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ABSTRACT
The UV-optical variability of quasars appears to depend on black-hole mass 𝑀BH through physical timescales in the accretion
disc. Here, we calculate mean emission radii, 𝑅mean, and orbital timescales, 𝑡orb, of thin accretion disc models as a function
of emission wavelength from 1 000 to 10 000 Å, 𝑀BH from 106 to 1011 solar masses, and Eddington ratios from 0.01 to 1. At
low 𝑀BH, we find the textbook behaviour of 𝑡orb ∝ 𝑀

−1/2
BH alongside 𝑅mean ≈ const, while towards higher masses the growing

event horizon imposes 𝑅mean ∝ 𝑀BH and thus a turnover into 𝑡orb ∝ 𝑀BH. We fit smoothly broken power laws to the numerical
results and provide analytic convenience functions for 𝑅mean (𝜆, 𝑀BH, 𝐿3000) and 𝑡orb (𝜆, 𝑀BH, 𝐿3000) in terms of the observables
𝜆, 𝑀BH, and the monochromatic luminosity 𝐿3000. We then calculate variability structure functions for the ∼2 200 brightest
quasars in the sky with estimates for 𝑀BH and 𝐿3000, using lightcurves from NASA/ATLAS orange passband spanning more than
7 years. The median luminosity of the accretion disc sample is log 𝐿bol/(erg s−1) ≈ 47 and the median log 𝑀BH/𝑀⊙ ≈ 9.35. At
this high mass, the theoretical mass dependence of disc timescales levels off and turns over. The data show a weak dependence
of variability on 𝑀BH consistent with the turnover and a model where disc timescale drives variability amplitudes in the form
log 𝐴/𝐴0 = 1/2 × Δ𝑡/𝑡orb, as suggested before. In the future, if the black-hole mass is known, observations of variability might
be used as diagnostics of the physical luminosity in accretion discs, and therefore constrain inclination or dust extinction.

Key words: galaxies: active – quasars: general

1 INTRODUCTION

The emission from accretion discs in Active Galactic Nuclei (AGN)
is variable on all time scales (for reviews see Ulrich et al. 1997;
Peterson 2001; Lawrence 2016). It is thus routinely observed in all
classes of AGN, where our view of the accretion disc is not obscured,
and even used as a signature to identify AGN in time-domain sky
surveys (e.g. Palanque-Delabrouille et al. 2011). More importantly,
characteristic behaviour within the seemingly stochastic variability is
seen as a diagnostic tool to decipher physical properties of the discs.
Sizes of accretion discs, e.g., are probed with disc reverberation
analysis (e.g. Sergeev et al. 2005; Cackett et al. 2007; Jiang et al.
2017; Homayouni et al. 2019; Yu et al. 2020), although there are also
useful and complementary non-variability tools such as SED fitting
(e.g. Malkan 1983; Laor 1990; Calderone et al. 2013; Campitiello
et al. 2018; Lai et al. 2023). AGN accretion discs are also promising
candidates for standardisable candles to extend studies of cosmology
to the highest redshifts beyond the easy reach of other probes such as
type-Ia supernovae (Risaliti & Lusso 2019), and these studies would
benefit from improved understanding of intrinsic disc properties.

★ E-mail: christian.wolf@anu.edu.au

Intriguingly, the physical origin of the stochastic variability in
AGN is not yet agreed upon (e.g. Jiang & Blaes 2020; Neustadt &
Kochanek 2022), and thus it is not clear what behaviour to expect
and how it relates to physical properties. A plausible candidate for in-
trinsic instabilities in the disc is turbulence from magneto-rotational
instability (MRI; Balbus & Hawley 1991), although it is not yet es-
tablished that this would predict the observed levels of variability in
the integrated light of a whole disc. Separately, the disc is expected
to respond to heating from a variable X-ray corona, although a lim-
ited energy budget suggests that this is not the principal origin of
UV-optical variability in AGN discs (e.g. Uttley et al. 2003; Secunda
et al. 2024). At present, we are far from a view of disc variability that
is grounded in first-principles understanding and verifiable in numer-
ical simulations, although attempts at the latter are getting ambitious
(Secunda et al. 2024), raising hope for future progress.

On the observational side, current progress in the quest to identify
mechanisms behind the variability centres on parametric descriptions
of the stochastic behaviour, in the search for order parameters in a
likely complex process (e.g. Lawrence & Papadakis 1993; Edelson
& Nandra 1999; McHardy et al. 2005). Common descriptions of the
observed variability involve either the structure function (SF), most
often for optical light curves (e.g. Vanden Berk et al. 2004; MacLeod
et al. 2010; Kozłowski 2016), or the power spectral density (PSD),
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most often for X-ray light curves (e.g. Lawrence & Papadakis 1993;
Paolillo et al. 2023), although the opposite combinations exist as well
(e.g. Arévalo et al. 2024). A common description for the stochastic
variability uses the damped random-walk paradigm (e.g. Kelly et al.
2009; MacLeod et al. 2010), where specific interest is focused on the
slope and amplitude of the SF or PSD as well as breaks in slopes and
their characteristic time scales.

Initially, scaling behaviour of the X-ray PSD has been primarily
related to black-hole mass (e.g. Lawrence & Papadakis 1993; Edelson
& Nandra 1999; McHardy et al. 2005; Kelly et al. 2013); the optical
behaviour in larger samples has been argued to be physically rooted
in thermal fluctuations (Kelly et al. 2009). On the UV-optical side,
increasingly large and reliable data sets have triggered too many
independent studies to list them all (see above, but also including
Zuo et al. 2012; Morganson et al. 2014; Caplar et al. 2017; Li et al.
2018; Stone et al. 2022; Arévalo et al. 2024), and have greatly helped
to refine our view of scaling behaviour. E.g., Burke et al. (2021)
suggest that a long-term damping time scale of the optical variability
scales with black-hole mass as well; Tang et al. (2023) find that the
rest-frame UV structure function is universal when clocks are run
in units of thermal or orbital timescale that depends on wavelength
and disc luminosity. Arévalo et al. (2024) consider specifically the
black-hole mass dependence in the orbital timescale of UV emission.

However, black-hole mass estimates are still quite uncertain, and
calculations of physical timescales in an accretion disc may be even
less trusted as they are model-dependent. While a standard model
for thin accretion discs exists (Shakura & Sunyaev 1973; Novikov
& Thorne 1973), disc reverberation experiments and microlensing
observations have suggested that the size scale of QSO discs may
be off by a factor of ∼ 3; however, the literature has not yet found
agreement on a profound mismatch of disc sizes with the standard
model, and recent works are questioning whether the signals seen in
disc reverberation experiments are representing a propagating heat
wave from the X-ray corona at all, rather than measuring an altogether
different phenomenon (Secunda et al. 2024); if so, the latter might
still be correlated with disc size, such that the search for size ratios
relative to the standard model may not question the model but rather
constrain a different mechanism behind temperature waves travelling
in the disc (Neustadt & Kochanek 2022).

When observed features are related to orbital or thermal timescales
in the accretion discs, there are also slightly different approximating
definitions used. Straightforward analytic equations are based on
simple Newtonian forces in circular orbits and idealised gas prop-
erties (for a handy summary in practical units, see e.g. Kelly et al.
2013). Based on a universal temperature profile of 𝑇 (𝑅) ∝ 𝑅−3/4 in
the outer parts of a standard disc and idealised black-body emission,
analytic solutions were obtained that express the timescales as a func-
tion of bolometric luminosity 𝐿bol and the restframe wavelength 𝜆rest
of observed light; Morgan et al. (2010), e.g., find an approximation
for the disc scale length of 𝑅 ∝ 𝜆

4/3
rest𝑀

2/3
BH (𝐿bol/𝐿Edd)1/3, implying

orbital and thermal time scales to follow 𝑡 ∝ 𝐿
1/2
bol 𝜆

2
rest independent

of black-hole mass. Finally, scaling relations are fit to numerical cal-
culations of disc emission profiles, most recently by Arévalo et al.
(2024), who find a mass-dependent time scale of 𝑡orb ∝ 𝑀0.65𝑅0.35

Edd
or ∝ 𝑀0.3𝐿0.35

bol (while observing at a single restframe wavelength of
𝜆rest ≈ 290 nm). Clearly then, interpretations of scaling behaviour
depend on approximations used in scale definitions, which is good
reason for further investigation of what approximations work well in
which part of parameter space.

