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EXTENDING STRONGLY ULAM STABLE GROUPS AND TOWARDS

INDUCTIVITY

MASON SHARP

Abstract. We show some preservation results of amenably extending strongly

Ulam stable groups under mild decay assumptions, including quantitative preser-

vation of asymptotic bounds under the assumption that the modulus of stability

is Hölder continuous of exponent s > 1
2

at 0, utilizing some simplistic integral

estimates. Additionally, we show some partial results around inductive preser-

vation of modulus bounds in infinite dimensions using these integral estimates

as well as strong quantitative preservation in the finite dimensional case, imply-

ing the existence of U uniformly stable existential closures among groups with

sufficiently large Lipschitz estimates of any countable group.

1. Introduction

Amenability of groups has been a quite useful property in studying unitary repre-

sentations, or otherwise geometric-flavored and group von Neumann algebra prop-

erties about groups and their actions, as evidenced by the extensive literature and

litany of equivalent formulations found over the years. For our purposes, we focus

on a particular unitary representation stability property held by these groups.

Definition 1.1. Given a group H and map f : H → U(H) with f (1) = Id, we

define the defect δ( f ) by

δ( f ) = sup
x,y
‖ f (xy) − f (x) f (y)‖

Using this definition, by an easy triangle inequality argument, we can find

Proposition 1.2. If ‖ f − g‖ ≤ a, then δ(g) ≤ δ( f ) + 3a

so this particular function is∞-norm continuous.

Definition 1.3. For a group G, we define FG : [0, 2]→ [0, 2] by

FG(ε) = sup { inf { ‖ f − ρ‖∞ | ρ : G → U(H) is a representation }

| H is Hilbert, f : G → U(H), f (1) = Id, δ( f ) ≤ ε }.

We note that though Hilbert spaces may be a proper class, these are subclasses of

R bounded above by 2 and it is sufficient to find any continuous function [0, 2] →

[0, 2] bounding this from above and evaluating to 0 at 0, so well-definedness of this

particular function is less important than studying what bounds it.

Definition 1.4. A group G is Strongly Ulam Stable (SUS) with modulus FG if the

function is continuous at 0.

The relevance of this property is the following theorem of Kazhdan and the

motivation behind this work:
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Theorem 1.5 (Kazhdan [Kaz82]). If G is amenable, then G is strongly Ulam stable.

Furthermore, 1
2
ε ≤ FG(ε) ≤ 2ε for sufficiently small ε.

Utilizing similar techniques to how one can prove this Theorem 1.5, we prove

the main result (Theorem 3.1) of section 3 below:

Theorem 1.6. Suppose G is an amenable group with mean
∫

dg and H is SUS with

FH(ε) ∈ O(ε), then G × H is SUS with FG×H ∈ O(ε).

Further, by the methods and bounds involved in the proof generalizing appropri-

ately, we prove Corollaries 3.13 and 3.14 respectively strengthening this by weak-

ening the estimate to only require O(εs) for some s > 1
2
, or extending to groups

of the form G ⋊a H where a[H] ≤ Aut(G) is amenable, for which Theorem 3.1

corresponds to a[H] = 1. In fact, as expounded upon lightly in Remark 3.17, these

proofs are local to each Hilbert space.

The case of having a Lipschitz (or, in the phrasing of [FFR23], linear) estimate is

of particular relevance and importance as these correspond to vanishing asymptotic

cohomology groups, as well as Kazhdan’s theorem (Theorem 1.5 above) stating

that amenable groups do in fact have such an estimate. It is for this reason that we

separated Corollary 3.13 from the proof, and Corollary 3.14 was separated due to

the distinct treatment of the variable of integration as opposed to similar minor gen-

eralizations like groups of the form H ⋊G for G amenable. The relevance of these

semidirect products can be seen in [Alp23], as restricted wreath products directly

witness amenability by results of Alpeev, though we fail to prove preservation in

wreaths due to injectivity of the map into Aut(G).

In a different direction, we also examine the closure of the class under nice

direct limits in the form of inductivity, which we demonstrate for finite dimensions

in Theorem 4.6 below:

Theorem 1.7. Given a proper κ-sequence of subgroups (Gi) which are all uni-

formly (U(d), ‖ · ‖s) stable for any norm ‖ · ‖s such that F(ε) = supi F
(d)
Gi

(ε) is

continuous at 0, we have that G =
⋃

i Gi is uniformly stable with F
(d)
G (ε) ≤ F(ε).

Here, F
(d)
G is defined identically to FG but only looking at (U(d), ‖ · ‖s). The

main implication of this is the existence of existential closures among groups with

uniform bounds (Corollary 4.9), though further quantitative control regarding re-

stricted wreaths can provide significant strengthenings.

To date, no examples of SUS groups which are not amenable have been found,

which brings into question if any such groups exist at all. We present partial results

towards nonexistence of non-amenable SUS groups by showcasing various meta-

structural properties of the class of SUS groups which are shared by amenable

groups, giving a finer understanding of how a counterexample must behave.

For further reading on related properties and extended exposition, we refer the

reader to [BOT13] and [dC18].

Acknowledgements. We thank Ilijas Farah, Dalton Sakthivadivel, and Aareyan Man-

zoor for helpful correspondence on ideas for and around this note, as well as Simon

Bortz for extended discussion on style and the intuition around estimates.

