k=1Hk. Because the scalar projections pn and
PN have finite rank, there is a bijective linear map

Φ : B(Hn,K) ⊗M(A) → LA(Hn ⊗C A,K ⊗C A) = PNM(K ⊗A)pn

given on elementary tensors by

Φ(Z ⊗ x)(ξ ⊗ a) = Zξ ⊗ xa.

for all Z ∈ B(Hn,K), x ∈ M(A), ξ ∈ Hn and a ∈ A. One easily sees from
this formula that Φ restricts further to a bijection between B(Hn,Hn) ⊗
M(A) and pnM(K ⊗A)pn.

Given φ ∈ S(A), define the semi-norm ‖ · ‖n,φ on M(K ⊗A)pn via

‖x‖n,φ = (τmn ⊗ φ)(x∗x)1/2.

Using Lemma 3.1, it follows for any x ∈ M(K ⊗A)pn that

(3.9) ‖x‖2mn,A = ‖Emn(x∗x)‖ = sup
φ∈S(A)

φ(Emn(x∗x)) = sup
φ∈S(A)

‖x‖2n,φ.
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For the rest of the proof we fix some φ ∈ S(A). Under the identification Φ

above, for any X =
∑k

j=1 Zj ⊗ xj in B(Hn,K) ⊗M(A) we have that

Φ(X)∗Φ(X) =

k∑

i,j=1

(Z∗
i Zj) ⊗ (x∗i xj) ∈ pnM(K ⊗A)pn,

and hence

(3.10) (τmn ⊗ φ)(Φ(X)∗Φ(X)) =
k∑

i,j=1

τmn(Z∗
i Zj)φ(x∗i xj).

Let Hφ be the Hilbert space obtained from (A,φ) via the GNS-construction.
If we view B(Hn,K) as a Hilbert space with the normalized Hilbert–Schmidt
norm as before, then we have a canonical contractive linear map (⊗̂ is the
Hilbert space tensor product)

Θφ : B(Hn,K) ⊗M(A) → B(Hn,K)⊗̂Hφ.

Considering how the norm on the tensor product Hilbert space is defined,
condition (3.10) directly shows

‖Φ(X)‖n,φ = ‖Θφ(X)‖ for all X ∈ B(Hn,K) ⊗C M(A),

or equivalently, since Φ is an isomorphism,

(3.11) ‖(Θφ ◦ Φ−1)(x)‖ = ‖x‖n,φ for all x ∈ PNM(K ⊗A)pn.

If we restrict (Θφ ◦ Φ−1) to pnM(K ⊗ A)pn, then we can observe that the
diagram

(3.12) pnM(K ⊗A)pn

Emn

��

Φ−1
// B(Hn,Hn) ⊗M(A)

Θφ
// B(Hn,Hn)⊗̂Hφ

τmn⊗1H
��

pn ⊗M(A) // Cpn⊗̂Hφ

commutes, where the lower horizontal arrow is the linear contractive map
induced from the GNS-construction. We note furthermore that the map
Θφ ◦Φ−1 is ρ-equivariant in the obvious sense, putting us in the position to
apply Lemma 3.3. We consider the unitary representation

σn,φ : Γ → U(B(Hn,K)⊗̂Hφ), σn,φ(g)(Z ⊗ ξ) := (ρ(g)Zρn(g)∗) ⊗ ξ

for all g ∈ Γ, Z ∈ B(Hn,K) and ξ ∈ Hφ. Set p⊥n = PN − pn and consider

η1 := (Θφ ◦ Φ−1)(pnT ) and η2 := (Θφ ◦ Φ−1)(p⊥n T ).

We get the inequality

max
g∈F

max
q∈{pn,p⊥n }

‖qρ(g)Tρn(g)∗ − qT‖n,φ ≤ max
g∈F

‖ρ(g)Tρ(g)∗ − T‖ < εδ

which via (3.11) directly translates to

(3.13) max
g∈F

max
j=1,2

‖σn,φ(g)ηj − ηj‖ < εδ.

