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ROBUST SELF-TESTING FOR NONLOCAL GAMES WITH ROBUST

GAME ALGEBRAS
YUMING ZHAO

ABSTRACT. We give an operator-algebraic formulation of robust self-testing in terms
of states on C*-algebras. We show that a quantum correlation p is a robust self-test
only if among all (abstract) states, there is a unique one achieving p. We show that
the “if” direction of this statement also holds, provided that p is optimal/perfect for
a nonlocal game that has a robust game algebra. This last condition applies to many
nonlocal games of interest, including all XOR games, synchronous games, and boolean
constrained system (BCS) games.

For those nonlocal games with robust game algebras, we prove that self-testing is
equivalent to the uniqueness of finite-dimensional tracial states on the associated game
algebra, and robust self-testing is equivalent to the uniqueness of amenable tracial states.
Applying this tracial-state characterization of self-testing to parallel repetition, we show
that a synchronous game is a self-test for perfect quantum strategies if and only if its
parallel repeated version is a self-test for perfect quantum strategies.

As a proof approach, we give the first quantitative Gower-Hatami theorem that is
applicable to C*-algebras. Here “quantitative” means there is a constructive bound on
the distance between the approximate representations and exact representations. We
also demonstrate how this quantitative Gowers-Hatami theorem can be used to calculate
the explicit robustness function of a self-test.
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1. INTRODUCTION

Suppose we have a physical system consisting of two separate labs, each capable of mak-
ing several different measurements. If these two labs are entangled, then the measurement
statistics p (which are referred to as a correlation) can be correlated in surprising ways
that any classical theory cannot explain. In this scenario, the behavior of the system
is described by a quantum state and measurement operators (this collection is called a
model for p). In general, a given correlation can be realized by many different models.
However, some correlations have a uniqueEl underlying model. A correlation with this
property is called a self-test.

In essence, self-testing allows us to infer the exact quantum state and measurements
solely from the observed correlations. Tsirelson, around the 1980s, already observed such
phenomena when studying Bell-type inequalities ﬂ@], which led to the “nonlocality
birth” of self-testing . The term “self-testing” and its “cryptography birth” was
given by Mayers and Yao in M] Since then, self-testing has been applied in vari-
ous areas of quantum information. In device-independent quantum cryptography, self-
testing is arguably the most effective way to prove the trustworthiness of quantum de-
vices ﬂBﬂctle; ML—{;I.B_H] In delegated quantum computations, self-testing can be used
to verify the correctness of computation performed by a remote quantum server ;
Col+19; Kimlg] Self-testing has also been used to certify entanglement and separate
quantum correlation sets ﬂ@] In quantum complexity theory, self-testing is an impor-
tant tool for dealing with malicious quantum provers and proving the soundness of an
interactive proof system. Notably, self-testing is one of the key techniques in the recent
breakthrough MIP* = RE M] This complexity-theoretical result has resolved several
long-standing open problems in operator algebras, including Connes’ embedding problem
and Kitchberg’s QWEP conjecture.

n more rigorous terms, the model is unique up to changing of bases of local systems and tensoring
auxiliary systems.
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Historically, many self-testing results were derived in an ad-hoc manner. Recently, ap-
proximate representation theory has emerged as a powerful tool for establishing self-testing
results. One notable example is the use of the Gowers-Hatami theorem for finite groups
|CS18; IGH1T; Vid18]. However, this framework is limited to correlations and nonlocal
games exhibiting certain finite-group structures. The first analogue of the Gowers-Hatami
theorem that is applicable to certain C*-algebras was introduced in [MPS24], but it lacks
a quantitative bound on the “distance” between approximate and exact representations,
so the resulting self-test has no constructive robustness.

In parallel, self-testing has played a crucial role in resolving significant conjectures in
operator algebras. Yet, none of the aforementioned frameworks offers a comprehensive
operator-algebraic interpretation of self-testing. On this front, Paddock, Slofstra, Zhao,
and Zhou have made substantial progress by giving the following operator-algebraic for-
mulation of self-testing in terms of states on C*-algebras:

Theorem 1.1 (Informal version of Theorem 3.5 in [Pad+23]). An eztreme quantum
correlation p is a self-test for quantum models if and only if there is a unique finite-
dimensional state on %%@M Drmin D piy for p.

Here a model S is called a quantum model if the quantum state employed in S
is finite-dimensional. Correlations that have quantum models are called quantum
correlations. The set C; of quantum correlations is a convex set, but not closed [Slo19].
A quantum correlation is said to be extreme if it is an extreme point of C;. The closure of
C, is denoted Cy, and is referred to as the set of quantum approximate correlations.

Given a finite set X of measurement settings and a finite set A of measurement out-
comes, the POVM algebra ,;zi;f)’?,M is the universal C*-algebra generated by “abstract
POVMs” {ef : a € A},z € X in the sense that e!’s are positive contractions satisfying
the algebraic relations > _, er = 1 for all z € X. An (abstract) state f on a C*-algebra
A is a unital positive linear functional, and f is said to be finite-dimensional if its GNS
representation is finite-dimensional. We say that a state f on &Zpgy, Qmin Ppay, achieves
a correlation p if f(e? ® e}) = p(a,blz,y) for all z,y,a,b. It is well-known that (see e.g.,

[EFril2]) C,, consists of correlations that can be achieved by states (including infinite-

. . X,A Y,B : :
dimensional ones) on %755y @min @phya, and C, consists of correlations that can be

achieved by finite-dimensional states on %Ifo"éM R min %gb?/M‘

Theorem [I.I] only deals with exact self-test, meaning that it only studies models that
can achieve the given correlation perfectly. However, due to the presence of noise in the
environment, one may never observe the ideal correlation exactly. For practical applica-
tions, it is crucial to study the robustness of a self-test. A correlation p is said to be a
robust self-test if it has a unique model S and any model that achieves a correlation
close to p must be close to S in some suitable sense. One of the main goals of this paper
is to generalize Theorem [L.1] to robust self-testing. Thus, we ask:

Question 1.2. What is an operator-algebraic formulation of robust self-testing in
terms of (abstract) states on C*-algebras?

In [Pad+-23], if there is a unique state in a set of states S that can achieve a correlation p,
then p is said to be an abstract state self-test for S. Using this language, Theorem [I.1]
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asserts that self-testing for quantum models is equivalent to abstract state self-testing for
finite-dimensional states on eszf]fO’?/M Omin Dpgvy- The study of finite-dimensional states
versus infinite-dimensional states on ﬁ%@M®mingf§’O@M is closely related to understanding
the structure of quantum correlation sets. One could also ask what is an abstract state
self-test for infinite-dimensional states.

Question 1.3. Suppose a quantum correlation p can be realized by a unique finite-dimensional
state. Are there any infinite-dimensional states that can achieve p?

The first main contribution of this paper is to illustrate that Question and Ques-
tion [[.3] are indeed the same question. Suppose a quantum correlation p is a self-test
for quantum models, and let f be the unique finite-dimensional state achieving p. If in
addition, p is a robust self-test, we prove that there is no infinite-dimensional state
that can achieve p, so f is the unique state for p among all states on &g, Omin Dndyvu
(see Theorem [3.§ for details). In other words, robust self-test for quantum models implies
abstract state self-test for all states on .o/pgpy Omin Lpgyu-

Our second main contribution is to show that robust self-testing for quantum models
and abstract state self-testing for all states are indeed equivalent, provided that the cor-
relation is optimal/perfect for a nonlocal game that has a robust game algebra (see
Theorem [7.9]). Here the game algebra associated with a nonlocal game G is the quotient
of Bob’s POVM algebra ﬁ}ﬁM by some relations R such that optimal strategies for
G correspond to tracial states on @pgy,,/(R). This game algebra is said to be robust
if in addition, near-optimal strategies correspond to states on ﬁ}fw that are approx-
imately tracial and approximately respect the relations in R. As shown in |[Pad24], all
XOR games [Slol1); [Tsi87], synchronous games [Pau+16], and boolean constrained system
(BCS) games |[CM14; lJil3] have robust game algebras. So our abstract-state character-
ization of robust self-testing applies to optimal/perfect quantum correlations of these
games.

Our third main contribution is to show that, for those nonlocal games with robust
game algebras, self-testing for optimal quantum strategies is equivalent to the uniqueness
of finite-dimensional tracial states on the associated game algebra (see Theorem [6.8));
and robust self-testing is equivalent to the uniqueness of amenable tracial states (see
Theorem [T.10).

Notably, the above tracial-state characterization of (robust) self-testing has several
interesting implementations. First, it provides one-line proofs for many robust self-
testing results. For example, the result that CHSH game is a robust self-test follows
immediately from the fact that its associated game algebra Clsy, the Clifford algebra of
rank 2, has a unique tracial state; the Mermin-Peres magic square game is a robust self-
test because the tensor product of two Cly’s has a unique tracial state; all games that
are based on presentations of Pauli groups P, — including Pauli braiding test [NV17],
low-weight Pauli braiding test [BMZ23], Pauli basis test |Ji4+20], quantum low-degree
test [INV18], and so on — are robust self-tests because the full group C*-algebra of P, has
a unique tracial state.

Furthermore, this tracial-state characterization illustrates the necessary and sufficient
conditions for non-robust self-testing: a nonlocal game is a self-test but not a robust
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self-test if and only if its associated game algebra has a unique finite-dimensional tracial
state but has multiple amenable tracial states. The first example of such a game was
constructed by Manécinska and Schmidt in [MS23]. Given two games G; and Gs, they
consider the (G; V Gy)-game in a rough sense that the players win if they choose the same
game (G, or G) and win it. Taking G; to be a game that separates C, and Cy, (e.g.,
[Slo19]) and taking Gs to be the magic square game, the game algebra C*(G; V G,) has
a unique finite-dimensional tracial state given by the perfect strategy for G,, so G; V G
is a self-test. However, C*(G; V G) also has other infinite-dimensional amenable tracial
states given by perfect strategies for G;, thus this self-test is not robust.

This tracial-state characterization of self-testing applies to parallel repeated games.
Parallel repetition is an important technique for gap amplification in complexity theory.
Parallel repeated synchronous games are key ingredients in the MIP* = RE proof |Ji+20].
Parallel repeated CHSH game and parallel repeated magic square game have been shown
to be robust self-tests in [CN16; McK16; [McK17]. In this paper, based on an algebraic
formulation of products of synchronous games given in [Man+23|, we prove that a syn-
chronous game is a self-test for its perfect strategies if and only if its parallel repeated
version is a self-test for perfect strategies (see Corollary B.4]).

Having a characterization for robust self-testing in terms of tracial states on C*-algebras
also raises the prospect of constructing new robust self-tests from algebras which are
known to have unique tracial states (e.g., full matrix algebras, Clifford algebras of even
rank, etc.). Efficient (fewer generators and relations) presentations of those algebras could
result in efficient (fewer questions and answers) robust self-tests, which, in turn, can be
used to improve soundness analysis in quantum interactive proofs (see e.g. [CVY23]
for recent progress). One of the potential approaches to tackling the quantum PCP
conjecture (game version) is to construct a family of self-tests that are efficient (O(log(n))-
bit question and O(1)-bit answer) and are highly robust (robustness is independent of n).

In the final part of this paper, we investigate how the stability of a game algebra encodes
the robustness function of a self-test. To this end, we state and prove a quantitative
Gowers-Hatami theorem for game algebras (see Theorem [0.2). To the best of our knowl-
edge, this is the first Gowers-Hatami theorem for C*-algebras that has a quantitative
bound on the distance between approximate representations and exact representations.
This theorem also identifies all factors that determine how robust a self-test is (see Re-
mark [0.3) and provides a systematic approach to computing the robustness function.
Using this theorem, we give a new and succinct proof for the result that the CHSH game
is a robust self-test with robustness function O(y/e).

The rest of this paper is organized as follows. In Section 2] we review some background
concepts on algebras and nonlocal correlations. In Section B we state and prove our
operator-algebraic formulation of robust self-testing. In Section [4], we discuss robust self-
testing in the context of nonlocal games. In Section Bl we discuss some properties of
tracial states, with a focus on amenable tracial states and the convex structure of finite-
dimensional tracial states. In Sections[6land[7], we study self-testing and robust self-testing
using tracial states. In Section[8, we apply the tracial-state characterization of self-testing
to parallel repeated synchronous games. In Section [0 we state and prove our quantitative
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Gowers-Hatami theorem for game algebras and show how it can be used to calculate the
robustness function of the CHSH self-test.

1.1. Acknowledgements. Part of this work was completed as the author’s PhD the-
sis |[Zha24] at the University of Waterloo. The author thanks his committee members
Michael Brannan, Richard Cleve, Matthew Kennedy, William Slofstra, and Jurij Volci¢
for valuable feedback. We thank Laura Mancinska for pointing out the reference [Man+23]
and suggesting the connections to parallel repetition. While preparing this manuscript,
the author became aware of contemporaneous work [KM24] which establishes similar re-
sults.

2. PRELIMINARIES

In this section, we establish an algebraic framework for nonlocal games and correlations.

2.1. Algebras and representations. In this paper, a x-algebra refers to a unital asso-
ciative C-algebra A equipped with an antilinear involution A — A : a — a* such that
(ab)* = b*a* for all a,b € A. We use 1 for the identity in any *-algebra. We also study the
presentations of x-algebras. Given a set X', we use C*(X’) to denote the free x-algebra with
generating set X'. In other words, elements in C*(X) are noncommutative *-polynomials
over X. For any R C C*(X), C*(X : R) denotes the quotient of C*(S) by the two-sided
x-ideal generated by R.

If a x-algebra A has a submultiplicative Banach norm ||-|| 4 such that the C*-identity
|a*a|| = ||al|? holds for all @ € A and A is closed with respect to ||-]| 4, then A is said to be
a C*-algebra. For any Hilbert space H, we use Z(H) to denote the C*-algebra of bounded
operators on H. All Hilbert spaces in this paper are assumed to be separable. We denote
by 14 the identity operator in #(H) and simply write 1 if H is clear from the context.
The commutant of a subset X C AB(H) is X' :={T € B(H): TS =ST for all S € X}.

The set of d x d matrices My(C) equipped with the operator norm is a C*-algebra
called full matriz algebra and denoted .#y. If we think of M,;(C) as a vector space, then
equipped with the inner product (A, B) := 2Tr(A*B), M4(C) is a d*>-dimensional Hilbert
space.

A x-homomorphism ¢ : A — B between x-algebras A and B is an algebra homomor-
phism such that ¢(a*) = ¢(a)*. A representation w of a -algebra A is a *-homomorphism
from A — Z(H) for some Hilbert space H. If H is finite-dimensional then we say m is
finite-dimensional. A subrepresentation of w is a closed subspace K C H such that

T(A)K = span{r(a)v:a € Ave K} =K.