2. Integral estimates

In order to manipulate and bound various functions on our groups, it is necessary

to develop some tools by which we can transform or combine them. To that end,
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we suggest integral transforms as integration has relatively nice properties and is

well understood, giving us much material to work with. First, we define how such

an integral is evaluated:

Definition 2.1. If µ is a finitely additive measure on X, denote by [X]A the set

of (essentially) bounded measurable functions X → A under the supremum norm

‖ · ‖∞.

Definition 2.2. In the same setting as before, if A has predual B, we define for

fx ∈ [X]A the integral
∫

f dµ as the linear map (b 7→
∫

fx(b)dµ) : B → C when it

exists.

In these above definitions, this creates a linear map on B to C, up to integrability

of the functions at hand. If this linear map is continuous, since B∗ = A, there is a

point in A to which this integral evaluates, so all we need to show is boundedness of

this linear map. If we assume that taking the norms of our function is measurable

(as the function x 7→ ‖ fx‖, that is), we have the following proposition assuring

boundedness.

Lemma 2.3. Given appropriate µ, fx ∈ [X]A, such that the norms are measurable,

we have that

(2.4)

∥

∥

∥

∥

∫

fxdµ

∥

∥

∥

∥

≤

∫

‖ fx‖dµ

Proof. Since A = B∗, for all x ∈ X we know ‖ fx‖ = supb∈B;‖b‖B=1 | fx(b)|, and we

note that for any ‖b‖B = 1 by definition of the integral we see:
∣

∣

∣

∣

(
∫

fxdµ

)

(b)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

fx(b)dµ

∣

∣

∣

∣

≤

∫

| fx(b)|dµ

≤

∫

‖ fx‖‖b‖Bdµ =

∫

‖ fx‖dµ

�

Refer to [dC18] for a related statement in the case of amenability with fuller

generality and specificity regarding the norms considered.

From this bound on norms we clearly see the following, applying Tomiyama’s

theorem ([Bla06] II.6.10.2 for the statement used) after identifying A with the space

of constant functions and endowing [X]A with the supremum norm:

Lemma 2.5. If µ is a finitely additive probability measure on X, and A is a Banach

space with predual B, then
∫

dµ : [X]A → A is a conditional expectation.

In the case of A = B(H), since we can determine f ∈ A by the maps on H2

defined by (x, y) 7→ 〈 f x, y〉 = 〈 f ∗y, x〉, we can see that
〈( ∫

ftdt
)

x, y
〉

=
∫

〈 ft x, y〉dt.

This yields, under a small amount of manipulation, the following useful property:

Lemma 2.6. For appropriate fx, we have that

(2.7)

(
∫

fxdµ

)∗

=

∫

f ∗x dµ
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The case most important to our purposes is where X = G is an amenable

group, which comes endowed with an invariant mean
∫

dµ. This gives use a

probability measure µ on P(G) such that for any g ∈ G, F ⊂ G we know that

µ(F) = µ(Fg). Similarly, for any bounded function f : G → C, we have a value
∫

f (x)dµ(x) =
∫

f (xg)dµ(x) ∈ C. In this case, all our norm functions are mea-

surable, and furthermore integrable so long as they’re bounded, hence all bounded

functions G → A are in [G]A with respect to µ.

3. Product Preservation

We use similar techniques to those used in [BOT13, dC18] to prove the follow-

ing result, which is Theorem 1.6 above:

Theorem 3.1. Suppose G is an amenable group with mean
∫

dg and H is SUS with

FH(ε) ∈ O(ε), then G × H is SUS with FG×H ∈ O(ε)

Proof. Let H be Hilbert and U = U(H), and let f : G × H → U be a function

such that f (1, 1) = I. We define f ′(x, y) for each (x, y) as the integral

(3.2) f ′(x, y) =

∫

f (g, 1)∗ f (gx, y)dg ∈ B(H).

Since
∫

dg is a conditional expectation (and, further, behaves as expected with

norms), we know that these integrals are bounded in norm by 1 and
∫

f (x, y)dg =

f (x, y) for each (x, y), and so:

‖ f ′(x, y) − f (x, y)‖ =

∥

∥

∥

∥

∫

f (g, 1)∗ f (gx, y) − f (x, y)dg

∥

∥

∥

∥

=

∥

∥

∥

∥

∫

f (g, 1)∗ f (gx, y) − f (g, 1)∗ f (g, 1) f (x, y)dg

∥

∥

∥

∥

=

∥

∥

∥

∥

∫

f (g, 1)∗( f (gx, y) − f (g, 1) f (x, y))dg

∥

∥

∥

∥

≤

∫

‖ f (g, 1)∗( f (gx, y) − f (g, 1) f (x, y))‖dg

≤

∫

‖ f (g, 1)‖‖ f (gx, y) − f (g, 1) f (x, y)‖dg

≤

∫

‖ f (gx, y) − f (g, 1) f (x, y)‖dg

≤ δ( f ).