On the one hand, we have η1 ∈ B(Hn,Hn)⊗̂Hφ and σn,φ is of the form as
given in Lemma 3.3(1). Thus

‖η1 − (τmn ⊗ 1Hφ
)η1‖ < δ.
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In light of the commuting diagram (3.12), this is the same as

‖pnT − Emn(pnT )‖n,φ < δ.

On the other hand, we have η2 ∈ B(Hn,K ⊖Hn) and on this space σn,φ is
of the form as given in Lemma 3.3(2). This lemma, together with (3.13),
implies ‖η2‖ < δ, which with (3.11) implies ‖p⊥n T‖n,φ < δ. All in all we
obtain

‖T − pn ⊗ Emn(pnT )‖n,φ < 2δ.

Since the state φ was arbitrarily chosen, condition (3.9) yields

‖T − pn ⊗ Emn(pnT )‖mn,A ≤ 2δ

and proves the claim. �

4. Property (T) groups inside stable coronas

The main result of this section is Theorem 4.4. For any non-zero C∗-
algebra A, it implies a transfer result for (relatively) approximately central
sequences from Q(K ⊗ A) to M(A). As a consequence we obtain Corol-
lary 4.5, which represents the most difficult implication in Theorem B.

The proof of Theorem 4.4 is based on the reinterpretation of Wasser-
mann’s proof that if Γ is a property (T) group with infinitely many finite-
dimensional representations, then Ext(C∗(Γ)) is not a group ([55]) given in
[18, §2], and some overlap with the text of the latter is included for the
reader’s convenience.

Notation. Suppose Γ is a property (T) group with infinitely many inequiv-
alent irreducible representations on finite-dimensional Hilbert spaces (e.g.,
a residually finite property (T) group such as SL3(Z)). Fix a Kazhdan
pair, F ⋐ Γ and ε > 0. Let ρn, for n ∈ N, be an enumeration of ir-
reducible representations of Γ on finite-dimensional Hilbert spaces. Since
there are only finitely many inequivalent representations of Γ on every fixed
finite-dimensional Hilbert space H ([55, Corollary 3]), we may choose the
enumeration so that the sequence mn := dim(Hn) is nondecreasing, and
necessarily mn → ∞ as n → ∞. For each n ≥ 1, let pn be the Kazhdan
projection associated with ρn in C∗(Γ). Each representation ρn of Γ on Hn

uniquely extends to a representation of the full group algebra C∗(Γ) on the
same space. We will slightly abuse the notation and denote the latter by ρn.
Let ρ =

⊕

n ρn, and H :=
⊕

nHn. Then H is an infinite-dimensional, sep-
arable Hilbert space and the C∗-algebra generated by ρ(Γ) contains all pn
(the orthogonal projection onto Hn), for n ∈ N.

Definition 4.1. Let Γ be a countable group with property (T) and with
infinitely many irreducible representations ρn : Γ → B(Hn), for n ∈ N, on
finite-dimensional Hilbert spaces. Let ρ =

⊕

n ρn be the direct sum repre-
sentation on H =

⊕

nHn. Given a non-zero C∗-algebra A, as in (3.8) we
identify B(H) with a subalgebra of M(K ⊗ A). In this way we can define
the unitary representation ρ̄ : Γ → U(Q(K ⊗A)) via

ρ̄(g) = (ρ(g) ⊗ 1) + K⊗A

for all g ∈ Γ.
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Definition 4.2. Adopt the notation of Definition 4.1 and write pn for the
orthogonal projection onto Hn. We define an embedding

ι : ℓ∞(N,M(A)) → M(K ⊗A) via ι((xn)n) =

∞∑

n=1

pn ⊗ xn,

where the limit of partial sums is taken in the strict topology. We consider
a conditional expectation E from M(K ⊗ A) onto the image of ι by (using
the conditional expectation Emn : Mmn(M(A)) → M(A) as in (3.1)):