A representation is irreducible if it contains no proper non-zero subrepresentations. A
vector |v) € H is cyclic for a representation 7 : A — AB(H) if 7(A) |v) is dense in H. A
cyclic representation of A is a tuple (H,,|v)), where 7 is a representation of A on H,
and |v) € H is cyclic for 7. Two representations 7 : A — Z(H) and ¢ : A — B(K) of
A are (unitarily) equivalent, denoted ™ = ¢, if there is a unitary U : H — K such that
Un(a)U* = p(a) for all a € A. Two cyclic representations (H, 7, |v)) and (I, p, |w)) are
(unitarily) equivalent if there is such a unitary with U |v) = |w).
A state on a x-algebra is a linear function f : A — C such that
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(i) f(1) =1, f(a*) = f(a), f(a*a) >0 for all a € A, and
(ii) f is bounded in the sense that

f(b*a*ab) .
(2.1) sup{W.beA,f(b b)%0}<oo

for all a € A.

Every (bounded) state on a x-algebra 4 has a unique (up to equivalence) cyclic repre-
sentation (#, 7, [v)) where |v) is a unit vector in H and f(a) = (¢| w(a) [¢) for all a € A
[Sch20, Theorem 4.38]. Every %-algebra A has an operator norm ||-||4: A — Rso U {0}
given by the supremum over all states on A. In other words,

|lal| 4 := sup{+/ f(a*a) : f a state on A}.

For any Hilbert space #, we denote by ||-||,, the operator norm on Z(H). A state f is
said to be tracial if f(ab) = f(ba) for all a,b € A. Every full matrix algebra .#,; has a
unique tracial state trq given by trg(T) := STr(T).

In this paper, we often work with finite-dimensional systems. A state f on a x-algebra
is finite-dimensional if the Hilbert space H in the GNS representation (H, 7, |v)) of f is
finite-dimensional. If 7 : A — Z(H) is a finite-dimensional representation, then by the
structure theory for finite-dimensional C*-algebras, H is isomorphic to @le Cm @ Cm™
for some integers n;, m;, it =1,...,¢, and

(2.2) m(A) = P M, (C)® Ly, , and 7(A) = P L, @ M,, (C).

i=1

In particular, 7(A) and m(A)’ are direct sums of matrix algebras.

Let A be a C*-algebra. The Gelfand—Naimark theorem states that 4 can be represented
as a C*-subalgebra of some Z(#H). In other words, there is a faithful representation
7 : A — PB(H) for some Hilbert space H. For every a € A, ||a||> — a*a is positive
in A, so any linear functional f : A — C satisfying f(1) = 1 and f(a*a) > 0 for all
a € A is automatically bounded in the sense of Equation (2.1]). The set of all states on
A, denoted .#(A), is called the state space of A. .#(A) is convex and weak™*-compact.
The extreme points of .7 (A) are called pure states. Let f € #(A) and let (H,r, |v))
be a GNS representation of f. Then f is a pure state if and only if 7 is an irreducible
representation.

Given two C*-algebras A and B, a linear mapping ¢ : A — B is said to be positive if
() is positive in B for any positive element x € A. A linear mapping ® : A — B is said
to be unital completely positive (ucp) if

(1) (I)(]-A) = 1p, and
(ii) for any n € N, the mapping

®, - M, (A) — M,(B)
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apy -+ Qi <I>(a11) (I)(Clln)

Anp1 - Ann qt>(anl) Tt (I)(a'nn)
is positive.

The Stinespring dilation theorem states that for any ucp map ® : A — B(H), there exists
a Hilbert space K, a representation 7w : A — Z(K), and an isometry V : H — K such
that

®(a) = V*r(a)V

for all a € A. Moreover, if H is finite-dimensional, then I can be taken as finite-
dimensional.

Given two C*-algebras A and B, their algebraic tensor product A ® B is a x-algebra.
There is more than one way to make 4 ® B into a C*-algebra. The first is to define the
max-norm |||/ on A ® B by

(2.3)  ||a|lmaz := sup{||7(a)||op : ™ & representation of A @ B on a Hilbert space H}

The max tensor product of A and B, denoted A®,,,q.. B, is the closure of A® B with respect
t0 ||*||maz- For any representation 7 : A®,,0. B — Z(H) there are pairs of representations
ma: A — B(H) and 7 : B — HB(H) such that m(a ® b) = wa(a)mp(b) = 7p(b)ma(a)
for all @ € A,b € B. One can also define the min-norm. Fix faithful representations
A C B(H) and B € A(K), then A® B C B(H ® K) as a *-subalgebra. Restricting
the operator norm on #Z(H ® K) to A ® B defines the min-norm ||-||;nin. The C*-algebra
A®in B is the closure of A® B with respect to ||-||nin. Note that A®,,:, B is independent
of the choice of faithful representations A C #(H) and B C B(K).

Given two C*-algebras A and B, we say a state f : A® B — C is maz-continuous (resp.
min-continuous) if it is continuous with respective to ||*||lmaz (resp. ||*||min). Equivalent,
f is max-continuous (resp. min-continuous) if it extends to a state on A ®ne B (resp.
A @ppin B). By our definition of states, every state on A ® B is max-continuous.

2.2. Vectors and measurements. we use the bra-ket notation for vectors in Hilbert
spaces. A wvector state is a unit vector in some Hilbert space. Given two vectors |v) and
|w), we write |v) =, |w) to denote |||v) — |w)|| < e.

Given two vector states |a) € H and |5) € K, we often write |«, ) to denote the
product state |a) ® |[3) € H @ K. We use {|i)}%, to denote the standard basis for the
Euclidean space C?. Given two Hilbert space H4 and Hp, every bipartite vector state
|) € Ha ® Hp has a Schmidt decomposition

W) = Z Ai i) @ |Bi)
icT

where the index set Z is either finite or countable, the Schmidt coefficients \; are strictly
positive, and {|a;) }iez and {|3;) }sez are orthonormal subsets of H 4 and Hp respectively.
The cardinality of Z is called the Schmidt rank of |).
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Given a Hilbert space space H, we call
Ci(H) ={T € B(H): Y _s.(T) < o0}
n=1

the trace class operators, where s1(T) > so(T') > - -+ > 0 are the singular values of T'. For
any T' € C1(H) and any orthonormal basis {|a;) }ier for H,

(2.4) > | T o)

i€T
converges and the value is independent of the choice of the orthonormal basis. We denote
by Tr(T) the value of Equation (2.4) and call it the trace of T. An operator p € C1(H)
is called a density operator (or a quantum state) on H if p is a positive operator with
Tr(p) = 1. We say that a density operator p on H is a pure quantum state if p = |1) (1| for
some vector state |¢)) € H, and we say that p is a mized quantum state if it is not a pure

quantum state. Every density operator p on H induces a semi-norm || X||, := {/Tr(X*Xp)

on A(H) which is called the p-norm. This norm is left unitarily invariant in the sense
that

1UXIl, = 11X1,

for any X € (M) and unitary operator U on H.

A positive operator-valued measure (abbrev. POVM) on a Hilbert space H with finite
index set 7 is a collection of positive operators {M; : i € T} on H such that > ,_, M; = 1.
A POVM {M,};c7 is said to be a projection-valued measure (abbrev. PVM) if in addition,
M} = M; = M? for all i € T.

Given a PVM {M,,...,M,,} C AB(H), the corresponding observable is the unitary
operator A € #(H) of order m defined by

A= Zexp (27T _1k) M;,.
k=1

m

If m =2, then A = M; — M, is hermitian and we call it a binary observable.

2.3. Nonlocal games and correlations. Let X, Y, A, and B be finite sets. A correla-
tion p is a collection of conditional probabilities {p(a, b|z,y)} € RQ(TBXXXY such that

S pla,blr,y) = 1
(a,b)eAxB
forall z € X,y €Y. A quantum model S = (Ha, Hp, {MZ},{N/},|¢)) consists of
(1) finite-dimensional Hilbert spaces H 4 and Hp,
(2) POVMs {M7}, € A,z € X on Hy and POVMs {N/}, € B,y € Y on Hp, and
(3) a unit vector |¢) € Ha @ Hp.

If {M?:a€ A},x € X and {N/,b € B},y € Y are PVMs then we say S is a projective
quantum model. A quantum model is full-rank if dimH 4 = dim Hp, and the Schmidt
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rank of |¢) is dim H 4. Wesay S = (Ha, Hp, {MZ}, {N/}, |¢)) ) is a model for a correlation
p or S achieves p if
pla,blz,y) = (W[ M7 @ N [¥)

for all (a,b,z,y) € Ax Bx X xY. We often denote by pg the correlation achieved by S.

We use Cy(X,Y, A, B) to denote the set of correlations in RQOXB XXV that can be
achieved by quantum models. We use C, to denote the union of C,(X,Y, A, B) over all
finite sets X, Y, A, B. The set C, is not closed [Slo19], and the closure of C, is denoted
by Cyq.-

In addition to the above models that exhibit a tensor product structure, Algebraic
Quantum Field Theory suggests a commuting-operator framework for correlations. A
commuting operator model S = (H,{MZ},{N}}) for a correlation p consists of

(1) a Hilbert space H,
(2) POVMs {M?:a € A},x € X and {N; : b€ B},y € Y on H such that
MENY = NYM?
for all (a,b,z,y) € Ax Bx X xY, and
(3) a unit vector |¢) € H

such that
pla, bz, y) = (Y| M7 - N)[¢)

for all (a,b,z,y) € Ax Bx X xY. We use C,. to denote the set of correlations that can
be achieved by commuting operator models. The set Cy. is closed and convex.

We refer to the correlations in Cy, Cy, and Cy. as quantum correlations, quantum
approximate correlations, and quantum commuting correlations respectively.

Operationally, one can think that correlations arise from an interactive game: a referee
samples a question pair (x,y) according to a distribution p on X x Y, sends z to the
player Alice, and sends y to the player Bob; Alice and Bob then return a € A and b € B
respectively. Their behavior is captured by a correlation p € RAXZ*X*Y where p(a, bz, y)
indicates the probability that Alice and Bob return a and b upon receiving = and y. Based
on a predicate V : AXx Bx X xY — {0, 1}, the referee then determines whether the players
win (V(a, blx,y) = 1) or lose (V (a,b|z,y) = 0). We call the tuple G := (X,Y, A, B, u, V)
a nonlocal game. Alice and Bob know the rules of G and can strategize together, but they
are not allowed to communicate once the game begins.

Civen a nonlocal game G = (X,Y, A, B, 1, V) and a correlation p € REXB*XXY the
winning probability of p for G is -

w(G;p) = Y plx,y)V(a,blz, y)p(a, blz,y).

a,b,x,y

In the context of nonlocal games, we refer to models as strategies. Given a strategy S, we
denote by w(G; S) (or simply w(S) if G is clear from the context) the winning probability
of S for G. That is, w(G;S) = w(G;p) where p is the correlation achieved by S. The
quantum value wy(G) of G is defined to be the supremum of w(G;S) over all quantum
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strategies S for G. Since Cy, is the closure of Cj,
we(G) = sup{w(Gsp) : p € G} = sup{w(G;p) : p € Cya}-

In this paper, a correlation p (resp. a strategy .S) is said to be optimalﬁ for G if w(G;p) =
wy(Gf (resp. w(G; 8) = w,(9)).

Quantum models for correlations can also be expressed as states on C*-algebras [Pad+-23].
Given finite sets X and A, the POVM algebra ,Qi,%?,M is the universal C*-algebra gener-
ated by positive contractions e, r € X, a € A, subject to the relations ) _, es = 1 for
all x € X. By the universal property, a collection of operators {MZ* a € A},x € X on a
Hilbert space H are POVMs if and only if there is a representation 7 : @Zpg,, — B(H)
sending e? +— M?. When working with bipartite system Zogiy, @ pgvy, we let
me = e € dpyi,, and nt = e € ANl .

Given a quantum model S = (Ha, Hp, {MZ}, {N/},[¢)), let 74 Ao — B(Ha)
be the representation sending m? — M? and let wp : pgyy, — B(Hp) be the repre-
sentation sending ny — N, we refer to m4 ® mp as the associated representation of S.

The abstract state fg on &gy @min Dniyy defined by fs(z) == (|(ma @ 7p)(x)[) is
finite-dimensional and achieves pg in the sense that

(2.5) fs(mg @ ny) = ($lwa(mg) @ mp(ny)[¢) = ps(a, blz,y).

We refer to fs as the abstract state defined by S. Conversely, any finite-dimensional state
on gf,ﬁfé?,M Rmin ,Qfg/b?,M yields a quantum model S such that f = fg [SWO08]. In other
words, C,(X,Y, A, B) consists of correlations that can be achieved by finite-dimensional
states on 5271-3{0’?/1\4 Rmin %IZ’O]?/M [Fril2; Jun+11]).

We also work with PVM algebras %I;X‘}ﬁ, which is the quotient of %1507?/1\/1 by the relations
(e7)2 = ¢* for all z € X, a € A. Note that the resulting algebra o7\, is isomorphic to

the group C*-algebra C*(ZTXI(‘). We often work with unitary generators {a, : x € X} and

(b, -y € Y} for 2\ @min Fpis, where a,’s and b,’s are unitary elements with order
|A| and | B| respectively.

3. AN OPERATOR-ALGEBRAIC FORMULATION OF ROBUST SELF-TESTING

In this section, we state and prove an operator-algebraic characterization of robust
self-testing. To define a robust self-test, we need the following notion of local e-dilation.

Definition 3.1. Given ¢ > 0 and two quantum models
S = (Ha, M. {M]} {N/}, [¢) ) and
S = (HA7 HBv {M;}v {Nlil}7 W) )7
21t wq(G) = 1, we often replace “optimal” with “perfect”.
30ne can also define the commuting-operator value we,(G) := sup{w(G;p) : p € Cy}. In this paper,

being optimal always means achieving the quantum value w,(G), even when working with p € Cy. or
infinite-dimensional commuting-operator strategies.
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we say S is a local e-dilation of S, denoted S = §, if there are isometries 14 : Ha —

Ha®@HYT and Ip : Hp — Hp @ HE™, and vector state |auz) € HY™ @ HE™ such that

(3.1) L@ Ip(MI @ 1|0)) ~ (MZ @ 1Y) @ |aux)
(3.2) LIzl N |0) ~ (1& N} |¢)) © |auz), and
(3.3) Iy ® I [§) ~c [§) ® |auz) .

for all (a, bLZE, y) € Ax Bx X xY. We refer to a local 0-dilation as a local dilation and
write S > S.

Remark 3.2. Note that, in the above definition, Equations [B.1)) to (B3)) imply

(3.4) LiMETE @ 1|, aux) =~ (]\7; ®1 |QZ>) ® |auz) ,
(3.5) 1@ [pNYT} |0, auz) ~. (1© NY[9)) ® |auz), and
(3.6) Ly @ Ig(MF @ N} |¢)) ~ae (ME @ NY |9)) @ |au) .

We often use Equation ([3.6]) (with 3¢ replaced by €) as the definition of S =, S,

Definition 3.3. Let C be a class of quantum models. We say a quantum correlation
p € C, is a robust self-test for C if there is an ideal model S € C such that the following
holds. For any 6 > 0, there is an € > 0 such that S =5 S for any model S € C satisfying
lps —pll1 <e.