Since ‖
∫

( f (gx, y)− f (g, 1) f (x, y))∗( f (gx′, y′)− f (g, 1) f (x′ , y′))dg‖ ≤ δ( f )2, and by

expanding out this integral we find that
∫

( f (gx, y) − f (g, 1) f (x, y))∗( f (gx′, y′) − f (g, 1) f (x′ , y′))dg

=

∫

f (gx, y)∗ f (gx′, y′) − f (gx, y)∗ f (g, 1) f (x′, y′)

− f (x, y)∗ f (g, 1)∗ f (gx′, y′) + f (x, y)∗ f (g, 1)∗ f (g, 1) f (x′ , y′)dg

=

∫

f (gx, y)∗ f (gx′, y′)dg −

(
∫

f (g, 1)∗ f (gx, y)dg

)∗

f (x′, y′)
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− f (x, y)∗
∫

f (g, 1)∗ f (gx′, y′)dg + f (x, y)∗ f (x′, y′)

=

∫

f (gx, y) f (gx′y′)dg− f ′(x, y)∗ f (x′, y′)− f (x, y)∗ f ′(x′, y′)+ f (x, y)∗ f (x′, y′)∗

=

∫

f (gx, y)∗ f (gx′, y′)dg − f ′(x, y)∗ f ′(x′, y′) + ( f (x, y) − f ′(x, y))∗( f (x′, y′) − f ′(x′, y′)).

So, by triangle inequality,

(3.3)

∥

∥

∥

∥

∫

f (gx, y)∗ f (gx′, y′)dg − f ′(x, y)∗ f ′(x′, y′)

∥

∥

∥

∥

≤ 2δ( f )2

as stated in [BOT13], and in the case y = 1, we recover some of the statements

made in that paper immediately via the manipulations which follow.

Manipulating (3.3) using amenability as
∫

dg is G-invariant, we replace g with

gx−1 to show
∫

f (gx, y)∗ f (gx′, y′)dg =
∫

f (g, y)∗ f (gx−1 x′, y′)dg, from which we

see
∥

∥

∥

∥

∫

f (gx, y)∗ f (gx′, y′)dg − f (1, y)∗ f ′(x−1 x′, y′)

∥

∥

∥

∥

=

∥

∥

∥

∥

∫

f (g, y)∗ f (gx−1 x′, y′)dg − f (1, y)∗
∫

f (g, 1)∗ f (gx−1 x′, y′)dg

∥

∥

∥

∥

=

∥

∥

∥

∥

∫

f (g, y)∗ f (gx−1 x′, y′) − f (1, y)∗ f (g, 1)∗ f (gx−1x′, y′)dg

∥

∥

∥

∥

=

∥

∥

∥

∥

∫

( f (g, y)∗ − f (1, y)∗ f (g, 1)∗) f (gx−1 x′, y′)dg

∥

∥

∥

∥

≤

∫

‖( f (g, y) − f (g, 1) f (1, y))∗ f (gx−1x′, y′)‖dg

≤

∫

‖( f (g, y) − f (g, 1) f (1, y))‖dg

≤ sup
a,b

‖ f (a, b) − f (a, 1) f (1, b)‖ ≔ δs( f ).

In the case x = x′, y = y′, we see via application of the above inequalities and

triangle inequality, provided that δ( f ) is sufficiently small, that

(1 − 2δ( f )2 − δs( f ))I ≤ f ′(x, y)∗ f ′(x, y) ≤ I

and hence f ′(x, y), | f ′(x, y)| are invertible (and | f ′(x, y)| also satisfies the same in-

equality). We define f1(x, y) = f ′(x, y)| f ′(x, y)|−1, which is unitary by polar decom-

position. By some algebraic manipulations, we see that
∥

∥ f1(x, y) − f ′(x, y)
∥

∥ =

∥

∥ f ′(x, y)| f ′(x, y)|−1 − f ′(x, y)
∥

∥

=

∥

∥ f ′(x, y)| f ′(x, y)|−1 − f ′(x, y)| f ′(x, y)|−1 | f ′(x, y)|
∥

∥

=

∥

∥

[

f ′(x, y)| f ′(x, y)|−1
][

I − | f ′(x, y)|
]∥

∥

≤
∥

∥I − | f ′(x, y)|
∥

∥.(3.4)

Since 〈At, t〉 is linear in A and ‖A‖ = sup‖t‖≤1〈At, t〉, we can utilize the inequality

(3.4) directly above to bound the norm by 2δ( f )2
+ δs( f ).

Combining these bounds, we see that ‖ f (x, y)− f1(x, y)‖ ≤ δ( f )+ δs( f )+ 2δ( f )2.

Next, we want to control the defect of f ′ and f1 in terms of that of f . We know
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some partial bounds for the defect of f ′ from our above manipulations,

(3.5) ‖ f ′(x′x, y) − f ′(x′, 1) f ′(x, y)‖ ≤ 2δ( f )2

so it suffices to bound some partial defects of f ′, such as the difference between

f ′(1, y)∗ and f ′(1, y−1), in order to determine strong bounds on δ( f ′). First, we

consider the defect localized to H:

‖ f ′(1, y) − f (1, y)‖ =

∥

∥

∥

∥

∫

f (g, 1)∗ f (g, y) − f (1, y)dg

∥

∥

∥

∥

=

∥

∥

∥

∥

∫

f (g, 1)∗( f (g, y) − f (g, 1) f (1, y))dg

∥

∥

∥

∥

≤

∫

‖ f (g, 1)∗( f (g, y) − f (g, 1) f (1, y))‖dg

≤

∫

‖ f (g, y) − f (g, 1) f (1, y)‖dg

≤ δs( f )(3.6)

If we define an error term localized to H by

(3.7) δH( f ) = sup
y,y′
‖ f (1, yy′) − f (1, y) f (1, y′)‖

We can apply the bound from (3.6) repeatedly to relate δH( f ′) to that of f , and we

arrive at the following helpful estimate:

(3.8) δH( f ′) ≤ 3δs( f ) + δH( f ).