E(x) =
∞∑

n=1

pn ⊗ Emn(pnxpn),

where the limit is again taken in the strict topology. We observe that for
x ∈ K ⊗ A, the sequence pnxpn ∈ A converges to zero in norm, hence
E(K ⊗ A) = ι(c0(A)). This gives rise to a unital completely positive map
Ψ : Q(K ⊗A) → Q(c0(A)) = ℓ∞(N,M(A))/c0(N, A) defined by

(4.1) Ψ(x+ K ⊗A) = (ι−1 ◦ E)(x) + c0(A).

By Ψ̄ : Q(K ⊗ A) → M(A)∞ we denote the composition of Ψ with the
quotient map Q(c0(A)) → M(A)∞. (Note that Ψ = Ψ̄ if A is unital.)

Lemma 4.3. Assume A is a non-zero C∗-algebra and adopt the notation of
both Definitions 4.1 and 4.2. Suppose that (F, ε) is a Kazhdan pair for Γ.
Then it follows for every z ∈ Q(K ⊗A) that

‖Ψ̄(z∗z) − Ψ̄(z)∗Ψ̄(z)‖ ≤ 8ε−1‖z‖max
g∈F

‖ρ̄(g)z − zρ̄(g)‖.

In particular, the relative commutant Q(K ⊗ A) ∩ {ρ̄(g)}′g∈Γ belongs to the

multiplicative domain of Ψ̄.

Proof. Let η > 0. Let T ∈ M(K ⊗ A) be a multiplier with z = T + K ⊗ A
and ‖T‖ = ‖z‖. Choose δ > 0 such that

εδ > max
g∈F

‖ρ̄(g)z − zρ̄(g)‖.

Since the sequence of projections pn converges to zero strictly and these
projections commute with ρ on the nose, we obtain

lim sup
n→∞

‖
(
ρ(g)Tρ(g)∗ − T

)
pn‖ < εδ.

By Lemma 3.4, we get

lim sup
n→∞

‖Tpn − pn ⊗ Emn(pnTpn)‖mn,A ≤ 2δ.

The same holds if we insert T ∗ in place of T . Since we have

‖ρ̄(g)z∗z − z∗zρ̄(g)‖ ≤ 2‖z‖‖ρ̄(g)z − zρ̄(g)‖, g ∈ F,

the analogous argument also shows

lim sup
n→∞

‖T ∗Tpn − pn ⊗ Emn(pnT
∗Tpn)‖mn,A ≤ 4‖z‖δ.
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Using the elementary properties of the norm ‖ · ‖m,A stated in (3.2) and
(3.3), we can compute

‖Emn(pnT
∗Tpn) − Emn(pnT

∗pn)Emn(pnTpn)‖
= ‖pn ⊗ Emn(pnT

∗Tpn) − pn ⊗ Emn(pnT
∗pn)Emn(pnTpn)‖mn,A

= ‖pn ⊗ Emn(pnT
∗Tpn) − T ∗Tpn‖mn,A

+‖T ∗Tpn − T ∗(pn ⊗ Emn(pnTpn))‖mn,A

+‖T ∗(pn ⊗ Emn(pnTpn)) − pn ⊗ Emn(pnT
∗pn)Emn(pnTpn)‖mn,A

= ‖pn ⊗ Emn(pnT
∗Tpn) − T ∗Tpn‖mn,A

+‖T‖ · ‖Tpn − pn ⊗ Emn(pnTpn)‖mn,A

+ ‖Emn(pnTpn)‖
︸ ︷︷ ︸

≤‖T‖

·‖T ∗pn − pn ⊗ Emn(pnT
∗pn)‖mn,A

From our earlier observations and ‖z‖ = ‖T‖, this combines into

‖Ψ̄(z∗z)−Ψ̄(z)∗Ψ̄(z)‖

=
∥
∥ι−1

(
E(T ∗T ) − E(T )∗E(T )

)
+ c0(M(A))

∥
∥

= lim sup
n→∞

‖Emn(pnT
∗Tpn) − Emn(pnT

∗pn)Emn(pnTpn)‖

≤ 8‖z‖δ.

