Corrigendum to the equivalent statement of the Laplacian Spread Conjecture [∗](#page-0-0)

Borchen Li [†](#page-0-1)

School of Mathematics, Nanjing University, Nanjing 210093, P.R.China

Abstract: For a graph G, let $\alpha(G)$ denote its second smallest Laplacian eigenvalue. The Laplacian Spread Conjecture states that $\alpha(G)+\alpha(\overline{G})\geq 1$, where \overline{G} is the complement of G. In this paper, we have corrected two conclusions: First, the necessary and sufficient condition for $\alpha(G) + \alpha(\overline{G}) \ge 1$ is $\| \nabla_x - \nabla_y \|^2 \ge 1$ rather than $\| \nabla_x - \nabla_y \|^2 \ge 2$ which has been proved in [\[1\]](#page-8-0) as demonstrated in our study. Second, we show that the Laplacian spread of balanced digraph Γ satisfies $LS(\Gamma) \leq n - \frac{1}{2}$ $\frac{1}{2}$ but not $LS(\Gamma) \leq n-1$ in [\[5\]](#page-8-1), since inequality $|| \nabla_x - \nabla_y ||^2 \ge 2$ does not hold.

Keywords: Laplacian Spread Conjecture; balanced digraphs; eigenvalues. MSC: 05C50.

1. Introduction

All concepts used in this paper can be found in [\[6\]](#page-8-2) and in the articles cited below, unless defined otherwise. Let G be an undirected and unweighted simple graph with vertex set $V(G) = \{1, 2, ..., n\}$ and edge set $E(G) = \{(i, j)|i, j \in V(G)\}$. The *adjacency matrix* of G denoted by $A(G) = [a_{ij}]$, is a square matrix whose entries are indexed by $n \times n$ and $a_{ij} = 1$ if $\{i, j\} \in E(G)$ and 0 otherwise, where n is the *order* of G, i.e. the number of the vertices. Obviously, $A(G)^T = A(G)$. We denote the *Laplacian matrix* of G by $L(G) = D(G) - A(G)$, where $A(G)$ is the adjacency matrix of G and $D(G)$ is a diagonal matrix of vertex degrees, i.e. whose *ith* diagonal entry is $d(i)$, where $d(i)$ denotes the *degree* of vertex i.

If $x, y \in \mathbb{R}^n$ are vectors, we denote their *inner product* by $\langle x, y \rangle = \sum$ $i\in V(G)$ x_iy_i , and denote the *norm* of x by $||x|| = \sqrt{\langle x, x \rangle}$. We say two vectors $x, y \in \mathbb{R}^n$ are *orthonormal* if $||x||=||y||= 1$ and $\langle x, y \rangle = 0$.

We denote the Laplacian eigenvalues of G by

$$
0 = \lambda_n(G) \leq \lambda_{n-1}(G) \leq \cdots \leq \lambda_1(G).
$$

[∗]Supported by NSFC (Nos. 12071209, 12231009).

[†]Corresponding author.

E-mail addresses: borchenli@smail.nju.edu.cn (B. Li), qingzhji@nju.edu.cn (Q. Ji)

If we denote the *complement* of G by \overline{G} , then it is well-known that the eigenvalues of $L(\overline{G})$ are

$$
0 = \lambda_n(\overline{G}) \leq n - \lambda_1(G) \leq \cdots \leq n - \lambda_{n-1}(G).
$$

In [\[9\]](#page-8-3), Fiedler defined the *algebraic connectivity* of the graph G by $\alpha(G)$ = $\lambda_{n-1}(G)$. A related and useful quantity is $\beta(G) = \lambda_1(G) = n - \alpha(\overline{G})$, where \overline{G} denotes the complement of G. The *Laplacian spread* of G is defined as $\beta(G) - \alpha(G)$. Clearly, $\beta(G) - \alpha(G) \leq n$. In [\[10\]](#page-8-4) and [\[11\]](#page-8-5), it was conjectured that n can be replaced with $n-1$.

Laplacian Spread Conjecture (LSC): For any graph G of order $n \geq 2$, the following holds:

$$
\beta(G) - \alpha(G) \le n - 1,\tag{1}
$$

or equivalently $\alpha(G) + \alpha(\overline{G}) \geq 1$, with equality if and only if G or \overline{G} is isomorphic to the join of an isolated vertex and a disconnected graph of order $n - 1$.