Another question concerns which are “fundamental parameters”,
apart from an obvious dependence on the observing wavelength;

the suggestion implicit in Morgan et al. (2010) is 𝐿bol, while many
others prefer a combination of black-hole mass 𝑀BH and the Edding-
ton ratio 𝑅Edd = 𝐿bol/𝐿Edd ∝ 𝐿bol/𝑀BH. The latter combination
has obviously an extra parameter to accommodate more complex
behaviour, but whether 𝐿bol or 𝑅Edd should be given preference is
less obvious – while they are trivially related and thus seemingly
interchangeable, the question is whether behaviour turns out to be
independent of one but dependent on the other as a result of what is
truly a causal dependence on black-hole mass.

The practical use of these parameters in the analysis of real data is
also challenged by their large measurement uncertainties. Black-hole
mass is by far mostly estimated from virial methods in single-epoch
spectra, where it comes with an uncertainty of∼ 0.5 dex (Dalla Bontà
et al. 2020; Bennert et al. 2021). 𝐿bol is usually not observed but
inferred from monochromatic luminosity with a standard bolometric
correction (BC) that assumes that every AGN has the same spectrum
(Richards et al. 2006; Runnoe et al. 2012). While the UV-optical
SEDs of most AGN appear largely uniform, it has been an obvious
expectation that black holes of the largest mass will create the largest
holes in the accretion discs and thus come with the coolest and reddest
discs (Laor & Davis 2011) that should have the smallest bolometric
correction. Indeed, the most luminous QSOs appear to be powered
by black holes with over 1010 solar masses and are consistent with
BC factors that are ∼ 3× lower (e.g. Lai et al. 2023; Wolf et al. 2024)
than the standard values suggested for average QSOs (Richards et al.
2006). Therefore, when standard BCs are used, 𝐿bol will be biased
by 𝑀BH. 𝑅Edd is then a ratio obtained from a noisy 𝑀BH and an 𝐿bol
estimate that is biased in the high-𝑀BH regime.

It would be surely more pleasing if more robust observables could
be used in parametrising accretion discs. The changes we adopt in
this paper are to work with observed luminosity directly instead of the
noisier Eddington ratio and replace the mass-biased 𝐿bol estimates
with a more immediately observed monochromatic luminosity such
as 𝐿3000 or 𝐿2500, where subscripts refer to wavelength in Ångström;
either one is ideally inferred from spectral decomposition, with the
former commonly published in QSO catalogues (e.g. Rakshit et al.
2020) and the latter more often used in studies of X-ray-to-UV rela-
tions (e.g. Liu et al. 2021). This might seem like a small gain, given
that an estimate of a monochromatic luminosity will depend not only
on the accretion rate ¤𝑀 of the black hole alone but also on the viewing
angle of the non-isotropically emitting accretion disc, on any dust ex-
tinction by the AGN host galaxy or nuclear material, and also on the
black-hole spin. At least the spin dependence is lower than for 𝐿bol
and the BC factor is removed, which depends on 𝑀BH and ¤𝑀 . Fur-
ther to that, the simple standard model ignores any Comptonisation
of radiation from the inner disc and the complexities of photospheres
in what will not be ideal thin discs. While this may instill broad scep-
ticism about taking any analysis of scaling behaviour too far, we may
still optimistically attempt to quantify all possible effects in an ideal
model and compare to observations. Here, it would be desirable if
more capable and broadly accessible codes for calculating the spectra
of thin and slim accretion discs such as kerrbb (Li et al. 2005) and
slimbh (Sadowski 2011; Straub et al. 2011), respectively, came with
an option of outputting radially resolved emission profiles.

As we now move into the era of big data on AGN variability, as
facilitated by the Legacy Survey of Space and Time (LSST; Ivezic
et al. 2008) starting soon at the Vera C. Rubin Observatory, we
will wish to control for as many parameters in our interpretation of
variability patterns, and ideally use a combination of variability and
other diagnostics such as SED fitting (e.g. Laor 1990; Campitiello
et al. 2018; Lai et al. 2023) and emission-line features (e.g. Shen &
Ho 2014; Marziani et al. 2018; Mejía-Restrepo et al. 2018) to enlarge
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the number of constraints on the physical parameters of black-hole
mass 𝑀BH, spin 𝑎, viewing angle 𝑖 and accretion rate ¤𝑚, with a view
to breaking remaining degeneracies, from which we currently suffer.

In this paper then, we investigate the disc sizes and time scales
and re-assess some of the choices made for their approximation.
We will incorporate an approximate handling of General Relativity
(GR) effects, and thus evaluate the dependence of time scales on
the parameters (𝐿3000, 𝑀BH, 𝜆rest, 𝑎). In Section 2, we describe our
calculations of disc properties and choices of GR approximation.
In Section 3, we present the results at face value and re-use ana-
lytic arguments to predict dominant simple approximations for the
behaviour. As we confirm where the simple approximations apply,
it will become clear that the influence of black-hole mass depends
heavily on the mass regime itself. The results are used in Section 4
to motivate a new parametrised approximation of the numerical grid,
which can be used in future studies. In Section 5, we will then in-
vestigate whether a mass effect can be empirically seen in the data
of QSOs with high-mass black holes from Tang et al. (2023) and to
what extend it matches expectations worked out here.

2 DISC CALCULATION AND CHARACTERISATION

2.1 Description of calculations

Here, we describe our calculations for characteristic size scales and
time scales of accretion discs in the thin-disc model. We use a temper-
ature profile together with black-body emission spectra to evaluate
radial emission profiles for different wavelengths. From these, we
derive total disc luminosities as well as a light-weighted radius and
light-weighted orbital and thermal time scales.

We start with the standard Newtonian temperature profile of geo-
metrically thin, optically thick high-viscosity discs, as specified by
Frank et al. (2002):

𝑇4
N (𝑅) = 3𝐺𝑀BH ¤𝑀

8𝜋𝑅3𝜎

[
1 −

(
𝑅ISCO
𝑅

)1/2]
, (1)

where 𝜎 represents the Stefan-Boltzmann constant and 𝑅 denotes
the radial distance from the centre. 𝑅ISCO is the innermost stable
circular orbit (ISCO) of the black hole as determined by the black hole
spin. We calculate three cases for 𝑟ISCO = 𝑅ISCO/𝑅S with values of
(1.5, 3, 4.5), with the Schwarzschild radius 𝑅S = 2𝐺𝑀BH/𝑐2; these
correspond to spin values of 𝑎 = (+0.78, 0,−1), .

We then apply approximate corrections for GR effects: for the
emission spectrum, we follow the prescription of Hanawa (1989),
which combines gravitational redshift and time dilation effects into
the modified temperature profile of

𝑇GR (𝑅) =
√︂

1 − 3
2
𝑅S
𝑅
𝑇N (𝑅)

=

√︂
1 − 3𝐺𝑀BH

𝑅𝑐2

{
3𝐺𝑀BH ¤𝑀

8𝜋𝑅3𝜎

[
1 −

(
𝑅ISCO
𝑅

)1/2]}1/4

.

