
A Comprehensive Simulation Framework for CXL
Disaggregated Memory

Yanjing Wang† Lizhou Wu† Wentao Hong† Yang Ou† Zicong Wang† Sunfeng Gao† Jie Zhang
Sheng Ma† Dezun Dong† Xingyun Qi† Mingche Lai† Nong Xiao†

National University of Defense Technology†, Peking University

Abstract—Compute eXpress Link (CXL) has emerged as a
key enabler of memory disaggregation for future heterogeneous
computing systems to expand memory on-demand and improve
resource utilization. However, CXL is still in its infancy stage
and lacks commodity products on the market, thus necessitating
a reliable system-level simulation tool for research and develop-
ment. In this paper, we propose CXL-DMSim1, an open-source
full-system simulator to simulate CXL disaggregated memory
systems with high fidelity at a gem5-comparable simulation speed.
CXL-DMSim incorporates a flexible CXL memory expander
model along with its associated device driver, and CXL protocol
support with CXL.io and CXL.mem. It can operate in both app-
managed mode and kernel-managed mode, with the latter using
a dedicated NUMA-compatible mechanism. The simulator has
been rigorously verified against a real hardware testbed with both
FPGA-based and ASIC-based CXL memory prototypes, which
demonstrates the qualification of CXL-DMSim in simulating the
characteristics of various CXL memory devices at an average
simulation error of 4.1%. The experimental results using LM-
bench and STREAM benchmarks suggest that the CXL-FPGA
memory exhibits a ∼2.88× higher latency than local DDR while
the CXL-ASIC latency is ∼2.18×; CXL-FPGA achieves 45-69%
of local DDR memory bandwidth, whereas the number for CXL-
ASIC is 82-83%. We observed that the performance of CXL
memory is 3× more sensitive to Rd/Wr patterns than local DDR,
with the max. bandwidth at 74%:26% rather than 50%:50% due
to the current compromised CXL+DDR controller design. The
study also reveals that CXL memory can significantly enhance the
performance of memory-intensive applications, improved by 23×
at most with limited local memory for Viper and approximately
16% in bandwidth-sensitive scenarios such as MERCI. Moreover,
the simulator’s observability and expandability are showcased
with detailed case-studies, highlighting its great potential for
research on future CXL-interconnected hybrid memory pool.

I. INTRODUCTION

With the prevalence of massive data-driven applications
such as AI/ML and big data analytics, the demand for larger
memory is ever-increasing in today’s heterogeneous parallel
computing systems. Over the past two decades, the CPU
performance has been boosted dramatically thanks to Moore’s
law and multi/many-core scaling. However, the memory ca-
pacity and bandwidth per core have been decreasing, which
apparently poses a bottleneck for system performance [1].
In modern datacenters, the deployment unit is a monolithic
server which contains closely-coupled computing and memory
resources. This monolithic architecture for many years is
always CPU-biased, leading to memory over-provision across

1Open sourced at https://github.com/ferry-hhh/CXL-DMSim.

the whole system. It has been observed that more than 50%
of the aggregated memory is unused most of the time in pro-
duction clusters at Google and Facebook [2]. Considering the
rising DRAM chip prices in recent years, the under-utilization
of memory resources becomes prohibitively expensive, which
greatly boosts the TCO of datacenters [3].

With the advent of memory disaggregation technologies,
new solutions can be explored to tackle the memory wall
and memory under-utilization challenges [4]. Memory dis-
aggregation technologies decouple memory resources from
CPUs, providing a feasible option for memory pooling. Con-
ventionally, Remote Direct Memory Access (RDMA) tech-
nology is exploited to realize memory disaggregation [2],
[5]–[8]. But RDMA is based on networking IO semantics
which requires specialized NICs and software intervention,
leading to a latency multiple orders of magnitude longer than
that of local memory access. In recent years, several low-
latency and high-bandwidth memory-coherent interconnect
protocols arise in industry, which have shown advantages over
RDMA for memory disaggregation [9]–[15]. Among them,
the CXL protocol [16] is very promising and embraced by
an increasingly number of semiconductor vendors worldwide.
With CXL, memory expansion becomes more flexible over the
interconnect fabric while enabling coherent memory access
via load/store instructions. Furthermore, the CXL protocol is
independent on the underlying memory technology, which can
be DRAM, Flash, or even emerging non-volatile memories
such as MRAM and RRAM. This facilitates the construction
of a unified heterogeneous memory pool for future energy-
and cost-efficient computing systems.

Despite its attractive features disclosed in the protocol speci-
fications, CXL is still in its infancy stage and lacks commodity
products on the market. As a result, the prior research work
on CXL-based memory disaggregation is conducted based on
four main methods: software-based emulation [17], software-
based simulation, [18]–[20], hardware-based emulation [21]–
[23], and hardware prototyping [9], [24], [25]. However, the
software-based emulation such as QEMU fails to model the
physical characteristics and internal micro-architecture of real
CXL memory devices. The simulation endeavors of gem5-
CXL and CXLMemSim are both nascent, with gem5-CXL
failing to accurately model the CXL protocol behavior and
provide clear access interfaces, while CXLMemSim lacks
full-system simulation capabilities and cycle-accurate fidelity,

ar
X

iv
:2

41
1.

02
28

2v
3

 [
cs

.E
T

]
 2

2
N

ov
 2

02
4

https://github.com/ferry-hhh/CXL-DMSim

resulting in limited functionality and poor usability. The
hardware-based emulation such as remote NUMA lacks CXL
protocol support and there is a big difference in the memory
access path and performance. As for the fourth method,
there are currently no market-ready prototypes of CXL-based
memory-disaggregated systems; CXL commodity products are
also expensive to produce and purchase. Given the above
limitations, there is a clear need for an accurate, cost-effective,
and flexible tool for research on CXL-based disaggregated
memory systems.

In this paper, we present CXL-DMSim, a full-system CXL
Disaggregated Memory Simulator based on gem5 for cycle-
accurate simulation, architectural exploration, and evaluation
of CXL-interconnected memory systems. CXL-DMSim is as
easily configurable as the original gem5 simulator and fits to
a variety of CXL devices. It has been rigorously verified and
calibrated by a real-world CXL1.1 testbed with both an in-
house ASIC CXL memory expander and an FPGA-based CXL
device prototype. To the best of our knowledge, CXL-DMSim
is the first usable full-system disaggregated memory simulator.
The main contributions of this paper are listed below.

• A flexible device model of CXL memory expander (Type
3 device) which currently supports both DRAM and Flash
as underlying storage media.

• Supports for CXL.io and CXL.mem sub-protocols, which
are used to enumerate, configure, and access our CXL
memory device on CXL-DMSim.

• A driver for the device to operate in an application-
managed mode and a NUMA-aware memory manage-
ment mechanism to operate in a kernel-managed mode.

• An extensive evaluation that validates CXL-DMSim in-
cluding performance tests, usability&fidelity tests, real-
world app. tests, and observation&expandability tests;
this verifies the system’s feasibility and offers guidance
for appropriate usage of CXL disaggregated memory.

II. BACKGROUND AND MOTIVATION

A. CXL Protocol

Compute eXpress Link (CXL) is a cache-coherent high-
speed interconnect for CPUs, memory expanders, and accel-
erators [16]. CXL features memory coherence between host
memories and device-attached memories, enabling resource
pooling and sharing for higher performance and reduced
software complexity at lower cost. It was first introduced by
Intel in 2019 and since then has been widely embraced by the
industry. As of today, CXL protocol has undergone updates
with three major versions: 1.0/1.1, 2.0, and 3.0/3.1.

CXL is built on the foundation of the PCIe physical layer.
It consists of three sub-protocols, namely CXL.io, CXL.cache,
and CXL.mem. CXL.io is functionally equivalent to PCIe in
discovering and enumerating devices. CXL.cache enables IO
devices and accelerators to directly access and cache the host
memory. CXL.mem allows the host to access memories that
are attached to CXL devices via load/store instructions.

The three sub-protocols identify three device types for dis-
tinct application scenarios. Type 1 devices employ CXL.io and

DRAM

CPU 0

DRAM

CPU 1
CXL Type3 Device

DRAM

NVM

SSD
...

Memory
Pool

CXL access pathDDR-L access path

UPI
DDRDDR

CXL

3

1

2

1 2 DDR-R access path 3

Fig. 1: Memory expansion via a CXL Type 3 device.

CXL.cache sub-protocols. This type of devices are typically
referred to as IO devices such as smart NIC which has no
memory attached to it. Type 2 devices (accelerators), such as
GPU owning device memory and specialized compute units,
utilize all three sub-protocols. Type 3 devices use the CXL.io
and CXL.mem sub-protocols and are usually depicted as
memory expanders, as illustrated in Fig. 1. This paper focuses
on the CXL Type 3 devices for flexible memory expansion
and pooling of future heterogeneous computing systems.

B. Related Work

The prior work performs research on CXL-based memory
disaggregation systems with the following four methods.

1) Software-Based Emulation: QEMU is a widely used
and open-source emulator and virtualizer. As an emulator, it
can perform full-system emulation which emulates all system
components, including the processor and peripherals. In terms
of CXL support, QEMU has begun to support CXL 2.0, with
a few CXL components such as CXL Host Bridge, CXL Root
Ports, CXL Switch and CXL Memory Devices [17]. A recent
work named Mess [26] presented a novel memory bench-
mark which measures bandwidth-latency curves. Based on
the curves, a one-size-fit-all memory emulator was proposed
to emulate the real-time latency of different types of main
memories covering DDR4, DDR5, HBM, and CXL memories.

2) Software-Based Simulation: gem5-CXL [18] is an open-
source project we found on GitHub. It crudely adds a custom
bus between the original gem5 MemBus and DDR controllers
to introduce an extra delay. This extra delay actually models
the deteriorated performance of CXL memory in comparison
to DDR memory. Another project CXLMemSim [19], [20] is
a lightweight trace-driven simulator for the CXL.mem sub-
protocol. It allows users to define the desired topology of a
modeled memory pool as well as the latency of each com-
ponent. Basically, it relies on the execution of an unmodified
program on a real server. The execution time is divided into
multiple epochs, each of which is recalculated in terms of
execution time based on the collected memory access events
and the modeled latency of CXL memory.

3) Hardware-Based Emulation: Due to the unavailability of
commercial CXL hardware, many researchers have conducted
emulations of CXL-expanded memory exploiting the NUMA
mechanism. These studies [21]–[23] leverage NUMA-enabled
hardware to emulate CXL disaggregated memory without
directly handling the CXL protocol. Given the similar charac-

App1 App2

HDM
Driver

CXL HDM

Memory
Allocator

DDR DRAM

CPU

Mem CPU

Host OS

Host Hardware

Guest OS

malloc,
numactl,

free
libnuma library

mmap
memkind library

Simulated Hardware

DDR
CXL.mem

Kernel ManagedApp Managed

Sim
ulated Full System

 in gem
5CXL.io

Fig. 2: Architecture of the proposed CXL-DMSim simulator.

teristics in bandwidth and latency between CXL memory and
remote NUMA memory, this approach provides a reference
for the study of computing systems with real CXL memory.