We refer [\[1\]](#page-8-0) [\[2\]](#page-8-6) [\[3\]](#page-8-7) [\[4\]](#page-8-8) for more information about Laplacian Spread Conjecture. In this paper, we corrected an equivalent statement to the LSC has been proved in [\[1\]](#page-8-0). Also, we show that the Laplacian spread has a bound of $n - \frac{1}{2}$ $\frac{1}{2}$ for all balanced digraphs of order n.

2. An equivalent statement of LSC

More recently, M. Einollahzadeh and M.M. Karkhaneei have proved that LSC holds for all graphs G in $[8]$. In paper $[1]$, the authors shown that the inequation (1) is equivalent to the following statement: For any two orthonormal vectors $x, y \in \mathbb{R}^n$ with zero mean and $n \geq 2$,

$$
\|\nabla_x-\nabla_y\|^2\geq 2,
$$

where $\nabla_x \in \mathbb{R}^{\binom{n}{2}}$ be the vector whose ij -th entry is $|x_i - x_j|$, for all $i < j$.

Theorem 2.1. ([\[1\]](#page-8-0)) *The following statements are equivalent.*

(i) For any graph G of order $n \geq 2$,

$$
\alpha(G) + \alpha(\overline{G}) \ge 1.
$$

(ii) For any two orthonormal vectors $x, y \in \mathbb{R}^n$ *with zero mean and* $n \geq 2$,

$$
\|\nabla_x - \nabla_y\|^2 \ge 2.
$$

In fact, the equivalent statement of $\alpha(G) + \alpha(\overline{G}) \ge 1$ is $\| \nabla_x - \nabla_y \|^2 \ge 1$ rather than $|| \nabla_x - \nabla_y ||^2 \geq 2$ in Theorem 2.1. Fortunately, this "clerical error" does not materially affect the conclusion of the article.

For any $x \in \mathbb{R}^n$, let $\nabla_x \in \mathbb{R}^{\binom{n}{2}}$ be the vector whose ij -th entry is $|x_i - x_j|$, for all $i < j$. Let I, J and e denote unit matrix, the all-one matrix and all-one vector, respectively. For the sake of convenience and enhanced readability, we are now ready to rephrase and demonstrate Theorem 2.1 as follows.

Theorem 2.2. *The following statements are equivalent.*

(i) For any graph G of order $n \geq 2$,

$$
\alpha(G) + \alpha(\overline{G}) \ge 1.
$$

(ii) For any two orthonormal vectors $x, y \in \mathbb{R}^n$ *with zero mean and* $n \geq 2$,

$$
\|\nabla_x - \nabla_y\|^2 \ge 1. \tag{2}
$$

where $\nabla_x \in \mathbb{R}^{\binom{n}{2}}$ *be the vector whose ij-th entry is* $|x_i - x_j|$ *, for all i < j.*

Proof. (i) \Rightarrow (ii) Let $x, y \in \mathbb{R}^n$ be two orthonormal vectors with zero mean. Then, define G to be a graph with vertex set $V = \{1, 2, ..., n\}$, where

$$
(i,j)\in E \Leftrightarrow (x_i - x_j)(y_i - y_j) < 0.
$$

Let N be an oriented incidence matrix of G, and \overline{N} be an oriented incidence matrix of \overline{G} . Now,

$$
\|\nabla x - \nabla y\|^2 = \sum_{1 \le i < j \le n} (|x_i - x_j| - |y_i - y_j|)^2
$$
\n
$$
= \frac{1}{2} \sum_{i,j=1}^n (|x_i - x_j| - |y_i - y_j|)^2
$$
\n
$$
= \frac{1}{2} \sum_{(i,j) \in E} [(x_i - x_j) + (y_i - y_j)]^2 + \frac{1}{2} \sum_{(i,j) \notin E} [(x_i - x_j) - (y_i - y_j)]^2
$$
\n
$$
= \frac{1}{2} \sum_{(i,j) \in E} [(x_i + y_i) - (x_j + y_j)]^2 + \frac{1}{2} \sum_{(i,j) \notin E} [(x_i - y_i) - (x_j - y_j)]^2
$$
\n
$$
= \frac{1}{2} (x + y)^T N N^T (x + y) + \frac{1}{2} (x - y)^T N N^T (x - y)
$$
\n
$$
= \frac{1}{2} (x + y)^T L(G) (x + y) + \frac{1}{2} (x - y)^T L(\overline{G}) (x - y)
$$
\n
$$
\geq \frac{1}{2} \alpha(G) \|x + y\|^2 + \frac{1}{2} \alpha(\overline{G}) \|x - y\|^2
$$