(2)

We choose to neglect the frame-dragging (Lense-Thirring) effect,
since we are dealing with sizes much larger than the black hole er-
gosphere. We also ignore relativistic beaming effects, which become
relevant near the inner edge of the disc.

For any photon frequency 𝜈 and disc annulus at radius 𝑅, we create
a radial annular flux density profile 𝐹𝜈 (𝑅) as seen by an observer at

luminosity distance 𝐷 by following Frank et al. (2002) and using

𝐹𝜈 (𝑅) =
4𝜋ℎ𝜈3 cos 𝑖

𝑐2𝐷2
𝑅d𝑅

𝑒ℎ𝜈/𝑘𝑇 (𝑅) − 1
, (3)

where ℎ is the Planck constant and 𝑘 the Boltzmann constant. We then
characterise the overall disc by calculating the bolometric luminosity
as well as a monochromatic luminosity at 𝜆 = 3000Å, 𝐿3000. We
integrate over the range of inclination angles (with an average cos 𝑖
factor of 1/2) and the radial extend of the disc, using

𝐿3000 = 4𝜋𝐷2
∫ 𝑅out

𝑅ISCO

𝐹3000 (𝑅) , (4)

where 𝐹3000 (𝑅) represents 𝐹𝜈 (𝑅) at 𝜆rest = 3000Å and 𝑅out denotes
the outer edge of the disc. Given the wavelength range of interest
in this work beyond just a monochromatic luminosity, we generally
choose 𝑅out as the disc radius at 500K, where we have surely captured
the vast majority of thermal disc emission. In realistic AGN, we
expect dust formation below temperatures of around 1 000 to 1 500 K,
which means that the exact choice of outer cutoff for the disc will
matter less than the complexity of real AGN and their deviation from
ideal thin-disc models. From 𝐿3000, we derive a fiducial estimated
bolometric luminosity 𝐿bol,est = 𝑓BC × 𝜆𝐿3000 with 𝑓BC = 5.15
(Richards et al. 2006) as commonly done.

Separately, we calculate a true bolometric luminosity 𝐿bol, where
we integrate the disc model 𝐹𝜈 (𝑅) over relevant ranges in photon
frequency to capture over 99% of the thermal disc emission, using

𝐿bol = 4𝜋𝐷2
∫ 𝜈hi

𝜈lo

∫ 𝑅out

𝑅ISCO

𝐹𝜈 (𝑅)d𝜈 ,with cos i = 1/2 again , (5)

where 𝜈lo and 𝜈hi are frequencies corresponding to wavelength range
of log(𝜆rest/Å) = [2, 4.1]. The Eddington ratio can be calculated
from Equation 5:

𝑅Edd = 𝐿bol/𝐿Edd (6)

where the Eddington luminosity is

𝐿Edd =
𝐺𝑀BH𝑚p𝑐

𝜎T
, (7)

using the proton mass 𝑚p and the Thomson scattering cross-section
for the electron, 𝜎T. We note that for log 𝑀BH = 9 and log 𝑅Edd = 0
we find log 𝐿bol/(erg s−1) = 47.097 and log 𝐿3000/(erg s−1 Å−1) =
42.908; the difference of 4.189 dex is the factor 𝑓BC × 3 000 Å.

From the radial emission profiles, we determine flux-weighted
mean emission radii, 𝑅mean, for different wavelengths, assuming for
simplicity a face-on view of the disc (cos 𝑖 = 1) and thus using

𝑅mean =

∫ 𝑅out
𝑅ISCO

𝑅𝐹𝜈 (𝑅)∫ 𝑅out
𝑅ISCO

𝐹𝜈 (𝑅)
. (8)

Finally, we calculate a flux-weighted orbital time scale, 𝑡mean, for
different wavelengths from the radial emission profile. Here, we start
from a Newtonian definition of the orbital period, 𝑡orb,N, given by

𝑡orb,N = 2𝜋

√︄
𝑅3

𝐺𝑀BH
≃ 101.26

(
𝑀BH

108𝑀⊙

) (
𝑅

100𝑅S

)3/2
days (9)

and add the GR time dilation effect with the modification

𝑡orb = 𝑡orb,N/
√︂

1 − 3
2
𝑅S
𝑅

. (10)

Note, that the 𝑡orb in Kelly et al. (2013) is normalised ∼ 2.7% larger
than our 𝑡orb,N, which, however, works out to be the same as our
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𝑡orb for 𝑅 ≃ 30𝑅S (including GR effects). The mean flux-weighted
orbital time scale is thus

𝑡mean =

∫ 𝑅out
𝑅ISCO

𝑡orb𝐹𝜈 (𝑅)∫ 𝑅out
𝑅ISCO

𝐹𝜈 (𝑅)
. (11)

Since thermal time scales are just viscosity-dependent multiples
of the orbital time scale, we choose to proceed only with the more
uniquely determined orbital time scale.

Overall, we explore a disc parameter space that covers the param-
eter ranges of log(𝜆rest/Å) = [3; 4], log(𝑀BH/𝑀⊙) = [6; 11], and
log(𝑅Edd) = [−2; 0]. In terms of black-hole spins, we explore three
values, 𝑎 = −1 (maximum retrograde spin), 𝑎 = 0 (Schwarzschild
black hole), and 𝑎 = +0.78 (a high prograde spin).

These calculations determine the isotropically averaged luminosity
of an accretion disc, while the luminosity measured for observed discs
will depend on inclination. We also ignore inclination-dependent
GR effects, which lead to second-order modifications of the spectral
shape, the observed luminosity, and the mean scales.

2.2 Building an intuition

To first order, the discs in our model are black-body emitters with
a common temperature profile, that form a 1-parameter family with
a size scale 𝑅ref for a fixed temperature 𝑇ref as ordering parameter.
But the complete family of temperature profiles in Eq. 2 is given by

𝑇4

𝑇4
ref

=
𝑅3

ref
𝑅3

1 −
√︃

𝑅ISCO
𝑅

1 −
√︃

𝑅ISCO
𝑅ref

(12)

and has the additional free parameter 𝑅ISCO/𝑅ref . A 1-parameter
subfamily of scaled identical temperature profiles is obtained when
both edges of the disc, the inner edge 𝑅in = 𝑅ISCO and the outer
edge 𝑅out, scale linearly with 𝑅ref . If we define the outer edge by
a fixed temperature 𝑇out, where the disc ceases to contribute to the
UV-optical emission due to low temperature, then 𝑅out/𝑅ref will be
automatically constant given the fixed 𝑇 (𝑅/𝑅ref) profile. Requiring
𝑅ISCO/𝑅ref = const demands 𝑀BH ∝ 𝑅ref . This 1-parameter family
has spectra of identical shape, a mean surface luminosity at any wave-
length that is constant across the whole family, and monochromatic
and bolometric luminosities that scale as 𝐿 ∝ 𝑅2

ref . This family of
discs then also has constant values of 𝑅ref/

√
𝐿3000, 𝑀BH/

√
𝐿3000,

𝑅mean/
√
𝐿3000 and 𝑡mean/

√
𝐿3000.

The second parameter, 𝑅ISCO/𝑅ref , covers the variation of the
inner disc edge, which affects the inner temperature and emission
profile and thus the spectral energy distribution, the mean surface
luminosity, and bolometric correction. It also varies the inner edge
of the disc integration and flux-weighted averaging; instead of the
intuitive 𝑅ISCO/𝑅ref , the second parameter could be chosen to be
interchangeably 𝑅ref/

√
𝐿3000, 𝑀BH/

√
𝐿3000, or 𝑅mean/

√
𝐿3000. As

we shall see below, 𝑡mean/
√
𝐿3000 could not be a unique second

parameter; also, 𝑡mean not only depends on the integration limits set
by 𝑅ISCO and thus on a combination of 𝑀BH and black-hole spin 𝑎,
but additionally depends on 𝑀BH itself via the Keplerian orbits.