4) Hardware Prototyping: There exist several ongoing
projects to develop CXL hardware prototypes. For exam-
ple, DirectCXL [9] utilizes FPGAs to implement a CXL
memory controller and a RISC-V processor that supports
CXL. Transparent Page Placement (TPP) [24] investigates
page placement strategies for a tiered memory system using
pre-production x86 CPUs with CXL 1.1 support and FPGA-
based CXL memory expansion card. Sun et al. [25] perform
a comprehensive characterization of CXL memory on a real
CXL hardware platform.

C. Motivation

Although QEMU serves as a generic system emulator, it is
primarily used for functional-level emulation and verification.
It does not model the physical characteristics and internal
micro-architecture of CXL devices. Thus, QEMU is unsuitable
for architectural exploration and accurate performance eval-
uation of CXL-based systems. Similarly, the Mess emulator
targets at reproducing the bandwidth-latency curves of the Sys-
temC model of a Micron’s CXL memory expander; Real CXL
memory devices may behave differently in a CXL-connected
system. We also argue that the cpuBW value calculated from
the most recently 1000 memory operations (∼100µs) may not
be able to accurately capture the realistic memory bandwidth
(messBW) under real-world applications.

Additionally, existing software-based simulation attempts
are far away from readiness. gem5-CXL connects a simulated
CXL device to the MemBus rather than mounting it on the
IOBus to simulate peripherals. It does not model the behaviors
of the CXL protocol (based on PCIe PHY) and lacks clear
access interfaces with the modeled device. The project has
not been updated for four years and is currently in a stagnant
state. CXLMemSim is not a full-system simulator in essence,
as neither the CXL protocol and system architecture nor the

DDR
Controller

MemBus

IOBus

1

PCI Config Space

BAR/HDM size

CXL HDM

.....

Device
EnumerationBAR/HDM

base
CXL.mem

Packet

MemReq

Address
Translation

3
2

1

2

3

4

Bridge
BAR/HDM

size

BAR/HDM base

CPU
Load/Store

M
M

U DDR
DRAM

Req Resp Req Resp

PCI Host IDE
Ctrl

CXL
Memory

Expander

CXL HDM

Physical
Address Space

DDR DRAM

HDM size
HDM base

—

Fig. 3: System key component layout and CXL memory device
access flow on the x86 platform of CXL-DMSim.

associated software stack are modeled. It lacks cycle accuracy
and has limited functionalities, resulting in a poor usability.

As for the other emulation approach, the remote NUMA
memory lacks realism and accuracy in mimicking CXL mem-
ory. Specifically, there is a significant difference in access
latency and bandwidth between these two types of memory, as
emphasized in [25]; they also have different memory access
paths (see Fig. 1). In terms of the hardware prototype method,
there are currently no market-ready hardware prototypes of
CXL-based memory disaggregation systems. Existing hard-
ware prototypes and commercial devices are expensive to
produce, due to the long silicon development cycle. Moreover,
hardware prototypes also lack flexibility in system configura-
tion and observation.

The limitations of current emulators, simulators and CXL
hardware call for a comprehensive and realistic simulation
solution for agile design and evaluation of CXL-interconnected
systems. This motivates us to propose CXL-DMSim, which is
a configurable, scalable, and cost-efficient simulator.

III. CXL-DMSIM DESIGN AND IMPLEMENTATION

A. Simulator Architecture

Fig. 2 shows the overall architecture of CXL-DMSim,
with three main components built on top of gem5. First, we
added a CXL memory expander model, illustrated as CXL
Host-managed Device Memory (HDM) in the figure, to the
gem5 simulator. It connects to the system as a PCI device
with standalone memory space through IOBus (see Fig. 3).
Second, we implemented the CXL sub-protocols CXL.io and
CXL.mem, which are required for Type 3 devices. The CXL.io
sub-protocol is used for the CPU to enumerate and configure
CXL devices; it is achieved by reusing the original PCI
protocol in gem5. The CXL.mem sub-protocol allows the
CPU to access the CXL HDM directly; it is achieved by
integrating new CXL.mem packets as well as by extending
internal components such as bridge in gem5.

Third, we designed a dedicated device driver and a NUMA-
compatible memory management mechanism in the guest OS,
to manage the allocation and deallocation of CXL HDM as
well as to provide interfaces to upper-level user applications.

Depending on the CXL HDM management mechanism in
the guest OS, CXL-DMSim provides users with two ways to
use our CXL memory expander: Application Managed (AM)
and Kernel Managed (KM). In the AM mode, applications
can allocate and free CXL HDM using the memkind library
or the mmap system call interface provided by our device
driver. This usage mode offers users more flexibility and
granularity in managing CXL HDM but also imposes the
pressure of modifying legacy programs. In the KM mode,
the CXL memory expander is exposed to the OS kernel
as a CPU-less (or memory-only) NUMA node, with the
kernel managing the allocation and release of CXL HDM
transparently to applications. Users can seamlessly utilize CXL
HDM through existing tools such as numactl. However, it
is evident that in this mode the difference from the DDR
memory is only reflected in the “NUMA distance”. Users are
not able to perceive and exploit the unique characteristics (e.g.,
persistence, large volume, and low power consumption) of
different memory technologies behind the CXL interface. Note
that the KM mode is consistent with the mainstream usage of
CXL memory expanders on real-world hardware platforms.

B. CXL Memory Expander Model

gem5 is a modular, cycle-accurate computer system sim-
ulator. Its Full-System (FS) mode executes both user-level
and kernel-level instructions and models a complete system
including the OS and hardware devices, thereby simulating
interactions between software and hardware more realistically
[27]–[29]. Fig. 3 illustrates the structure of an x86 platform
with classic memory subsystem used in the FS simulation
mode. Note that the operating flow marked with red and blue
arrows will be explained in Sec. III-C. The CPU, cache, and
DDR controller are placed on the coherent MemBus, while
devices such as PCI host and IDE controller are mounted on
the non-coherent IOBus. These two buses are connected via a
bridge. In our implementation, the CXL memory expander is
accessed as a PCI device attached to the IOBus.

Fig. 4 shows our CXL memory expander model imple-
mented in gem5. The model is structured from top to bottom,
with a response port for communication, a memory controller
for parsing read and write packets, and a memory medium for
data storage. Since gem5 models external devices in a coarse-
grained manner using the atomic mode (transactional behavior
is represented as simple accumulated latency), we introduced
the event-driven timing mode into the CXL memory expander
to achieve accurate memory access behavior. The response
port is connected to the IOBus, enabling it to receive request
packets directed to the memory expander and send response
packets to the request sources.

The memory controller in the device model has two main
functions. First, it parses CXL transaction packets, which
include read and write configuration packets for CXL.io

Response Port

Response
Packet

Request
Packet

Data/Cmp

DRAM
Model

M
em

ory
M

edium
PCI

Config
Space

C
XL

C
ontroller

Protocol
Parsing

Address
Translation

CXL Memory Expander

Latency

DDR
Controller

Latency

Read/Write

Fig. 4: CXL memory expander model design.

and memory transaction packets for CXL.mem. Second, it
translates the address in the incoming packets to the actual
address for accessing the backend memory medium. For the
CXL.io sub-protocol, we have implemented the PCI config-
uration space of the expander following the PCI device pro-
gramming specifications in gem5. This includes basic device
information and Base Address Register (BAR) space sizes,
thereby enabling the device to respond to read and write
transactions from the host to the configuration space. For the
CXL.mem sub-protocol, the memory controller first identifies
the command fields in the packets according to the protocol
specifications. Then, it calculates the actual address based on
the destination address of packet and the base address stored in
the BARs. The derived read/write command and its associated
address are subsequently encapsulated in a new request to the
memory medium for programming and retrieving data.

The memory medium is designed to be technology-agnostic,
which means it can be the conventional charge-based memo-
ries such as DRAM and Flash, or emerging resistance-based
non-volatile memories such as RRAM and MRAM. In the case
of DRAM, the memory capacity of device is declared via the
BARs. During the startup of simulation on CXL-DMSim, the
host machine is requested to allocate memory in the heap space
of the host process based on the BAR space capacity specified
in the Python script. Afterwards, upon receiving read and write
requests from the memory controller, the memory medium
accesses the data at the corresponding address and generates
responses if needed. For the memory medium, we currently
offer two DRAM models. The first is a coarse-grained model
that offers a faster simulation at the cost of some accuracy.
The second is the native DRAM model from gem5, which
provides higher simulation accuracy but operates at a slower
speed. Additionally, thanks to the modular design of gem5,
other existing memory models, such as the NVM model and
DRAMSim model, can be easily integrated into our expander
model to accommodate the research needs of various users.

Fig. 5 shows the modeled key contributions of latency for
a CXL.mem access request from CPU and its response from
the CXL memory expander in CXL-DMSim. To capture the

CPU Memory
Medium

Req Resp

Device Controller

device_proto_
proc_lat

medium_
access_lat

Flex bus (latency negligible)

Address translation

CXL Packet
unpacking/packing

Bridge

bridge_lat

host_proto_
proc_lat

Memory ControllerReq/Resp FIFO
queueing

CXL Packet
packing/unpacking

Fig. 5: Latency breakdown for a CXL memory access request
from CPU to CXL memory and its response with a reversed
path in CXL-DMSim.

timing behavior of CXL memory expanders, our CXL memory
expander model provides two parameters to simulate the pro-
cessing latency of the CXL.mem sub-protocol and the access
latency of the memory medium: device proto proc lat and
medium access lat. Note that the other two key latency pa-
rameters bridge 1at and host proto proc lat associated with
the bridge in the figure will be explained later in Sec. III-C.

C. CXL Protocol Support

The CXL memory expander uses CXL.io and CXL.mem
sub-protocols. Since CXL.io is functionally similar to the
traditional PCI protocol in the transaction layer, we reused the
existing PCI protocol in gem5 to implement device enumera-
tion and configuration. This process is handled with three main
steps during system startup, as shown with the blue arrows in
Fig. 3. Step 1⃝: When enumerating a CXL memory expander,
its driver in OS first queries the internal memory size declared
by the BARs using CXL.io configuration read transactions.
Step 2⃝: Based on the retrieved size, the HDM is then mapped
into the host’s physical address space. Step 3⃝: The mapped
base address is written into the expander configuration space
via CXL.io configuration write transactions. By means of the
above process, the CXL memory expander can be discovered
and subsequently accessed by the host in the system.

The host accesses HDM via the CXL.mem sub-protocol
with four main steps, as illustrated with the red arrows in
Fig. 3. Step 1⃝: Memory access requests are first initiated
towards HDM through load/store instructions. Step 2⃝: These
requests are then routed to downstream devices via the bridge,
where gem5-internal packets are converted into CXL.mem
packets in order to communicate with the CXL memory
expander. Step 3⃝: When the CXL.mem packets arrive at the
expander, the CXL memory controller converts the request
address to the expander’s internal memory address based on
the HDM base address. Step 4⃝: The controller forwards the
converted request to the backend memory medium for actual
memory access.