The last term to bound is δc( f ′) ≔ supx,y ‖ f
′(x, 1) f ′(1, y) − f ′(1, y) f ′(x, 1)‖. We

claim this is sufficient, as for any f we can bound

(3.9) δ( f ) ≤ δG( f ) + δH( f ) + δc( f ) + 3δs( f ),

where δG is defined analogously to δH , which is trivial to verify by repeated tri-

angle inequality applications but provides a very useful partition localizing error

behavior.

Putting this all together: by a result of Kazhdan [Kaz82], we know that G is SUS

with FG(ε) ≤ 2ε ∈ O(ε), and by assumption H is SUS with FH(ε) ≤ cε ∈ O(ε) for

all sufficiently small ε > 0. Suppose f0 : G×H → U satisfies f (1, 1) = I and δ( f ) =

ε. Let X : G → U and Y0 : H → U be unitary representation approximations

guaranteed by SUS, and let 0 f (x, y) = Y0(y)X(x). By iterated triangle inequality

applications, we see 0 f is within (3 + c)ε of f0, and hence δ(0 f ) ≤ (10 + 3c)ε by

Proposition 1.2.

Taking 0 f ′ as above, we see this is within (13 + 4c)ε of f0. Further, we see that,

since X(gx) = X(g)X(x) and X(g)∗ = X(g−1), we have that

0 f ′(x, 1)0 f ′(1, y) =

∫

X(t)∗Y0(1)X(tx)dt

∫

X(g)∗Y0(y)X(g)dg

=

∫

X(t)∗X(t)X(x)dt

∫

X(g)∗Y0(y)X(g)dg

=

(
∫

X(t−1t)dt

)

X(x)

∫

X(g)∗Y0(y)X(g)dg

=

∫

X(x−1)∗X(g)∗Y0(y)X(g)dg
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=

∫

X(gx−1)∗Y0(y)X(g)dg

=

∫

X(g)∗Y0(y)X(gx)dg = 0 f ′(x, y).

Only the last line relied on amenability, and we see that by similar reasoning to

the first line that 0 f ′(x, 1) = X(x) and 0 f ′(x, y) = 0 f ′(1, y)X(x). From this, we know

that δG, δs, δc all evaluate to 0 for 0 f ′. So, by (3.9) we know that δ = δH in this

case, and we have strong control on this from (3.3), as we can directly simplify:
∫

(Y0(y)X(gx))∗Y0(y′)X(gx′)dg =

∫

X(gx)∗Y0(y)∗Y0(y′)X(gx′)dg

=

∫

X(gx)∗Y0(y−1)Y0(y′)X(gx′)dg

=

∫

X(g)∗Y0(y−1y′)X(gx−1 x′)dg

= 0 f ′(x−1x′, y−1y′).

So, from this, we see that

(3.10) δ(0 f ′) ≤ 2(10 + 3c)2ε2

and we acquire similar operator bounds as above, finding (1 − 2(10 + 3c)2ε2)I ≤

0 f ′(x, y)0 f ′(x, y) ≤ I by our above simplification. Since this same bound holds for

|0 f |, we can bound f1 = 0 f ′|0 f ′|−1 within 2(10 + 3c)2ε2 of 0 f ′, so we know

(3.11) δ( f1) ≤ 8(10 + 3c)2ε2.

We can now iterate this process starting from f1 and this defect (noting that X is

unchanged as we progress can reduce the growth in coefficient size, if desired).

This clearly has the defect reducing to zero, and since the distance between each

successive term is of this form, we merely need to verify the summability of these

successive distances. To simplify computations, we note it would be sufficient to

verify summability starting from the assumption that f0 = 0 f , and therefore neglect-

ing terms coming from X, as we have seen by a usage of the triangle inequality and

Proposition 1.2 that this gives us a function of the appropriate decay near 0 to take

this single step.

Making use of this simplification and some easy calculations, the distance from

f0 to f1 is bounded by ε + 2ε2 and δ( f1) ≤ 8ε2. From f1 to 1 f is bounded by

8cε2 with δ(1 f ) ≤ (8 + 24c)ε2 ≤ 32cε2 when 1 ≤ c, which we can freely assume.

So, from here, the distance 1 f to f2 is bounded by 32cε2
+ (32cε2)2, so f1 to f2 is

bounded by 40cε2
+ (32cε2)2, and similar patterns carry forward.

