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Corrigendum to the equivalent statement of the Laplacian
Spread Conjecture ∗

Borchen Li †

School of Mathematics, Nanjing University, Nanjing 210093, P.R.China

Abstract: For a graph G, let α(G) denote its second smallest Laplacian eigenvalue.

The Laplacian Spread Conjecture states that α(G)+α(G) ≥ 1, where G is the complement

of G. In this paper, we have corrected two conclusions: First, the necessary and sufficient

condition for α(G) + α(G) ≥ 1 is ‖ ▽x −▽y ‖2≥ 1 rather than ‖ ▽x −▽y ‖2≥ 2 which

has been proved in [1] as demonstrated in our study. Second, we show that the Laplacian

spread of balanced digraph Γ satisfies LS(Γ) ≤ n− 1
2 but not LS(Γ) ≤ n− 1 in [5], since

inequality ‖ ▽x −▽y ‖2≥ 2 does not hold.
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MSC: 05C50.

1. Introduction

All concepts used in this paper can be found in [6] and in the articles cited below,

unless defined otherwise. Let G be an undirected and unweighted simple graph

with vertex set V (G) = {1, 2, . . . , n} and edge set E(G) = {(i, j)|i, j ∈ V (G)}. The
adjacency matrix of G denoted by A(G) = [aij ], is a square matrix whose entries

are indexed by n × n and aij = 1 if {i, j} ∈ E(G) and 0 otherwise, where n is the

order of G, i.e. the number of the vertices. Obviously, A(G)T = A(G). We denote

the Laplacian matrix of G by L(G) = D(G)− A(G), where A(G) is the adjacency

matrix of G and D(G) is a diagonal matrix of vertex degrees, i.e. whose ith diagonal

entry is d(i), where d(i) denotes the degree of vertex i.

If x, y ∈ R
n are vectors, we denote their inner product by < x, y >=

∑
i∈V (G) xiyi,

and denote the norm of x by ‖ x ‖= √
< x, x >. We say two vectors x, y ∈ R

n are

orthonormal if ‖ x ‖=‖ y ‖= 1 and < x, y >= 0.

We denote the Laplacian eigenvalues of G by

0 = λn(G) ≤ λn−1(G) ≤ · · · ≤ λ1(G).
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If we denote the complement of G by G, then it is well-known that the eigenvalues

of L(G) are

0 = λn(G) ≤ n− λ1(G) ≤ · · · ≤ n− λn−1(G).

In [9], Fiedler defined the algebraic connectivity of the graph G by α(G) =

λn−1(G). A related and useful quantity is β(G) = λ1(G) = n − α(G), where G

denotes the complement of G. The Laplacian spread of G is defined as β(G)−α(G).

Clearly, β(G)−α(G) ≤ n. In [10] and [11], it was conjectured that n can be replaced

with n− 1.

Laplacian Spread Conjecture (LSC): For any graph G of order n ≥ 2, the

following holds:

β(G)− α(G) ≤ n− 1, (1)

or equivalently α(G) + α(G) ≥ 1, with equality if and only if G or G is isomorphic

to the join of an isolated vertex and a disconnected graph of order n− 1.

We refer [1] [2] [3] [4] for more information about Laplacian Spread Conjecture.

In this paper, we corrected an equivalent statement to the LSC has been proved in

[1]. Also, we show that the Laplacian spread has a bound of n− 1
2
for all balanced

digraphs of order n.

2. An equivalent statement of LSC

More recently, M. Einollahzadeh and M.M. Karkhaneei have proved that LSC

holds for all graphs G in [8]. In paper [1], the authors shown that the inequation (1)

is equivalent to the following statement: For any two orthonormal vectors x, y ∈ R
n

with zero mean and n ≥ 2,

‖ ▽x −▽y ‖2≥ 2,

where ∇x ∈ R
(n
2
) be the vector whose ij-th entry is |xi − xj |, for all i < j.

Theorem 2.1. ([1]) The following statements are equivalent.

(i) For any graph G of order n ≥ 2,

α(G) + α(G) ≥ 1.

(ii) For any two orthonormal vectors x, y ∈ R
n with zero mean and n ≥ 2,

‖ ▽x −▽y ‖2≥ 2.
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In fact, the equivalent statement of α(G) + α(G) ≥ 1 is ‖ ▽x −▽y ‖2≥ 1 rather

than ‖ ▽x −▽y ‖2≥ 2 in Theorem 2.1. Fortunately, this ”clerical error” does not

materially affect the conclusion of the article.