3 MODEL RESULTS

We first use the single wavelength of 𝜆rest = 3 000 Å from the
grid of discs without black-hole spin to explore the dependence of
the light-weighted radius scale 𝑅mean and orbital time scale 𝑡mean
on black-hole mass, luminosity, and Eddington ratio; we will also

differentiate between the true 𝜆-integrated bolometric luminosity
𝐿bol and the monochromatic luminosity 𝐿3000 that is a common
proxy for the bolometric luminosity through simple scaling with a
BC factor. Specifically by looking at the mass dependence of the disc
size and orbital time scales at fixed luminosity, we will find that it
follows not one power law but a smoothly broken power law as the
driving factor for the scale changes from low mass to high mass. We
will compare the results from the numerical grid with simple analytic
approximations and then develop an improved approximation.

3.1 Simple scaling approximations for size and time scales

In Figure 1, we show the mass dependence of the size scale (top
row) and the orbital time scale (bottom row) while colour-coding the
discs with Eddington ratios (left panels) and luminosities (centre and
right panels). We see the 2-parameter family of discs squeezed into
a narrow distribution of size scales proportional to black-hole mass,
such that a power law index can easily by fitted. The approximation
by Morgan et al. (2010),

𝑅mean ∝ 𝑀2/3𝑅1/3
Edd ∝ 𝑀1/3𝐿1/3

bol , (13)

predicts 𝑅mean ∝ 𝑀2/3 at fixed Eddington ratio and 𝑅mean ∝ 𝑀1/3 at
fixed luminosity 𝐿bol. A slope of 2/3 (dashed line, top left panel) fits
the general trend in Figure 1. How an observed sample of QSOs will
behave on average, depends on trends of Eddington ratio with black-
hole mass. From observations of a small number of microlensed
quasars, Morgan et al. (2010) found 𝑅mean ∝ 𝑀0.8 (although, e.g.,
Shen et al. (2008) present a more elaborate study).

Following Morgan et al. (2010) further, the orbital time scale is
𝑡orb ∝ 𝑀1/2 at fixed Eddington ratio and independent of mass at fixed
𝐿bol. The mass slope of 1/2 (dashed line, bottom left panel) fits the
trend, as does the fit to similar calculations by Arévalo et al. (2024)
who found 𝑡orb ∝ 𝑀0.65 (solid line, bottom left panel). The spread
around any fit is wider than that of the size scales (at fixed mass
𝑡orb ∝ 𝑅3/2) and a curvature beyond a power law is more noticeable.
While the second parameter can be captured with a scaling with
Eddington ratio, the slope of a power-law fit to the latter depends
on black-hole mass. A mean slope at fixed mass of 𝑡orb ∝ 𝑅

1/3
Edd as

predicted by the Morgan et al. (2010) approximation is similar to the
Arévalo et al. (2024) fit of 𝑡orb ∝ 𝑅0.35

Edd .
The middle panels of Figure 1 render the same points colour-coded

by luminosity 𝐿bol. The mass dependence of the scales is generally
weaker when evaluated at fixed 𝐿 rather than fixed 𝑅Edd ∝ 𝐿/𝑀
due to the intrinsic additional factor 𝑀 . The dashed lines with the
Morgan et al. (2010) slopes of 1/3 (top centre panel) and 0 (bottom
centre panel) are now meant to follow the distribution of points in
one colour, not the overall distribution. The Arévalo et al. (2024)
fit translates int 𝑡orb ∝ 𝑀0.3

BH , but the Morgan et al. (2010) solution
seems at least as acceptable. However, the evident relation is still not
a single power law but shows curved behaviour. We note, that this
is the true 𝐿bol as determined by integrating over all emission; in
practice, 𝐿bol is often estimated from a monochromatic luminosity
with a standard mass-independent bolometric correction factor. Thus,
we ought to consider the relation between 𝑡mean and 𝐿3000 as a proxy
for a commonly estimated 𝐿bol,est.

The right panels of Figure 1 render the same points colour-coded by
luminosity 𝐿3000, which we prefer as a more robust observable when
considering a wide range of black-hole masses. Here, we find that the
numerically calculated 𝑡mean declines with increasing mass at fixed
𝐿3000 in the low-mass regime, then shows a parabolic turnover at in-
termediate masses and finally increases with mass at high black-hole
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Figure 1. Flux-weighted size scale (mean emission radius) 𝑅mean (top) and orbital time scale 𝑡mean (bottom) at 𝜆 = 3 000 Å for a range of accretion discs (GR
approximation with spin 𝑎 = 0) using three colour codes: Eddington ratio 𝑅Edd (left), true bolometric luminosity 𝐿bol (centre), and monochromatic luminosity
𝐿3000 (right), which often acts as a proxy for 𝐿bol. Dashed lines show the scaling by Morgan et al. (2010), and the solid line is from Arévalo et al. (2024).

7 8 9 10

log(MBH=M¯)

0:4

0:6

0:8

1:0

1:2

1:4

lo
g
(R

m
ea

n
=R

M
10

)

logL3000 = 40;41;42;43

2:0

2:2

2:4

2:6

2:8

3:0

lo
g
(¸

=n
m

)

7 8 9 10

log(MBH=M¯)

¡1

0

1

2

lo
g
(R

m
ea

n
=l

d
)

logL3000 = 40;41;42;43

2:0

2:2

2:4

2:6

2:8

3:0
lo

g
(¸

=n
m

)

7 8 9 10

log(MBH=M¯)

1

2

3

4

lo
g
(t

m
ea

n
=d

)

logL3000 = 40;41;42;43

2:0

2:2

2:4

2:6

2:8

3:0

lo
g
(¸

=n
m

)

Figure 2. Left: Ratio of flux-weighted size scale (mean emission radius) 𝑅mean to analytic size approximation in Morgan et al. (2010), 𝑅M10, colour-coded by
emission wavelength 𝜆 (GR approximation with spin 𝑎 = 0). For optical wavelengths, the flux-weighted sizes are ∼ 5× larger than 𝑅M10, but the scales of UV
emission may be enlarged by the large 𝑅ISCO around the most massive black holes. Four groups of accretion discs are shown, with log 𝐿3000/(erg s−1 Å−1 )
values of 40, 41, 42 and 43; their black-hole masses range according to the Eddington ratio limits of the calculated grid. Centre: Flux-weighted size scale 𝑅mean
vs. black-hole mass of the same discs. Right: Flux-weighted orbital time scale 𝑡mean vs. black-hole mass of the same discs.

masses. The mass-independent scaling from Morgan et al. (2010)
will capture the average scales across the turnaround at intermediate
masses of log 𝑀BH ∼ 9, with modest residuals. However, the size
scale defined by Morgan et al. (2010), which is

𝑅M10 = (
45𝐺𝜆4

rest𝑀BH ¤𝑀
16𝜋6ℎp𝑐2 )

1
3

= 9.7 × 1015 ( 𝜆rest
𝜇m

)
4
3 ( 𝑀BH

109𝑀⊙
)

2
3 ( 𝐿bol

𝜂𝐿Edd
)

1
3 cm ,

(14)

where 𝐺 is the gravitational constant, ¤𝑀 the accretion rate, and
𝜂 = 𝐿bol/( ¤𝑀𝑐2) is the radiative efficiency (0.057 for spin 𝑎 = 0),
typically underestimates the flux-weighted emission radius by a fac-
tor of 3 to 4 for visual light, and more for UV light from discs around
very massive black holes (see Fig. 2, left panel).