ReadReq

WriteReq

M2SReq

Address
R

anges

gem5
Packet

CXL.mem
Packet

Address Check

M2SRwD

...

Latency
Latency

S2MDRS

S2MNDR

ReadResp

WriteResp

Req FIFO

CXL HDMIO Address
Space

Bridge

Resp FIFO

Req FIFO Resp FIFO

Fig. 6: Packet interception and transformation.

The CXL.mem sub-protocol defines two types of commu-
nication endpoints. One is called master, typically a local
agent in the host processor. The other is subordinate such
as a memory controller in the CXL memory expander. This
protocol specifies two types of packets for communication
between the master and subordinate agents: those from the
master to the subordinate are called Master-to-Subordinate
(M2S) packets, and those in the opposite direction are called
Subordinate-to-Master (S2M) packets [16].

CXL-DMSim extends the packet-based point-to-point com-
munication mechanism in gem5 to support the simulation of
the CXL.mem sub-protocol. First, when the CPU launches a
ReadReq/WriteReq gem5 packet, its command field is updated
to include a read/write transaction command used by the
CXL.mem sub-protocol. Subsequently, the bridge connecting
the memory bus and I/O bus intercepts the packet if destined
to the CXL memory expander. Fig. 6 shows that the bridge
contains two pairs of FIFO queues, one pair for buffering
upstream gem5 packets and the other pair for buffering down-
stream CXL.mem packets. The bridge checks the address and
captures the gem5 packet in the upstream Req FIFO, then
transforms it into a M2SReq/M2SRwD packet. Thereafter, the
CXL.mem packet is buffered in the downstream Req FIFO
and then sent out to the CXL memory expander. Similarly,
when a response packet (S2MDRS or S2MNDR) from the
CXL memory expander arrives at the bridge, it is buffered in
the Resp FIFO and then converted into a ReadResp/WriteResp
packet. The gem5 packet is buffered in the upstream Resp
FIFO before being transmitted to the memory bus.

Note that the bridge module includes four configura-
tion parameters (see Fig. 5): bridge lat, host proto proc lat,
req fifo depth, and resp fifo depth. The bridge lat repre-
sents the inherent latency through the bridge module,
which is already present in the original gem5 code. The
host proto proc lat represents the processing latency for
CXL.mem sub-protocol packets. The req fifo depth and
resp fifo depth determine the depths of the FIFO queues
used for buffering CXL.mem request and response packets,
respectively. These queue depths impact the CXL memory
expander’s capability to handle concurrent requests.

Syscall
API

1

2

3

CXL HDM

CXL HDM

Physical
Addr Space

DDR DRAM

NUMA
APImmap

numa
init

Memory Management

m
em

or
y

DDR DRAM

1

2

3

/dev/cxl_mem

App1

AddrRange0
usable

AddrRange1
usable......

e820 Table

App2

numactl

numa node

Device

CXL HDM Driver
pci drivermmap

HDM linked listHEAD

pid state size addrse
gm

en
t

Kernel

User
Space

Fig. 7: Two ways of managing CXL HDM in the OS.
D. CXL HDM Management in OS

Fig. 7 shows the software stacks of operating the CXL
memory expander in both the AM and KM modes. In the
AM mode, the CXL HDM driver serves not only for device
enumeration and configuration but also furnishes upper-layer
applications with a suite of system call interfaces to access and
manage HDM. As the memory expander is mounted on the
PCI bus as an external device to the host, its driver adheres
to the PCI driver programming paradigm. During the enu-
meration phase of the system, the “pci driver” component of
the driver identifies the CXL memory expander and creates a
character device file named /dev/cxl mem.The “file operations”
component of the driver implements system calls (such as
mmap) for accessing HDM and initializes a doubly linked list
for managing HDM allocation. Each node in the list records
the process PID that owns the memory block, the current
state of the memory block (FREE or BUSY), the size of the
memory block, and the offset address of the memory block.
An application accesses HDM via the AM mode in three
main steps, as shown with the orange arrows in Fig. 7. Step
1⃝: The application first opens the device file /dev/cxl mem

using the driver’s open system call to acquire the device file
descriptor. Then, it uses the mmap system call to request for a
fixed-size HDM region and maps it into the virtual address
space of processor. Step 2⃝: Considering the potential for
multiple processes to access the HDM concurrently, the driver
implements a mutex lock pertaining to the HDM, ensuring that
only one process has exclusive access at any given time. Once
the application process gets the mutex, the memory allocator
examines the HDM and allocates a contiguous segment of
physical memory. If the allocation is successful, the allocator
obtains the offset of the physical address for this segment,
maps the virtual memory area to it, and updates the linked
list tracking HDM allocations. Step 3⃝: The application can
use the pointer returned by the mmap function to read from
or write to the CXL HDM directly. Furthermore, the pointer
can also be passed to the memkind library for the purpose of
unified memory management of DDR DRAM and CXL HDM.

Although the AM mode provides a straightforward method
to access the CXL HDM, it requires modifications to applica-
tions’ source code and does not utilize the kernel’s existing

CXL ASIC
Device

CXL FPGA
Device

Socket1

Socket0

Fig. 8: Top view of our CXL hardware testbed.

tiered memory management infrastructure. As a result, the
prevalent approach in real-world hardware platforms treats
the CXL memory device as a CPU-less NUMA node. This
approach remains transparent to applications and enables
NUMA-aware memory management, which facilitates flexible
migration between DDR DRAM and CXL HDM. Therefore,
CXL-DMSim also provides a NUMA API for accessing HDM,
which corresponds to the KM mode. To achieve this, we added
an e820 table entry to provide the kernel with the size and
range of the CXL HDM, enabling the kernel to recognize the
CXL HDM as part of the available system memory during
boot time. Note that this approach mirrors the configuration
process used on real hardware platforms for recognizing and
configuring CXL devices. Additionally, we adjusted the kernel
numa init routine to initialize both DDR DRAM and CXL
HDM as two separate NUMA nodes. An application accesses
HDM via KM mode in three main steps, as shown with the
purple arrows in Fig. 7. Step 1⃝: The application first uses
the numactl tool to bind memory allocations to the HDM
node or opt for other NUMA strategies, such as memory
interleaving. Step 2⃝: The kernel’s memory management sub-
system then handles memory allocation transparently, with
the allocated physical memory varying based on the specified
NUMA strategy. Step 3⃝: The application can access HDM
through standard memory allocation interfaces such as malloc;
the kernel is responsible for the allocation and migration of
memory pages across DDR DRAM and CXL HDM.

IV. EXPERIMENTS AND EVALUATION

A. Experimental Setup

We have conducted comprehensive experiments on both real
hardware testbed and our proposed CXL-DMSim. The detailed
configurations of these two test platforms are as follows.

1) Hardware Testbed: The testbed is a high-performance
dual-socket x86 server shown in Fig. 8; its internal structure
is illustrated in Fig. 9. The server has dual-socket Intel Xeon
Platinum 8468V processors, each of which has 4 integrated

0 47

Cache

M
em

ory M
em

or
yUPI

DDR5
4800

DDR5
4800

CXL-FPGA Device

Socket0

NUMA0 NUMA1

48 95

Cache

Socket1

NUMA4

CXL ctl.

PCIe 5.0
x16

DDR5
4800

 IM
C

Home Agent Home Agent

Mem.

CXL ctl.
DDR5
4800

C
XL

Mem.

CXL hard IP

DDR4
3200(2DPC)

mem. ctl.

CXL

NUMA3NUMA2

CXL-ASIC Device

 IM
C

 IM
C

 IM
C

 IM
C

 IM
C

 IM
C

 IM
CUPI

UPI

38
.4

G
B

/s
(1

 c
h.

)38.4G
B

/s
(1 ch.)

144GB/s

DDR-R DDR-L

76.8GB/s
(2 ch.)

(emulated
CXL memory

in the prior art)

25.6GB/s
(1 ch.)

128GB/s
(bidirectional) CXL

Mem.
76.8GB/s
(2 ch.)

Fig. 9: Architecture diagram of our CXL hardware testbed.

TABLE I: Host configurations for our hardware testbed and
CXL-DMSim simulator.

Config. Parameter CXL Testbed Host CXL-DMSim Host
Linux kernel version v6.5.0 Modified v5.4.49
CPU type Xeon® Platinum 8468V X86O3CPU
CPU cores 48 48
Local DRAM type DDR5 4800 DDR5 4400
#Memory channels 1 1
Local DRAM size 32GB 32GB
L1 dcache size 48KB 48KB
L1 icache size 32KB 32KB
L2 cache size 2MB 2MB
LLC size 97.5MB 96MB

memory controllers with 8 memory channels. For the purpose
of fair comparison with a CXL link, we only enabled a single
memory channel (i.e., a 32GB DDR5 4800MT/s DIMM) for
each NUMA node in our characterization experiments. The
detailed host configurations are listed in Table I.

On our hardware testbed, we measured two types of CXL
memory devices: a real CXL FPGA memory device (denoted
as CXL-FPGA) and a real CXL ASIC memory device (de-
noted as CXL-ASIC); the details are listed in Table II. Both
of these two devices are connected to Socket1, as illustrated
in Fig. 9. The CXL-FPGA device is an Intel Agilex I-Series
FPGA Development Kit with an integrated hard CXL IP
[30]. It is equipped with 16GB 3200MT/s DDR4 memory,
connected to the CPU via an CXL 1.1 interface. The CXL-
FPGA device is recognized as a separate CPU-less NUMA
node (denoted as NUMA4); it can be used and managed
using existing NUMA software infrastructure. The in-house
CXL-ASIC device has two CXL memory controllers, each of
which is composed of a CXL protocol controller plus a DDR5
controller driving two DIMMs. As each DIMM is populated
with a 32GB DDR5 4800MT/s memory module, the CXL-
ASIC device owns a total memory capacity of 128GB. It
appears in the OS as two separate NUMA nodes without CPUs
(denoted as NUMA2 and NUMA3 respectively).

We also measured the DDR5 memory on the remote NUMA
node (denoted as DDR-R on NUMA0) as an emulated CXL

TABLE II: Real CXL memory expander configurations for
CXL-FPGA and CXL-ASIC devices.

Config. Parameter CXL-FPGA CXL-ASIC
CXL memory size 16GB 64GB
#Backend memory channels 1 2
Type of backend DRAM DDR4 3200 DDR5 4800
Latency 375ns 284ns

memory device, as done in many of the prior works [21]–[23].
For better comparing the performance of the above-mentioned
three types of memory, we also measured the local DDR5
memory (denoted as DDR-L) on NUMA1 as a baseline.

TABLE III: Modeled CXL memory expander configurations
on CXL-DMSim for both FPGA type (CXL-DMSimF) and
ASIC type (CXL-DMSimA).