The defect dn+1 of fn+1 is 8(4cdn)2
= 128c2d2

n, and the distance in from fn to

fn+1 is 5cdn + 16c2d2
n after the pattern begins from chaining the distances from fn

to n f to n f ′ and finally fn+1. Since we can determine dn = (128c)2n+1−182n

ε2n+1

we

can further compute that

in = 5cdn +
1

8
dn+1

and so, for sufficiently small ε relative to c, by series comparison we have

(3.12)

∞
∑

in ≤

∞
∑

6cdn ≤ 768cε

∞
∑

(1024cε)n < ∞,
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with the desired decay near 0 quickly shown to hold via evaluation of this geometric

series. Since this is uniform in H , this bounds FG×H , which must be continuous

near 0. �

Using the estimates of the above theorem and replacing cε with cεs where ap-

propriate, as the summation at the end is all that changes, the rate of decay in the

defect 4cds
n of n f and the distance bounds in = 5cds

n + (4cds
n)2 is controlled, as-

suming 1 ≤ c and s ≤ 1, as 2s > 1. This exponential decay implies summability,

yielding:

Corollary 3.13. The above theorem holds when O(ε) is replaced by O(εs) for any

s > 1
2
.

Corollary 3.14. For a split extension 0→ G → Q→ H → 0 with associated map

a : H → Aut(G) such that G is amenable, H is SUS with FH ∈ O(εs) for some

s > 1
2
, and a[H] ≤ Aut(G) is an amenable subgroup, we have that Q is SUS.

Proof. Suppose 0 → G
ι
→ Q

q
→ H → 0 is a split extension, with section s : H →

Q, where H is SUS with F(ε) as above and G is amenable. For any x ∈ Q, we

define x̄ = s(q(x)) and g(x) = xx̄−1 ∈ ι[G]. Much as in Theorem 3.1, we define our

partitioning of error:

δH( f ) = sup
x,y∈H

‖ f (s(xy)) − f (s(x)) f (s(y))‖

δG( f ) = sup
x,y∈G

‖ f (ι(xy)) − f (ι(x)) f (ι(y))‖

δs( f ) = sup
x∈Q

‖ f (x) − f (g(x)) f (x̄)‖

δc( f ) = sup
x∈Q

‖ f (x̄) f (g(x)x̄) − f (g(x)) f (x̄)‖

and we note that (3.9) holds here as well by similar arguments. As above, for

f : Q→ U(H), we define an integral transform by

(3.15) f̂ (x) =

∫

G

f (g(x)t) f (x̄) f (t x̄)∗dt.

Invoking our hypotheses, we have representations ρ0,H , ρG on H,G resp. within

our bounds, and we define f0(x) = ρG(g(x))ρ0,H(x̄). For the same reasons reasons

as in Theorem 3.1, we know δG, δH , δs are all 0. Further, we note that f̂0 agrees

with f0 on all of ι[G]. For δc, we see it is 0 as:

f̂0(x) =

∫

ρG(g(x)t)ρ0,H(x̄)ρG(t x̄)∗dt

=

∫

ρG(g(x)g(x)−1t)ρ0,H(x̄)ρG((g(x)−1t)x̄)∗dt

=

∫

ρG(t)ρ0,H(x̄)ρG((t−1g(x))x̄)dt

=

(
∫

ρG(t)ρ0,H(x̄)ρG(t x̄)∗dt

)

ρG(g(x)x̄)

= f̂0(x̄) f̂0(g(x)x̄).

From this, we can immediately see δ( f̂0) = δH( f̂0), further we can bound ‖ f̂0 −

f0‖ ≤ δ( f0) by one application of δc, and for any function F we have ‖F̂ − F‖ ≤
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3δ(F) by similar applications of triangle inequality. To attempt to control δH as in

(3.3), we act similarly: we expand out for x, y ∈ H
∫

( f0(x) − f0(gx) f0((g−1)x))∗( f0(y) − f0(gy) f0((g−1)y))dg

=

∫

f0(x)∗ f0(y) − f0(x)∗ f0(gy) f0((g−1)y)

− f0((g−1)x)∗ f0(gx)∗ f0(y) + f0((g−1)x)∗ f0(gx)∗ f0(gy) f0((g−1)y)dg

= f0(x)∗ f0(y) − f0(x)∗ f̂0(y)

− f̂0(x)∗ f0(y) +

∫

f0((g−1)x)∗ f0(gx)∗ f0(gy) f0((g−1)y)dg

=( f̂0(x) − f0(x))∗( f̂0(y) − f0(y)) − f̂0(x)∗ f̂0(y)

+

∫

f0((g−1)x)∗ f0(gx)∗ f0(gy) f0((g−1)y)dg

which similarly has norm control of δ( f0)2, and hence

(3.16)

∥

∥

∥

∥

∫

f0((g−1)x)∗ f0(gx)∗ f0(gy) f0((g−1)y)dg − f̂0(x)∗ f̂0(y)

∥

∥

∥

∥

≤ 2δ( f0)2.

To finalize the proof, we first manipulate the integral from (3.16) in a formal

computation where we assume that we can freely conjugate the variable of integra-

tion:
∫

f0((t−1)x)∗ f0(tx)∗ f0(ty) f0((t−1)y)dt

=

∫

ρG(tx)ρ0,H(x−1)ρG(t−1t)ρ0,H(y)ρG(ty)∗dt

=

∫

ρG(tx)ρ0,H(x−1y)ρG(ty)∗dt

=

∫

ρG(t)ρ0,H(x−1y)ρG(tx−1y)∗dt

= f̂0(x−1y).