3.2 Scaling at fixed luminosity and wavelength dependence

As stated, we consider the observable with the lowest uncertainty to
be a monochromatic luminosity (ideally from a spectrum fit) such
as 𝐿3000, followed by black-hole mass 𝑀BH in second place. The
Eddington ratio 𝑅Edd comes last in this list, as it combines errors
from the two previous observables and includes mass-dependent
biases in the bolometric correction. Hence, we now consider the disc
scaling behaviour with black-hole mass at fixed observed 𝐿3000.

In Figure 2 we show again the mass dependence of the size and
orbital time scales, but this time for just a few choices of observed
luminosity 𝐿3000 and instead several steps in wavelength. At low
black-hole mass and thus small 𝑅ISCO, a change in mass has little
effect on the extent and appearance of the disc and thus its size scale
(centre panel). But at intermediate masses, an increasing 𝑅ISCO ∝ 𝑀
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Figure 3. Luminosity-scaled size scales (left) and time scales (right) vs. luminosity-scaled black-hole mass at emission wavelength 𝜆 = 3000 Å for a range of
accretion discs (GR approximation with spin 𝑎 = 0). For brevity, we use 𝐿3000,43 = 𝐿3000/(1043erg s−1 Å−1 ) . A warped 2D surface is seen in projection as a
1D line. Every point in this figure represents a 1-parameter family of discs with different 𝐿3000 but identical 𝑅mean/

√
𝐿3000 and identical 𝑡mean/

√
𝐿3000. The

variation of points seen in the projected plane is caused by variations in 𝑅ISCO/𝑅mean.

moves the inner disc edge outwards, pushing it against the small-
mass 𝑅mean and eventually driving 𝑅mean out at a rate that will
approximate 𝑅mean ∝ 𝑅ISCO ∝ 𝑀 . For the orbital time scales (right
panel), we then find at low masses, where size scales are nearly
constant, that the orbital velocity changes as 𝑣 ∝ 𝑀1/2 and thus the
time scale declines with increasing mass as 𝑡orb ∝ 𝑅/𝑣 ∝ 𝑀−1/2. At
large masses, in contrast, the rapidly increasing size scale affects the
orbital time scales more strongly than the declining orbital periods at
fixed radius, causing 𝑡orb ∝ 𝑅/𝑣 ∝ (𝑅3/𝑀)1/2 ∝ 𝑀 . Between these
two convergence regimes, the orbital timescale reaches a minimum
at a mass that depends on luminosity and wavelength (see Figure 2).
At 𝜆 = 3000Å and log 𝐿bol/(erg s−1) = 47, the minimum time scale
is reached at log 𝑀BH ≈ 9.5.

3.3 Reconsidering the 2-parameter family

We now investigate further how 𝑀BH,tmin depends on luminosity and
wavelength. The simple model of a 1-parameter family scaled by size
predicts a constant mean surface luminosity for a fixed temperature
profile with inner and outer edges that scale in tune with the overall
disc. In this case, we expect 𝑅mean/

√
𝐿 to be invariant, and at a fixed

mass 𝑡mean/
√
𝐿 as well. The outer disc edge can be defined as a fixed

temperature point, which will scale in tune with the overall disc scale
given the temperature point asymptotes to a common power law in
temperature for all discs. The inner disc edge depends on black-hole
mass, so we can choose a pivotal mass as the one that keeps the inner
edge scaling with the overall disc scale as well. Ignoring the effect
of black-hole spin for now, 𝑅ISCO ∝ 𝑀BH, so that the pivotal mass
could be chosen as 𝑀BH/

√
𝐿.

Thus, the 2-parameter family of discs spanned by an overall size
scale and an inner-edge scale should appear as a 1-parameter family
of 𝑅mean/

√
𝐿 as a function of 𝑀BH/

√
𝐿. This effect is confirmed

by Figure 3, where 𝑅mean/
√
𝐿 and 𝑡mean/

√
𝐿 is shown for a single

emission wavelength but for discs of all masses and luminosities,
which form a curved surface seen in an ideal 1-D projection, where
not all points are visible because the symbols are opaque and hiding
points from the gridded surface in the background. At lowest and
highest black-hole masses the scales approach the two analytically

expected limiting behaviours. At low black-hole masses, the spatial
appearance of the discs is independent of the ISCO and the black-
hole mass, while the orbital time scale declines with 𝑀

−1/2
BH ; at high

black-hole masses, the spatial appearance of the discs will be driven
by the ISCO and thus black-hole mass, such that the size scales
will increase as 𝑅mean ∝ 𝑅ISCO ∝ 𝑀BH and the orbital time scales
with 𝑡mean ∝ 𝑅

3/2
ISCO𝑀

−1/2
BH ∝ 𝑀BH. The dependence on wavelength

should follow the temperature profile with 𝑅mean ∝ 𝜆4/3 and 𝑡mean ∝
𝑅

3/2
mean ∝ 𝜆2 at least in the low-mass regime.
In the following section, we develop an analytic approximation to

the numerically calculated surface by using a smoothly broken power
law incorporating the outlined, expected power law characteristics.

4 A NEW APPROXIMATION

We wish to assist future evaluations of size and time scales in
simple thin-disc models by deriving an analytic approximation of
𝑅mean = 𝑓 (𝐿3000, 𝑀BH, 𝜆) and 𝑡mean = 𝑓 (𝐿3000, 𝑀BH, 𝜆) for dif-
ferent innermost stable orbits of 𝑅ISCO/𝑅S = (1.5, 3, 4.5) corre-
sponding to black-hole spins of 𝑎 = (+0.78, 0,−1). These will not be
single power laws but smoothly broken power laws that approximate
the numerical calculations while morphing from typical low-mass
scaling, where scales are independent of the ISCO, to typical high-
mass scaling, where scales are driven by the ISCO. For brevity, we
will use the notation 𝐿3000,43 = 𝐿3000/(1043erg s−1 Å−1).

We use the general approach of smoothly broken power laws

𝑦 = 𝑦0 ×
[((

𝑥

𝑥1

)𝑠1 )𝛾
+

((
𝑥

𝑥2

)𝑠2 )𝛾 ]1/𝛾
,

where 𝑥 = 𝑀BH/
√︁
𝐿3000,43, the size scale is 𝑦𝑟 = 𝑅mean/

√︁
𝐿3000,43

and the time scale is 𝑦𝑡 = 𝑡mean/
√︁
𝐿3000,43 at fixed wavelength 𝜆rest

and black-hole spin 𝑎. After applying expected scaling behaviour and
factoring in a reference wavelength 𝜆0 (in units of Å), we get

𝑦𝑟 =

[(
𝐶𝑟

(
𝜆

𝜆0

)4/3)𝛾𝑟
+

(
𝑥

𝑥br,r (𝜆)

)𝛾𝑟 ]1/𝛾𝑟
, and (15)
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𝑦𝑡 =

[((
𝜆

𝜆0

)2 (
𝑥

𝑥0

)−1/2)𝛾𝑡
+

(
𝑥

𝑥br,t (𝜆)

)𝛾𝑡 ]1/𝛾𝑡
. (16)

After inspecting first results, we choose a further broken power-law
parametrisation for the 𝜆-dependence of 𝑥br,r and proportionalities
between size and time scale parameters. Our best-fit solution then is:

𝜆0 ≡ 3000Å , 𝐶𝑟 ≈ 5.896 , 𝑥0 ≈ 2.279 × 1014 , (17)

𝑥br,r (𝜆, �̂�) =
[
𝜁 (�̂�)𝛾br +

(
𝜆

𝜁 (�̂�)𝜆br

)−𝛾br ]1/𝛾br

, (18)

log(𝜁 (�̂�)) = 9.29 + 0.15�̂� , log𝜆br = 3.66 , 𝛾br = −1.437 , (19)

log 𝑥br,t =
3
2
(log 𝑥br,r − 4) , (20)

3
2
𝛾𝑡 (𝜆) = 𝛾𝑟 (𝜆) = 𝐶0 + 𝐶1 log𝜆 , (21)

𝐶0 = 1.683 , 𝐶1 = −0.246 , �̂� = (6 − 2𝑅ISCO/𝑅S)/3 . (22)

This parametric solution agrees with the numerical calculations to
< 0.01 dex for most of the grid range in both log 𝑅mean and log 𝑡mean;
however, at large masses and small luminosities, the deviation can
reach 0.05 dex; Figure 4 shows the quality and residuals of the fit.