Config. Parameter CXL-DMSimF CXL-DMSimA

CXL memory size 16GB 64GB
bridge lat 50ns 50ns
host proto proc lat 14ns 14ns
device proto proc lat 60ns 15ns
medium access lat 50ns 50ns
req fifo depth 48 52
resp fifo depth 48 52

2) CXL-DMSim Simulator: CXL-DMSim is implemented
based on gem5 v23.1 in the full-system mode. The CPU type
is X86O3CPU with 32GB 4400MT/s single DDR5 memory
(denoted as CXL-DMSimL). The CXL memory device driver
was developed based on the Linux v5.4.49 kernel. CXL-
DMSim simulates a CXL FPGA memory device (denoted as
CXL-DMSimF) with 16GB and a CXL ASIC memory device
(denoted as CXL-DMSimA) with 64GB, with configurations
listed in Table III. To simulate different CXL memory devices
from different vendors, we introduce six configurable param-
eters and their typical ranges in our simulator, according to
the latency breakdown of memory access paths provided in
the CXL spec. [16] and relevant literature [3], [9], [31]–[35].
For our CXL FPGA and ASIC devices, the values of these
parameters in the Table III have been meticulously calibrated
and fine-tuned using end-to-end latency measurements on our
hardware testbed. For those who are interested in using our
simulator, different values can be configured to match the
performance of their own CXL memory devices.

B. Usability and Fidelity of CXL-DMSim

There exist many popular benchmarks to characterize mem-
ory performance in industry, such as Intel’s MLC [36], LM-
bench [37], STREAM [38]. Considering the ease of use and
compatibility on both hardware and simulator platforms, we
selected LMbench, STREAM, and Redis-YCSB [39], [40] to
evaluate the latency, bandwidth, and real-world application
performance of DDR-L, DDR-R, CXL-FPGA, CXL-ASIC and
CXL-DMSimF, and CXL-DMSimA.

1) LMbench Test for Memory Latency: To measure the
access latency of CXL HDM, we utilized a memory latency
benchmark lat mem rd in LMbench [37]. It can be used to

0.
00

04
9

0.
00

09
8

0.
00

19
5

0.
00

39
1

0.
00

78
1

0.
01

56
2

0.
03

12
5

0.
04

68
8

0.
09

37
5

0.
18

75
0.

37
5

0.
75 1
1.

5 2 3 4 6 8 12 16 24 32 48 64 96 12
8

19
2

25
6

38
4

51
2

76
8

10
24

Array Size (log2 MB)

0
50

100
150
200
250
300
350
400

La
te

nc
y

(n
s)

L1 cache L2 cache L3 cache Memory

DDR-L
CXL-DMSimL
DDR-R

CXL-ASIC
CXL-DMSimA

CXL-FPGA
CXL-DMSimF

Fig. 10: Measured random memory access latency of seven
memory devices: DDR-L, DDR-R, CXL-ASIC, CXL-FPGA,
CXL-DMSimL,CXL-DMSimA and CXL-DMSimF.

measure random read latency of different memory layers,
covering L1, L2, and L3 caches as well as DDR-L, DDR-
R, and CXL memories. The random read pattern typically
reflects the system’s real latency [41], [42]. Hardware prefetch
mechanisms are all disabled in BIOS settings to provide more
accurate measurements of memory latencies. Note that we only
present the read latency as the CXL memory is symmetric
in read and write performance. The benchmark involves two
key parameters: array size and stride. To ensure that the
entire memory hierarchy is accurately measured, avoiding the
disturbance of caching on the results meanwhile properly
representing the data access patterns in real-world applications,
the array size should be set to at least four times as large
as LLC and no more than 80% of physical memory size
[43]. Given the above considerations, we set the array size
to 1024MB and the stride to 64 bytes in our experiments.

Fig. 10 shows the measurement results using LMbench. The
curves contain a series of plateaus, each of which represents
a level in the memory hierarchy. The right-most plateau
represents the random read latency of DDR-L (130 ns), DDR-
R (200 ns), CXL-FPGA (375 ns), CXL-ASIC (284 ns), CXL-
DMSimF (375 ns), and CXL-DMSimA (284 ns). The latency
of CXL-FPGA is approximately 2.88 times higher than that
of DDR-L, while the latency of CXL-ASIC is about 2.18
times. The two types of CXL memory devices exhibit much
higher latencies, because the access path of CXL memory is
much longer than that of DDR-L. The latency of CXL-FPGA
is 91 ns higher than CXL-ASIC, because FPGA-based CXL
memory fails in fully utilizing DRAM chip performance due to
FPGA’s lower operating frequency compared to ASICs [44]. It
is worth noting that the latencies between 192MB and 384MB
for CXL-DMSim are consistently higher than those measured
on real hardware. This discrepancy is primarily attributed to: 1)
poor CPU model in gem5 lagging behind sophisticated real-
world CPUs, 2) smaller LLC size (96MB due to restricted
value selection) in the gem5 setting than that (97.5MB) on the
real hardware platform. When using remote NUMA to emulate
CXL memory, the read latency is relatively lower compared to
real CXL memory devices, being about 1.53 times higher than
that of DDR-L. Clearly, the experimental results show that
CXL-DMSim can accurately simulate the access latency of
real CXL memory devices, while the remote NUMA emulation
cannot reflect the real latency of the devices.

Copy Scale Add Triad
Operation Type

0.0
0.2
0.4
0.6
0.8
1.0

No
rm

. B
/W DDR-L

DDR-R
CXL-ASIC
CXL-DMSimA
CXL-FPGA
CXL-DMSimF

Fig. 11: Measured memory b/w normalized to DDR-L with
copy, scale, add, and triad tests for different memory types.

Rd:Wr 50:5 Rd:Wr 100:00

(a) DDR-L (b) CXL-ASIC

MAX@Rd:Wr = MAX@Rd:Wr = 100:0 74:26

AddCopy
Scale Triad

Add Copy
Scale Triad

Fig. 12: Bandwidth-latency curves of DDR-L and CXL-ASIC
memories with respect to varying Rd/Wr ratios.

2) STREAM Test for Memory Bandwidth: To measure the
sustainable memory bandwidth of our prototyped and simu-
lated systems, we used STREAM [38] as a benchmark. As a
well-known benchmark, STREAM provides four distinct tests,
i.e., Copy, Scale, Add, and Triad with different memory access
and calculation patterns.

To ensure that STREAM measures realistic bandwidth
between memory and processor without interference from
caches, the data size has to be at least 8 times of the LLC
size; thus we set the data size to 1024MB in our experiments.
Fig. 11 shows the measurement results of the six different
memory devices. Note that all the values are normalized to the
bandwidth of DDR-L for the purpose of better comparison. It
can be seen that the bandwidths derived from CXL-DMSim
closely align with those obtained from the CXL hardware
prototype; the modeling error rate is about 6% on average. The
CXL-FPGA memories achieve approximately 45%-69% of the
DDR-L bandwidth. Comparatively, the CXL-ASIC memories
exhibit a better performance in bandwidth, achieving about
82%-83% of the DDR-L bandwidth. One can also see that the
bandwidth of DDR-R is 68%-74% of the DDR-L bandwidth.
This indicates that the bandwidth of DDR-R memory lies
between CXL-ASIC and CXL-FPGA memories.

The reason why the measured bandwidth of the emulated
CXL memory device using remote DDR5 memory (i.e., DDR-
R) outperforms the real CXL FPGA memory device can be
explained as follows. While CXL 1.1 is based on PCIe 5.0
x16 achieving a maximum theoretical bi-directional bandwidth
of 128GB/s, the on-board DDR4 memory on our FPGA
platform is limited to a maximum bandwidth of 25.6GB/s.
The comparatively low bandwidth of DDR4 memory actually
poses the bottleneck of the real CXL memory device. When
it comes to the CXL-ASIC device, it is equipped with two
channels of DDR5 memory with 76.8GB/s, which significantly
enhances the CXL link’s actual bandwidth in comparison
to the DDR4 memory on the FPGA board. Furthermore,
the ASIC’s sophisticated architecture and elevated operating
frequency also contribute to its higher bandwidth.

Workload A0.6
0.7
0.8
0.9
1.0

No
rm

. Q
PS

Workload B0.6
0.7
0.8
0.9
1.0

No
rm

. Q
PS

DDR-L:DDR-R=
DDR-L:CXL-ASIC=

CXL-DMSimL:CXL-DMSimA=

100%:0%
100%:0%
100%:0%

50%:50%
50%:50%
50%:50%

0%:100%
0%:100%
0%:100%

Fig. 13: QPS of Redis with different ratios of pages allocated
to DDR-L and DDR-R/CXL-HDM.

3) Mess Test With Varying Rd/Wr Patterns: We also con-
ducted tests on our platform using the newly-proposed Mess
benchmark [26]. Fig. 12(a) illustrates that DDR-L memory
exhibits a marginal variation in bandwidth across different
Rd/Wr patterns, whereas Fig. 12(b) demonstrates that CXL-
ASIC memory is much more sensitive to Rd/Wr patterns
(approximately 3× as marked with red two-way arrows). This
discrepancy arises from the fact that the DDR protocol utilizes
a bi-directional parallel bus for both reads and writes in a time-
multiplexed manner, while the CXL protocol features SerDes
TX/RX expressways for separated read and write traffics.

In addition, one can observe that the bandwidth of DDR-L
maximizes at the 100% read pattern, and it gradually decreases
until reaching at Rd:Wr=50%:50%. In contrast, CXL-ASIC
exhibits the best performance at Rd:Wr=74%:26%, instead
of 50%:50% as claimed in the Mess work [26]. we argue
that this phenomenon is caused by the compromised CXL
memory controller design, where the CXL protocol has to be
translated to DDR for accessing DRAM storage arrays. This
CXL+DDR design not only prolongs memory access paths
leading to increased access latency, but also compromises the
bandwidth utilization of CXL link and power consumption.
Hence, we believe it is necessary to eliminate DDR in the
CXL memory controller by directly exposing backend DRAM
arrays to the CXL protocol, similar to what NVMe has done
to SATA SSDs.

4) Real-World Application Test: The benchmarks above
show that the CXL-FPGA, operating at a lower frequency,
cannot accurately replicate the actual performance of real CXL
memories. Due to limitations on space and simulation time,
future real-world applications will only use the CXL-ASIC
devices. With the above characterization results, we can see
that the performance of CXL-FPGA is much poorer than the
real CXL-ASIC device. Due to the simulation overhead as well
as page limitations, we will limit our real-world application
experiments to CXL-ASIC only. To better understand the
system performance of CXL-based disaggregated memory, we
selected a representative in-memory database named Redis
[39] to evaluate the system throughput in diverse application
scenarios. The performance of Redis is evaluated using YCSB,
a popular and well-known NoSQL and SQL database bench-
mark suite with six predefined workloads [40].