Though this does assume we have invariance of
∫

dt under conjugation, we can

similarly utilize such a manipulation and invariance under inversion of t (which

can always be done over amenable G) to prove f̂0(x)∗ = f̂0(x−1).

These manipulations rely on an invariance of our measure under the action of

H factoring through a map a : H → Aut(G) induced by conjugation in Q, but we

know that the image a[H] is amenable by hypothesis. Utilizing this, we define the

following mean:

µ∗ν(X) =

∫

a[H]

µ(a(x)[X])dν(a(x))

where µ refers to our mean on G and ν to our mean on a[H] ≤ Aut(G), which

exists by hypothesis. That this is an invariant mean under the G ⋊ a[H] action

is trivial to verify by utilizing that a(x)[gX] = a(x)(g) · a(x)[X] and similar such

expressions, and we can then apply the same estimates and convergence from the

end of the proof of Theorem 3.1. This yields the desired representation, and proves

the bounds on SUS for G ⋊a H � Q, much as in Corollary 3.13 �
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Remark 3.17. We note that the above theorems do not make essential use of the

SUS property but rather only stability estimates particular to U(H), which implies

the theorem by working fiberwise. Because of this, these proofs imply a marginally

stronger result about preserving relevant asymptotic estimates at each dimension

individually even without the uniformity across all by strong Ulam stability.

4. Inductivity and Logic

In this section, we prove a few results in pursuit of inductivity of the class of SUS

groups, including some additional lemmas on existence of some invariant measures

on ordinals which respect the order structure. This section also contains the logical

relevance of such results, as well as Theorem 3.1, in terms of existential closures as

well as quantitative control on estimates. We first begin with a definition of what

we mean by inductivity:

Definition 4.1 (Inductivity). We say a class of structures K is inductive if, for any

linear order I and any chain of structures (Mi)i∈I such that i ≤ j implies Mi ≤ M j

as substructures and each Mi is in K , we have that M =
⋃

i∈I Mi is in K .

To that end, we note that for any linear order I, we can replace it with a cofinal

well order κ, so it is sufficient to prove this property over regular cardinals. Further,

since the proper inclusions will either be cofinal or the chain will stabilize, in which

case the result is trivial, we can assume going forward that i < j implies Gi < G j.

Given a sequence of “nice” maps fi : Gi → B(H) with a uniform bound, the

most obvious way to get a “nice” map f : G → B(H) is through f =
∫

fidµ for

an appropriate measure µ after extending each fi over G. The obvious question at

that point is: how poorly behaved can this integral be despite our best efforts? That

is, how tightly can we control defect terms in terms of those of the fi and how the

defects vary as we increase i?

Definition 4.2 (Cofinal measure). We call a finitely additive measure µ on κ cofinal

if µ({i|i ≤ α}) = 0 for every α < κ, in particular the case where µ is positive.

Proposition 4.3. Given a κ-sequence of unitary representations fi : Gi → U(H)

for a κ-chain (Gi) and a cofinal probability measure µ on κ, we have that

δ

(
∫

fidµ

)

≤ inf
α<κ

sup
α<i< j<κ

sup
x∈Gi

‖ fi(x) − f j(x)‖.

Proof. Let f (x) =
∫

fi(x)dµ, where fi(x) = 0 for x < Gi, which is safe as µ is

cofinal, and hence µ({i| fi(x) = 0}) = 0. Suppressing µ to keep track of variables,

we note that

‖ f (xy) − f (x) f (y)‖ =

∥

∥

∥

∥

∫

κ

fi(xy)di −

(
∫

κ

fi(x)di

)(
∫

κ

f j(y)d j

)
∥

∥

∥

∥

=

∥

∥

∥

∥

∫

κ

fi(xy) − fi(x)

∫

κ

f j(y)d jdi

∥

∥

∥

∥

=

∥

∥

∥

∥

∫

κ

∫

κ

fi(x) fi(y) − fi(x) f j(y)d jdi

∥

∥

∥

∥

=

∥

∥

∥

∥

∫

κ

∫

κ

fi(x)
(

fi(y) − f j(y)
)

d jdi

∥

∥

∥

∥
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≤

∫

κ

∫

κ

∥

∥ fi(x)
(

fi(y) − f j(y)
)
∥

∥d jdi

≤

∫

κ

∫

κ

‖ fi(y) − f j(y)‖d jdi

To conclude the desired bound, we then note that the integrand is immediately

bounded by taking a supremum across all of G =
⋃

i<κGi and for any pair x, y ∈ G

we can find an i < κ such that x, y ∈ Gi, so it is sufficient to look at subgroups

listed in our chain. Further, the 0 evaluation off of the current subgroup is of

negligible impact, as µ is cofinal, and for the same reason we can see that
∫

κ
g(i)di =

∫

κ\{z|z≤β}
g(i)di for any β. We conclude the proof by noting that, applying this for

any α < κ, we have
∫

κ

∫

κ

‖ fi(y) − f j(y)‖d jdi =

∫

κ\{z|z≤α}

∫

κ\{z′|z′≤i}

‖ fi(y) − f j(y)‖d jdi

Applying the ∞-norm bounds guaranteed by integration to this integrand, and that

we have the bound on δ( f ) above for any α < κ, we complete the proof. �

By the above lemma, it is immediate that controlling asymptotically wild vari-

ation behavior in representations approximating a given function on each named

subgroup is central to inductivity of SUS in the presence of a continuous uniform

bound on modulus functions. We note that, by a result of Kazhdan, every amenable

group has a bound of FG(ε) ≤ 2ε for small enough ε, and our Theorem 3.1 relies

on similar decay asymptotics that hold in all known examples.