Here the 1-norm of a vector v € RAXBxXxY

is given by ||v]|; := Za7b7m7y|v(a,b\x,y)|. It
is easy to see that S > S implies ps = p. Taking 6 = 0, we can define an (exact) self-test:
p is a self-test for C if there is an ideal model S € C such that S - S for any model S € C
for p. It is clear that every robust self-test is a self-test. The §-¢ dependence is called the
robustness of a self-test and is a crucial concept in the applications of self-testing. If § is a
function of €, then we say 0(¢) is the robustness function of this self-test. For correlations,
whether every self-test is robust is still an open problem. We also discuss robust self-
testing for nonlocal games. In this context, we often refer to models as strategies.

Definition 3.4. Let C be a class of quantum models. A nonlocal game G is a self-test for
its optimal quantum strategies in C if there is an optimal quantum strategy S € C for G
such that S = S for any optimal quantum strateqy S € C for G.

In Definition B.4], S is referred to as an ideal optimal quantum strategy for G. When
C is the class of all quantum models, we simply say that G is a self-test for its optimal
quantum strategies; when C is the class of all projective quantum models, we say that
G is a self-test for its projective optimal quantum strategies. We also define robust self-
testing for nonlocal games. We say a strategy S is e-optimal for a nonlocal game G if

w(G: 5) = w,(G)

Definition 3.5. Let C be a class of quantum models. A nonlocal game G is a robust

self-test for its optimal strategies in C if there is an ideal optimal quantum strategy S € C
for G such that the following statement holds. For any 6 > 0, there is an € > 0 such that
S =5 S for any e-optimal strategy S € C for G.
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As we mentioned in the introduction, for nonlocal games, not every self-test is ro-
bust [MS23]. We discuss robust self-testing for nonlocal games in more detail in Section [l

One of the main purposes of this paper is to give an operator-algebraic formulation of
robust self-testing in terms of states on C*-algebras. We recall the following definition
from |[Pad+23].

Definition 3.6 (Definition 3.3 in [Pad-+23]). Let S be a subset of states on opgmy Qmin

%IZ’O?/M. A correlation p is an abstract state self-test for S if there exists a unique
state f € S achieving p.

In [Pad+23], they show that when C is the class of all quantum models (or some other
classes that have certain “nice” properties) and p is an extreme point in C,, self-test in
the standard sense is equivalent to abstract state self-test for finite-dimensional states.

Theorem 3.7 (Part (a) of Corollary 3.6 in [Pad+23]). Suppose p € C,(X,Y, A, B) is an
extreme point in Cy. Then p is a self-test for the class of all quantum models if and only
if p is an abstract state self-test for finite-dimensional states on ,Qi,%?,M ®rmin eszfgé%M.

The first main theorem of this paper is to show that robust self-test for quantum models
corresponds to abstract state self-test for all states.

Theorem 3.8. Ifp € Cy(X,Y, A, B) is a robust self-test for all quantum models, then p
s an abstract state self-test for all states on ,Qi,%?,M Rmin ,Qf;/bB;/M.

Compared to the “only if” direction of Theorem [B.7], this theorem replaces “self-test”
and “finite-dimensional states” with “robust self-test” and “all states”. Note that a
quantum correlation p € €, can always be achieved by some finite-dimensional states.
So if f is the unique state for a quantum correlation, then f must be finite-dimensional.
This gives an alternative way to phrase Theorem [3.8}

Theorem 3.9 (Restated from Theorem B8). If p € Cy(X,Y, A, B) is a robust self-test
for all quantum models, then

, , , L , X,A Y,B
(1) there is a unique finite-dimensional state on <50y @min pbyay for p and
g , o , X,A Y,B .
(i1) there is no infinite-dimensional state on /55y @min Dpdyy that can achieve p.

We prove this theorem at the end of this section. Unlike Theorem [3.7, the above
theorem is not an “if-and-only-if” statement. Hence, we ask:

Question 3.10. Let p € Cy(X,Y, A, B) be an extreme point in C,. Suppose p is an

abstract state self-test for all states on 52713(0’?/1\4 Ormin gy 1s p a robust self-test for all
quantum models?

Through Sections Ml to [7, we aim to give an affirmative answer to Question B.10 for a
large class of quantum correlations.

Theorem 3.11. Suppose p € C (X,Y, A, B) is the unique perfect quantum correlation
for a synchronous game, or the unique optimal quantum correlation for an XOR game.
Then p is a robust self-test for all quantum models if and only if p is an abstract state
self-test for all states on opesy, @min D pirins
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In the context of nonlocal games, the above theorem implies:

Corollary 3.12 (Game version of Theorem B.11]). Suppose G is a synchronous game with
perfect quantum strategies or an XOR game. Then G is a robust self-test for its optimal
quantum strategies if and only if there is a unique state on ,Qi,%?,M ®rmin ,Qf;/bB;/M that is
optimal for G.

Here a state f on ,Qi,%?,M Ormin Dpgyyy 18 said to be optimal for G if the correlation

achieved by f is optimal for G.

Our proof approach for Theorem [B.17]is based on algebraic characterizations of synchro-
nous games and XOR games established in [Hel4-19; [KPS18§; [Slo11]. For any synchronous
game (resp. XOR game) G, one can associate a finitely-presented algebra C*(G) such that
perfect (resp. optimal) strategies for G correspond to tracial states on C*(G). Further-
more, as shown in [Pad24], any near-perfect (resp. near-optimal) strategy S for G defines
an approximate state ¢ on C*(G) which is also approximately tracial. Finally, using a
lifting theorem for C*(G), we lift ¢ to a ucp map 6 on C*(G) and construct the desired
local dilation I, ® Ig from the Stinespring dilation of #. This last step is inspired by
IMPS24].

The proof approach outlined above applies to any nonlocal game that exhibits structures
similar to synchronous or XOR games. In particular, Theorem [3.11] also holds if p is the
unique perfect quantum correlation for a boolean constraint system (BCS) game. Indeed,
we'll prove a general result (Theorem [7.9]). Given a nonlocal game G, we say an algebra
C*(G) is the associated game algebra for G if every optimal strategy for G corresponds to
a tracial state on C*(G). If in addition, every near-optimal strategy for G corresponds to
an approximate state on C*(G) which is also approximately tracial, then we say C*(G) is
robust. In Section [7 we show that if a game G has a robust game algebra C*(G), then its
self-testing (resp. robust self-testing) property can be characterized by finite-dimensional
(resp. amenable) tracial states on C*(G). These general results provide convenient ways
to examine whether a nonlocal game is a (robust) self-test by studying the tracial states
on the associated game algebras.

Theorem 3.13 (Restated from part of Theorem and Corollary [[.T1] informal). Sup-
pose a nonlocal game G has an associated game algebra C*(G).

(a) G is a self-test for its optimal quantum strategies if and only if C*(G) has a unique
finite-dimensional tracial state.

(b) Suppose in addition, C*(G) is robust. If C*(G) has a unique tracial state T and T is
finite-dimensional, then G is a robust self-test for its optimal quantum strategies.

3.1. Proof of Theorem [B.8. We prove Theorem [B.8 in the rest of this section. Recall
that for any residually finite-dimensional (RFD) C*-algebras A and B, the C*-algebra
A ®pnin B is also residually finite-dimensional, so the set of finite-dimensional states on
A ®pin B forms a weak™-dense subset of the state space of A ®,;, B. Since the POVM
algebra 5271-3{0’?/1\4 is RFD for any finite sets X and A, we have:

Proposition 3.14. For every state f on 'Q{]g(O’?/M(gmin %g’ojf/M there is a sequence of quan-

tum models S,,n € N such that im,,_,. fs, = f in the weak*-topology.
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For the completeness of this manuscript, we present a proof of Proposition [3.14] in
Appendix [Al Before we prove Theorem 3.8 the following robust version of Proposition
4.8 in |Pad+23] is needed. We first recall the concept of centrally supported model from
[Pad+23]. Given a quantum model S = (Ha, Hp, {MZ},{N/},|v)), the support of )
in H4 (resp. Hp) is the image of the reduced density matrix p4 := Try, (|10) (¥]) (resp.
pe = Try, (|¢) (¥])). The support projections 114 and Ilp of |¢) are the self-adjoint
projections onto the support of |¢) in H 4 and H g respectively. We say that S is centrally
supported if

[HA>MZ;C] = [HB>NI§/] =0

for all (a,b,z,y) € Ax B x X xY. Any full-rank model is centrally supported since the
support projections are the identity operators. Conversely, if S is centrally supported,
then it is full-rank when restricted to its support.

Proposition 3.15. Let

S = (Ha Hp AM} AN} [¥)) and

S = (Ha Ho M} AN} 1))
lle two quantum models with associgted representations TA4Qmg and TARTg respectively. If
S is centrally supported and S . S via local isometry 14 ® Ig and vector state |aux), then

: X, A Y,B
— Ty, .. ag ) — Y1, e )
for every k, ¢ € N and monomials o = my} -+ -mgt € ApGyn B =1y, -+ 1y, € Dpoyy We
have

(3.7) (Fala) ® L)) ® lauz) ki) Lama(e) 3 ® 1|4, auz)
(3.8) (1@ 75(8) [¥)) ® lauz) R e 1 ® Ipms(8)I} |, auz)
and |fs(a® B) — fsla® B)| < 2(k+ (+1)e.

Proof. We first prove Equation ([B7) by induction on the monomial degree k € N. The
base cases k = 0,1 follow straight Equation (B4]). Suppose Equation (B.7) holds for

all monomials in ,Q/,%?,M of degree k. For any given monomial o = «q---apagy1 in
%If(o’éM of degree k + 1, let o/ := ;- . Since S is centrally supported, by |[Pad+-23,
Proposition 4.5] there is an operator F' € #B(Hp) with || F|| < ||7Ta(ak+1)]] < 1 such that

Talar) @1y, |[¥) =1z, ® F |4)). Note that ||74(e/)|| < 1 and | Lama(a/) 4|l < 1. Thus
by the inductive hypothesis,

(Fala) @ 1, [9)) ® |auz) = (Fa(o/)Falons) ® Ly, [0)) © lauz)
= (Ta(a) ® F |¢))) © |auz)
~kt1)e Lama(a) ) @ F® Lyaue \IZ, aur)
:(ng@mﬂxﬁgmﬁg®nﬂyg)®nﬁwwygiﬂww
Roge Iama(a ) I ama(gy1) [y @ ]].ﬁB®fH%uac |@Z, aur)

= Iyma(a) I @ 1|0, auz) .
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This implies

(Fa(@) @ 1¢)) @ |auz) ~(s Lama(@) I @ 1|, auz) .

(k+1)+1)e

We conclude that Equation (3.7]) holds for all £ € N and monomials in Jz%]_if(o”?,M of degree k.
The proof of Equation (3.8)) is similar. The rest follows from the following lemma by taking

@) = Lima(@) I3 @ 1]¢, auz) , |B) = Inmp(B) I3 |, auz) , @) = (Fa(a) @ 1Y) ) @ |auxz),

and [8) = (1@ 75(8) |¢) ) ® |auz). O

Lemma 3.16. If |o),[a),[B),|8) are four vectors with norm <1 such that |a) ~, |a)
and |3) =, |B), then [(a|B) — (a|B)| < 01 + da.

Proof. Observe that («|8) — (@|8) = ({a|—(a]) [8)+ (@] (18)—|3) ). The lemma follows
from the Cauchy-Schwartz inequality. O

Now we are ready to prove Theorem [3.8]

Proof of Theorem[3.8. Suppose p € Cy(X,Y, A, B) is a robust self-test for all quantum
models, and let S be an ideal model. By Theorem [3.7, there is a unique finite-dimensional
state f on djf(o’éM@)min &fg’oj?/M achieving p. Assume for the sake of contradiction that there
is an infinite-dimensional state f on ,Q/,%?,M Dmin P pirey achieving p. By Proposition 314
there exists a sequence of quantum models S,,,n € N such that f = nh_)rrolo fs, in the

weak*-topology. This implies
pla, blz,y) = f(mg @ny) = lim fs, (mg @ni) = lim ps, (a,blz,y)

for all z,y,a,b. By the definition of robust self-testing, there is a function  : N — R

with lim 7(n) = 0 such that S,, >,y S for all n € N. Then for all monomials a € ,Q/,%?,M
n—oo

and [ € ,Q/;/b?,M, by Proposition B.17]

|fs,(a® B) — f(a® B)] < 2(deg(a) + deg(B) +1)n(n) — 0

asn — oo. This means lim fg = fin the weak*-topology. Hence f: f, a contradiction.
n—o0

We conclude that there is no infinite-dimensional state on %Ifo’éM R min %IZ’O]?/M forp. O

Although Theorem [B.8 is stated for the class of all quantum models, from the above
proof, it is easy to see that similar results can be established for any class that is closed
(in the sense of [Pad+23]) and contains a full-rank model. In particular, if p € C, has
a full-rank projective quantum model and p is a robust self-test for projective quantum
models, then p is an abstract state self-test for all projective states on ,Q/,%?,M Rmin ,Q/;/b?,M
(or equivalent, all states on .oZpyar Omin Fping)-

4. FROM CORRELATIONS TO NONLOCAL GAMES

In this section, we take a closer look at self-testing in the context of nonlocal games.
For any nonlocal game G = (X,Y, A, B, 1, V), we define its game polynomial to be the
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x-polynomial

bg = Z (@, y)V(a, blz, y)mg & ng
z,y,a,b
inC*(m? :x € X,a € A)QC*(n] : y € Y,b € B). The optimal quantum value w,(G) of the
game G is equal to the supremum value of f(®g) over all states f on ,Qi,%?,M Drmin Dpivu-
The same conclusion holds if we replace .@Zpoyy with @Zpyy.

We say a state f on &pgmn @min Dpginy (08 Ao @min il ) is optimal for G if
f(®g) = w,(G). Equivalently, f is optimal for G if the quantum approximate correlation
achieved by f is optimal for G. Since C, consists of correlations that can be achieved by
finite-dimensional states, G has an optimal quantum strategy if and only if there exists
a finite-dimensional optimal state on ,Qi,%?,M Dmin D piny for G. The following lemma is
straightforward from the GNS construction.

Lemma 4.1. Let G = (X, Y, A, B, u, V) be a nonlocal game. For any x-representation
of i) Omin D piyins, the operator m(®g) has spectrum spec (7(®g)) C [0, wy(G)].

From Definition 3.4, we immediately see that:

Lemma 4.2. A nonlocal game G is a self-test for its optimal quantum strategies (resp.
projective optimal quantum strategies) if and only if G has a unique optimal quantum
correlation p and p is a self-test for all quantum models (resp. projective quantum models).

The following lemma implies that if a nonlocal game is a self-test for its optimal quan-
tum strategies (or optimal projective quantum strategies), then its unique optimal quan-
tum correlation must be an extreme point in Cj.

Lemma 4.3. If a nonlocal game G has a unique optimal quantum correlation p, then p
must be an extreme point in Cy.