For any x ∈ R
n, let ∇x ∈ R

(n
2
) be the vector whose ij-th entry is |xi − xj |, for

all i < j. Let I, J and e denote unit matrix, the all-one matrix and all-one vector,

respectively. For the sake of convenience and enhanced readability, we are now ready

to rephrase and demonstrate Theorem 2.1 as follows.

Theorem 2.2. The following statements are equivalent.

(i) For any graph G of order n ≥ 2,

α(G) + α(G) ≥ 1.

(ii) For any two orthonormal vectors x, y ∈ R
n with zero mean and n ≥ 2,

‖ ▽x −▽y ‖2≥ 1. (2)

where ∇x ∈ R
(n
2
) be the vector whose ij-th entry is |xi − xj |, for all i < j.

Proof. (i) ⇒ (ii) Let x, y ∈ R
n be two orthonormal vectors with zero mean. Then,

define G to be a graph with vertex set V = {1, 2, ..., n}, where

(i, j) ∈ E ⇔ (xi − xj)(yi − yj) < 0.

Let N be an oriented incidence matrix of G, and N be an oriented incidence

matrix of G. Now,

‖ ▽x −▽y ‖2 =
∑

1≤i<j≤n

(| xi − xj | − | yi − yj |)2

=
1

2

n∑

i,j=1

(| xi − xj | − | yi − yj |)2

=
1

2

∑

(i,j)∈E
[(xi − xj) + (yi − yj)]

2 +
1

2

∑

(i,j)/∈E
[(xi − xj)− (yi − yj)]

2

=
1

2

∑

(i,j)∈E
[(xi + yi)− (xj + yj)]

2 +
1

2

∑

(i,j)/∈E
[(xi − yi)− (xj − yj)]

2

=
1

2
(x+ y)TNNT (x+ y) +

1

2
(x− y)TNN

T
(x− y)

=
1

2
(x+ y)TL(G)(x+ y) +

1

2
(x− y)TL(G)(x− y)

≥ 1

2
α(G)‖x+ y‖2 + 1

2
α(G) ‖ x− y ‖2
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= α(G) + α(G)

≥ 1.

(ii) ⇒ (i) Let a, b be real unit eigenvectors of G and G, respectively, corresponding

to α(G) and α(G). Since L(G)e = 0 and L(G)e = 0, it follows that a, b ∈ e⊥.

Furthermore, since L(G) = (nI − J) − L(G), it follows that b is an eigenvector of

L(G) corresponding to β(G), which implies that a ⊥ b. Hence,

x =
a+ b√

2
and y =

a− b√
2

are orthonormal vectors with zero mean. Now,

α(G) + α(G) = aTL(G)a+ bTL(G)b

=
∑

(i,j)∈E
(ai − aj)

2 +
∑

(i,j)/∈E
(bi − bj)

2

≥
n∑

i,j=1

min{(ai − aj)
2, (bi − bj)

2}

=
1

2

n∑

i,j=1

[(ai − aj)
2 + (bi − bj)

2− | (ai − aj)
2 − (bi − bj)

2 |]

=
1

4

n∑

i,j=1

[| (ai − aj) + (bi − bj) | − | (ai − aj)− (bi − bj) |]2

=
1

2

n∑

i,j=1

(| ai − aj√
2

+
bi − bj√

2
| − | ai − aj√

2
− bi − bj√

2
|)2

=
1

2

n∑

i,j=1

(| ai + bi√
2

− aj + bj√
2

| − | ai − bi√
2

− aj − bj√
2

|)2

=
1

2

n∑

i,j=1

(| xi − xj | − | yi − yj |)2

=
∑

1≤i<j≤n

(| xi − xj | − | yi − yj |)2

= ‖ ▽x −▽y ‖2

≥ 1.