5 HIGH BLACK-HOLE MASS QSOS

In this section, we study light curve variability in a sample of quasars
that we believe has a good chance to take us away from the low-
mass scaling behaviour and probe the turnover regime in the disc
timescales. Such a test could help to reveal whether the variability of
quasar discs is indeed driven by the disc timescales or merely shows
some not-yet understood scaling with disc and black hole properties.

5.1 Data and sample

We use the same quasar sample and light curve data that have been
used in previous studies of the variability structure function by Tang
et al. (2023) and Tang et al. (2024). The sample started with the
∼5,000 brightest radio-quiet quasars in the sky at 𝛿 > −45◦, i.e., in
the > 3𝜋 srad region of sky that has been monitored by the NASA
Asteroid Terrestrial-impact Last Alert System (ATLAS, Tonry et al.
2018) for several years already. Following Tang et al. (2024), we re-
strict the sample to those which have virial single-epoch estimates of
black-hole mass and estimates of 3000Å continuum luminosity from
spectral decomposition presented in the catalogue by Rakshit et al.
(2020). We focus on the orange passband (𝑜-band) which dominates
the ATLAS data with the best cadence due to its continuous imaging
throughout the lunar cycle.

The aim is to correct the variability of quasars for trends with
wavelength and trends with luminosity so that any dependence on
the black-hole mass can be isolated. We thus avoid redshifts, where
the orange passband probes regions of the quasar spectrum that are
not easy to correct for passband shifting. At 𝑧 <∼ 1 the orange passband
probes a part of the disc emission that does not follow the simple
wavelength relation of log 𝐴 ∝ − log𝜆 present at 𝜆rest < 3 500 Å but
instead flattens towards longer wavelengths as shown by Tang et al.
(2023) and earlier observed by Caplar et al. (2017). For convenience
and consistency with past binning and calculations, we choose a
cutoff of 𝑧 > 0.96. Since the flattening is not well characterised at
this stage, it is difficult to correct for the purpose of bringing quasars
from all redshifts onto a common wavelength-independent scale. We
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Figure 4. Illustration of the analytic approximation to size and time scales
in simple thin-disc models. Top: Grid points are displayed as points and the
analytic fits are plotted as lines. The colour scale represents the range of
Eddington ratios and lines in a single panel are differentiated by wavelength.
Bottom: Residuals as a function of wavelength and mass, showing that while
the analytic solution is typically within 0.01 dex of the numerical calculation,
the deviation can reach 0.05 dex at high masses and low luminosities.
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also exclude quasars at 𝑧 > 2.4, where the important 𝐿3000 luminosity
is not probed by the spectral fitting in Rakshit et al. (2020), but would
require risky extrapolation instead, and furthermore the data become
sparse and the structure functions noisy. This selection leaves us
with 2,189 quasars, with a median luminosity of log 𝐿3000 = 42.9
(or log 𝐿bol ≈ 47 using standard estimates) and a median black-hole
mass of log 𝑀BH = 9.35. The median redshift of 𝑧 ≈ 1.6 implies that
the median rest-frame wavelength probed by the ATLAS 𝑜-band is
𝜆rest = 2 600 Å. The Rakshit et al. (2020) luminosities assume a flat
ΛCDM cosmology with ΩΛ = 0.7 and 𝐻0 = 70 km s−1 Mpc−1.

Following Tang et al. (2023) and Tang et al. (2024), we also apply
identical cleaning steps to the light curve data to reject outliers, and
we apply the improved noise model by Tang et al. (2024) to avoid
biasing the structure function around the less well-defined, weaker
variability on short time scales. On average, light curves have more
than 1 900 photometric points over 7 years of data from 30 May 2017
to Aug/Sep 2024 (varying from object to object). We split the sample
into four redshift bins with ∼547 objects each and further into bins
with near-equal object numbers in luminosity and mass, using 5 × 5
bins in 𝐿3000 × 𝑀BH with ∼ 22 objects on average. We determine
the ensemble structure function for each bin from an average of ∼ 30
million magnitude pairs combined over ∼ 22 objects.

5.2 Variability structure function

As in Tang et al. (2024), we adopt the noise-corrected definition of
variability amplitude from Di Clemente et al. (1996):

𝐴 =

√︂
𝜋

2
< Δ𝑚 >2 − < 𝜎2 >, with Δ𝑚 = |𝑚i − 𝑚j |, (23)

where 𝑚i and 𝑚j are any two observed apparent magnitudes and 𝜎

is the magnitude error due to noise. The mean error < 𝜎2 > is taken
to be revealed by the measured level of intra-day variability (Δ𝑡 < 1
d), which is assumed to be intrinsically close to zero and thus forced
to 𝐴 = 0. This approach has been suggested by Kozłowski (2016)
and is plausible as the typical amplitude of intra-day variability in
radio-quiet quasars is much smaller than our noise level and will not
noticeably affect the analysis of the random walk portion in the SF.
Furthermore, Tang et al. (2024) have shown that on our data set this
approach is superior than a magnitude-dependent approximation of
the noise attempted previously in Tang et al. (2023).

We evaluate the structure function in bins of rest-frame time inter-
vals Δ𝑡rest up to logΔ𝑡rest = 2.4. We do not consider magnitude pairs
with longer time separation as these might be affected by window
effects from the finite length of the light curves. As in Tang et al.
(2024), we then fit linear functions to the binned structure function
using a random-walk slope of 1/2 as deemed appropriate by Tang
et al. (2023) for this high-luminosity data set. We use only data from
the window logΔ𝑡rest = [1.4; 2.4], as at shorter Δ𝑡 various authors
have claimed to see a steepening in the slope of certain AGN samples.
While Tang et al. (2024) found no conclusive evidence of such steep-
ening, we avoid the regime at logΔ𝑡rest < 1.4 to avoid any possible
biases from a subtle steepening. Thus, the only free parameter of the
fit is the intercept log 𝐴1.9, which is the structure function amplitude
at the midpoint in the fit interval, log(Δ𝑡rest/d) = 1.9 (or ∼80 days),
as part of the form log 𝐴 = log 𝐴1.9 + 1/2 × (logΔ𝑡rest − 1.9). The
𝐴1.9 can then be plotted against wavelength, luminosity, and mass.

We note, that studies of lower-luminosity QSOs fit breaks in struc-
ture functions and aim to measure their time scales (e.g., Arévalo
et al. 2024); but as evident in Tang et al. (2024), we do not see any
breaks in our data, which might be a consequence of long intrinsic
disc time scales for objects as extreme as those studied here.
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Figure 5. Intercept of the variability structure function fit at logΔ𝑡rest = 1.9,
normalised to a wavelength of 𝜆rest = 3 000 Å. Left: Intercept vs. continuum
luminosity at 3 000Å; a well-known dependence on luminosity is evident.
Right: intercept vs black-hole mass estimate after subtracting the luminosity
dependence, showing little residual mass dependence.