Proof. Suppose G has a unique optimal quantum correlation p. Assume for the sake of
contradiction that p is not an extreme point in C,. Then p = Ap; + (1 — \)p, for some
0 < A< 1andp; # pse in C,. Note that p is optimal. So

w(G;p) = Aw(G;p1) + (1 = Nw(G;p2) < Aw(G;p) + (1 — Nw(G;p) = w(G;p).

It follows that w(G;p1) = w(G;p2) = w(G;p). The uniqueness of p implies that p = p; =
p2, which is a contradiction. Hence p must be an extreme point in C,. 0

On the other hand, if a nonlocal game has a unique optimal state f, then f is an
extreme point in the state space:

Lemma 4.4. Let G = (X,Y, A, B, i, V) be a nonlocal game. Suppose that there is a
unique finite-dimensional optimal state f on pg i @min Dpgvar (07 Digar Omin o)
for G. Then f is a pure state, and the correlation p achieved by f is the unique optimal
quantum correlation for G.

Proof. Let p be the correlation achieved by f. Since w(G;p) = f(®g) = wy(G), p is
optimal for G. Assume G has another optimal quantum correlation p’. Then there is
a finite-dimensional state f’ that can achieve p’. So f’ is optimal for G, but f' # f, a



18 YUMING ZHAO

contradiction. We conclude that p is the unique optimal quantum correlation for p. By
Lemmald.2] p is an extreme point in C,. Since any state that can achieve p is optimal for G,
f must be the unique finite-dimensional state for G. By [Pad+23], the GNS representation
of f is irreducible. It follows that f is a pure state. O

Lemmas and [£4] allows us to translate many self-testing results established for
extremal quantum correlations in [Pad+23] to self-testing for nonlocal games.

Theorem 4.5 (Game version of Corollary 3.6 in [Pad+23]). Let G = (X,Y, A, B, 11, V)
be a nonlocal game.

(a) G is a self-test for its optimal quantum stmtegies if and only if there is a unique
finite-dimensional optimal state on ,Q/POVM Dmin D pgrny for G.

(b) If G has a full-rank projective optimal quantum strategy, then G is a self-test for
its projective optimal stmtegies if and only if there is a unique finite-dimensional
optimal state on 42% VM Qumin ,Q/ o for G.

Theorem 4.6 (Restated from Theorem 4.1 and Theorem 4.3 in |Bap+23]). For any
nonlocal game G, the following statements hold.

(a) If G is a self-test for its optimal quantum strategies, then G has a full-rank projec-
tive ideal optimal strategy and G is a self-test for its projective optimal quantum
strategies.

(b) If G is a self-test for its projective optimal quantum strategies and G has a full-rank
projective optimal strategy, then G is a self-test for its optimal quantum strategies.

Corollary 4.7 (Game version of Theorem 3.7 in [Pad+23]). If G has a full-rank projective
optimal quantum strategy, then the following statements are equivalent.

(1) G is a self-test for its optimal quantum strategies.

(2) G is a self-test for its projective optimal quantum strategies.

(3) There is a unique finite-dimensional optimal state on pgyy, @ o for G.
(4) There is a unique finite-dimensional optimal state on /pyyy @ ity for G.

Recall from [Pad+23] that if there is a unique finite-dimensional state f achieving
an extreme quantum correlation p, then f has a GNS representation (H,,|¢))) where
T =Ty ® g is a tensor product of two irreducible representations. Furthermore, p is a
self-test for quantum models and there is an ideal model with associated representation
74 ® mg. We can sharpen this statement when working with self-testing for nonlocal
games:

Theorem 4.8. Suppose a nonlocal game G = (X, Y, A, B,u,V) has a unique finite-
dimensional optimal state f on Aoy OVM Dmin Doiyyps- Then the following statements hold.

(a) f has a GNS representation (HA ® ”HB,%A ® TR, |w>) where T4 and T are irre-
ducible x-representations of 52%]_3(0”3]\/[ and d;/bff,M respectively.
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(b) Let ]\7&” = Ta(m®) and 1\7;/ = 7wg(ny). Then G is a self-test for its optimal
quantum strategies with an ideal optimal strategy

S = (Ha, 1o, (M7} {NJL 1))
(¢c) T := Ta @ Tp is the unique (up to um’tary equivalence) finite-dimensional irre-

ducible x-representation of <, 0VM®mm€Q{ pova With the property that the mazimal
eigenvalue of T(Pg) is w,(G). Here ®g is the game polynomial of G.

(d) The wy(G)-eigenspace of 7(Pg) is the one-dimensional space spanned by |@Z)

Proof. Let p be the correlation achieved by f By Lemmas and [£.4] p is an extreme
point in Cy, p is the unique optimal quantum correlation for G, and f is the unique
finite-dimensional state on o7p OVM Dmin Dpiyyy achieving p. This proves parts (a) and
(b).

Now suppose T : pgn Omin Doioy — B(H) is a finite-dimensional irreducible *-
representation such that the maximal eigenvalue of 7(G) is w,(G). Let [¢) be a unit
vector in the w,(G)-eigenspace of m(G). Since m(pgmy; Omin D piny) = B(H), the vector
|1y is cyclic for . Hence (H, 7, |Y)) is a GNS representation of the state f given by
fla) = W] n(a) |¢), XO‘?/M Dmin Dpgyyy This also means f is a finite-dimensional
state on MJ%?,M@W”%;/OVM such that f(®g) = (Y| 7(Pg) [1) = wy(G). By the uniqueness
of f, we have [ = f, and hence (H,,[1)) is unitarily equivalent to (”ﬁA ® ﬁB,%, |QZ>)
This proves part (c).

To see part (d), take an arbitrary unit vector w> in the w,(G)-eigenspace of m(Pg).
Then the state f defined by f() := (¢[7(a) [¢), TG ors Omin D iy is optimal for
G. So f = f. It follows that (HA QHp, 7, 1)) is a GNS representation for f. This means
there is a unitary U on H A® HB such that

(4.1) U ) = |4y, and
(4.2) U (a)U* = 7(a)

for all & € pgpns @min P piyyas- Note that 7 is irreducible. Equation [@2) implies U = A1

for some A\ € C. Then Equation (4.I]) implies |¢) is linearly dependent with [¢). Since
|1)) was arbitrary, part (d) follows. O

Recall that the set of quantum approximate correlations Cy, is the closure of C,. The
following lemma is a robust version of Lemma [£.2], although the proof is less straightfor-
ward.

Lemma 4.9. A nonlocal game G is a robust self-test for its optimal quantum strategies
(resp. projective optimal quantum strategies) if and only if G has a unique quantum ap-
prozimate correlation p and p is a robust self-test for all quantum modeld] (resp. projective
quantum models).

4This last condition automatically implies that p is in Cy.
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Proof. For the “only if” direction, suppose G = (X, Y, A, B, V) is a robust self-test for its
optimal quantum strategies, and let :i be an ideal optimal strategy. By Lemma (4.2 the
quantum correlation p generated by S is the unique optimal quantum correlation for G.
We claim that p is indeed the unique optimal quantum approximate correlation for G.
Assume for the sake of contradiction that G has an optimal correlation p € Cy, while p is
not in C,,. Then there is an infinite-dimensional state f achieving p. By Proposition [3.14]
there is a sequence of quantum models S,,,n € N such that li_)In fs, = f in the weak-x
topology. This implies w(G;S,) = fs,(®g) = f(Pg) = wy(G) as n — oo. Since G is
a robust self-test for its optimal quantum strategies, there is a function n : N — Ry
with nh_)r{)lon(n) = 0 such that S, =,n S. It follows that p = T}Lrgopgn = ps = D,
which contradicts to the assumption that p is not in C,;,. We conclude that p is the
unique quantum approximate correlation for G. Note that for any quantum model S,
lps — pll1 < € implies w(G; S) > wy(G) — €. So G is a robust self-test as is p.

For the “if” direction, suppose that G has a unique optimal quantum approximate
correlation p and that p is a robust self-test for quantum models, and let S be an ideal
model for p. Then p must be in C,. Assume for the sake of contradiction that G is
not a robust self-test. This means there exists a 6 > 0 and a sequence of quantum
models S,,,n € N with ¢, := w,(G) — w(G;S,) = 0 as n — oo such that for all n € N,
Sp =5 S does not hold. Let p be an accumulation point of {pg,,n € N}. Then p is
in C,, and p is optimal for G. The uniqueness of p implies that p = p. By passing a
subsequence, we may assume without loss of generality that nh_)rgo ps, = p. Since p is a

robust self-test for quantum models, there is a function  : N — R>q with lim 7n(n) =0
- n—oo

such that S, =) S for all n € N. Take a large enough N such that n(N) < ¢, we see

that Sy =5 S , a contradiction. We conclude that G is a robust self-test for its optimal
quantum strategies. U

We can also state a game version of Theorem B.8] (or equivalently Theorem [3.9)).

Theorem 4.10 (Game version of Theorem B.9). If G = (X, Y, A, B, u, V) is a robust
self-test for its optimal quantum strategies, then

(i) there is a unique finite-dimensional optimal state on pgyy @min Fpiyyas for G
and

(ii) there is no infinite-dimensional optimal state for G.

4.1. Spectral gap of a self-test. Suppose G = (X,Y, A, B, V) is a self-test for its
optimal strategies (or equivalently, G has a unique finite-dimensional optimal state f on
A Omin A1), Let S = (ﬁA, Hp, {M}, {N}}, ) ) be the ideal optimal strategy
with associated representation T = T4 ® 7g, and let &g be the game polynomial. Part
(c) of Theorem states that w,(G) is the largest eigenvalue of 7(®g) and |¢) is the
unique w,(G)-eigenstate. Let A be the second largest eigenvalue of 7(®g). We refer to
A :=w,(G) — A as the spectral gap of G. Note that the spectral gap is only defined for
games that are self-tests.
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In many cases (for instance, the use of Gowers-Hatami theorem for proving robust self-
testing), given an e-optimal strategy S = (Ha, Hp, {MZ}, {N/}, |[¢)) ) for G, one can first

show that ||IA(Mm ® L, ) La — MZ||,, and ||If (NY @ 1x,) 15 — N/||,, are bounded by
some 0 > 0 for some isometries [4, [g. Here ps and pp are reduced density matrix of
|1y on H 4 and Hp respectively. The following proposition illustrates that the “distance”

between S and S under the local isometry I4 ® I is completely determined by ¢, d, and
the spectral gap A. Similar results have also been established in [Bap+23; IMPS24].

Proposition 4.11. Suppose a nonlocal game G = (X, Y, A, B, j1, V) is a self-test for its

optimal quantum strategies. Let f be the unique finite-dimensional optimal state f on
X OVM®mm arB bovu for p, let S = (HA,HB, {M””} {Ny} |w)) and T =To @ TR be as in
Theorem [{.8, and let A be the spectral gap of G. Suppose

S = (Ha, Hp, {MI}, AN/}, [4))

is an e-optimal quantum strateqy for G. Let I, : Hao — ﬁA QK4 and Ig : Hp — 7:23 KB
be two isometries. For every (x,y,a,b) € X xY x A x B, let

02, = | IU(ME @ Lic, ) Ia — M2, and 67, .= ||I5(N} @ L, ) 5 — NY || s
where py 1= TrHB( |¢> <¢| )7pB = TrHA( |¢> <¢| )7 and let
8= pl,y)V(a,blzy) (55, +02,) .

x?y7a7b

Then there ezists a unit vector |aux) € K4 ® Kp such that

~ 2(6
(4.3) a4 ® Ip [¥) — [¥) ® |auz)|| < w-
Moreover, for every (z,y,a,b) € X XY X A X B,
(44 | o 1a(0MF © N 10)) — (V © 52 10)) © aush] < 64, + 65, 4 Y20 EVE),

Proof. Let m := m4 ® mp be the associated representation of S, let [ = I, ® Ig, and let
K:=K4s® Kpg. By Lemma [3.16]

(7 (Fmeend) © 1) - wms @n) ) [)]
<125 (Falmg) © Licy) La = malmi) s + 115 (Fa(n) @ Ly Is = wa(md)
- 5;.4@ ‘l‘ 5517
This implies
(7 (7(®g) @ 1) = 7(@g) ) [} < 3 sl y)V (@, b, y) (57 + 05) = .

x7y7a7b

Since S is an e-optimal strategy for G, by LemmalL.I], w,(G)1—7(®g) is a positive operator
such that [|wy(G)1 — 7(Pg)lop, < 1 and (| (we(G)1 — m(Pg)) |1y < €. So

1(wg(G)1 = 7(®)) || < | (wg(G)1 = 7(Dg))*|lop - || (we(G) 1 — m(Dg)) " 1)
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<\ W1 (w,(9)1 — 7(@)) [4) < V.
Let @ := wy(G)1 — 7(Pg). It follows that

1@ @ ) [))] < (I (7(@g) @ 1)1 = 7(2g)) [9) + 1| (1, (G)1 — 7(B)) [9)]] < 6+ VE.

Now we fix orthonormal bases {|c;)}; and {|5;)}; for K4 and Kp respectively. We can
write 1 [1) = >, Aij [¥ij) ® oy, B;) for some unit vectors [¢y;) € Ha®Hp and some \;; €
C where 37, ;|\j|* = 1. By absorbing phase of [¢);;) into A;;, we may assume without loss

of generality that every &;; := (1;;]¢) > 0. So we can write |¢b;;) = d;; [¢0) + /1 — 0 [Kiz)
for some unit vector |k;;) € Ha ® Hp that is orthogonal to |1). Theorem implies
| @ [¢)]| =0 and ||® |x;;)|| > A for all ¢, j. Hence

(84 2 1@ @ DI D)* =Dy PP [i) I

Z‘?j

=) (L= )@ ki) [P = A% AP (1 - 67)
i

i,
> AP NP1 = 6yy) = A <1 - Z|)‘U|25U) :
i3 2%
The last inequality uses the fact that J;; <1 for all i, j. Let |x) := 3, i Aoy, B;). Then
~ 2(6 + V/€)?
1710~ 1) ® )2 =2 (1 - Zwm) < H0Av9
i,
So Equation (Z.3)) follows. For any (x,y,a,b) € X x Y x A x B, observe that
I(MZ@NI9)) — (Mg @ N [9)) @ |auz) = (IaM7 — (M} @ 1x,)1a) @ IsN} 1)
+ (M5 @ 1c,) ® (IpN} — (N ® L, ) I) 1)
+ M2 N @ 1(IY) — |9) © |auz) ).
Since IpNY, Mf, and Mf ® Ng’ all have operator norms < 1, we conclude that
11(MF @ N [)) = (Mg @ N} [¥) ) @ |auz)|] < | 4(Mg @ Lic,)La — M|
+ BN @ 1) Is — Nyl s
+ 1 |¥) = [¥) @ |aux)||.
So Equation (4.4]) follows. O

Remark 4.12. We remark that Theorem[].§ and Proposition[{.11] also hold if all “/poyuy
are replaced by pyy and “optimal quantum strategies” is replaced by “projective optimal
strategies”. The proofs follow similarly.
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5. TRACIAL STATES

In this section, we establish some properties of tracial states that will be used later.
Recall that, in this paper, all C*-algebras are assumed to be unital and separable. A
tracial state 7 on a C*-algebra A is a state satisfying 7(ab) = 7(ba) for all a,b € A.
We denote by T'(A) the set of tracial states on A. It is a convex set and is compact
and closed in the weak*-topology. We use 0.T(.A) to denote the extreme points in 7'(A).
We say a tracial state 7 on A factors through another C*-algebra B if there are some
sx-homomorphism ¢ : A — B and some tracial state 7 on B such that 7 = 7o . If in

addition, ¢ is surjective, we say 7 factors surjectively through B.
For any 7 € T(A), the kernel of 7, defined by

(5.1) I, ={a€ A:7(a"a) =0},

is a two-sided closed ideal. So (¢ +Z,,b+Z;) := 7(a*b),a,b € A defines an inner product
on A/Z,. Completing A/Z, with respect to this inner product gives the Hilbert space
L*(A, 7). For any a € A, we use @ to denote the canonical image of a in L?(A, 7). Let
7 A— B(L*(A, 7)) be the *-representation of A given by

7TT(CL)/Z; .= ab for all a,be A,

and let |7) := 1. Then the triple (L?(A,7),7,,|7)) is a GNS representation for 7. We
refer to m, as the left reqular representatin of 7, and refer to (L2(.A, T), o, \7')) as the
standard GNS for 7. One can also define the right reqular representation w2, which is
the -representation from A°° — Z(L*(A, 7)) given by

ng(aop)g := ba for all a,b € A.