$$
= \alpha(G) + \alpha(\overline{G})
$$

$$
\geq 1.
$$

 $(ii) \Rightarrow (i)$ Let a, b be real unit eigenvectors of G and \overline{G} , respectively, corresponding to $\alpha(G)$ and $\alpha(G)$. Since $L(G)e = 0$ and $L(G)e = 0$, it follows that $a, b \in e^{\perp}$. Furthermore, since $L(\overline{G}) = (nI - J) - L(G)$, it follows that b is an eigenvector of $L(G)$ corresponding to $\beta(G)$, which implies that $a \perp b$. Hence,

$$
x = \frac{a+b}{\sqrt{2}} \quad and \quad y = \frac{a-b}{\sqrt{2}}
$$

are orthonormal vectors with zero mean. Now,

$$
\alpha(G) + \alpha(\overline{G}) = a^T L(G)a + b^T L(\overline{G})b
$$

\n
$$
= \sum_{(i,j)\in E} (a_i - a_j)^2 + \sum_{(i,j)\notin E} (b_i - b_j)^2
$$

\n
$$
\geq \sum_{i,j=1}^n \min\{(a_i - a_j)^2, (b_i - b_j)^2\}
$$

\n
$$
= \frac{1}{2} \sum_{i,j=1}^n [(a_i - a_j)^2 + (b_i - b_j)^2 - (a_i - a_j)^2 - (b_i - b_j)^2]]
$$

\n
$$
= \frac{1}{4} \sum_{i,j=1}^n [|(a_i - a_j) + (b_i - b_j)| - |(a_i - a_j) - (b_i - b_j)|]^2
$$

\n
$$
= \frac{1}{2} \sum_{i,j=1}^n (|\frac{a_i - a_j}{\sqrt{2}} + \frac{b_i - b_j}{\sqrt{2}}| - |\frac{a_i - a_j}{\sqrt{2}} - \frac{b_i - b_j}{\sqrt{2}}|)^2
$$

\n
$$
= \frac{1}{2} \sum_{i,j=1}^n (|\frac{a_i + b_i}{\sqrt{2}} - \frac{a_j + b_j}{\sqrt{2}}| - |\frac{a_i - b_i}{\sqrt{2}} - \frac{a_j - b_j}{\sqrt{2}}|)^2
$$

\n
$$
= \frac{1}{2} \sum_{i,j=1}^n (|x_i - x_j| - |y_i - y_j|)^2
$$

\n
$$
= \sum_{1 \leq i < j \leq n} (|x_i - x_j| - |y_i - y_j|)^2
$$

\n
$$
= ||\nabla_x - \nabla_y||^2
$$

\n
$$
\geq 1.
$$

The proof is complete.

3. Balanced digraphs

Let Γ be a directed graph of order n with vertex set $V(\Gamma) = \{1, 2, ..., n\}$ and edge set $E(\Gamma) = \{(\overrightarrow{i}, \overrightarrow{j}) | i, j \in V(\Gamma) \}$. The *adjacency matrix* of Γ denoted by $A(\Gamma) = [a_{ij}],$ is a square matrix whose entries are indexed by $n \times n$ and $a_{ij} = 1$ if $(\overrightarrow{i}, \overrightarrow{j}) \in E(\Gamma)$ and 0 otherwise. Note that $A(\Gamma)^T = A(\Gamma)$ are generally not true since $(\overrightarrow{i}, \overrightarrow{j}) \in E(\Gamma)$ not necessarily imply $(\overrightarrow{j}, \overrightarrow{i}) \in E(\Gamma)$. Then, we define the *Laplacian matrix* of Γ by $L(\Gamma) = D(\Gamma) - A(\Gamma)$, where $A(\Gamma)$ is the adjacency matrix of Γ and $D(\Gamma)$ is a diagonal matrix whose *ith* diagonal entry is $d^+(i)$, where $d^+(i)$ denotes the *out-degree* of vertex $i \in V(\Gamma)$, which is equal to the number of edges of the form $(\overrightarrow{i,j}) \in E(\Gamma)$. Similarly, we denote the *in-degree* of vertex $i \in V(\Gamma)$ by $d^-(i)$, which is equal to the number of edges of the form $(\overrightarrow{j}, i) \in V(\Gamma)$. It is worth noting that every undirected graph can be regarded as a directed graph with bidirectional edges.