Fig. 13 shows the performance metric Queries Per Second
(QPS) of Redis under two workloads with different memory
allocation strategies. For both workloads, using only DDR-L

memory results in the highest QPS, while 100% CXL or DDR-
R memory leads to smallest QPS. This is because mixing poor-
performance (prominently in latency as observed previously)
memory into DDR-L pulls down the overall performance of
Redis. In addition, the QPS achieved with a certain combi-
nation of DDR-L and DDR-R is slightly higher than that
achieved with the same combination of DDR-L and CXL
memories. Redis is a memory-latency-sensitive application
which operates with µs-level precision [25], [45], [46]. For
such applications, even a minor allocation of their working set
to high-latency memory can lead to significant performance
degradation. Therefore, latency-bound applications such as
Redis, DDR-R may deliver superior performance compared
to CXL-ASIC due to its moderate latency characteristics.

C. Exploration of CXL Memory Benefits

1) Memory Capacity Expansion: Viper is a hybrid PMEM-
DRAM key-value database [47]. We used Viper to evaluate
the impact of memory expansion strategies on application
performance when the local memory capacity is inadequate.
To create this scenario meanwhile speeding up our experi-
ments, we limited the DDR-L capacity accessible to Viper
to ensure that it is less than the amount of data inserted
into Viper. To evaluate the QPS of the system, we inserted
an equal number of key-value pairs with two different types:
<16,200>(0.216KB) and <100,900>(1KB). The system em-
ploys a preferred memory allocation strategy, which attempts
to allocate memory from DDR-L first.

Fig. 14 shows the test results of system performance in nor-
malized QPS. When inserting key-value pairs of <16,200>,
the QPS remains relatively consistent across various memory
configurations. This is because the total data volume inserted
into Viper did not exceed the maximum capacity of DDR-
L during the execution of the four operations. However,
when the size of the inserted key-value pairs increased to
<100,900>, the system’s QPS with DDR-L alone dropped
significantly. The decline is attributed to the total volume
of inserted data surpassing the capacity threshold that DDR-
L can accommodate. It cannot completely accommodate the
data intended to be inserted into Viper, necessitating frequent
swapping of pages in and out using swap space by default.
It can be seen that expanding memory with CXL memory
can enhance system throughput significantly with at most 25
times or 23 times improvement compared to DDR-L alone.
This suggests that CXL memory can be an effective means of
expanding system memory on top of existing DDR memory
when needed, as it does not occupy DIMM slots and simply
relies on PCIe 5.0/6.0 x16 interface.

2) Memory Bandwidth Expansion: To evaluate the bene-
fits of CXL memory to bandwidth-sensitive applications, we
performed inference tasks using Facebook’s Deep Learning
Recommendation Model (DLRM) configured similar to the
prior work MERCI [48]. We conducted tests with various
memory mixing configurations, covering DDR-L, DDR-R, and
CXL HDM with an interleaved memory allocation strategy.

<16,200> <100,900>
Insert

0.0
0.2
0.4
0.6
0.8
1.0

No
rm

. Q
PS

<16,200> <100,900>
Select

0.0
0.2
0.4
0.6
0.8
1.0

No
rm

. Q
PS

<16,200> <100,900>
Update

0.0
0.2
0.4
0.6
0.8
1.0

No
rm

. Q
PS

<16,200> <100,900>
Delete

0.0
0.2
0.4
0.6
0.8
1.0

No
rm

. Q
PS

DDR-L DDR-L+DDR-R DDR-L+CXL-ASIC CXL-DMSimL CXL-DMSimL+CXL-DMSimA

Fig. 14: QPS of Viper with various memory-type expansion strategies for different database operations.

Cfg1Cfg2Cfg3Cfg4Cfg5Cfg6Cfg7Cfg8Cfg9
Memory Configurations

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

No
rm

al
ize

d
QP

S

Cfg1. 100%:0%
Cfg4. 100%:0%
Cfg7. 100%:0%

Cfg2. 50%:50%
Cfg5. 50%:50%
Cfg8. 50%:50%

Cfg3. 0%:100%
Cfg6. 0%:100%
Cfg9. 0%:100%

llc.
AvgMissLat dram.

avgMemAccLat dram.
avgQLat

0.0
0.4
0.8
1.2
1.6

No
rm

al
ize

d
La

te
nc

y

DDR-L:DDR-R=
DDR-L:CXL-ASIC=

CXL-DMSimL:CXL-DMSimA=

(a) Application Execution QPS (b) Latency Metrics

Fig. 15: Impact of memory mixing strategies on the inference
performance of the DLRM model.

Fig. 15(a) presents the test results of DLRM inference
in various memory mixing scenarios. One can see that the
system performance improves 29% and 16% separately when
using a 50%:50% mix of DDR-L and DDR-R/CXL-HDM
in comparison to the 100% DDR-L case. This is because
interleaved memory can effectively expand the bandwidth
of the existing DDR memory, thereby increasing the overall
system’s QPS. When using a 50%:50% mix of DDR-L and
CXL HDM, the QPS of the system is lower than the QPS
achieved with a 50%:50% mix of DDR-L and DDR-R. This
can be explained by the fact that the emulated CXL memory
using remote DDR5 offers a relatively higher performance
considering the combined effects of both latency and band-
width when compared to the CXL memory.

The simulation results on CXL-DMSim suggest a sim-
ilar phenomenon, despite the QPS is slightly lower than
its counterpart on real hardware. The variation can be at-
tributed to the fact that the X86O3CPU model we used
on CXL-DMSim cannot absolutely match today’s advanced
Xeon CPU. We further analyzed the root causes of the
phenomenon using detailed output statistics of the simulator.
In Fig.15(b), the metric dram.avgQLat represents the average
queue latency per DRAM burst for the DDR memory, whereas
dram.avgMemAccLat is the average memory access latency
per DRAM burst. l3cache.overallAvgMissLatency measures
the average cache miss latency. The statistics reveal that hybrid
DDR and CXL memories deliver the lowest latency across all
metrics, due to reduced queuing delays and access contention.
Note that in the CXL-ASIC exclusive configuration, there
is no DDR DRAM traffic; thus dram.avgMemAccLat and
dram.avgQLat are both 0.

D. Congestion Analysis Using CXL-DMSim

During our experiments, we observed an interesting phe-
nomenon that after a certain point the QPS for MERCI drops
as the number of cores continuously increases. Using perfor-
mance counter monitor (PCM) [49], we found that the average

L3 cache miss latency of the 48-core system is 2.4µs, whereas
the data is 568 ns for the 12 cores. We intuitively speculate that
under high-concurrent memory access pressure in the 48-core
system, the CXL link may experience congestion, resulting
in performance degradation. Fortunately, CXL-DMSim’s high
observability allows us to dive into the system to further
investigate what is happening and its root causes.

Table IV shows the QPS and key statistics from CXL-
DMSim under different configurations, where stats.1 shows
that the aggregate QPS of the 12-core system is twice that
of the 48-core system. Stats.2-7 present various latency pa-
rameters for a single core. Stats.2 and 3 reveal that in the
48-core system, the average core load-to-use latency and its
standard deviation are significantly higher than those in the
12-core system. Stat.4 shows the proportion of load-to-use
latency within 0-9 cycles, while stats.5 and stats.6 reflect
the minimum and maximum load-to-use latency, respectively.
These three metrics suggest that although 94% of the loads in
the 48-core system can respond quickly (within 0-9 cycles),
a small fraction of the loads exhibit long-tail latency, lead-
ing to a larger standard deviation in the load-to-use latency
distribution. Stats.7 records core stall events caused by a full
load/store queue (LSQ). The data shows that congestion from
a small number of load requests in the 48-core system leads
to more frequent core stalls, resulting in a lower QPS. In
contrast, while only 63% of the loads in the 12-core system can
respond quickly, the smaller variance in load-to-use latency
suggests a more pipelined system, which results in a higher
QPS. We further localized the congestion point on the CXL
path. Stats.9 records the number of transmission retries caused
by full request/response queues in the bridge module, with
results showing that the retry count in the 48-core system is
three times higher than the 12-core system. Stats.10 reflects
the average response time of the CXL device, showing that the
device response times in both systems are nearly identical. In
summary, the high degree of parallel memory access pressure
in the 48-core system leads to severe queuing in the bridge
module, resulting in long-tail latency.

With the above analysis, we speculate that because the CXL
link is longer than DDR links, it is more prone to congestion
under high memory access pressure, thereby causing the
system performance to degrade rapidly. With the help of CXL-
DMSim, researchers can easily pinpoint congestion locations
and quickly explore various optimization strategies, such as
smarter CPU prefetch mechanisms, customized flow control
strategies, and more advanced CXL memory controller.

TABLE IV: Statistics from 12-core and 48-core DLRM ex-
periments on the CXL-DMSimA memory (Cfg9).

No. Statistics 12-Core 48-Core
1 Aggregate QPS 1.8e6 8.8e5
2 core.loadToUse::mean (Cycle) 97 198
3 core.loadToUse::stdev (Cycle) 217 1107
4 core.loadToUse::0-9 (Cycle) 63.6% 94.8%
5 core.loadToUse::min value (Cycle) 2 2
6 core.loadToUse::max value (Cycle) 2.7e3 2.5e4
7 core.lsqFullEvents (Count) 4.6e6 9.0e6
8 l3.overallAvgMissLat. (Tick) 1.3e5 1.2e6
9 bridge.reqRetryCounts (Count) 1.8e7 6.1e7

10 cxl.rsp::mean (Tick) 8.1e4 8.1e4

E. Expandability of CXL-DMSim

The CXL protocol is agnostic to the underlying memory
technologies, enabling seamless support for a range of media,
including DRAM, Flash, and emerging non-volatile memories.
CXL-DMSim also adheres to this principle, allowing for the
convenient extension of internal components.

As an example, Fig. 16 shows the device model of CXL-
SSD, which is a newly added component to CXL-DMSim. The
red dashed blocks highlight the added modules to our CXL
device model. In the memory medium module, we utilized
an open-source SSD simulator called SimpleSSD [50], [51]
to model the SSD backend of the CXL interface. However,
two issues must be addressed. First, SSD exhibits significantly
higher latency (µs level) compared to DRAM (ns level).
Second, CXL.mem is based on memory semantics at a byte
granularity, while SSD operates with I/O semantics at a page
(e.g., 4KB) granularity. A simple replacement of the memory
medium from DRAM to SSD would inevitably result in a
dramatic performance decline. Thus, we designed a cache
between the device controller and memory medium to address
the aforementioned issues. Additionally, we implemented a
cache prefetching and replacement module to manage cache
lines. Specifically, we first considered that, due to the larger
access granularity of SSDs, prefetching is more likely to result
in cache pollution. Our prefetching decisions are based on the
history of cache misses, with prefetching only executed when
there is a high confidence level that it will yield benefits.
Furthermore, given the higher access latency of SSDs, we
employ the Best-Offset prefetching algorithm [52], which
prioritizes timeliness in retrieving data from the backend SSD.
When a memory access request reaches the CXL-SSD, it
is directly returned if the SSD cache hits; otherwise, it is
translated into SimpleSSD data packets for backend retrieval.