Here A°P denotes the opposite algebra of A. That is, A°® = A as a Banach space, but
the multiplication on A is reversed: if we use a°® to denote any a € A in A°, then
a® - b? = (ba)°. It is clear that 7 (A) C w(A%). So the left and right regular
representations commute.

The following characterization of extreme tracial states is well-known (see e.g., [Dix82,
Theorem 6.7.3])

Lemma 5.1. Suppose 7 is a tracial state on a C*-algebra A. Then T is an extreme point
in T(A) if and only if the enveloping von Neumann algebra 7, (A)" is a factor.

Note that in the “if” direction of the above lemma, the hypothesis that = (A)” is a factor
does not necessarily mean 7, is irreducible. In fact, if an extreme tracial state 7 has an
irreducible GNS representation 7., then 7, must be a one-dimensional representation. In
other words, for any 7 € 9, T(A), T is a pure state if and only if 7 is a character.

5.1. Finite-dimensional tracial states. When working with quantum correlations (i.e.,
correlations can be realized by finite-dimensional models), we are particularly interested
in finite-dimensional tracial states and their convex structure. A tracial state is said to
be finite-dimensional if its GNS representation is finite-dimensional. The set of finite-
dimensional tracial states on A is denoted by Tg,(.A). The following characterization of
finite-dimensional tracial states is well-known (see e.g., [MR19]).
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Lemma 5.2. A tracial state 7 on a C*-algebra A is finite-dimensional if and only if one
of the following equivalent statements holds.

(a) AL, is finite-dimensional.
(b) T factors through a finite-dimensional C*-algebras.
(c) m:(A)" is finite-dimensional.

(d) The linear functional ¢ : A® @ A — C defined by ¢(a®® ® b) = 7(ab),a,b € A is
a finite-dimensional state.

Later in Proposition 5.6l we’ll show that Tg,(.A) is a convex face of T'(A). We first need
to establish the following lemmas.

Lemma 5.3. For any C*-algebra A, the set Ti,(A) is conver.

Proof. Let 71 and 75 be two finite-dimensional tracial states on a C*-algebra A. Then
there are finite-dimensional C*-algebras B; and Bs, *-homomorphisms ¢, : A — By and
w9 : A — By, and tracial states 77 and 75 on By and B; respectively such that 73 = 77 0 ¢4
and 7, = 73 0 9. For any 0 < A < 1, let 7 be the tracial state on B; & By defined by

7(B1, B2) = AT1(B1) + (1 — M) Ta(B2)
for all (B, B2) € By @ By. Then Amy + (1 — A\)72 = T o where ¢ := A\p; @ (1 — A)pq is a
s-homomorphism from A — B; @ By. This means the tracial state Amy + (1 — A\)7y factors
through the finite-dimensional C*-algebra By @ Bs, so A1y + (1 — A1y € Tha(A). Since
71, T2, and X\ were arbitrary, we conclude that T, (A) is a convex set. O

We use 9.T5n(A) to denote the extreme points in T, (A).

Lemma 5.4. Let 7 be a finite-dimensional tracial state on a C*-algebra A. Suppose
T =A11 + (1 = N1 for some 7,75 € T(A) and 0 < X < 1. Then 7, and 75 must be
finite-dimensional.

Proof. Since 7 € Tg,(A), the algebra A/Z, is finite-dimensional. Observe that for any
a € A, 7(a*a) = 0 if and only if 7 (a*a) = m(a*a) = 0. This means Z, = Z,, N Z,,.
Hence A/Z., and A/Z,, are both C*-subalgebras of A/Z,, so they are finite-dimensional.
It follows that 71,79 € Thn(A). O

Lemma 5.5. Let A be a C*-algebra. Then Tg,(A) is the convez hull of tracial states on
A that factor surjectively through full matrixz algebras.

Proof. Any 7 € Tq,(A) drops to a tracial state 7 on A/Z, so that 7 = T o ¢, where
q: A— A/Z. is the quotient map. Since A/Z, is finite-dimensional, we can write

AL = My - B My,

for some dy,...,d, > 1. For every 1 < i < k, let Il; : A/Z, — .#; be the canonical
projection. Then every ¢; := II; o ¢ is a surjective *-homomorphism from A — .#;,
and hence every 7; := try, op; is a tracial state on A that factors surjectively through the
matrix algebra .#;,. Since each 7| 4, is a tracial linear functional on .#;,, we must have
ﬂjfdi = \;trg, where \; = 7(14,). This implies 7 = A7y + - - A7, We conclude that
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every T € T, (A) is a convex combination of tracial states that factor surjectively through
full matrix algebras. O

The following proposition states that Tg,(A) is a convex face of T(A) and 9. T5,(.A)
consists of tracial states that factor surjectively through full matriz algebras.

Proposition 5.6. Suppose A is a C*-algebra such that Tg,(A) is non-empty.
(a) 0Tsn(A) = 0. T(A) N Tgn(A).

(b) A tracial state T is in 0. Thn(A) if and only if it factors surjectively through a full
matrix algebra, and

(¢) Tin(A) = conv(0:Tin(A)).

Proof. For part (a), it is clear that 9.T(A)NT5,(A) C 9. T5n(A), so it only left to show the
inverse inclusion. Now assume that there is a 7 € 0,15, (A) which is not in 9.7°(A). Then
there are distinct 7y, 5 € T'(A) and 0 < A < 1such that 7 = Ary+(1—\)7. By Lemmal5.7],
71 and 7y are finite-dimensional. This implies 7 is not an extreme point of T;,(A), a
contradiction. Hence 9, Tg,(A) C 9.T(A). We conclude that 0,75, (A) = 0.T(A)NTx,(A).

For part (b), let 7 € Tg,(A). Then 7 has a convex combination A\j7q + - - - \x7x where
every 7; factors surjectively through a full matrix algebra, as shown in Lemma [5.5. For
the “only if” direction, suppose 7 is in 9,7, (A). Then we must have 7 = --- = 74, and
hence 7 factors surjectively through a full matrix algebra. For the “if” direction, suppose 7
factors surjectively through a full matrix algebra. Let (L*(A,7), 7, |7) ) be the standard
GNS of 7. Then 7 = try op for some surjective x-homomorphism ¢ : A — .#,;, and hence

I, ={a € A:try(p(a*a)) =0} = {a € A: p(a) = 0} = ker(yp).

This implies 7, (A) & A/Z, = A/ker(y) = A, is a full matrix algebra. So 7 (A)" is
a factor, and hence 7 € 9, T(A). Then by part (a), 7 € 9. Ts.(A). We conclude that a
tracial state 7 is in 9,75, (A) if and only if 7 factors surjectively through a full matrix
algebra.

Part (c) follows straightforward from part (b) and Lemma [5.5 O

From the proofs of Proposition 5.6l and Lemma 5.5, we immediately see that:

Corollary 5.7. Let A be a C*-algebra. A tracial state T on A is in 0.Tx,(A) if and only
if A/Z, is a full matriz algebra.

We now study the GNS construction of states in 0.Tj,(A). Given a 7 € 0.T5n(A),
let (L*(A,7),7;,|7)) be the standard GNS for 7. Since L*(A,7) is finite-dimensional,
A/Z, = L?(A, 1) as a Hilbert space. Let ¢ : A — A/Z. be the quotient map. Then 7 drops
to a tracial state 7 on L2(A, 7) so that 7 = Toq. By Corollary 5.7, we can identify L2(A, 7)
with] My for some d > 1. Under this identification, 7 = try and |7) = Ld Zle €;i, where
{e;; + 1 <i,j < d} is the standard basis for .#;. While all GNS representations of 7
are unitarily equivalent to the standard one, some of them have a more “concrete” form.
The following proposition illustrates that any extreme finite-dimensional tracial state has
a GNS representation that employs a maximally entangled state.

"Here we think of .#,; as a Hilbert space with inner product (A, B) = try(A*B)
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Proposition 5.8. Let A be a C*-algebra. A state 7 on A is an extreme point in Tg,(A)
if and only if T has a GNS representation (C? @ C?, 1 ® 7r( ), |pa) ), where d > 1, 7 is an

irreducible x-representation of A on C%, and |¢g4) = f S ) @ i),

Proof. For the “if” direction, observe that m is a surjective x-homomorphism from A —
M,(C) such that

7(a) = (pal L ® 7(a) |pa) = trq (r(a))

for all @ € A. This means 7 is a tracial state that factors surjectively through the full
matrix algebra My(C) = .#,. By part (b) of Proposition 5.6, we have 7 € 0.Th,(A).

Now we prove the “only if” direction. Suppose 7 € 9, T, (A). Then the standard GNS
of 7 has the form (Ay, 7., |T)), where |7) = %Zle e; and {e;; : 1 < 4,5 < d} is the
standard basis for My. Let U : My — C@C? be the unitary map sending e;; + [j) @ |).
Then U |7) = f S iY@ i) = |@a). Let @ : .4y — My(C) be the isomorphism sending
eij +— |i) (j] for all 1 <4, j < d. Then 7 := ® o7, is a surjective *-homomorphism from
A — M, (C), and hence 7 is an irreducible *-representation. For any a € A, 7, (a) can be

written uniquely as ZZ =1 @ijei; for some a;; € C, so

d
U (a)U* |k, 0) =U Z a;j€iiem = UZawelk = Zaw |k,i) = |k) ® (Zaw |Z>)
2,7=1 =1
Zam 0 = 1y & (3 a4 710)

i,j=1

= k)@ (@(m(a)) 0)) = k)@ (x(a)|6))

for all |k, ¢) € C¢® C?. This implies Ur, (a)U* = 1 ® 7(a) for all a € A. It follows that
(C'@C? 1®@7(-), |¢a) ) is unitarily equivalent to the standard GNS of 7, and hence itself
is a GNS representation of 7. O

The unitary operator U in the proof of Proposition [5.8is known as the transformation
of the operator-vector correspondence. From the proof, we see that the left regular rep-
resentation . satisfies 7,(a) = U*(1 ® m(a))U for all @ € A. Consequently, the right
regular representation 7% is given by 7% (a) = U*(m(a)” @ 1)U.

For every 7 € 0.T5,(A), the irreducible representation 7 in the statement of Propo-
sition [5.§8] is unique up to unitary equivalence. This gives a one-to-one correspondence
between extreme finite-dimensional tracial states on 4 and finite-dimensional irreducible
representations of A.

Corollary 5.9. For any C*-algebra A, let Irrg,(A) be the set of inequivalent finite-
dimensional irreducible x-representations of A. There is a bijective correspondence be-
tween Irrg, (A) and 0. Ts,(A), sending a representation w € Irrg, (A) to the tracial state T
given by 7(a) = trq (7(a)),a € A, where d is the dimension of 7.

In particular, a C*-algebra A has a unique finite-dimensional irreducible x-representation
if and only if Irrg,(.A) has a unique extreme point. So Corollary [5.9 further implies that:
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Corollary 5.10. A C*-algebra A has a unique finite-dimensional tracial state T if and
only if A has a unique finite-dimensional irreducible x-representation w. In this case,
7(a) = try (7(a)),a € A, where d is the dimension of .

If a closed two-sided ideal J is contained in Z, for a tracial state 7 on A, then it is
clear that 7 drops to a tracial state on A/J. The following lemma asserts that the finite
dimensionality of 7 will also be preserved.

Proposition 5.11. Let A be a C*-algebra. Suppose J is a closed two-sided ideal of A, and
let g : A— AT be the quotient map. There is a bijective correspondence between tracial
states on A/ J and tracial states on A whose kernel contains J, sending a 7 € T(A/J)
to the tracial state T := 7 o q. Moreover, T € T(A/J) is finite-dimensional if and only if
the corresponding T is finite-dimensional.

Proof. Observe that L?(A,7) & L*(A/J, 7). So the lemma follows. O

5.2. Amenable tracial states. In the study of robust self-testing, we need to work
with weak*-limit of finite-dimensional tracial states. This leads to the study of amenable
tracial states.

Definition 5.12. Let A be a C*-algebra, and fix a faithful representation A C PB(H).
We say a state T on A is an amenable tracial state if there is a state ¢ on B(H) such
that ¢|4 = 7 and ¢(uTu*) = ¢(T) for any T € B(H) and unitary u € A.

Note that ¢|4 is indeed a tracial state. This is because ¢(uv) = ¢(u(vu)u*) = ¢(vu)
for all unitaries u,v € A and unitaries in A span the entire A. Another subtle point
in this definition is that the amenability of 7 is independent of the choice of embedding
A C B(H) (see [BOOY, Proposition 6.2.2] for a proof).

The following characterization of amenable tracial states is from [BOO&, Theorem 6.2.7].

Lemma 5.13. A tracial state 7 on a C*-algebra A is amenable if and only if one of the
following equivalent conditions holds.

(a) There exists a sequence of ucp maps ¢, : A — Mq,,n € N such that 7(a) =
lim trg, (¢n(a)) and le |on(ab) — @n(a)en(b)||ns = 0 for all a,b € A.

n—o0

(b) The linear functional ¢ : A® @ A — C defined by ¢(a°® ® b) := 7(ab),a,b € A is

a min-continuous state.

(¢) The *-homomorphism 7™ : AP @ A — B(L*(A,7)) defined by 7(a®® @ b) =
7P (a®)m(b), a,b € A is min-continuous.

(d) For any faithful representation A C B(H) there is a ucp map ¢ : A(H) — 7. (A)"
such that ®(a) = 7, (a) for all a € A.