In this section, we denote $\Gamma = (V, E)$ be a *balanced digraph*, that is, $d^+(i) = d^-(i)$ for all $i \in V$. Briefly, let L denote the Laplacian matrix of Γ . Then, $L\mathbf{e} = 0$ and L^T **e** = 0, which implies that **e** is an eigenvector of the Hermitian (symmetric) part of the Laplacian: $H(L) = \frac{1}{2}(L + L^T)$ corresponding to the zero eigenvalue.

The *algebraic connectivity* of Γ is given by

$$
\alpha(\Gamma) = \min_{x \perp e, ||x|| = 1} x^T L x,
$$

and another related useful quantity is

$$
\beta(\Gamma) = \max_{x \perp e, ||x|| = 1} x^T L x.
$$

We define the *Laplacian spread* of a digraph Γ by

$$
LS(\Gamma) = \beta(\Gamma) - \alpha(\Gamma).
$$

Since Γ is balanced, $H(L)$ is an M-matrix, which implies that its eigenvalues are nonnegative. Hence, $\beta(\Gamma)$ is equal to the maximum eigenvalue of $H(L)$ and $\alpha(\Gamma)$ is equal to the second smallest eigenvalue of $H(L)$. Moreover, since Γ is balanced if and only if $\overline{\Gamma}$ is balanced, it follows that $\alpha(\overline{\Gamma})$ is equal to the second smallest eigenvalue of $H(\overline{L})$, where \overline{L} denotes the Laplacian matrix of $\overline{\Gamma}$ and $\overline{\Gamma}$ be the *complement* of Γ .

In this section, we will point out that the conclusion in [\[5\]](#page-8-1) is wrong: the Laplacian spread of balanced digraphs satisfy $LS(\Gamma) \leq n-1$. The reason is that authors in [\[5\]](#page-8-1) only proved conclusion that $|| \nabla_x - \nabla_y ||^2 \geq 2$ if and only if $\alpha(\Gamma) + \alpha(\overline{\Gamma}) \geq 1$ for a balanced digraph Γ. However, the given example demonstrates that inequality $\|\nabla_x - \nabla_y\|^2 \geq 2$ does not hold.

Example 3.1. Let $a = (\frac{1}{\sqrt{2}})$ $\frac{1}{2}, \frac{-1}{\sqrt{2}}, 0, \cdots, 0)^T, b = (\frac{1}{\sqrt{n^2-n}}, \cdots, \frac{1}{\sqrt{n^2-n}}, \frac{1-n}{\sqrt{n^2-n}})^T \in \mathbb{R}^n,$ *then* a, b *are two orthonormal vectors with zero mean, and*

$$
x = \frac{a+b}{\sqrt{2}}, y = \frac{a-b}{\sqrt{2}}
$$

are also two orthonormal vectors with zero mean. Hence

 $\bigtriangledown_a = (\sqrt{2}, \frac{1}{\sqrt{2}})$ $\frac{1}{2},\cdots,\frac{1}{\sqrt{2}}$ $\frac{1}{2}$, $\frac{1}{\sqrt{2}}$ $\frac{1}{2},\cdots,\frac{1}{\sqrt{2}}$ $\frac{1}{2}, \frac{1}{\sqrt{2}}$ $\frac{1}{2}$, 0, ..., 0, 0)^T, and $\bigtriangledown_b = (0, \cdots, 0, \frac{n}{\sqrt{n^2-n}}, \quad 0, \cdots, 0, \frac{n}{\sqrt{n^2-n}}, \quad 0, \cdots, 0, \frac{n}{\sqrt{n^2-n}})^T.$ *From the proof of Theorem 1, it is easy to see that*

$$
\|\nabla_x - \nabla_y\|^2 = \sum_{1 \le i < j \le n} \min\{(a_i - a_j)^2, (b_i - b_j)^2\} = \frac{1}{2} + \frac{1}{2} = 1,
$$

and conflict with $\|\nabla_x - \nabla_y\|^2 \geq 2$ *for any two orthonormal vectors* $x, y \in \mathbb{R}^n$ *with zero mean.*

As a means of enhancement, let's prove the Laplacian spread conjecture abuot the version of balanced digraphs: For any balanced digraph Γ of order $n \geq 2$, the Laplacian spread satisfies:

$$
LS(\Gamma) = \beta(\Gamma) - \alpha(\Gamma) \le n - \frac{1}{2},
$$

or equivalently $\alpha(\Gamma) + \alpha(\overline{\Gamma}) \geq \frac{1}{2}$ $\frac{1}{2}$, where Γ denotes the complement of Γ .