5.3 Results

Form the results of the structure function fitting, we confirm that the
intercept follows the relationship log 𝐴1.9 ∝ − log𝜆 − 1/4 log 𝐿3000
as determined previously by Tang et al. (2023) from a larger sam-
ple of quasars that contains the sample and light curves used here;
the sample used here is restricted to objects with known black-hole
masses and well-constrained 𝐿3000 measurements in a restricted red-
shift range. Figure 5 shows the intercepts after correcting for the
wavelength dependence in the structure function (with colour-coding
by redshift) and transforming from the observed frame wavelength
of 𝜆pivot = 6 750 Å to the restframe wavelength of 3 000 Å, using
log 𝐴3000 = log 𝐴1.9−log(1+𝑧)×(3.0/6.75), plotted vs. 𝐿3000 in the
left panel; the previously measured slope of −1/4 is clearly evident.
After correcting the intercepts further for this luminosity dependence
using log 𝐴3000,L−corr = log 𝐴3000+1/4× (log 𝐿3000−43), the right
panel shows the corrected intercepts as a function of black-hole mass
in search of remaining trends; the results is consistent with no black-
hole mass dependence within the errors, as assumed by the Morgan
et al. (2010) approximation used also by Tang et al. (2023).

Using the numerical disc calculations from this work, and as-
suming that the Tang et al. (2023) claim of a universal struc-
ture function of the form log 𝐴/𝐴0 = 1/2 × logΔ𝑡/𝑡mean holds,
we expect at low black-hole masses 𝑡mean ∝ 𝑀

−1/2
BH and thus

log 𝐴/𝐴0 = 1/2× logΔ𝑡 + 1/4× log 𝑀BH + 𝑐1; at higher masses, we
expect a transition point without mass dependence (𝑡mean = const)
such that log 𝐴/𝐴0 = 1/2 × logΔ𝑡 + 𝑐2; and finally, at the highest
masses we expect to converge into the form 𝑡mean ∝ 𝑀BH and thus
log 𝐴/𝐴0 = 1/2 × logΔ𝑡 − 1/2 × log 𝑀BH + 𝑐3.

For a closer comparison with the model prediction derived in
Section 3, we zoom into the relevant mass range of the right panel
of Figure 3 and overplot the data from our structure functions (see
Figure 6). However, we do not know a-priori what level of amplitude
log 𝐴 to expect forΔ𝑡 = 𝑡mean, and first aim to normalise the expected
structure function amplitude. The spin-free model grid specifies the
orbital timescale to be log(𝑡mean/d) = 2.71 (or 𝑡mean = 513 days) for
(log 𝑀BH, log 𝐿3000, 𝜆rest/Å) = (9.5, 43.0, 3000). At these physical
parameters, our data show on average log 𝐴 = −1.33 at logΔ𝑡/d =

1.9. Thus, the best fit of the model-predicted orbital timescales to
our data in the form log 𝐴/𝐴0 = −1/2× logΔ𝑡/𝑡mean yields log 𝐴0 =

−0.925 (the value of 𝐴0 determined in Tang et al. (2023) is different
as it refers to the thermal timescale instead of the orbital timescale
and it uses a normalisation derived from Morgan et al. (2010)). For
each sample bin, we now transform the fitted intercept log 𝐴1.9 into
an SF-estimated mean orbital timescale using

log 𝑡mean = −1/𝛾(log 𝐴1.9−log 𝐴0)+1.9 = −2 log 𝐴1.9+0.05 , (24)
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Figure 6. Comparison of orbital timescales as derived from the amplitude
normalisation of structure function data and the approximation from Sect. 4
for different black-hole spins (solid lines). The plot zooms into the right panel
of Figure 3. The small-hole approximation with a slope of −1/2 (dashed line)
is ruled out and fares worse than mass independence. However, the data are
also consistent with the shape of the predicted turnover in the spin-free model
or models with 𝑎 > 0, with an RMS scatter around of∼ 0.07 dex. The location
𝑀BH/

√
𝐿3000 of the minimum in 𝑡mean/

√
𝐿3000 will shift, however, not only

with black-hole spin, but also with biases in luminosity measurements from,
e.g., host galaxy dust extinction, restricted inclination in quasar samples, and
any deviations of real discs from the idealised thin discs modelled here.

and then plot 𝑦 = log(𝑡mean/
√︁
𝐿3000,43) vs. 𝑥 = (𝑀BH/

√︁
𝐿3000,43)

in Figure 6. The approximation 𝑦(𝑥) from Sect. 4 is overplotted for
three different values of the black-hole spin. While the agreement in
the mean level of 𝑦 has been engineered by fitting the normalisation
𝐴0 to our data, we focus on comparing the trend of 𝑦 with 𝑥: we
still see that the 𝑦 values are nearly independent of black-hole mass,
and are certainly incompatible with a −1/2 slope predicted for lower
masses. The data also seem to follow the predicted line for spin-free
black holes or those with modest prograde spins within the errors.
The scatter in the data is too large to distinguish with high confidence
between the predicted turnover and no black-hole mass dependence
at all. However, given that structure functions for accretion discs
around lower-mass black holes have shown a decline of characteristic
timescales with increasing mass (e.g. Arévalo et al. 2024), even the
observation of a flat mass dependence in the regime of our sample
validates the basic turnover geometry proposed here.

6 DISCUSSION

The agreement demonstrated between our structure function data
and the emission-weighted disc timescales derived from the simple
thin accretion disc model in this paper whets an appetite for more
precise data. It appears that a measurement of the turnover location
in 𝑀BH/

√
𝐿3000 might constrain, e.g, average black-hole spins in a

sample. However, we note several limitations here: (1) The measured
luminosity is affected by anisotropic disc emission, and thus changing
the mix of inclination angles in a sample of accretion discs will shift
the x-axis of the prediction. (2) The luminosity may also be affected

by mild extinction from host galaxy or nuclear dust, which would
again shift the x-axis. Thus, black-hole spin, disc inclination, and
dust extinction are degenerate in this diagnostic.

The catalogue values of 𝐿3000 are derived without any inclination
correction and thus overestimate the luminosity for viewing angles
close to face-on. For an angle of 𝑖 = 30◦ between the spin axis and the
line-of-sight, e.g., we overestimate 𝐿3000 relative to the true total disc
emission by ∼ 0.24 dex (see appendix of Lai et al. 2023). This means
that the data points in Figure 6 would need to be shifted 0.12 dex to
the right and up. This shift would be countered by dust extinction and
indeed by neutralised exactly in the case of 𝐴3000 = 0.6 mag, which
corresponds to a reddening of 𝐸 (𝐵 − 𝑉) ≈ 0.12 assuming the dust
extinction law with 𝐴3000/𝐴𝑉 = 1.86 from Gallerani et al. (2010)
and a Small Magellanic Cloud-like 𝑅𝑉 = 2.7 (Bouchet et al. 1985);
or, for the flatter Calzetti et al. (1994) extinction law, the 𝐸 (𝐵 − 𝑉)
reddening needed to achieve a similar extinction would be smaller.
Note, that any upwards shift is irrelevant as it would also affect 𝐴0
and equation 24 and thus cancel out in the model comparison.

We also point out, that the measured amplitude of the brightness
variations underestimates the true variability of the disc continuum
because the total object flux in the observing passband includes
contributions from broad emission lines and Balmer continuum. On
average, the fraction of 𝐿3000 from the accretion disc is ∼ 80%, and
while the variability of the emission lines is driven by that of the disc,
the light curves are out of phase due to light travel time. If, to first
order, the simultaneous emission-line variability is not correlated
with the disc variability, then the fractional variability signal in the
total light curve of the objects will be underestimated by this factor;
on average this would increase log 𝐴0 by ∼ 0.1 dex but with some
dependence on redshift and spectral properties of the quasar.