Since we chose δ > ε−1 maxg∈F ‖ρ̄(g)z − zρ̄(g)‖ arbitrarily, this proves the
claim. �

As a consequence, we can prove the following generalization of [18, Propo-
sition 2.3].

Theorem 4.4. Suppose that A is a nonzero C∗-algebra. Denote by π :
M(K ⊗A) → Q(K ⊗A) the quotient map. Then there exist:

(1) a unital ∗-embedding Θ: Q(c0(A)) → Q(K ⊗ A) with Θ(M(A)) =
π(1 ⊗M(A)).

(2) a unital completely positive map Ψ : Q(K ⊗ A) → Q(c0(A)) with
Ψ ◦ Θ = id.

(3) a separable unital C∗-subalgebra C of π(M(K) ⊗ 1) ∩ Θ(Q(c0(A)))′

(and hence of Q(K⊗A)) such that after composing with the quotient
map Q(c0(A)) → M(A)∞, the restriction

Ψ̄ : Q(K ⊗A) ∩ C ′ → M(A)∞

as well as the restriction of the induced sequence algebra map5

Ψ̄∞ : Q(K ⊗A)∞ ∩ C ′ → (M(A)∞)∞

are ∗-homomorphisms.

Q(K ⊗A) ∩ C ′ Q(K ⊗A) Q(c0(A))

Q(K ⊗A)∞ ∩ C ′ (M(A)∞)∞ M(A)∞

Θ

Ψ⊆

⊆

⊇

Ψ̄

Ψ̄∞

5Again C is identified with a C∗-subalgebra of the diagonal copy of Q(K ⊗ A) inside
Q(K⊗ A)∞.
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Proof. Choose a residually finite group Γ with property (T) and construct
the unitary representation ρ̄ : Γ → U(Q(K ⊗ A)) as in Definition 4.1. It
factors through π(M(K) ⊗ 1) by construction. Let C := C∗(ρ̄[Γ]). We
consider the unital, completely positive, map Ψ : Q(K ⊗ A) → Q(c0(A))
from (4.1) of Definition 4.2. With pn, for n ∈ N, denoting the images of
Kazhdan projections as in Definition 4.2, we identify Q(c0(A)) with

∏

n

(pn ⊗M(A))/
⊕

n

(pn ⊗A).

This is a subalgebra of Q(K ⊗ A); the map Θ from the statement of the
theorem is this identification. The formula Ψ ◦ Θ = id is then evident from
construction. Clearly the range of Θ commutes pointwise with C. It only
remains to prove that the maps Ψ̄ and Ψ̄∞ are multiplicative. Equivalently,
we need to prove that their restricted domains are included in their mul-
tiplicative domains. Since the first map can be seen as a restriction (and
corestriction) of the second, it suffices to treat the latter.

Fix y ∈ Q(K ⊗ A)∞ ∩ C ′. We lift y to a bounded sequence (yn)n in
Q(K⊗A), which necessarily satisfies ‖[yn, c]‖ → 0 for all c ∈ C. With (F, ε)
being the Kazhdan pair for Γ, Lemma 4.3 implies that

‖Ψ̄∞(y∗y) − Ψ̄∞(y)∗Ψ̄∞(y)‖

= lim sup
n→∞

‖Ψ̄(y∗nyn) − Ψ̄(yn)∗Ψ̄(yn)‖

≤ lim sup
n→∞

8ε−1‖yn‖max
g∈F

‖ρ̄(g)yn − ynρ̄(g)‖ = 0.

This finishes the proof �

For the next statement, recall from Definition 1.8 the notion of large
approximately central maps.