Lemma 3.2. Let Γ be a balanced digraph of order $n \geq 2$ and let $x \in \mathbb{R}^n$. Then,

$$
x^{T}Lx = \frac{1}{2} \sum_{(i,j) \in E} (x_{i} - x_{j})^{2}.
$$

Proof. Let N be an oriented incidence matrix of graph $\widehat{\Gamma}$, where $\widehat{\Gamma}$ denotes undirected simple graph corresponding to Γ . Then $2H(L) = NN^T$ since Γ is balanced, hence

$$
x^T L x = x^T H(L) x
$$

=
$$
\frac{1}{2} x^T N N^T x
$$

=
$$
\frac{1}{2} \sum_{(i,j) \in E} (x_i - x_j)^2.
$$

As in section 2, let's denote unit matrix, the all-one matrix and all-one vector by *I*, *J* and **e**, respectively, and let $\nabla_x \in \mathbb{R}^{\binom{n}{2}}$ be an $\binom{n}{2}$ $n \choose 2$ -dimensional vector for any $x \in \mathbb{R}^n$. We are now ready to prove the main result of this section.

Theorem 3.3. *The following statements are equivalent:*

(i) For any balanced digraph Γ of order $n \geq 2$,

$$
\alpha(\Gamma) + \alpha(\overline{\Gamma}) \ge \frac{1}{2}.
$$

(ii) For any two orthonormal vectors $x, y \in \mathbb{R}^n$ *with zero mean and* $n \geq 2$,

$$
\|\nabla_x - \nabla_y\|^2 \ge 1.
$$

Proof. (i) \Rightarrow (ii) Let $x, y \in \mathbb{R}^n$ be two orthonormal vectors with zero mean and Γ be a digraph with vertex set $V = \{1, 2, ..., n\}$, where

$$
(\overrightarrow{i,j}) \in E \Leftrightarrow (x_i - x_j)(y_i - y_j) < 0.
$$

Note that Γ is a bidirectional digraph since $(\overrightarrow{i,j}) \in E$ if and only if $(\overrightarrow{j,i}) \in E$, and hence Γ is a balanced digraph. Now,

$$
\|\nabla x - \nabla y\|^2 = \sum_{1 \le i < j \le n} (|x_i - x_j| - |y_i - y_j|)^2
$$
\n
$$
= \frac{1}{2} \sum_{i,j=1}^n (|x_i - x_j| - |y_i - y_j|)^2
$$
\n
$$
= \frac{1}{2} \sum_{(i,j) \in E} ((x_i - x_j) + (y_i - y_j))^2 + \frac{1}{2} \sum_{(i,j) \notin E} ((x_i - x_j) - (y_i - y_j))^2
$$
\n
$$
= \frac{1}{2} \sum_{(i,j) \in E} ((x_i + y_i) - (x_j + y_j))^2 + \frac{1}{2} \sum_{(i,j) \notin E} ((x_i - y_i) - (x_j - y_j))^2
$$
\n
$$
= (x + y)^T L(x + y) + (x - y)^T \overline{L}(x - y)
$$
\n
$$
\geq \alpha(\Gamma) \|x + y\|^2 + \alpha(\overline{\Gamma}) \|x - y\|^2
$$
\n
$$
= 2(\alpha(\Gamma) + \alpha(\overline{\Gamma}))
$$
\n
$$
\geq 1.
$$

 $(ii) \Rightarrow (i)$ Let a, b be real unit eigenvectors of $H(L)$ and $H(\overline{L})$, respectively, corresponding to $\alpha(\Gamma)$ and $\alpha(\overline{\Gamma})$. Since $H(L)\mathbf{e} = 0$ and $H(\overline{L})\mathbf{e} = 0$, it follows that $a, b \in \mathbf{e}^{\perp}$. Furthermore, since $H(L) = (nI - J) - H(L)$, it follows that b is an eigenvector of $H(L)$ corresponding to $\beta(\Gamma)$, which implies that $a \perp b$. Hence,

$$
x = \frac{a+b}{\sqrt{2}} \quad and \quad y = \frac{a-b}{\sqrt{2}}
$$

are also orthonormal vectors with zero mean. Now,

$$
\alpha(\Gamma) + \alpha(\overline{\Gamma}) = a^T H(L)a + b^T H(\overline{L})b
$$