For any two-sided ideal J of A, in Proposition [5.11] we have seen the correspondence
between tracial states on A/J and tracial states on A whose kernel contains 7. The
following proposition asserts that amenability is preserved in one direction of this corre-
spondence.
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Proposition 5.14. Let A be a C*-algebra. Suppose J is a closed two-sided ideal of A,
and let ¢ : A — A/J be the quotient map. If a tracial state T on A/J is amenable, then
the tracial state 7 := 70 q on A is amenable.

Proof. Suppose T is an amenable tracial state on A/ 7, and let T := 7 0 q. Then there is
a sequence of ucp maps ¢, : A/J — My,,n € N such that 7(a) = lim try, (¢,(a)) and
n—oo

lim ||, (ab) — @n(a)en(b)||ns = 0 for all a,b € A/J. It follows that ¢, := p,0q: A —
n—oo

My, ,n € N is a sequence of ucp maps such that lim trq, (@,(a)) = 7(g(a)) = 7(a) and

n—oo

lim ||@,(ab) — @n(a)@n(b)||ns = 0 for all a,b € A. So T is amenable. O
n—oo

Remark 5.15. Unlike Proposition [5.11], the converse of Proposition may not hold
in general: there are examples where an amenable tracial state T on A drops to a non-
amenable tracial state T on A/J. However, as shown in [BOOS, Proposition 6.5.5], if

0T = A— A/T — 0 is a locally split extension, then any amenable tracial state on
A whose kernel contains J always drops to an amenable tracial state on A/J.

6. A TRACIAL-STATE CHARACTERIZATION OF SELF-TESTING

In this section, we relate self-testing with tracial states on C*-algebras. We first dis-
cuss the sufficient conditions under which optimal strategies of a nonlocal game can be
characterized by tracial states on Bob’s algebra 52713/{54 only.

Definition 6.1. Let I' :== {y* : x € X,a € A} be a set of self-adjoint x-polynomials in
%gﬁ/p and let R be a set of x-polynomials in %g{,ﬁ/[. We say (I',R) is a determining pair
for a nonlocal game G = (X,Y, A, B, u, V') if the following conditions hold.

(i) For every x € X, {q(7%)}aca is a PVM in the quotient C*(G) := /35, /(R),
where (R) is the closed two-sided ideal generated by R and q : o)y — C*(G) is
the quotient map.

(ii) A statdl f on 350 @ X5 is optimal for G if and only if
(a) f((m2@1—1@7%)?) =0 forallz € X,a € A, and
(b) j—}zi*iﬂi;ziwof;zgcii;ialeTé': f|1®w§‘ﬁ4 is a tracial state on </p%, that satisfies
In Condition (i), {¢(7¥) : a € A} is a PVM in C*(G) means that
© (Xoear) =1,
o ¢((09)) = a(v) = a((4)?) and
o q(vivi) =0

for all x € X and a # a/. We usually express 77 as a *-polynomial over n;’s. Since the
quotient map sends each generator n} for ,Qf;/{/@ to the generator nj for C*(G), we often

6Since we assume all states are bounded in the sense of Equation (1), every state f on the algebraic
X,A Y,B . .
tensor @5y ® &piy Is max-continuous.
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just say {77 : a € A} is a PVM in C*(G). We refer to the C*-algebra C*(G) defined in
Condition (i) of Definition [6.1] as the associated game algebra of G.

In Condition (ii), although we are working with max-continuous states on &p\/4,@.piy,
the optimal value of G still refers to the quantum value w,(G). Here 7 = f|, P Means

m(a) = f(1®a) for all a € %,

It is sometimes convenient to work with unitary observables {a, : x € X},{b, : y € Y}
as generators for dﬁ%ﬁ@dg{/ﬁ/r In this case, we write I' = {~, : © € X} where every 7, isa
«-polynomials over b,’s. Condition (i) becomes every ¢(,) is unitary of order |B| in C*(G),
and part (a) of Condition (ii) is replaced with f((a; ® 1 =1 ®7,)*(a; ® 1 =1 ®7,)) =0
for all x € X.

The above definition may appear technical, but it provides a natural and Hilbert-space-
free framework for many nonlocal games of interest, including synchronous games, XOR
games, BCS games, and mirror gamesﬁ [Lup+20]. Here we take a moment to provide more
intuitions. The existence of polynomials I' and relations R in Definition states that in
any optimal strategy, the action of Alice’s measurement m; is completely determined by
the measurement ¥ on Bob’s side, and Bob’s measurements must satisfy certain algebraic
relations R.

For instance, if S = ({MZ}, {N/},|¢)) is a perfect commuting-operator strategy for a
synchronous game G = (X, A, V), then by [Pau+16],

(6.1) M7 )y = N |¢) forall x € X,a € A, and
(6.2) (Y| Ny N} [¢) = 0 whenever V(a,b|x,y) = 0.

Equation (G.]) implies that the state f induced by S satisfies f((mZ®1—1®n%)?) =0
for all x and a, so we can just take v¥ = n’. This gives the set of *-polynomials I.
Equation (6.2)) suggests the the set of relations R = {n¥nj : V(a,b|z,y) = 0}. The game
algebra C*(G) is the quotient @/p;;/(R). Bob’s measurements NY’s together with the
vector state 1) define a tracial state on ./}, that respects all the relations in R. As
we’ll show in Section [6.3] every synchronous game with commuting-operator value 1 has
such a determining pair (I', R).

In Section [6.4] we also show that all XOR games have determining pairs. Take the
CHSH game as an example. If a commuting-operator strategy S = ({AO, A1}, {Bo, B1}, |¥) )
is optimal for CHSH, then

Ao [) = BB |45) | and Ay [g) = Ba=B )

Here we work with binary observables ag, a; and by, b; as generators for esszZ‘?,’AZf Omin %gﬁ,ﬁ?
The above equations imply that the state f induced by S satisfies

fllao®@ 1 -1 @%)%) = f((a ® 1 - 1®2)?) =0

So we take I' = {bo\g’l, bo\;é’l +. We also require bo\g’l and bo\bbl are binary observables as

in Condition (i) of Definition [6.1] which is equivalent to require by and b; anticommute.

"We remark that we do not know if the class of imitation games introduced in [Lup+20] fits into this
framework. The reason is that we are not aware of any Hilber-space-free way to encode the relations
between Alice and Bob’s measurements which are employed in perfect strategies of imitation games
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This gives the relations set R = {byb; + b1bo}. The game algebra associated with CHSH
is /2202 [(R) = Cly, the Clifford algebra of rank 2.

In the following, we present a tracial-state characterization of self-testing for nonlocal
games that have determining pairs. For such a nonlocal game G, we show that its self-
testing property of G can be characterized by tracial states on the associated game algebra
C*(G). Then we illustrate that every synchronous game or XOR game has a determining
pair. So their self-testing properties can be characterized by tracial states on the respect
game algebras.

6.1. General results for correlations. We first prove the following general statement
for extreme quantum correlations.

Theorem 6.2. Suppose a nonlocal game G has a determining pair (I', R). Let C*(G) be
the associated game algebra, and let q : ﬂﬁ{,@ — C*(G) be the quotient map. If an extreme
quantum correlation p is optimal for G, then the following statements are equivalent.

(a) p is a self-test for all quantum models.
(b) p is an abstract state self-test for finite-dimensional states on %If(‘}?/l Rmin &fg{,@.
c ere is a unique finite-dimensional tracial state T on o satisfying

There i que finite-dimensional tracial stat Aoy satisfyi

(6.3) 7(r*r) =0 for allr € R, and
(6.4) T(vany) = p(a,blz,y) for all a,b,z,y.

(d) There is a unique finite-dimensional irreducible x-representation 7 : ﬂﬁ{,@ —
My(C) such that the linear functional T := try o satisfies Equations (6.3) and (6.4]).

The proof is established on a sequence of technical lemmas that characterize the non-
local games that have determining pairs. We outline some proof ideas. Suppose p € 0.C,
is optimal for a nonlocal game G with determining pair (I';’R). We will show that p
must have a full-rank projective model, so p has a unique finite-dimensional state on the
product of PVM algebras if and only if it has a unique finite-dimensional state on the
product of POVM algebras. The latter condition is equivalent to part (a), as shown in
Theorem B.7 So (a) < (b). For (b) < (c), we demonstrate a one-to-one correspon-
dence between states on ﬁ%ﬁi}ﬁ Dmin Doy for p and tracial states on @7}, satisfying
Equations (6.3) and (6.4). For (¢) < (d), we use the one-to-one correspondence between
finite-dimensional irreducible representations and finite-dimensional extreme tracial states
that was established in Corollary

For notational convenience, we denote by T®)(I', R) the set of tracial states on o7/p,

that satisfy Equations (6.3) and (6.4]). We use Tﬁ(ﬁ)(F,R) to denote the set of finite-
dimensional tracial states in 7W)(I',R). From Equations (6.3) and (6.4), it is clear

that both 7®)(I", R) and Tﬁ(ﬁ)(F,R) are convex sets. We denote by 9. 7" (I",R) and
8.T” (T, R) the extreme points in T®(I',R) and T\*(I,R) respectively. Later, in
Lemma [6.6 we will see that T, éﬁ)(F,R) is a convex face of Ty (2/p;h,) whenever p is
an extreme point in Cj,.
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Recall that a state f on the x-algebra ﬁ/ﬁ&ﬁ@ﬁ/ﬁ{% is said to be optimal for a nonlocal
game G = (X, Y, A, B, u, V) if f(Pg) = w,(G), where ®g is the game polynomial.

Lemma 6.3. Suppose a nonlocal game G = (X,Y, A, B,u,V) has a determining pair
(T, R). If a tracial state T on <fpi}s, satisfies 7(r*r) = 0 for all r € R, then T extends
uniquely to a state f on %ﬁ}ﬁ@ iy, which is optimal for G and satisfies

(6.5) flmgt - -mgk @ny)-onyt) = T(y,k gyl ongy)

for all k.0 € N and zq,...,21 € X, a1,...,a, € A, y1,...,ys € Y, by,...,by € B. If
in addition, T is finite-dimensional (resp. amenable), then f is finite-dimensional (resp.
min-continuous,).

Proof. Suppose 7 is a tracial state on 52713/{34 such that 7(r*r) = 0 for all »r € R. Then 7
drops to a tracial state 7 on the quotient C*(G) such that 7 = 7 o ¢, where ¢ : %g{ﬁ/[ —
C*(G) is the quotient map. Let (Hz, 77, |7)) be the standard GNS for 7. Here 75 is the
left regular representation for 7. Then 7, := 77 o ¢ is the left regular representation for
7, and (Hz, 7, |T)) is the standard GNS for 7.

Note that for every x € X, {¢(7¥) : a € A} is a PVM in the quotient C*(G). This means
every {m2¥(¢(7¥)) : @ € A} is a PVM on Hz. It follows that every {m2P(7%) : a € A} is
a PVM on Hz. Hence there is a %-representation 7 : @/ph, @ iy — PB(Hz) sending
mE@1 = 1%(y%) and 10nY — 7.(nY) for all a, b, x,y. Let f be the state on .oy ®.Fpiy
defined by f(a):= (F|x(a) |7),a € Zp @ /5, Then

flmgt -k @yl - -ml) = (TP (v -+ -y ) (ngy - - -y |7)
= (Tl (vag -+ Yoy gy -1, ) |T)

(AT AT YL Y
- T(7ak 7(11 nbl nbg )

for all k,/ € N and x1,...,21 € X, a1,...,ap € A, y1,...,y¢ € Y, by,...,by € B. This
proves Equation (6.5). Meanwhile,

m(mg @ 1) |7) = n2P(5) [T) = 7 (va) [T) = 7(1 @ ¥5) [7) -

This implies f((m2Z ® 1 —1®~4Z)*) = 0. So f satisfies part (a) of condition (ii) in
Definition Part (b) of condition (ii) follows from Equation (6.5). We conclude that
f is optimal for G. Since monomials of the form mZ!---mgk @ ny; - ni’f span a dense
subset of @70 @ o/pik . Bquation (6.5) implies that f is uniquely determined by 7.

If 7 is amenable, then 7 x 7, is min-continuous, and hence f is min-continuous. If 7
is finite-dimensional, then Hs is finite-dimensional, and hence f is finite-dimensional. [

Proposition 6.4. Suppose G has a determining pair (I',R) and p € C,. is optimal for

G. There is a bijective correspondence between states on oy @ iy for p and tracial

; (p) ; ; -
states in T'"P(I',R), sending an f to the tracial state T : f|1®%§;ﬁ4' Moreover,

(a) f is finite-dimensional if and only if the corresponding T is finite-dimensional, and

(b) f is min-continuous if the corresponding T is amenable.
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Proof. Let f be a state on ,Qfg(l}ﬁ ® eszf;/{,i for p. Since p is optimal for G, f is an optimal
state for G. So

(6.6) FlmE@1—184%)?) =0

forallz € X,a € A, and 7 := f|1®w§‘ﬁ4 is a tracial state on %’g{ﬁ/[ satisfying 7(r*r) = 0
for all r € R. Let (H,, |¢)) be a GNS representation for f. Equation (6.6]) implies

m(mg @ 1) [¢) = 7(1® ;) [¥)
forall x € X,a € A. It follows that

T(vamy) = (W71 @gny) [§) = (Y] m(mg @ ) [¢) = f(mg @ ny) = pla, blz,y)

for all a,b,z,y. So 7 is a tracial state in T7®)(I', R). Moreover, if f is finite-dimensional,
then 7 factors through the finite-dimensional C*-algebra 7(1 ® %13/{34), and hence 7 is
finite-dimensional. The rest of the proof follows straightforwardly from Lemma 6.3 [

Lemma 6.5. Suppose G = (X, Y, A, B, u, V') has a determining pair (I, R). If a quantum
correlation p € Cy(X,Y, A, B) is optimal for G, then p has a full-rank projective model.