Performing some formal computations under the assumption of several invari-

ance and limit interchange properties of
∫

dt, which we know fail often and are

why particular measures are so well studied, we manipulate the “oscillation-like”!
f (i) f ( j)did j expression from Proposition 4.3. One very handy tool we had used

before is translation invariance, so let’s try
!

f (i + t) f ( j + t)d jdi, which changes

nothing. That’s a constant function in t, so we can freely integrate
#

f (i + t) f ( j +

t)d jdidt. We then want to swap the integration order, so as to move t to the inner-

most integral. Since we can assume t ≫ i, j by cofinality of our mean, we get that

our expression is equal to
#

f (t)2dtd jdi by ordinal arithmetic, which “gives” us 0

oscillation, under these formal computations and symbol manipulations.

The issue there is we do not know if we can perform these kinds of manipu-

lations, but the following results show us how we can guarantee at least some of

these properties:

Proposition 4.4. There exists a cofinal probability measure on every ordinal of the

form ωα which is right translation invariant for ordinals of lesser exponent. In

particular, it is right translation invariant for the infinite cardinals κ (considered

as initial ordinals).

Proof. First, as motivation, we recreate the standard proof of how we can have

such a measure on Z and hence N = ω. Take a nonprincipal ultrafilterU on ω, and

define µ1(A) as

µ1(A) = U−lim
n

|A ∩ {0, . . . , n − 1}|

n
As can be easily verified by directly computing additivity for disjoint sets and see-

ing that µ1(A∆(A + 1)) computation gives U−lim 2
n
= 0, this gives us an addition

invariant finitely additive probability measure on ω.
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Next, for each ordinal α, we want to define a right translation invariant cofinal

probability measure µα on ωα. We proceed by induction, assuming we have µα to

construct µα+1. Since ωα+1
= ωα · ω, we can split it into ω many ωα-segments; for

any set of concern A ⊂ ωα+1, define An as the subset contained within the nth ωα

segment.

We define µα+1 as follows:

µα+1(A) = U−lim
n

∑n
i=0 µα(Ai)

n

Since µα is translation invariant for x < ωα, and as (A + x)n = An + x, this measure

is invariant under right translation. Similarly to the case of ω above, it is trivial to

compute and verify this is indeed a finitely additive measure. It is cofinal as any

initial segment is contained in some ωα segment, and hence the ultralimit is of the

form c
n
→ 0 for some constant c for sufficiently large n.

By existence of Cantor normal form, it is sufficient to show translation invari-

ance under ωα to show it for all feasible ordinals; however, (A + ωα)n = An+1,

and hence the difference in measure is bounded by
µα(A0)+µα(An+1)

n
≤ 2

n
→ 0. So

it is translation invariant for all ordinals whose Cantor normal form has smaller

exponent.

To complete the proof, we define µβ for limit ordinals β by

µβ(A) = Uβ−lim
α<β
µα(A ∩ ω

α),

where Uβ is an ultrafilter extending the tail filter on ωβ. Since this is translation

invariant under ωα for each α < β, and the ωα are cofinal in ωβ guaranteeing

cofinality of the measure, this gives us our desired measure for every ordinal. The

last part of the theorem follows from the fact that ωα = ω
ωα for each initial ordinal

(= cardinal). �

We note that this measure and ordinal arithmetic implies
!

f (i+ j)did j =
!

f (i+

j)d jdi =
∫

f (t)dt, but this is insufficient to show the desired integral exchange due

to interference between the variables, hence failing to fully imply inductivity. Some

results on interchange of integrals between finitely additive measures are known,

see [Sin74], however the results of that work appear to be too coarse to give a good

theory for interchange with respect to the same measure as the DLC condition in

that work is too strong to ensure.

It is also reasonable to note that preservation of SUS in products G × H and

inductivity among all SUS groups implies that we have a uniform bound on the

modulus of stability.

Proposition 4.5. If the class of SUS groups is inductive and closed under finite

products, there exists a continuous F(ε) : [0, 2] → [0, 2] with F(0) = 0 such that,

for any SUS group G, we have FG(ε) ≤ F(ε)

Proof. If no such bound existed, take a sufficiently long κ-sequence of SUS groups

(Gi) such that supi<κ FGi
is discontinuous at 0. Since for every i < ω, we have

Hi =
⊕

j<i G j is SUS, by inductivity we have that Hω is SUS. Continuing similarly

by ordinal induction, applying product preservation and inductivity as requisite, we

find that Hκ is SUS.