At a more technical level we note, that the formal fit errors for the
intercept of the structure functions (∼ 0.02 dex) are smaller than the
scatter of intercepts (∼ 0.07 dex) seen among the different sample
bins. However, the fit errors may be understated compared to the
true uncertainty of the determined intercept because the amplitude
values of the structure function for different bins in time separation
are not statistically independent. A more elaborate determination of
more realistic errors would involve bootstrapping, which is beyond
the scope of the analysis presented here.

Further to that, we expect biases when comparing bins of different
disc luminosity at a fixed redshift: torus opening angles set the range
and mix of inclination angles in a sample of type-1 AGN; if these
depend on disc luminosity, then we expect mean luminosity biases
from the anisotropic disc emission that change with luminosity itself;
even in the absence of intrinsic trends of opening angle, intermediate
luminosity bins may contain a standard distribution of inclination
angles, while the highest-luminosity tail of the distribution at any
redshift would be dominated by accretion discs viewed face-on and
thus tend to overestimate the mean luminosity in the bin relative to
the lower-𝐿 bins. Similarly, if modest dust extinction plays a role
in the average quasar, the highest-luminosity tail of the distribution
would be dominated by the lowest-extinction objects.

Correcting the aforementioned effects as best as possible is be-
yond the scope of this paper, and may require forward modelling
while testing a range of alternative assumptions. If future data sets
with higher precision are combined with potential diagnostics of
inclination and dust, perhaps in the form of spectral energy distribu-
tions and emission-line ratios and profiles, they might reveal trends
and inconsistencies with the simple model at higher fidelity than
what has been attempted here.
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7 CONCLUSIONS

There are literature studies of how UV-optical variability in AGN
depends on their black-hole mass (including most recently Arévalo
et al. 2024), although some works ignore this dependence (including
Tang et al. 2023). A specific dependence considered since Balbus &
Hawley (1991) and Kelly et al. (2009) is that variability behaviour
may depend on orbital or thermal timescales of the emitting accretion
disc. The question then becomes how these depend on black-hole
mass and whether that matches observed trends. In this paper, we
have revealed how both approaches, ignoring black-hole mass or
specifically controlling for it, can be valid, depending on the part of
AGN parameter space that is considered.

We first model standard thin accretion discs and evaluate or-
bital timescales of the disc over the following parameter ranges:
the rest-frame wavelength of disc emission, log(𝜆rest/Å) = [3; 4],
the black-hole mass, log(𝑀BH/𝑀⊙) = [6; 11], the Eddington ra-
tio of the disc, log(𝑅Edd) = [−2; 0], and black-hole spin values
of 𝑎 = (+0.78, 0,−1). Before studying dependencies, we calculate
the monochromatic 3 000Å disc luminosity, 𝐿3000, which is a more
robustly determined observable than 𝑅Edd.

As a result, we find two regimes in the timescale dependence on
black-hole mass, with a turnover in between: at low masses, we see
the decline of 𝑡orb ∝ 𝑀−1/2, which is a textbook expectation of
orbits speeding up with increasing central mass. Towards extremely
massive black holes, we observe that a growing event horizon and
innermost stable circular orbit (ISCO) around the black hole push
the emission region farther from the black hole such that we see
an increase in timescale with mass, 𝑡orb ∝ 𝑀 . These two regimes
are connected by a transition region, where the mass dependence
vanishes locally. The relation between disc timescale and black-hole
mass is thus not a simple power law but a smoothly broken power
law. For the benefit of the reader, we approximate the numerical grid
model with convenience functions that express the mean emission
radius and the mean orbital timescale as a function of wavelength,
black hole mass, monochromatic luminosity, and black-hole spin.

It might come as a surprise to intuition that the transition regime,
let alone the rising branch, of timescales matters in the parameter
space of observed quasar samples. In fact, the black-hole mass that
minimises disc time scales for a disc with log 𝐿bol/(erg s−1) = 47
is log 𝑀BH ≈ 9.5. We thus re-evaluate variability structure functions
of the brightest ∼2 200 quasars with virial black-hole mass estimates
and 𝐿3000 continuum luminosity estimates from spectral fitting by
Rakshit et al. (2020), using light curves from NASA/ATLAS (Tonry
et al. 2018) in the well-sampled orange passband that span over 7
years in duration with nearly 2 000 visits per object on average. This
sample has an estimated median black-hole mass of log 𝑀BH ≈ 9.35,
an estimated median bolometric luminosity of log 𝐿bol/(erg s−1) ≈
47, and a median redshift of 𝑧 ≈ 1.6, implying that the median rest-
frame wavelength probed by the ATLAS 𝑜-band is 𝜆rest = 2 600 Å.
As the sample is almost centred on the turnover regime in disc
timescales predicted by our disc calculations, it is expected to exhibit
little mass dependence. In hindsight, this provides justification to
Tang et al. (2023), who chose to ignore a black-hole mass dependence
in their estimates of disc timescales.

This is in relevant contrast to other observations of variability
behaviour at lower black-hole masses that reveal a dependence on
mass (e.g. Arévalo et al. 2024). The two behaviours combined might
merely point at a non-trivial mass dependence in the disc variability.
However, the remarkable fact is that both, observed mass dependence
at lower mass in other works, and independence at the higher masses
in this work, mimics the expectation from a simple thin-disc model,

where amplitude is fixed on timescales in units of mean timescale of
the predicted disc emission. At a subtle level, the analysis presented
here suggests that the quasar discs in this work follow the curvature of
the predicted turnover in timescale, although both noise and currently
unconstrained biases may have blurred the agreement.

The result of this paper is thus a strong suggestion that a simple
thin disc model paired with a simple phenomenological expectation
of variability as following log 𝐴/𝐴0 = −1/2×Δ𝑡/𝑡mean may robustly
portray stochastic variability of quasar accretion discs, as suggested
before by Tang et al. (2023). This situation promises opportunities
to constrain physical disc parameters from an observation of the
structure function, as the observed amplitude normalisation would
encode black-hole mass, luminosity, black-hole spin, inclination, and
dust extinction, although in degenerate form. With black-hole mass
measured independently, and other disc properties considered nui-
sance parameters, there may be a chance to consider the structure
function an independent diagnostic of true disc luminosity. It could
be combined with other diagnostics that calibrate quasars as standard
candles, to enhance their precision as tools for cosmology (e.g. Risal-
iti & Lusso 2019). Many diagnostics of quasar discs, such as spectral
energy distribution (SED), profiles and flux ratios of strong emission
lines, the X-ray-to-UV spectral index, 𝛼OX (see e.g. Liu et al. 2021),
appear to correlate with disc properties including orientation and
Eddington ratio (e.g. Shen & Ho 2014), but are degenerate between
several intrinsic parameters when used in isolation. By combining
multiple diagnostics, and from now onwards, adding the structure
function into the mix, it may be possible to break degeneracies and
disentangle the parameters in observed objects.

This outlook motivates high-precision observations of UV-optical
variability in many quasar discs, such as will be enabled by the Legacy
Survey of Space and Time (LSST; Ivezic et al. 2008) soon to start
at the new Vera C. Rubin Telescope (VRO) in Chile. However, for
brighter quasars that saturate in LSST observations, NASA/ATLAS,
the Zwicky Transient Facility (ZTF; Bellm et al. 2019) and others
will continue to play an important role.
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APPENDIX

Figure 7 shows a 3D view of the disc time scale in the luminosity-
mass plane as calculated in the numerical grid.
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Figure 7. A 3D view of the time scale vs. luminosity and black-hole mass, for a wavelength of 3 000Å, illustrating the curvature of the time-scale plane.
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