Proof. Let f be a finite- dimensional state on oy @min Dpiy for p, and let 7 be the
corresponding tracial state in T (F R) given by Proposition [6.4l Since 7 is a finite-
dimensional tracial state on %PVM, by Proposition 5.6, 7 has a convex combination 7 =
AT+ -+ AT of tracial states 71, ..., 7, € 86Tﬁn(,;z/,§(1}j\44). By Proposition £.8], every 7;
has a GNS representation (C% @ C%, 1 ® m;(-), |¢q,) ), where d; > 1, m; : A — My, (C) is
an irreducible *-representation, and |¢g4,) = \/—1672_ Z;l:1 |7) ® |7). Note that Aq,...,A\x >0,
so 7(r*r) = 0 for all r € R implies 7;(r*r) = 0 for all r € R and 1 < ¢ < k. Since
every {7* : a € A} is a PVM in the quotient @/p;5 /(R), every {m(y%)T : a € A} is
a PVM on C%. Let M* := @, m(y)T, N/ == @F , m(n?) for all a,b,z,y, and let
[4) = @_y VA [pa). Then

S .= <@ C*, @ C%, {MZ}, {N}3, |w>)

is a full-rank projective quantum model such that

k k
pS(a7 b|$, y) = Z >\2 <()0d1
i=1

(V)T @ mi(ng) lpa) = > Ni (g,

i=1

(Vo) mi(ny) [a;)

—ZA (a,| 1 ® mi(vind) |a,) ZATZ vany) = T(viny) = pla,blz, y)

i=1
for all a,b, x,y. This completes the proof. O

In the proof of Lemma [6.5], we see that the model S employs a direct sum of maximally
entangled states. When p is an extreme point in C,, we can strengthen Lemma p has
a projective model which employs a single maximally entangled state. The proof is based
on the observation that Tﬁ(ﬁ)(F, R) is a convex face of Tj ﬁn(dg{/ﬁ/[) whenever p is extreme.
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Lemma 6.6. Suppose G has a determine pair (I', R) and p € C, is optimal for G. If p is
an extreme point in Cy, then

(a) Ty (T, R) N 0:Tan(pifng) = 0Ty (T, R).
(b) TP, R) = conv(3. T (T, R)), and
(¢) p has a projective quantum model that employs a maximally entangled state.

Proof. For part (a), it is clear that T,”(T', R) N 8. Tin (5 ,) € 0T (I, R). To see the
converse inclusion, we assume for the sake of contradiction that thereis a 7 € 0.7 éﬁ)(f‘ \R)
which is not in 0.7; ﬁn(%g{/@>. Then there are distinct 7,7 € Tﬁn(%;/{/%) and 0 < A <1
such that 7 = A1y 4+ (1 = \)7p. 7isin T®(T, R), so 7(r*r) = 0 for all » € R. Since A > 0,
1—=A> 0, and 7 (r*r), (r*r) > 0, it follows that

(6.7) T (r'r) = n(rr) =0

for all r € R. By Lemma [6.3] the vectors py, py, € RA*EXX>Y defined by p;(a,b|z,y) =
7;(vEny),i € {1,2} are optimal quantum correlations for G such that p = Ap; + (1 — A)po.
Because p is an extreme point in C, we have p; = p; = p. Equation (6.7) implies 71, 75 €
ng) (I',R), which contradicts the assumption that 7 is an extreme point in Téﬁ)(F,R).
We conclude that Téﬁ)(F, R) N O Tin (i) = 86Té§)(f‘, R).

Now we prove part (b). For any 7 € Tﬁ(ﬁ)(F.R), by Proposition 5.6, 7 is a convex
combination 7 = MA; + -+ M of T, T € Tﬁn(%g{,@). Since every A; > 0,
7(r*r) = 0 for all » € R implies 7;(r*r) = 0 for all 1 < ¢ < k and r € R. Again, by
Lemma and the extremality of p, every 7; is on T éﬁ) (I',R). Hence by part (a), every
7; is in 9. TP (T, R). This proves part (b).

For (c), we first note that ng) (I',R) is non-empty, because p is optimal for G. Let
T € 06Tﬁ(ﬁ)(f‘,72). Then by part (a), 7 € 9.Thn(piry). By Proposition B8, 7 has a
GNS representation (C?*®C% 1@ (-), |¢q) ) where 7 : AyB = My(C?) is an irreducible
-representation and |pg) is a maximally entangled state. Let M7 := w(7%)T and N} :=
m(nY) for all a,b, z,y. Then following the same reasoning as in the proof of Lemma [6.5]

S = (Cdv Cdv {M;}v {Ng}’ |90d> )
is a projective quantum model for p that employs a maximally entangled state. O
Now we are ready to proof Theorem [6.2]

Proof of Theorem[6.2. (a)<(b): By Lemma [63 p has a full-rank projective quantum
model. Then by [Pad+23, Corollary 3.6], p is a self-test for all quantum models if and
only if p is an abstract state self-test for projective finite-dimensional states. So (a)<(b)
follows.

(b)<(c) follows directly from the bijective correspondence between finite-dimensional
states on Zpyhy @min Dpiny for p and tracial states in 7, éi)(f‘ ,R), as shown in Proposi-
tion [6.41
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(c)<(d): By Lemmal6.0] Téfz) (', R) contains a unique element if and only if 0.7, éi) (I',R)
contains a unique element. So (¢)<(d) follows from the correspondence between tracial

states in 86Tf§ﬁ) (I', R) and representations in Irrg, (,Q/;/{/@) which satisfy part (d) of The-
orem [6.2) as shown in Corollary 5.9 O

Corollary 6.7. Let G be a nonlocal game with a determining pair (I',R). Suppose
p € 0.C, is optimal for G and is a self-test for quantum models. Let f, T, and 7 :
ik = My(C) be unique finite-dimensional state on ooy @min A pitas for p, then unique
tracial stat in T, (I, R), and the unique irreducible representation given by part (d) of
Theorem [6.2 respectively. Let ]\7(;” = 7(v®)T and Né’ = mw(ny) for all a,b,z,y, and let

ed) i= =L, 1) @1i). Then
(a) the tuple (C* @ C*, 1@ w(-),|pa) ) is a GNS representation for T,
(b) S := (C*,c, {]\7;”}, {Né’}, lpa) ) is an ideal model for p, and
(c) the tuple (Cd ®C my @ g, |g0d)) is a GNS representation for f, where T4 @ mp
is the associated representation of S.

6.2. General results for nonlocal games. We also prove the following general state-
ment for nonlocal games.

Theorem 6.8. Let G be a nonlocal game with a determining pair (I',R), and let C*(G)
be the associated game algebra. Then the following statements are equivalent.

(a) G is a self-test for its optimal quantum strategies.

(b) There is a unique finite-dimensional optimal state on MJ;X‘}}@ Rmin %’g{/ﬁ/[ for G.
(c) C*(G) has a unique finite-dimensional tracial state.

(d) C*(G) has a unique finite-dimensional irreducible x-representation.

For the proof, we need to establish a correspondence between optimal states for G and
tracial states on C*(G). Given a nonlocal game G with a determining pair (I', R), we say
a tracial state 7 on ./p, is optimal for G if 7(r*r) = 0 for all r € R. By Lemma 6.3 if
7 is an optimal tracial state for G, then the correlation defined by p(a,blz,y) = 7(v2n})
is optimal for G. Hence a tracial state 7 on 52%13/{34 is optimal for G if and only if 7 is in
T®)(T', R) for some optimal p € C,, for G. The following correspondence between optimal
states on MJ;X‘}}@ ® 52713/{54 for G and optimal tracial states on %ﬁ}ﬁ ® %]Z{ﬁ/] for G is an
immediate consequence of Proposition

Lemma 6.9. Suppose G has a determining pair (I',R). There is a bijective correspon-

dence between optimal states on %ﬁﬁ}ﬁ@ Ay, for G and optimal tracial states on o/,
for G, sending an f to the tracial state T := f\lwg’@- Moreover,

(a) f is finite-dimensional if and only if the corresponding T is finite-dimensional, and

(b) f is min-continuous if the corresponding T is amenable.
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Any optimal tracial state for a nonlocal game G with determining pair (I', R) drops
to a tracial state on the quotient C*(G) and vice versa. The following correspondence
between optimal tracial states for G and tracial states on the associated game algebra
C*(G) follows straight from Propositions [B.11] and [5.141

Lemma 6.10. Suppose G has a determining pair (I', R), and let C*(G) be the associated
game algebra. Then there is a bijective correspondence between optimal tracial states on
A5 for G with respect to (T, R) and tracial states on C*(G). Moreover,

(a) an optimal tracial state on %g{ﬁ/[ s finite-dimensional if and only if the corre-
sponding tracial state on C*(G) is finite-dimensional, and

(b) an optimal tracial state on 52713/{54 is amenable if the corresponding tracial state on
C*(G) is amenable.

Put everything together, we conclude that:

Proposition 6.11. Suppose G has a determining pair (I',R). Then there is a bijective
correspondence between optimal states on oy ® Aoty for G and tracial states on C*(G).
Moreover,

(a) an optimal state is finite-dimensional if and only if the corresponding tracial state
is finite-dimensional, and

(b) an optimal state is min-continuous if the corresponding tracial state is amenable.

Now we are ready to prove Theorem

Proof of Theorem[6.8. (a)<(b): By Lemmas .3 and [£.4] both (a) and (b) imply that G
has a unique optimal quantum correlation p and p is an extreme point in C,. So (a)<(b)
follows from (a)<(b) in Theorem

(b)<(c) follows directly from the correspondence between finite-dimensional optimal
states on ,;zf;(‘}ﬁ Dmin Dpiy for G and finite-dimensional tracial states on C*(G), as shown
in Proposition

(c)&(d): By Proposition B8, Ts,(C*(G)) contains a unique element if and only if
9. T (C*(G)) contains a unique element. So (b)<(c) follows from Corollary O

Corollary 6.12. Let G be a nonlocal game with a determining pair (I', R). Let C*(G) be
the associated game algebra, and let q : ,Qfg{/i — C*(G) be the quotient map. Suppose G is
a self-test for its optimal quantum strategies. Let p € 0.Cy be the unique optimal quantum
correlation for G given by Lemma[{.3 Then p is a self-test for quantum models. Let 7
be the unique x-representation in Irrg, (C*(G)) given by the part (d) of Theorem 6.8, and

let  be the irreducible x-representation on ﬂﬁ{,@ given by part (d) of Theorem[6.4. Then
T=Togq.

6.3. Self-testing for synchronous games. Recall that a game G = (XY, A, B, 1, V)
is said to a synchronous game if A = B, X =Y, and V(a,d |r,z) = 0 for all x € X and
a # a in A. We make the convention that the question distribution in a synchronous
game is uniform on X X Y, and we use G = (X, A, V') to denote a synchronous game.
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Given a synchronous game G = (X, A, V') and a projective commuting operator strategy
S = (H,{MZ*},{N/},|¢¥)) for G. The strategy S is perfect for G if and only if

(6.8) (Y MIN [p) =0
whenever V(a, b|x,y) = 0. As shown in |[Pau+16, Theorem 5.5], if S is perfect for G, then
(6.9) Mg [) = Ng [4)

foralla € A and b € B.

Proposition 6.13. Suppose G = (X, A, V) is a synchronous game with w,.(G) = 1. Then
G has a determining pair (I', R) where

o vi=nl forallac A andz € X, and
e R ={n’n]:V(a,blzr,y) =0}.

Proof. Since every {n? :a € A} is a PVM in %1;)(‘}}\4/1, every ¥ is self-adjoint in MJ;X‘}}@ and
every {7% : a € A} is a PVM in C*(G) := «/y4/(R). Condition (i) of Definition
holds.

Next we examine condition (ii). Let f be a state on @Zpa @ @niny, and let (H, 7, |1))
be a GNS representation for f. Let M? := w(m?¥), N := n(n?) for alla € A,x € X, and
let S := (H,{MZ},{N/}, 1)) be a projective commuting operator strategy for G

Suppose f is perfect for G. Then S is perfect for G. Equation (6.9) implies that

flmg @1 —1@75)%) = [I(M7 = N) [)|I* =0
for all a € A and = € X. Hence f satisfies part (b) of condition (ii) in Definition [6.11 Let

— Tl ., .. Tk — Y Y : ; X,A o
w1 = Nt - ngk and wg = ny; -+ -, be two monomials in &5y, Note that every Mg is

self-adjoint and commutes with every N/. By Equation (6.9) again,
fA@wawy) = (W[ Ny -+ Ny Nt NoF ) = (@] Mgk - - Mgt N - Ny! ()
= <¢‘ N;Ell .. .N;:Né/ll .. 'Nlierll .. N;: W> = f(l ® w1w2)-

Since w; and wy were arbitrary and monomials over {n} : y € X,b € A} form a dense
subset of egf]f(‘}ﬁ, the linearly functional 7 := f|, x4 is a tracial state on egf]f(‘}ﬁ. For any
"PVM

relation 7 = n*n} in R, by Equations (6.8) and (6.9),
T(r'r) = r(myngnany) = T(ngny) = (VI NG N [) = (| MGN) [¢) = 0.
We conclude that f satisfies condition (ii) in Definition
Now suppose [ satisfies condition (ii) in Definition 6.1l By part (a) of condition (ii),

the strategy S satisfies Equation (6.9)) for all @ € A and = € X. Part (b) of condition (ii)
implies that 7 := f[, a XA is a tracial state satisfying

0= 7((ngny)"(nany)) = 7(ngny) = (I NING [) [v) = (| MGNY ) .

whenever V(a,b|z,y) = 0. This implies S is perfect for G, and hence f is perfect for
g. U
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We refer to C*(G) := Zpyay/ (R), with R defined in Proposition[6.13} as the synchronous
algebra for G.

Note that for any synchronous correlation p € C;¥"(X, A), one can define a synchronous
game G = (X, A, V) such that p is perfect for G. So Theorem [6.2]applies to all synchronous
correlations.

Theorem 6.14. Suppose a synchronous quantum correlation p € C’;y"(X, A) is an ex-
treme point in Cy. Then p is a self-test for quantum models if and only there is a unique
finite-dimensional tracial state on o/piy such that T(nin¥) = p(a, blz,y) for all a,b, z,y.
Proof. Let G = (X, A, V) be the nonlocal synchronous game defined by V' (a, b|z,y) = 0 if
and only if p(a, b|z,y) = 0. Then p is a perfect quantum correlation for G. Let (I', R) be

the determining pair of G defined in Proposition [6.13. Then a finite-dimensional tracial
state 7 on Z/pyy is in TP (I, R) if and only if

(i) 7(n¥ny) = p(a,blz,y) for all a,b, z,y, and
(ii) 7((nfny)*(nfny)) = 7(nni) = 0 whenever V(a,b|z,y) = 0.

Note that (ii) is equivalent to 7(n¥ny) = 0 whenever p(a,b|x,y) = 0, and this is already
implied by (i). So ngﬁ)(F, R) consists of all finite-dimensional tracial states that satisfy
(). The theorem follows from (a)<>(c) in Theorem O

In terms of self-testing for synchronous games, Theorem immediately implies the
following characterization.

Theorem 6.15. Let G = (X, A, V) be a synchronous game, and let C*(G) be the associated
synchronous algebra. The following statements are equivalent.

(a) G is a self-test for its perfect quantum strategies.
(b) C*(G) has a unique finite-dimensional tracial states.
(¢c) C*(G) has a unique finite-dimensional irreducible x-representation.

6.4. Self-testing for XOR games. Recall that a nonlocal game G = (I, J, A, B, 1, V)
is an XOR game if A = B = {0, 1}, and there is a matrix (¢;;) € {0,1}7*/ such that

Vi(a, bli,j) = {

We also define the cost matrix (w;;) for G where w;; == (—1)" u(i, j). We always assume
i is non-degenerate, meaning that pu(i,7) # 0 for all i € X, 5 € Y. So the cost matrix
completely determines (t;;) and p. We use G = (I, J, (w;)) to denote an XOR game.
When working with XOR games, we usually use binary observable generators z; := my, —
mii e I for /510 and y; = nd —nl,j € J for @M

Every XOR game G = (I, J, (w;;)) has associated marginal row biases {r;;i € I} and
associated column biases {c; : j € J}, where r; > 0 and ¢; > o for all 1,7 € 1. Let f be

1 if a D b= tij
0 otherwise.