We ran the Viper test on the CXL-SSD to evaluate its
performance. Unlike the previous tests, we utilized the AM
mode in this case to demonstrate its usage. As illustrated
in Fig. 17, the test results indicate that the QPS of CXL-
SSD across four operations are considerably lower than CXL-
DRAM, due to the higher access latency of Flash medium.
To evaluate the effects of cache on system performance,
we implemented and compared different cache replacement
policies including Least Recently Used (LRU) and First In
First Out (FIFO). It can be seen that the QPS of LRU or FIFO

Data/Cmp

SimpleSSD

M
em

ory
M

edium

PCI
Config
Space

C
XL

C
ontroller

CXL Memory Expander

SSD
C

ache

Protocol Parsing

Addr Translation

Write Back

Prefetch/Read

Read/Write

Response
Packet

Request
Packet

Response Port

Cache
Prefetch/Replace

SimpleSSD::Read/Write

Fig. 16: CXL-SSD device model design.

Insert Select Update Delete
Operation Type

0.0
0.2
0.4
0.6
0.8
1.0
1.2

QP
S

(1
e6

)

CXL-DRAM LRU CXL-SSD FIFO CXL-SSD CXL-SSD

Fig. 17: QPS values of Viper with CXL-DRAM and CXL-
SSD for different operations.

CXL-SSD with an additional cache has been significantly
enhanced, reaching 72%-88% of CXL-DRAM. The results of
this test not only prove the effectiveness of the AM mode, but
also demonstrate the good expandability of our simulator. This
means that CXL-DMSim can simulate various CXL memory
devices integrated with different storage medium, providing a
broad exploration and design space for the research of future
heterogeneous memory-pooled systems.

V. DISCUSSION

A. Simulation Overhead of CXL-DMSim

To assess the simulation overhead covering two aspects
which are simulation speed and occupied host memory intro-
duced by CXL-DMSim in comparison to the raw gem5, we
conducted various experiments on our simulator and collected
statistics of the execution time (HostSeconds) and physical
memory occupation (HostPhyMemory) on the host machine.
Fig 18(a) compares the program execution time between raw
gem5, CXL-DMSimL, and CXL-DMSimA with respect to
three workloads. The execution time of CXL-DMSimL is
nearly identical to that of raw gem5, while the average ex-
ecution time of CXL-DMSimA is 16% higher. This is because
CXL-DMSimA involves more components and longer latency
in the simulation process. Notably, LMBench, a benchmark
focused on evaluating memory access latency, exhibits slightly
higher execution times compared to STREAM and MERCI.

The comparison of HostPhyMemory overhead is shown
in Fig 18(b). CXL-DMSim exhibits an average increase of
only 3.5% in host memory usage, compared to raw gem5.

TABLE V: Comparison between CXL-DMSim and other CXL system simulators: pros & cons.

Attribute CXL-DMSim QEMU [17] Mess+gem5 [26] gem5-cxl [18] CXLMemSim [19] Remote NUMA [21]–[23]
CXL protocol support Yes Yes No No No No
Full-system CXL support Yes Yes No No No No
Silicon validation Yes No No No No N/A
Expandability High High Low Low Low Low
Sw/hw co-design Yes Yes No No No No
Cycle accuracy Yes No Yes Yes No Yes
Development maturity Yes Yes Yes No No Yes
Configurability High High High Low Medium Low
Simulation error Medium High Medium High Unknown High
Simulation speed Low Medium Low Low Medium High

LMBench STREAM MERCI
(a) HostSeconds

0.6
0.9
1.2
1.5

No
rm

. E
xe

c.
 T

im
e

LMBench STREAM MERCI
(b) HostPhyMemory

0.6
0.8
1.0
1.2

No
rm

. O
cc

up
-

ie
d

M
em

or
y

raw gem5 CXL-DMSimL CXL-DMSimA

Fig. 18: Simulation overhead in terms of simulation speed and
occupied host memory for CXL-DMSim.

This increase results from the additional memory allocation
necessary on the host machine to model the CXL device
memory space. Moreover, the specific magnitude of memory
overhead is closely correlated with the amount of physical
memory utilized by different applications.

B. Simulation Error of CXL-DMSim

We also analyzed the simulation error stats of CXL-DMSim
for a large variety of workloads against the results on our
hardware testbed. The collected error data is compared with
that of other CXL simulators as depicted in Fig. 19. It can be
seen that the minimum simulation error is 1.4% for MERCI
while the maximum goes to Viper. The averaged simulation
error is measured at 4.1% across all workloads in our experi-
ments. CXL-DMSim exhibits the best accuracy in comparison
to the two latest works Mess (6.0%) and gem5Tune (6.2%) as
revealed in their respective papers [26], [53]. The native gem5
shows the highest average error of 15.0% [26].

The sources of simulation errors for CXL-DMSim can be
attributed to the cumulative effects of modeling inaccuracies
in the entire system. These include but not limited to the
following. (1) The CPU model lags behind of the latest CPU
we used on our testbed. (2) The poor modeling of disk in gem5
when storage layers are involved, as can be observed with the
increased errors for Viper when some data was pushed out to
disk. Note that it is always a dilemma in pursuit of simulation
accuracy and speed.

C. CXL-DMSim vs. Other Simulators

Table V compares CXL-DMSim and other prominent sim-
ulators such as QEMU, Mess, gem5-CXL, CXLMemSim and
remote NUMA at various aspects. First, CXL-DMSim and
QEMU offer comprehensive support for CXL protocol, which
is critical for accurately simulating the behavior of real CXL
memory systems. In contrast, the other four simulators actually
do not support CXL protocol. Second, CXL-DMSim is a
full-system CXL simulator that provides the most realistic

%

°
O
O
O
O

1
。

0
0
0
0

3

卜

L

t

8
6
4
2
0
8
6
4
2
0

1

1

1

1

1

(

芩
)
」
0
」
」
UJ

U
O!
l
e1
n
El

6.4%

2.0%
＊＊＊＊＊＊＊＊

＊＊＊＊＊＊＊

＊＊＊＊＊＊＊＊

＊＊＊＊＊＊＊

7.4%

1.4%

4.1%

卜｀ 9·

M ICR0'24[26] ►15.0%

TC'24[55]

 6.0% 6.2%
0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

|o o o o o o o o

Fig. 19: Simulation error of CXL-DMSim and related simu-
lators in the prior art.

interaction between the operating system and simulated hard-
ware, enabling a range of opportunities for software-hardware
co-design. In contrast, Mess, gem5-CXL and CXLMemSim
cannot boot the operating system that supports CXL devices.
Third, CXL-DMSim is the only one which has undergone
extensive silicon validation, surpassing the other simulators
in terms of accuracy and realism. CXL-DMSim also excels in
expandability, cycle accuracy, development maturity, config-
urability, with acceptable simulation error. Nevertheless, these
advantages come along at the cost of slow simulation speed,
high modeling complexities for new features, and limited
system scale.

D. Future Work

Currently, CXL-DMSim only supports single-host simula-
tion mode. Plans are on our schedule to enhance its capabil-
ities to support multi-hosts via CXL switches with various
CXL topologies, akin to dist-gem5 [54]. We are actively
developing and integrating the CXL.cache sub-protocol into
CXL-DMSim. Furthermore, we will leverage CXL-DMSim to
explore heterogeneous memory management; e.g., efficient al-
location and release of memory capacity and bandwidth within
a CXL memory pool with tied and hybrid memory resources.
These days, many researchers claim that the deployment of
CXL-disaggregated memory in data centers offers both per-
formance improvements and cost reductions. But, forecasting
TCO savings and calculating Return on Investment (ROI) for
the CXL technology are complex. We believe that leveraging
CXL-DMSim for cost modeling, system efficiency evaluation,
and optimization in a multi-host CXL-disaggregated memory
environment are all interesting research topics.

VI. CONCLUSION

In this paper, we have presented CXL-DMSim, an open-
source and silicon-calibrated full-system simulator for CXL
disaggregated memory systems. CXL-DMSim can be used

either in a NUMA-compatible kernel-managed mode or in an
app-managed mode depending on users’ preference. Our ex-
perimental results on both hardware and CXL-DMSim suggest
that CXL memory is very effective in memory expansion of
both capacity and bandwidth to boost system performance. We
also found the current CXL memory controller design com-
posed of a CXL protocol controller and a DDR controller com-
promises both the latency and bandwidth of CXL memory and
also leads to a high sensitivity to Rd/Wr patterns. This calls
for a CXL-oriented memory controller design without DDR
to fully unleash the performance of CXL links. With CXL-
DMSim, the system performance bottlenecks can be quickly
identified thanks to its high observability with substantial
simulation statistics. In the future, we will continue to enhance
the capabilities of CXL-DMSim, and we also welcome the
community to join us to build a solid simulation platform for
architectural research on memory-pooled computing systems.

REFERENCES

[1] Meta, “Reimagining memory expansion for single
socket servers with cxl,” https://146a55aca6f00848c565-
a7635525d40ac1c70300198708936b4e.ssl.cf1.rackcdn.com/images/
fa0cc66ccd41ff51dcbb4a7b5b311c8e338b482a.pdf.

[2] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin, “Efficient
memory disaggregation with infiniswap,” in NSDI, 2017, pp. 649–667,
doi:10.5555/3154630.3154683.

[3] H. Li, D. S. Berger, L. Hsu, D. Ernst, P. Zardoshti, S. No-
vakovic, M. Shah, S. Rajadnya, S. Lee, I. Agarwal, M. D. Hill,
M. Fontoura, and R. Bianchini, “Pond: CXL-based memory pool-
ing systems for cloud platforms,” in ASPLOS, 2023, pp. 574–587,
doi:10.1145/3575693.3578835.

[4] H. Al Maruf and M. Chowdhury, “Memory disaggregation: advances and
open challenges,” ACM SIGOPS Operating Systems Review, pp. 29–37,
2023, doi:10.1145/3606557.3606562.

[5] M. K. Aguilera, N. Amit, I. Calciu, X. Deguillard, J. Gandhi,
S. Novaković, A. Ramanathan, P. Subrahmanyam, L. Suresh, K. Tati,
R. Venkatasubramanian, and M. Wei, “Remote regions: a simple ab-
straction for remote memory,” in USENIX ATC, 2018, pp. 775–787,
doi:10.5555/3277355.3277430.

[6] J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze, S. Kahan, and
M. Oskin, “Latency-tolerant software distributed shared memory,” in
USENIX ATC, 2015, pp. 291–305, doi:10.5555/2813767.2813789.

[7] S.-Y. Tsai, Y. Shan, and Y. Zhang, “Disaggregating persistent mem-
ory and controlling them remotely: an exploration of passive dis-
aggregated key-value stores,” in USENIX ATC, 2020, pp. 33–48,
doi:10.5555/3489146.3489149.

[8] Z. Ruan, M. Schwarzkopf, M. K. Aguilera, and A. Belay, “AIFM: High-
performance, application-integrated far memory,” in OSDI, 2020, pp.
315–332, doi:10.1145/3606557.3606562.