\n
$$
= a^T La + b^T \overline{L}b
$$

\n
$$
= \frac{1}{2} \sum_{(i,j) \in E} (a_i - a_j)^2 + \frac{1}{2} \sum_{(i,j) \notin E} (b_i - b_j)^2
$$

\n
$$
\geq \frac{1}{2} \sum_{i,j=1}^n \min\{(a_i - a_j)^2, (b_i - b_j)^2\}
$$

\n
$$
= \frac{1}{4} \sum_{i,j=1}^n [(a_i - a_j)^2 + (b_i - b_j)^2 - |(a_i - a_j)^2 - (b_i - b_j)^2|]
$$

\n
$$
= \frac{1}{8} \sum_{i,j=1}^n [|(a_i - a_j) + (b_i - b_j)| - |(a_i - a_j) - (b_i - b_j)|]^2
$$

\n
$$
= \frac{1}{4} \sum_{i,j=1}^n (|a_i - a_j + b_i - b_j| - |a_i - a_j - b_i|)^2
$$

\n
$$
= \frac{1}{4} \sum_{i,j=1}^n (|a_i + b_i - a_j + b_j| - |a_i - b_i - a_j - b_j|)^2
$$

\n
$$
= \frac{1}{4} \sum_{i,j=1}^n (|x_i - x_j| - |y_i - y_j|)^2
$$

\n
$$
= \frac{1}{2} ||\nabla x - \nabla y||^2
$$

\n
$$
\geq \frac{1}{2}.
$$

The proof is complete. \Box

Since the inequation (1) was proven in [\[8\]](#page-8-9), it follows that the statement (2) is always true. Therefore, we have the following corollary.

Corollary 3.4. *If* Γ *is a balanced digraph of order* $n \geq 2$ *, then the Laplacian spread satisfies*

$$
LS(\Gamma) \le n - \frac{1}{2}.
$$

Proof. Since $LS(\Gamma) = \beta(\Gamma) - \alpha(\Gamma) = n - \alpha(\Gamma) - \alpha(\Gamma) = n - (\alpha(\Gamma) + \alpha(\Gamma)),$ thus $LS(\Gamma) \leq n - \frac{1}{2}$ 2 by Theorem 3.3. \Box

4. Declaration of competing interest

There is no competing interest.

REFERENCES

- [1] B. Afshari, S. Akbari, Some results on the Laplacian spread conjecture, Linear Algebra Appl. 574 (2019) 22-29.
- [2] B. Afshari, S. Akbari, M.J. Moghaddamzadeh, B. Mohar, The algebraic connectivity of a graph and its complement, Linear Algebra Appl. 555 (2018) 157-162.
- [3] E. Andrade, H. Gomes, M. Robbiano, J. Rodriguez, Upper bounds on the Laplacian spread of graphs, Linear Algebra Appl. 492 (2016) 26-37.
- [4] Y.H. Bao, Y.Y. Tan, Y.Z. Fan, The Laplacian spread of unicyclic graphs, Appl. Math. Lett. 22 (2009) 1011-1015.
- [5] W. Barrett, T. R. Cameron, E. Evans, H. T. Hall, M. Kempton, On the Laplacian spread of digraphs, Linear Algebra and its Applications 664 (2023) 126-146.
- [6] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, 2008.
- [7] A.E. Brouwer, W.H. Haemers, Spectra of Graphs, Springer Universitext, 2012.
- [8] M. Einollahzadeh, M.M. Karkhaneei, On the lower bound of the sum of the algebraic connectivity of a graph and its complement, J. Comb. Theory, Ser. B 151 (2021) 235-249.
- [9] M. Fiedler, Algebraic connectivity of graphs, Czechoslov. Math. J. 23 (1973) 298-305.
- [10] Z. You, B. Liu, The Laplacian spread of graphs, Czechoslovak Math. J. 62 (137) (2012) 155- 168.
- [11] M. Zhai, J. Shu, Y. Hong, On the Laplacian spread of graphs, Appl. Math. Lett. 24 (2011) 2097-2101.