Corollary 4.5. Suppose that A is a nonzero C∗-algebra and B is a separable,
unital C∗-algebra. If Q(K ⊗ A) admits large approximately central maps
from B, then so does M(A). In particular, if D is a strongly self-absorbing
C∗-algebra and Q(K ⊗A) is separably D-stable, then so is M(A).

Proof. Let π : M(K ⊗ A) → Q(K ⊗ A) be the quotient map. We apply
Theorem 4.4 and choose Θ, Ψ, Ψ̄, Ψ̄∞, and C as provided by this theorem.
Let S ⊂ M(A) be a separable C∗-subalgebra. By assumption, we may
find a unital ∗-homomorphism from B to Q(K ⊗ A)∞ ∩ C ′ ∩ π(1 ⊗ S)′. By
composing with the ∗-homomorphism Ψ̄∞ : Q(K⊗A)∞ ∩C ′ → (M(A)∞)∞
and keeping in mind that Ψ̄∞ sends π(1⊗S) to the diagonal image of S, we
obtain a unital ∗-homomorphism

B → (M(A)∞)∞ ∩ S′.

Since (M(A)∞)∞ is canonically isomorphic to M(A)F for the filter

F := {X ⊆ N× N | (∀∞m)(∀∞n)(m,n) ∈ X}

(in a way that preserves the diagonal copy of M(A)) and since S was arbi-
trary, it follows from Proposition 1.7 that M(A) admits large approximately
central maps from B.

The “in particular” part is a direct consequence of Corollary 1.10. �
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We are finally ready to combine all of our main results proven thus far:

Proof of Theorem B. (1)⇒(2) is a direct consequence of Proposition 1.13(2)
and Theorem 2.5. The implication (2)⇒(3) is Corollary 4.5. The implication
(3)⇒(1) is Proposition 1.12. �

It is not in general true that for any non-unital σ-unital C∗-algebra A,
separable D-stability of Q(A) forces A to be separably D-stable. For an easy
counterexample, take for instance A := C⊕ (K ⊗D).

Remark 4.6. If one considers the ucp map Ψ from Theorem 4.4, then it
is possible to show that the restriction Ψ : Q(K ⊗ A) ∩ C ′ → Q(c0(A)) is
already a ∗-homomorphism, without having to project down onto M(A)∞.
This requires a bit of extra work and we decided not to include the argument
because, while being non-trivial, we found no interesting applications of this
fact that are not already covered by what we proved above. Furthermore,
said argument does not seem to allow one to conclude (for non-unital A)
that the induced sequence algebra map Ψ∞ : Q(K⊗A)∞∩C ′ → Q(c0(A))∞
is multiplicative; in fact we would not be surprised if this could be wrong in
general.

5. Applications and concluding remarks

The Calkin algebra was considered a prime candidate for a C∗-algebra not
elementarily equivalent to a nuclear C∗-algebra, but previous attempts at a
proof failed and in the meantime other examples have been found ([20, §7]).
(Two C∗-algebras are elementarily equivalent if and only if they have the
same first-order theory.) The following observation was communicated to us
by James Gabe, Chris Schafhauser, and Stuart White during the Memorial
Conference in honour of Eberhard Kirchberg in Münster in July 2023. It
precipitated the work presented here and is included with their kind per-
mission.

Theorem 5.1. The Calkin algebra Q(H) is not elementarily equivalent to
a nuclear C∗-algebra.

Proof. Suppose otherwise and fix a separable, nuclear C∗-algebra A elemen-
tarily equivalent to Q(H). The Calkin algebra is purely infinite and sim-
ple. This is an axiomatizable property ([20, Theorem 2.1]), and therefore A
is purely infinite and simple. By a result of Kirchberg, A tensorially ab-
sorbs O∞ ([45, Theorem 7.2.6]). By Corollary 1.10, Q(H) is separably O∞-
stable, which contradicts Theorem B. (With a few extra arguments it would
have been also possible to reach a contradiction to [18, Theorem B].) �

In case when D is the Jiang–Su algebra Z, Theorem B shows that if A
is σ-unital, then A is separably Z-stable if and only if M(A) is separably
Z-stable. As Hannes Thiel pointed out to us, this is closely related to [31,
Theorem 5.3] where it was proven that if A is σ-unital and has strict com-
parison, then M(A) has strict comparison, under the additional assumption
that A has finitely many extremal tracial states. Since every Z-absorbing
C∗-algebra has strict comparison ([46, Corollary 4.6]), we obtain:
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Corollary 5.2. If A is σ-unital and separably Z-stable, then M(A) has
strict comparison.