[9] D. Gouk, S. Lee, M. Kwon, and M. Jung, “Direct access, high-
performance memory disaggregation with DirectCXL,” in USENIX ATC,
2022, pp. 287–294, https://www.usenix.org/system/files/atc22-gouk.pdf.

[10] A. Geyer, D. Ritter, D. H. Lee, M. Ahn, J. Pietrzyk, A. Krause,
D. Habich, and W. Lehner, “Working with disaggregated systems. what
are the challenges and opportunities of RDMA and CXL?” Daten-
banksysteme für Business, Technologie und Web, pp. 751–755, 2023,
doi:10.18420/BTW2023-47.

[11] Y. Guo and G. Li, “A CXL-powered database system: Opportunities and
challenges,” in IEEE International Conference on Data Engineering,
2024, pp. 5593–5604, doi:10.1109/ICDE60146.2024.00447.

[12] OpenCAPI Consortium, “OpenCAPI specification,” https:
//computeexpresslink.org/resource/opencapi-specification-archive/.

[13] Gen-Z Consortium, “Gen-Z specification,” https://computeexpresslink.
org/resource/gen-z-specification-archive/.

[14] CCIX Consortium, “CCIX specification,” https://computeexpresslink.
org/resource/ccix-specification-archive/.

[15] NVIDIA, “What is NVIDIA NVLink,” https://blogs.nvidia.com/blog/
what-is-nvidia-nvlink/.

[16] CXL Consortium, “Compute express link specification,” https://www.
computeexpresslink.org/download-the-specification.

[17] T. Q. P. Developers, “QEMU,” https://www.qemu.org/docs/master/
system/devices/cxl.html.

[18] L. Wang, X. Zhang, T. Lu, and M. Chen, “gem5-CXL,” https://github.
com/zxhero/gem5-CXL?tab=readme-ov-file.

[19] Y. Yang, P. Safayenikoo, J. Ma, T. A. Khan, and A. Quinn, “CXLMem-
Sim: A pure software simulated CXL.mem for performance characteri-
zation,” ArXiv, 2023, doi:10.48550/arXiv.2303.06153.

[20] Yiwei Yang and Pooneh Safayenikoo and Jiacheng Ma and Tanvir
Ahmed Khan and Andrew Quinn, “CXLMemSim,” unpublished.

[21] Y. Fridman, S. Mutalik Desai, N. Singh, T. Willhalm, and G. Oren,
“CXL memory as persistent memory for disaggregated HPC: A practical
approach,” in International Conference for High Performance Comput-
ing, Networking, Storage, and Analysis Workshops, 2023, pp. 983–994,
doi:10.1145/3624062.3624175.

[22] M. Arif, K. Assogba, M. M. Rafique, and S. Vazhkudai, “Exploiting
CXL-based memory for distributed deep learning,” in ICPP, 2023, pp.
1–11, doi:10.1145/3545008.3545054.

[23] K. Song, J. Yang, S. Liu, and G. Pekhimenko, “Lightweight
frequency-based tiering for cxl memory systems,” ArXiv, 2023,
doi:10.48550/arXiv.2312.04789.

[24] H. A. Maruf, H. Wang, A. Dhanotia, J. Weiner, N. Agarwal, P. Bhat-
tacharya, C. Petersen, M. Chowdhury, S. Kanaujia, and P. Chauhan,
“TPP: transparent page placement for CXL-enabled tiered-memory,” in
ASPLOS, 2023, pp. 742–755, doi:10.1145/3582016.3582063.

[25] Y. Sun, Y. Yuan, Z. Yu, R. Kuper, C. Song, J. Huang, H. Ji, S. Agarwal,
J. Lou, I. Jeong, R. Wang, J. H. Ahn, T. Xu, and N. S. Kim, “Demysti-
fying CXL memory with genuine CXL-ready systems and devices,” in
MICRO, 2023, pp. 105–121, doi:10.1145/3613424.3614256.

[26] P. Esmaili-Dokht, F. Sgherzi, V. Soldera Girelli, I. Boixaderas,
M. Carmin, A. Monemi, A. Armejach, E. Mercadal, G. Llort, P. Rado-
jkovic, M. Moreto, J. Gimenez, X. Martorell, E. Ayguade, J. Labarta,
E. Confalonieri, R. Dubey, and J. Adlard, “A mess of memory system
benchmarking, simulation and application profiling,” in MICRO, 2024,
pp. 1–18, http://export.arxiv.org/abs/2405.10170.

[27] gem5 community, “gem5,” https://www.gem5.org/.
[28] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,

A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The
gem5 simulator,” SIGARCH Comput. Archit. News, pp. 1–7, 2011,
doi:10.1145/2024716.2024718.

[29] J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger,
M. Andreozzi, A. Armejach, N. Asmussen, S. Bharadwaj, G. Black,
G. Bloom, B. R. Bruce, D. R. Carvalho, J. Castrillón, L. Chen,
N. Derumigny, S. Diestelhorst, W. Elsasser, M. Fariborz, A. F. Farahani,
P. Fotouhi, R. Gambord, J. Gandhi, D. Gope, T. Grass, B. Hanindhito,
A. Hansson, S. Haria, A. Harris, T. Hayes, A. Herrera, M. Horsnell,
S. A. R. Jafri, R. Jagtap, H. Jang, R. Jeyapaul, T. M. Jones, M. Jung,
S. Kannoth, H. Khaleghzadeh, Y. Kodama, T. Krishna, T. Marinelli,
C. Menard, A. Mondelli, T. Mück, O. Naji, K. Nathella, H. Nguyen,
N. Nikoleris, L. E. Olson, M. S. Orr, B. Pham, P. Prieto, T. Reddy,
A. Roelke, M. Samani, A. Sandberg, J. Setoain, B. Shingarov, M. D.
Sinclair, T. Ta, R. Thakur, G. Travaglini, M. Upton, N. Vaish, I. Vou-
gioukas, Z. Wang, N. Wehn, C. Weis, D. A. Wood, H. Yoon, and
É. F. Zulian, “The gem5 simulator: Version 20.0+,” ArXiv, 2020,
doi:10.48550/arXiv.2007.03152.

[30] Intel, “Intel CXL IP,” https://www.intel.com/content/www/us/en/
products/details/fpga/intellectual-property/interface-protocols/cxl-
ip.html.

[31] D. D. Sharma, R. G. Blankenship, and D. S. Berger, “An introduction to
the compute express link (CXL) interconnect,” ACM Computing Surveys,
2023, doi:10.48550/arxiv.2306.11227.

[32] J. Liu, X. Wang, J. Wu, S. Yang, J. Ren, B. Shankar, and D. Li,
“Exploring and evaluating real-world CXL: Use cases and system
adoption,” 2024, doi:10.48550/arxiv.2405.14209.

[33] H. Ham, J. Hong, G. Park, Y. Shin, O. Woo, W. Yang, J. Bae,
E. Park, H. Sung, E. Lim, and G. Kim, “Low-overhead general-purpose
near-data processing in CXL memory expanders,” in MICRO, 2024,
doi:10.5281/ZENODO.13283894.

[34] D. D. Sharma, “Novel composable and scaleout architectures
using Compute Express Link,” IEEE Micro, pp. 9–19, 2023,
doi:10.1109/MM.2023.3235972.

https://146a55aca6f00848c565-a7635525d40ac1c70300198708936b4e.ssl.cf1.rackcdn.com/images/fa0cc66ccd41ff51dcbb4a7b5b311c8e338b482a.pdf
https://146a55aca6f00848c565-a7635525d40ac1c70300198708936b4e.ssl.cf1.rackcdn.com/images/fa0cc66ccd41ff51dcbb4a7b5b311c8e338b482a.pdf
https://146a55aca6f00848c565-a7635525d40ac1c70300198708936b4e.ssl.cf1.rackcdn.com/images/fa0cc66ccd41ff51dcbb4a7b5b311c8e338b482a.pdf
https://doi.org/10.5555/3154630.3154683
http://dx.doi.org/10.1145/3575693.3578835
https://dl.acm.org/doi/10.1145/3606557.3606562
https://dl.acm.org/doi/10.5555/3277355.3277430
https://dl.acm.org/doi/10.5555/2813767.2813789
https://dl.acm.org/doi/10.5555/3489146.3489149
https://dl.acm.org/doi/10.1145/3606557.3606562
https://www.usenix.org/system/files/atc22-gouk.pdf
https://doi.org/10.18420/BTW2023-47
https://dbgroup.cs.tsinghua.edu.cn/ligl//papers/CXL_ICDE.pdf
https://computeexpresslink.org/resource/opencapi-specification-archive/
https://computeexpresslink.org/resource/opencapi-specification-archive/
https://computeexpresslink.org/resource/gen-z-specification-archive/
https://computeexpresslink.org/resource/gen-z-specification-archive/
https://computeexpresslink.org/resource/ccix-specification-archive/
https://computeexpresslink.org/resource/ccix-specification-archive/
https://blogs.nvidia.com/blog/what-is-nvidia-nvlink/
https://blogs.nvidia.com/blog/what-is-nvidia-nvlink/
https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification
https://www.qemu.org/docs/master/system/devices/cxl.html
https://www.qemu.org/docs/master/system/devices/cxl.html
https://github.com/zxhero/gem5-CXL?tab=readme-ov-file
https://github.com/zxhero/gem5-CXL?tab=readme-ov-file
https://doi.org/10.48550/arXiv.2303.06153
http://dx.doi.org/10.1145/3624062.3624175
http://dx.doi.org/10.1145/3545008.3545054
https://doi.org/10.48550/arXiv.2312.04789
http://dx.doi.org/10.1145/3582016.3582063
http://dx.doi.org/10.1145/3613424.3614256
http://export.arxiv.org/abs/2405.10170
https://www.gem5.org/
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.48550/arXiv.2007.03152
https://www.intel.com/content/www/us/en/products/details/fpga/intellectual-property/interface-protocols/cxl-ip.html
https://www.intel.com/content/www/us/en/products/details/fpga/intellectual-property/interface-protocols/cxl-ip.html
https://www.intel.com/content/www/us/en/products/details/fpga/intellectual-property/interface-protocols/cxl-ip.html
https://doi.org/10.48550/arxiv.2306.11227
https://doi.org/10.48550/arxiv.2405.14209
https://zenodo.org/doi/10.5281/zenodo.13283894
https://doi.org/10.1109/MM.2023.3235972

[35] P. Levis, K. Lin, and A. Tai, “A case against CXL memory pooling,”
in Proceedings of the 22nd ACM Workshop on Hot Topics in Networks,
2023, pp. 18–24, doi:10.1145/3626111.3628195.

[36] Intel, “Intel memory latency checker,” https://www.intel.com/content/
www/us/en/developer/articles/tool/intelr-memory-latency-checker.html.