Applying our hypothesis that the moduli of stability are not uniformly bounded

by a continuous function, we find for each Gi a map fi of small defect requiring
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sufficiently large distance to representations and extend it to Hκ in the obvious

fashion ignoring all other factors. This has the same distance to a representation,

much as how FG×H ≥ FG, and as such we have that FHκ cannot be continuous at 0,

contradicting our assumption of product preservation and inductivity. �

Among finite dimensional unitary groups, however, we can prove directly prove

inductivity in a strong quantitative form by making use of the local compactness in

finite dimensional spaces. This can be done fiberwise, even, giving the following

theorem:

Theorem 4.6. Given a proper κ-sequence of subgroups (Gi) which are all uni-

formly (U(d), ‖ · ‖s) stable for any norm ‖ · ‖s such that F(ε) = supi F
(d)
Gi

(ε) is

continuous at 0, we have that G =
⋃

i Gi is uniformly stable with F
(d)
G (ε) ≤ F(ε).

Proof. Take a function f : G → U(d) of defect ε and choose representations ρi

within F(ε) of f |Gi
for each i < κ, then extend these to functions on all of G by

making it uniformly 1 outside Gi. Since U(d) is compact, so is U(d)G , so there

is a limit point ρ to which a cofinal collection of the ρi converge to pointwise.

Since for each x ∈ G we know that eventually ‖ f (x) − ρi(x)‖ ≤ F(ε), we know

that ‖ f (x) − ρ(x)‖ ≤ F(ε) as that defined a closed set, and, similarly, continuity

of multiplication by all norms being equivalent would imply ρ(xy) = ρ(x)ρ(y) for

each x, y ∈ G. This gives the desired representation with a preserved bound on our

modulus of stability. �

Remark 4.7. The manner of choice of ρ can be performed uniformly(up to choices

of (ρi), of course) among all f and proper κ-sequences (Gi) by choice of a cofinal

ultrafilter µ on κ and defining ρ =
∫

ρidµ(i), where the integration in this case can

also be seen in the sense of an ultralimit in the norm topology. This uniformity

does not depend on the quantitative bounds invoked in the choice of the proper

κ-sequence, nor on the dimension d, but makes essential use of the finiteness of d

(and hence compactness) to remain as a representation over every named subgroup,

which eventually covers G.

As a trivial consequence of classical model theoretic results, we derive the fol-

lowing corollary after recalling a definition, though we mention it explicitly to em-

phasize the quantitative nature of both the closures and the classes among which it

is existentially closed:

Definition 4.8 (Existentially closed). For a language L, an object X is existentially

closed with respect to a class K of L-structures if for any object K ∈ K which

extends X ≤ K, and any ∃1 sentence φ in L(X), we have that K |= φ implies

that X |= φ. Equivalently, for any X ≤ K ∈ K , there is an ultrafilter µ where

X ≤ K ≤ Xµ such that the composite embedding X ≤ Xµ is elementary.

Corollary 4.9. Given any continuous decreasing function F(ε) : [0, 2] → [0, 2]

such that F(0) = 0, any subset A ⊂ N, and any group G such that F
(d)
G (ε) ≤ F(ε)

for all d ∈ A, there exists a group G′ ≥ G which is existentially closed among

groups satisfying these stability estimates and F
(d)
G′ (ε) ≤ F(ε) for all d ∈ A.

We remark the above theorem and corollary apply essentially unchanged for

any family G of compact metric groups in the appropriate fashion (where A ⊂ N

is instead replaced by A ⊂ G), but the finite dimensional unitaries are of particular
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interest, of course. For further information on this, [FFR23] utilizes and proves

properties around Ulam stability or the further generalization of uniform U stability,

including relevance towards determining amenability of the Thompson group or

other self-similar groups.

Remark 4.10. Using a result of Francesco Fournier-Facio and Bharatram Rangara-

jan, Theorem 1.3 in [FFR23], we can see that for any countable group G and con-

stant c sufficiently large, there is a countable group G′ ≥ G which is Ulam stable

(or any other choice of uniformly U stable to bound) with F
f d
G′ ≤ cε that is exis-

tentially closed among groups with such bounds. Because of how “easy” it is to

grant this kind of stability, one might ask just how broadly or uniformly we can cre-

ate “existential closures” of groups. If one has some form of quantitative control

on the linear estimates arising, namely such that you can find a c large enough to

where enough groups H ≥ G have some infinite amenable Γ with H ≀ Γ bounded in

estimate by c, then the group G′ so constructed could be chosen to be existentially

closed among all groups.

To that end, we ask the following question:

Problem 4.11. For a given countable group G, what are the optimal Lipschitz con-

stants with respect to Ulam stability of the groups G ≀ A for A countably infinite

amenable? Conversely, what are the optimal constants possible for a fixed A vary-

ing G across all countable groups?

We conjecture that some control on the linear estimates guaranteed for fixed

countably infinite amenable A in [FFR23] for wreaths may be controllable via some

embeddings (X × Y) ≀ A ≤ (X ≀ A) × (Y ≀ A) ≤ (X × Y) ≀ A2 or otherwise finding

some appropriate coamenable embeddings, but we have not yet found the correct

estimates for coamenable subgroups or coamenable embeddings to best make use

of for this purpose. While some analogues of the estimates presented here can be

adapted to a “coamenable convolution” setting, some difficulties appear to arise in

the correct defect bounding so as to ensure convergence.
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