The proof is complete. �
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3. Balanced digraphs

Let Γ be a directed graph of order n with vertex set V (Γ) = {1, 2, . . . , n} and edge

set E(Γ) = {(−→i, j)|i, j ∈ V (Γ)}. The adjacency matrix of Γ denoted by A(Γ) = [aij ],

is a square matrix whose entries are indexed by n × n and aij = 1 if (
−→
i, j) ∈ E(Γ)

and 0 otherwise. Note that A(Γ)T = A(Γ) are generally not true since (
−→
i, j) ∈ E(Γ)

not necessarily imply (
−→
j, i) ∈ E(Γ). Then, we define the Laplacian matrix of Γ

by L(Γ) = D(Γ) − A(Γ), where A(Γ) is the adjacency matrix of Γ and D(Γ) is a

diagonal matrix whose ith diagonal entry is d+(i), where d+(i) denotes the out-degree

of vertex i ∈ V (Γ), which is equal to the number of edges of the form (
−→
i, j) ∈ E(Γ).

Similarly, we denote the in-degree of vertex i ∈ V (Γ) by d−(i), which is equal to the

number of edges of the form (
−→
j, i) ∈ V (Γ). It is worth noting that every undirected

graph can be regarded as a directed graph with bidirectional edges.

In this section, we denote Γ = (V,E) be a balanced digraph, that is, d+(i) = d−(i)

for all i ∈ V. Briefly, let L denote the Laplacian matrix of Γ. Then, Le = 0 and

LTe = 0, which implies that e is an eigenvector of the Hermitian (symmetric) part

of the Laplacian: H(L) = 1
2
(L+ LT ) corresponding to the zero eigenvalue.

The algebraic connectivity of Γ is given by

α(Γ) = min
x⊥e,‖x‖=1

xTLx,

and another related useful quantity is

β(Γ) = max
x⊥e,‖x‖=1

xTLx.

We define the Laplacian spread of a digraph Γ by

LS(Γ) = β(Γ)− α(Γ).

Since Γ is balanced, H(L) is an M-matrix, which implies that its eigenvalues are

nonnegative. Hence, β(Γ) is equal to the maximum eigenvalue of H(L) and α(Γ) is

equal to the second smallest eigenvalue of H(L). Moreover, since Γ is balanced if and

only if Γ is balanced, it follows that α(Γ) is equal to the second smallest eigenvalue

of H(L), where L denotes the Laplacian matrix of Γ and Γ be the complement of Γ.

In this section, we will point out that the conclusion in [5] is wrong: the Laplacian

spread of balanced digraphs satisfy LS(Γ) ≤ n − 1. The reason is that authors in

[5] only proved conclusion that ‖ ▽x − ▽y ‖2≥ 2 if and only if α(Γ) + α(Γ) ≥ 1

for a balanced digraph Γ. However, the given example demonstrates that inequality

‖ ▽x −▽y ‖2≥ 2 does not hold.
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Example 3.1. Let a = ( 1√
2
, −1√

2
, 0, · · · , 0)T , b = ( 1√

n2−n
, · · · , 1√

n2−n
, 1−n√

n2−n
)T ∈ R

n,

then a, b are two orthonormal vectors with zero mean, and

x =
a + b√

2
, y =

a− b√
2

are also two orthonormal vectors with zero mean. Hence

▽a = (
√
2, 1√

2
, · · · , 1√

2
, 1√

2
, · · · , 1√

2
, 1√

2
, 0, · · · , 0, 0)T , and

▽b = (0, · · · , 0, n√
n2−n

, 0, · · · , 0, n√
n2−n

, 0, · · · , 0, n√
n2−n

)T .

From the proof of Theorem 1, it is easy to see that

‖ ▽x −▽y ‖2=
∑

1≤i<j≤n

min{(ai − aj)
2, (bi − bj)

2} =
1

2
+

1

2
= 1,

and conflict with ‖ ▽x −▽y ‖2≥ 2 for any two orthonormal vectors x, y ∈ R
n with

zero mean.

As a means of enhancement, let’s prove the Laplacian spread conjecture abuot

the version of balanced digraphs: For any balanced digraph Γ of order n ≥ 2, the

Laplacian spread satisfies:

LS(Γ) = β(Γ)− α(Γ) ≤ n− 1

2
,

or equivalently α(Γ) + α(Γ) ≥ 1
2
, where Γ denotes the complement of Γ.

Lemma 3.2. Let Γ be a balanced digraph of order n ≥ 2 and let x ∈ R
n. Then,

xTLx =
1

2

∑

(i,j)∈E
(xi − xj)

2.