[37] C. S. Larry McVoy, “LMbench,” https://lmbench.sourceforge.net/.
[38] J. McCalpin, “STREAM,” https://www.cs.virginia.edu/stream/ref.html.
[39] Redis Ltd., “Redis,” https://redis.io/.
[40] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and

R. Sears, “Benchmarking cloud serving systems with YCSB,” in
Proc. 1st ACM Symp. Cloud Comput. (SOCC), 2010, pp. 143–154,
doi:10.1145/1807128.1807152.

[41] G. Wu, P. Huang, and X. He, “Reducing SSD access latency via NAND
flash program and erase suspension,” Journal of Systems Architecture,
pp. 345–356, 2014, doi:10.1016/j.sysarc.2013.12.002.

[42] K. Kim and T. Kim, “HMB in DRAM-less NVMe SSDs: Their
usage and effects on performance,” PLoS ONE, p. e0229645, 2020,
doi:10.1371/journal.pone.0229645.

[43] C. S. Larry McVoy, “LMbench,” https://github.com/foss-for-synopsys-
dwc-arc-processors/lmbench/blob/master/scripts/config-run.

[44] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,”
in FPGA, 2006, pp. 21–30, doi:10.1145/1117201.1117205.

[45] Y. Zhong, D. S. Berger, C. Waldspurger, R. Wee, I. Agarwal, R. Agar-
wal, F. Hady, K. Kumar, M. D. Hill, M. Chowdhury, and A. Cidon,
“Managing memory tiers with CXL in virtualized environments,”
in OSDI, 2024, pp. 37–56, https://www.usenix.org/conference/osdi24/
presentation/zhong-yuhong.

[46] M. Ahn, T. Willhalm, N. May, D. Lee, S. M. Desai, D. Booss, J. Kim,
N. Singh, D. Ritter, and O. Rebholz, “An examination of CXL memory
use cases for in-memory database management systems using SAP
HANA,” VLDB, 2024, doi:10.14778/3685800.3685809.

[47] L. Benson, H. Makait, and T. Rabl, “Viper: an efficient hybrid PMem-
DRAM key-value store,” Proc. VLDB Endow., pp. 1544–1556, 2021,
doi:10.14778/3461535.3461543.

[48] Y. Lee, S. H. Seo, H. Choi, H. U. Sul, S. Kim, J. W. Lee, and
T. J. Ham, “MERCI: efficient embedding reduction on commodity
hardware via sub-query memoization,” in ASPLOS, 2021, pp. 302–313,
doi:10.1145/3445814.3446717.

[49] Intel, “Intel performance counter monitor,” https://www.intel.cn/content/
www/cn/zh/developer/articles/tool/performance-counter-monitor.html.

[50] CAMELab, “SimpleSSD,” https://docs.simplessd.org/en/v2.0.12/.
[51] M. Jung, J. Zhang, A. Abulila, M. Kwon, N. Shahidi, J. Shalf, N. S.

Kim, and M. Kandemir, “SimpleSSD: modeling solid state drives for
holistic system simulation,” IEEE Comput. Archit. Lett., pp. 37–41,
2018, doi:10.1109/LCA.2017.2750658.

[52] P. Michaud, “Best-offset hardware prefetching,” in HPCA, 2016, pp.
469–480, doi:10.1109/HPCA.2016.7446087.

[53] Y. Qiu, T. Huang, Y. Tang, Y. Liu, Y. Kong, X. Yu, X. Zeng, and
Y. Fan, “Gem5Tune: A parameter auto-tuning framework for gem5
simulator to reduce errors,” IEEE Trans. Comput., pp. 902–914, 2023,
doi:10.1109/TC.2023.3347675.

[54] A. Mohammad, U. Darbaz, G. Dozsa, S. Diestelhorst, D. Kim, and
N. S. Kim, “dist-gem5: distributed simulation of computer clusters,” in
ISPASS, 2017, pp. 153–162, doi:10.1109/ISPASS.2017.7975287.

https://doi.org/10.1145/3626111.3628195
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://lmbench.sourceforge.net/
https://www.cs.virginia.edu/stream/ref.html
https://redis.io/
http://dx.doi.org/10.1145/1807128.1807152
https://doi.org/10.1016/j.sysarc.2013.12.002
https://doi.org/10.1371/journal.pone.0229645
https://github.com/foss-for-synopsys-dwc-arc-processors/lmbench/blob/master/scripts/config-run
https://github.com/foss-for-synopsys-dwc-arc-processors/lmbench/blob/master/scripts/config-run
https://doi.org/10.1145/1117201.1117205
https://www.usenix.org/conference/osdi24/presentation/zhong-yuhong
https://www.usenix.org/conference/osdi24/presentation/zhong-yuhong
https://doi.org/10.14778/3685800.3685809
http://dx.doi.org/10.14778/3461535.3461543
http://dx.doi.org/10.1145/3445814.3446717
https://www.intel.cn/content/www/cn/zh/developer/articles/tool/performance-counter-monitor.html
https://www.intel.cn/content/www/cn/zh/developer/articles/tool/performance-counter-monitor.html
https://docs.simplessd.org/en/v2.0.12/
http://dx.doi.org/10.1109/LCA.2017.2750658
https://doi.org/10.1109/HPCA.2016.7446087
https://doi.org/10.1109/TC.2023.3347675
http://dx.doi.org/10.1109/ISPASS.2017.7975287

APPENDIX

A. Abstract

The artifact consists of three components: 1) the complete
CXL-DMSim source code based on gem5 v23.1; 2) a Linux
kernel with the added CXL expander driver; 3) a disk image
containing test programs. To initiate the full-system simulation
of CXL-DMSim, the Linux kernel and disk image need to be
loaded. This appendix describes the process of compiling and
installing our simulator, CXL-DMSim, and reproducing the
results shown in Fig. 10 and Fig. 15 in this paper. The code
must be executed on a Linux system with at least 64GB of
main memory and 50GB of disk space.

B. Artifact Checklist (meta-information)
• Program: We provide a disk image parsec.img that includes

benchmarks LMBench and DLRM.
• Compilation: GCC/G++ 9.4.0 and Python3.8.
• Binary: The Linux 5.4.49 kernel binary with added CXL

memory expender driver support.
• Run-time environment: Ubuntu 20.04 or Ubuntu 22.04.
• Hardware: Intel x86-64
• Output: Files with the results of the program’s execution.
• Experiments: Manual invocation of scripts, which launch

corresponding experiments and generate outputs in designated
folders.

• How much disk space required (approximately)?: 40–50GB
• How much time is needed to prepare workflow (approx-

imately)?: The compilation for CXL-DMSim takes approxi-
mately 10-20 minutes, and the full-system bootup for CXL-
DMSim takes about 30 minutes.

• How much time is needed to complete experiments (approx-
imately)?: We primarily control memory allocation on DDR-L,
CXL memory, or interleave both using the numactl. For a single
test of a specific memory allocation, LMBench requires 5 hours
and Merci requires 20 hours. You can accelerate the testing
progress by executing as many tests in parallel as possible, based
on the size of the machine’s main memory.

• Publicly available?: Yes
– CXL-DMSim: https://github.com/ferry-hhh/CXL-DMSim.
– Kernel and disk image: https://drive.google.com/drive/

folders/1sxZBsedT19ntJdzN8MTkcbczMGXNXgrM?usp=
sharing.

• Code licenses (if publicly available)?: BSD 3-Clause “New”
or “Revised” License

C. Description
1) How to access: All the source code of CXL-DMSim is

available on GitHub, and the linux Kernel and disk image can be
downloaded from GoogleDrive.

2) Hardware dependencies: It is recommended to run this on
a machine with a sufficiently large main memory (>64GB) because
modeling the operations of 48 O3 CPUs along with the CXL memory
expender requires a considerable amount of memory.

3) Software dependencies: Linux systems that support building
gem5. Ubuntu 20.04 and Ubuntu 22.04 have been verified to run
CXL-DMSim successfully. The GCC version used is 9.4.0, and the
Python version is 3.8.10.

D. Installation
1) First, run the following command on Ubuntu 20.04 to install

the required dependencies:
$ sudo apt install build-essential git m4
scons zlib1g zlib1g-dev libprotobuf-dev

protobuf-compiler libprotoc-dev
libgoogle-perftools-dev python3-dev
python-is-python3 libboost-all-dev
pkg-config

2) Download the CXL-DMSim source code, linux kernel and disk
image from the provided links.

3) Run the following command to compile:
$ scons build/X86/gem5.opt -j{cpus}

Note that the ‘-j’ flag is optional and enables parallelization of
the compilation process, with ‘cpus’ specifying the number of
threads to use. It is recommended to use as many threads as
possible to accelerate the compilation.

E. Experiment Workflow
Next, we will proceed to complete the experiments for Fig. 10 and

Fig. 15.
1) Before starting, please check the correct paths for

the kernel and disk_image within the file
configs/example/gem5_library/x86-cxl-run.py
on your local machine.

2) At the terminal prompt, start the test script with the following
command.

$./run_fs.sh

The script will sequentially execute the LMBench and DLRM
tests. However, you may also manually duplicate each test
command within run_fs.sh to execute them in parallel, if
the memory capacity of your host machine permits.

F. Evaluation and Expected Results
Upon execution of the command to initiatethe the full

system, the system runtime logs can be found within the
board.pc.com_1.device file located in the corresponding test
folder under the output directory. Subsequently, the experimental
results will also be appended to this file. We provide the expected data
for each test in the expected_result directory of the GitHub
repository for your reference.

G. Methodology
Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/artifact-review-

badging
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

https://github.com/ferry-hhh/CXL-DMSim
https://drive.google.com/drive/folders/1sxZBsedT19ntJdzN8MTkcbczMGXNXgrM?usp=sharing
https://drive.google.com/drive/folders/1sxZBsedT19ntJdzN8MTkcbczMGXNXgrM?usp=sharing
https://drive.google.com/drive/folders/1sxZBsedT19ntJdzN8MTkcbczMGXNXgrM?usp=sharing
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html

	Introduction
	Background and Motivation
	CXL Protocol
	Related Work
	Software-Based Emulation
	Software-Based Simulation
	Hardware-Based Emulation
	Hardware Prototyping

	Motivation

	CXL-DMSim Design and Implementation
	Simulator Architecture
	CXL Memory Expander Model
	CXL Protocol Support
	CXL HDM Management in OS

	Experiments and Evaluation
	Experimental Setup
	Hardware Testbed
	CXL-DMSim Simulator

	Usability and Fidelity of CXL-DMSim
	LMbench Test for Memory Latency
	STREAM Test for Memory Bandwidth
	Mess Test With Varying Rd/Wr Patterns
	Real-World Application Test

	Exploration of CXL Memory Benefits
	Memory Capacity Expansion
	Memory Bandwidth Expansion

	Congestion Analysis Using CXL-DMSim
	Expandability of CXL-DMSim

	Discussion
	Simulation Overhead of CXL-DMSim
	Simulation Error of CXL-DMSim
	CXL-DMSim vs. Other Simulators
	Future Work

	Conclusion
	References
	Appendix
	Abstract
	Artifact Checklist (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies

	Installation
	Experiment Workflow
	Evaluation and Expected Results
	Methodology