Modulo verification of the Toms–Winter conjecture (for up-to-date in-
formation see e.g., [7, §1.6]), Theorem B would hence imply that if A is
separable simple nuclear, non-elementary and has strict comparison, then
M(A) has strict comparison.

The original motivation for the earlier article [18] came from the rigid-
ity question for coronas of separable, non-unital C∗-algebras, asking when
Q(A) ∼= Q(B) implies A ∼= B attributed to Sakai in [14] (see [19, §4.4] for
more information). Our Theorem B gives a partial positive answer to this
question.

Corollary 5.3. If A and B are separable C∗-algebras such that there exists
a strongly self-absorbing C∗-algebra D that is tensorially absorbed by A but
not by B, then Q(K ⊗A) and Q(K ⊗B) are not isomorphic.

In particular, coronas of stabilizations of strongly self-absorbing C∗-algeb-
ras are pairwise nonisomorphic.

Corollary 5.4. Assume A is separable, non-unital and Q(A) is isomor-
phic to the Calkin algebra. Then A does not absorb the Jiang–Su algebra
tensorially.

Proof. If A is Z-absorbing, then its corona is Z-saturated by Theorem A.
This is not the case with the Calkin algebra by [18, Theorem B]. �

We now turn to an application of Theorem A related to classification
theory. In the recent breakthrough paper [8], a new conceptual proof is
given of the state-of-the-art classification theorem for separable unital sim-
ple nuclear Z-stable C∗-algebras satisfying the UCT. The approach towards
such a big result involved various independent steps, both conceptual and
technical. In order to get to the uniqueness theorem in that article, the au-
thors re-examined the stable uniqueness theorem for KK-theory and proved
a Jiang–Su stable counterpart in the form of [8, Theorems 1.4, 5.15]. We
note that it is outside the scope of this article to recall all the needed termi-
nology and the framework to appreciate these statements related to KK- and
KL-theory, but we refer the reader to said article for a very thorough treat-
ment and its applications. We can improve the conclusion of the Z-stable
KK-uniqueness theorem from [8] as follows:

Theorem 5.5. Let A be a separable C∗-algebra. Let I be a stable, σ-unital
and separably Z-stable C∗-algebra. Let φ,ψ : A → M(I) be a pair of ab-
sorbing ∗-homomorphisms that form a Cuntz pair.

(1) If [φ,ψ]KK(A,I) = 0, then there exists a norm-continuous path (ut)t≥0

of unitaries in I† such that6

ψ(a) = lim
t→∞

utφ(a)u∗t , a ∈ A.

(2) If [φ,ψ]KL(A,I) = 0, then there exists a sequence (un)n∈N of unitaries

in I† such that

ψ(a) = lim
n→∞

unφ(a)u∗n, a ∈ A.

6Here I† denotes the smallest unitization of I .
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Proof. Let π : M(I) → Q(I) be the quotient map. By Theorem A, we have
that Q(I) is Z-saturated. Therefore Q(I)∩π(φ(A))′ is also Z-saturated. By
[8, Theorem 4.8] (which goes back to [29]), it follows that Q(I) ∩ π(φ(A))′

is K1-injective. By the explicit observations and remarks made right after
[8, Question 5.17], the desired conclusion follows. �

By using this strengthened version of uniqueness theorem, it is possible
to simplify or circumvent various technical steps in [8, Section 7].
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