Proof. Let N be an oriented incidence matrix of graph Γ̂, where Γ̂ denotes undi-

rected simple graph corresponding to Γ. Then 2H(L) = NNT since Γ is balanced,

hence

xTLx = xTH(L)x

=
1

2
xTNNTx

=
1

2

∑

(i,j)∈E
(xi − xj)

2. �

As in section 2, let’s denote unit matrix, the all-one matrix and all-one vector by

I, J and e, respectively, and let ∇x ∈ R
(n
2
) be an

(
n
2

)
-dimensional vector for any

x ∈ R
n. We are now ready to prove the main result of this section.
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Theorem 3.3. The following statements are equivalent:

(i) For any balanced digraph Γ of order n ≥ 2,

α(Γ) + α(Γ) ≥ 1

2
.

(ii) For any two orthonormal vectors x, y ∈ R
n with zero mean and n ≥ 2,

‖ ▽x −▽y ‖2≥ 1.

Proof. (i) ⇒ (ii) Let x, y ∈ R
n be two orthonormal vectors with zero mean and Γ

be a digraph with vertex set V = {1, 2, ..., n}, where
(
−→
i, j) ∈ E ⇔ (xi − xj)(yi − yj) < 0.

Note that Γ is a bidirectional digraph since (
−→
i, j) ∈ E if and only if (

−→
j, i) ∈ E, and

hence Γ is a balanced digraph. Now,

‖ ▽x −▽y ‖2 =
∑

1≤i<j≤n

(| xi − xj | − | yi − yj |)2

=
1

2

n∑

i,j=1

(| xi − xj | − | yi − yj |)2

=
1

2

∑

(i,j)∈E
((xi − xj) + (yi − yj))

2 +
1

2

∑

(i,j)/∈E
((xi − xj)− (yi − yj))

2

=
1

2

∑

(i,j)∈E
((xi + yi)− (xj + yj))

2 +
1

2

∑

(i,j)/∈E
((xi − yi)− (xj − yj))

2

= (x+ y)TL(x+ y) + (x− y)TL(x− y)

≥ α(Γ)‖x+ y‖2 + α(Γ) ‖ x− y ‖2

= 2(α(Γ) + α(Γ))

≥ 1.

(ii) ⇒ (i) Let a, b be real unit eigenvectors of H(L) and H(L), respectively,

corresponding to α(Γ) and α(Γ). Since H(L)e = 0 and H(L)e = 0, it follows that

a, b ∈ e⊥. Furthermore, since H(L) = (nI − J) − H(L), it follows that b is an

eigenvector of H(L) corresponding to β(Γ), which implies that a ⊥ b. Hence,

x =
a+ b√

2
and y =

a− b√
2

are also orthonormal vectors with zero mean. Now,
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α(Γ) + α(Γ) = aTH(L)a+ bTH(L)b

= aTLa+ bTLb

=
1

2

∑

(i,j)∈E
(ai − aj)

2 +
1

2

∑

(i,j)/∈E
(bi − bj)

2

≥ 1

2

n∑

i,j=1

min{(ai − aj)
2, (bi − bj)

2}

=
1

4

n∑

i,j=1

[(ai − aj)
2 + (bi − bj)

2− | (ai − aj)
2 − (bi − bj)

2 |]

=
1

8

n∑

i,j=1

[| (ai − aj) + (bi − bj) | − | (ai − aj)− (bi − bj) |]2

=
1

4

n∑

i,j=1

(| ai − aj√
2

+
bi − bj√

2
| − | ai − aj√

2
− bi − bj√

2
|)2

=
1

4

n∑

i,j=1

(| ai + bi√
2

− aj + bj√
2

| − | ai − bi√
2

− aj − bj√
2

|)2

=
1

2

∑

1≤i<j≤n

(| xi − xj | − | yi − yj |)2

=
1

2
‖ ▽x −▽y ‖2

≥ 1

2
.

The proof is complete. �

Since the inequation (1) was proven in [8], it follows that the statement (2) is

always true. Therefore, we have the following corollary.

Corollary 3.4. If Γ is a balanced digraph of order n ≥ 2, then the Laplacian spread

satisfies

LS(Γ) ≤ n− 1

2
.

Proof. Since LS(Γ) = β(Γ)− α(Γ) = n − α(Γ)− α(Γ) = n − (α(Γ) + α(Γ)), thus

LS(Γ) ≤ n− 1
2
by Theorem 3.3. �
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