8In general, if 4 is degenerate, then the cost matrix (wi;) may have a all-zero row or column and there
could be a zero row or column bias.
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state on ,Qfé‘g\];} ® eszf];]é](\]f}, let (H, 7, |1)) be a GNS representation for f, and let

X; ::w(xi@)l),z'efand}/} ::7r(1®yj),j€ J

be the binary observables employed by Alice and Bob. Then {X;|¢) : i € I}, {Y;[¢) :
J € J} is a vector strategy for G. As shown in [Slol1, Corollary 3.2], f is optimal for G if
and only if

(6.10) —waY ¥) = X [¢)
]EJ
for all i € I. Equation (6.I0]) can also be replaced by
1
(6.11) — > wiX [) = Y [¥)
% el
for all j € J.

Proposition 6.16. Let G = (I, J, (w;;)) be an XOR game, and let {r; : i € I} be the
associated row biases. Then G has a determining pair (I',R), where T ={~. :i € I,a €
{0,1}} is given by

(6.12) (1 . —wa — nd) )

]EJ
and the relations R consists of

(6.13) Z wij(n) —n]))” —r?

jed
foralliel.

Proof. Since every n? is self-adjoint in ,Q/,;]{/{](\)f}

tion (6.12)) implies that
Sl =),

jeJ

, every 7! is self-adjoint in ,Qf,;]i/{](\)f}. Equa-

Z

so the relations in R can be expressed as (75 —7i)? — 1,4 € I. Hence every ~} — 7} is

a binary observable in C*(G) := o/ /(R). This means every {vi,~i} is a PVM in

C*(G). Condition (i) of Definition 6] holds.
gL o 0

Now we examine Condition (ii) of Definition [6.Il Let f be state on @7}, Sl
let (H,,[1)) be a GNS representation for f, and let X; := 7(z; ® 1),Y; := 7r(1 ® yj),

and )A/] = Ci Y icswijX; foralli € I,j € J, where {c; : j € J} is the column biases.
Suppose ]f is optimal. Then X;,Y; satisfy Equations (6.10) and (6.11). This implies
w(10 (5= 70) 1) = — S wi¥; [9) = Xil)
T je
for all 7 € I. Replacing the binary observables with the corresponding PVM elements in
the above equation, we have

m(1 @) [¥) = m(mg ® 1) [¥).
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It follows that
7 ((mie1-1091)") =0

foralli € I and a € {O 1}. Hence f satisfies part (a) of condition (ii). Note that )A/j, Ys
are self-adjoint and [Y Y] = 0 for all j,¢ € J. Then for any monomials Wy :=y;, - - - y;,
and Wy :=y,, ---y;, in %];]{/{]?/1’1}, Equation (6.I1]) implies that

FA@WiW,) = (0| Y;, - Y3, Y, Y, ) = (] Y, -+ Y3, Yy - Vi [90)
= WY, Y Y Y ) = (1@ Wally).

It follows that 7 := f\1®%(1,{o,1} is a tracial state. For any relation s = (ZJ.GJ wijyi)Q —7“2-2 S
PVM
R, by Equation (G.10),
r(1@s)[) = r2(V2[e) = [0)) = r2(V;Y; [v) = [¥))
=1 (VY [0) = [)) = rf (Y7 [¥) = 1)) =

The last equality uses the fact that Y;? = 1. Hence 7(s*s) = (¢| 7(1® s*s) [¢) = 0 for all
s € R. We conclude that f satisfies part (b) condition (ii) in Definition

On the other hand, suppose f satisfies parts (a) and (b) in condition (ii). Then in part
(a), by replacing the PVM elements with the corresponding binary observables, we see
that Equation (6I0) holds. This means [ is optimal. We conclude that (I', R) satisfies
condition (ii) in Definition 6.1l Hence (I', R) is a determining pair for G. O

We refer to C*(G) := 1;]‘}{]?/[1}/( R), with R defined in Proposition [6.16, as the solution
algebra for G. In [Sloll, Proposition 2.8|, Slofstra shows that G has a unique optimal
quantum correlation p if and only if the solution algebra for G is Clifford. Furthermore,
the associated XOR correlation ¢ with p has rank r if and only if the corresponding Clifford
algebra is of rank r. Here the Clifford algebra Cl, of rank r refers to the universal C*-
algebra generated by indeterminates xy,-- -, x, and subject to the relations x;z; +x;x; =
26;;,1 < 4,7 < n. This algebra has either one (when r is even) or two (when r is odd)
irreducible x-representations of dimension 2L"/2).

Theorem 6.17. An XOR game G is a self-test for its optimal quantum strategies if and
only if G has a unique optimal quantum correlation p and the associated XOR correlation
with p has even rank.

Proof. For the “only if” direction, suppose G is a self-test for its optimal quantum strate-
gies. Then by Lemma [£2] G has a unique optimal quantum correlation p. Let r be the
rank of the associated XOR, correlation with p. By Theorem [6.8] the solution algebra C1,
for G has a unique finite-dimensional irreducible *-representation. So r must be even.
For the “if” direction, suppose G has a unique optimal quantum correlation p and the
associated XOR correlation with p has even rank. This implies the solution algebra C',
for G has a unique finite-dimensional irreducible *-representation. By Theorem again,
G is a self-test for its optimal quantum strategies. O
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7. TRACIAL STATES AND ROBUST SELF-TESTS

Suppose a nonlocal game G has a determining pair (I', R), and let C*(G) be the associ-
ated game algebra. In this section, we show that if (I', R) is robust in a certain way, then
the robust self-testing property of G can be characterized by amenable tracial states on

C*(G).
7.1. Robustness of determining pairs.

Definition 7.1. A determining pair (I', R) for a nonlocal game G is v-robust (or simply
called robust) if there exists a function v : Rsg — R with v(e) — 0 as € — 0 such that
for any € > 0 and any projective e-optimal quantum strateqy

S = (HAa HB> {M;}> {ng}a |¢> )
fO’f’ g;

(i) (ma(mZ) @1 - 1@ 7p(12)) W) < v(e) for allz € X,a € A, where 7y @ Tp is
the associated representation of S,

(11) ||75(r)|l,p < v(e) for allr € R, where pp := Try, (|¢) (¥]), and
(iii) || m(ny)\/Pe — /PeTE(NY)||F < V() for ally € Y,b € B.

Recall that the big Frobenius norm |[|-||p on My(C) is defined by ||T'||p = /Tr(T*T),
and the p-norm ||-||, is defined by ||T||, = +/Tr(T*Tp). Intuitively, a determining pair
(I',R) is robust for a game G if in any near-optimal strategy for G, the action of Alice’s
measurement m_ is approximately equal to the action of Bob’s measurement ~7, and
Bob’s measurements respect the relations in R approximately.

Lemma 7.2. Suppose G is a nonlocal game with a v-robust determining pair (I',R). Let
S = (Ma, Ho M} AN/} [0))
be a projective e-optimal quantum strategy for G, and let ¢ := fs|1®ﬂ;f‘,/1if where fg is the
state on ,;zf;(‘}ﬁ Dmin D piny duced by S. Then
(a) \/o(rr) < v(e) for all T € R,

(0) lms(W)/ps — /Pem8(W)|lF < deg(W)v(e) for any monomial W € C*(n} : b €
B,yeY),

(c) |p(W1Ws) — p(Wol1)| < (deg(Wl) + deg(Wg))V(e) for any monomials Wy, W5 €
C*(n{ :be B,yeY), and

(d) |¢(7§nz) —ps(a,b|x,y)| S V(E) fO’f’ all a, b,l’,y.

Proof. Let mq ® mp be the associated representation of S, and let pp = Try, (|¢0) (¥]).
For any r € R,

o(r'r) = (W L@ mp(r'r) [¥) = llna(r)ll;, < v(e)*

So (a) follows.



ROBUST SELF-TESTING FOR NONLOCAL GAMES WITH ROBUST GAME ALGEBRAS 41

We prove (b) by induction on the degree k of W. k = 1 follows from condition (iii)
of Definition [T.Jl Now suppose (b) holds for any monomial of degree k for some k > 1.
For any monomial W = ay - - - agagyq in gf,ﬁ% of degree k+ 1, let W’/ := ay---ay be a
monomial of degree k. Then by the induction hypothesis,

lms(W)V/ps — Vpsms(W)llF < kv(e).
Note that ||mg(W')|lop < 1 and ||75(cgs1)|lop < 1, it follows that
lms(W)vps = Vosms(W)llr =llms(W)mp(w) Vs — Vosms(W)ms(aks) | r
<|lmp(W")(75(art1)v/pe — Vosme(w)) | F
+ [ (vVeems(W') — 75(W')\/pB) T (k)| F
<ms(W)llopllms (1) Vs — /o57B(C%K41) || P
+ 75k llopllv/PBTE(W) = 75 (W')\/PB P
<v(e) + kv(e) = (k+ 1)v(e).

So (b) holds for monomials of degree k + 1. We conclude that (b) holds.
To prove (c), we first recall that for any matrices S and T,

Te(ST)| < ISllop - 1Tl -
Note that ||\/p5llop < 1, |[mT5(W1)|lop < 1, and ||75(Ws)]|,p < 1. By part (b) we have

Wi Wa) — o(Walh)| =[Tr (Vpama(Wh) (ms (W) Vs — Voams(1W2)))

+ T (Vasmn(Wa) (7o (W0) V7 — VasTs(1)) )|
<|lmeWi)\Vps — Veems(Wh)llF + [[m5(Wa)\/0B — /PB7B(W2)|IF
<deg(Wh)v(e) + deg(Wa)v(e) = (deg(Wh) + deg(Wa))v(e).

This proves (c).
Now we prove (d). Since [|7p(n%)|lop < 1 and [[(ma(m?) @1 —1@mg(E)) [0)|| < v(e),

[¢(vary) — ps(a, bz, y)| = (Y| L @ 7p(vany) [¥) — (Y[ ma(mg) @ mp(ny) [¢)]
= [(¥] (ma(mg) ® 1 = 1@ 7p(73)) - (L@ ma(n)) [¢)]
< (ra(mg) @ L= 1@ 7p(7;)) [¥)| < ve)
for all a,b, x,y. This completes the proof. O
Given a quantum model
S = (Ha Mo AMI} AN} [0).

by picking the Schmidt basis for |¢)) as bases for H 4 and Hp, and dilating Alice or Bob’s
system so that they have the same dimension, we can always write

(7.1) §=(CLCO M} ANV W) = ZA i) @ 1i)),
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where d > 1 and Aq,...,\q > 0, without changing the state induced by S. We refer to
Equation (1)) as a balanced form of S. Indeed, if s := dim(Hp) — dim(H4) > 0, then we
take H 4 @ C?® as the new space for Alice and define her new measurement operators to
be M & 1 for one fixed a € A and M7% & 0 for the rest a’ € A. We can process similarly
when dim(H,4) > dim(Hpg). So we can always assume dim(H,4) = dim(Hp) = d for
some d > 1. Consider the Schmidt decomposition |¢) = Zle Ai |ai) @ |B;) where k < d,
Ay e >0, and {|oy) 1 1 <i <k} and {|5;): 1 <i <k} are orthonormal sets in H 4
and Hp respectively. We can expand these two orthonormal sets to orthonormal bases
{lay) : 1 <@ < d} and {|B;) : 1 < i < d} for Ha and Hp respectively, and write |¢) =
S i) ®18;) where Mgy = --- = Ay = 0. After fixing the bases {|a;) : 1 <4 < d}
and {|3;) : 1 <i < d}, we can identify both H4 and Hp with C¢, and identify |¢) with
Zle Ai |i) @ |i). One of the advantages of the balanced form Equation (IE:I) is that the
reduced density matrices of |¢)) on Alice and Bob’s sides are both p := ZZ (A7 i) (i]. So

we have [¢)) = \/p® 1|s) = 1 ® /p|@a), where |Bg) := >0 i) @ |i).

Proposition 7.3. Let G = (X,Y, A, B, i1, V') be a nonlocal game with a v-robust determin-
ing pair (I',R). Suppose p € C, is an optimal quantum correlation for G. Let S,,n € N
be a sequence of projective quantum models such that ||ps, — p||1 — 0 as n — oo, and let
On = fs, 1055, for all n € N, where fs s the state on % VM min 527]3/{34 induced by
Sn. Then any weak*-accumulation point ¢ of {pn,n € N} is an amenable tracial state on
Y5 satisfying

(a) ¢(vany) = pla,blz,y) for all a,b,x,y, and
(b) ¢(r*r) =0 for all r € R.

We remind the reader that using the notation before, there is another way to phrase
this proposition: any weak*-accumulation point of {¢, : n € N} is an amenable tracial
state in T (I, R).

Proof. By passing a subsequence, we may assume that hm ¢, = ¢ in the weak*-topology.

Note that ||ps, — pll1 — 0 implies €, := w,(G) — w(G; S ) — 0 as n — oco. By part (d) of
Lemma [7.2]

|¢(7§ng) - p(aa b|$a y)|
< 16(vany) = Gn(vamy)| + 16n(vany) — ps,.(a, bla,y)| + [ps,(a, bz, y) — pla, blz,y)]
< |¢(7§ng) - ¢n(7¢fng)| + |p5n(aa b|$a y) - p(a'> b|£l§','y)| + V(En) — 0
as n — o0o. So (a) follows. By part (a) of Lemma [T2 ¢,(r*r) < v(e,)? — 0 as n — oo
for all r € R. This proves (b).
It follows from part (c) of Lemma [Z.2] that ¢ is a tracial state. Now we only need to

show ¢ is amenable. Let f be the state on (b )P @ elpiy, defined by f Fla® ® B) :=
o(af),a, B € %PV@. We write every S, in their balanced form

Sn = (C*, CH {Mz ()}, {N} ()}, [¥n) )
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and denote by p, the reduced density of |+,). For every n € N, let 7! @ 72 be the

associated representation of S, (in the balanced form), let 7, : (@pim)® @ piny; —
PB(C? @ C?) be the *-representation sending

1@n! = 1®r2(n)) and n) @ 1 — 72 (n))" @ 1,
and let f, be the finite-dimensional state on (&35 @ &35, defined by

Fala) = (| Ful) [tn) , @ € (F3i5)P @ Lpifsy
For any monomials Wi and Wy over {n},y € Y,b € B},

Fa(WYP @ Wa) = (W] (WP @ Wa) [thn) = (¢u] 75 (W1)T @ w8 (Wa) (1))
= (@an | 77 (W) @ /oumy (Wa)\/Pn | Ba)
= (Pa,| 1 @ /purf (Wa)\/Dury, (W) |Pa,)

= Tr(vpum, (Wa)/pury (Wh) ),

where |y, ) 1= Zfﬁl li) ® |7). So by part (b) of Lemma [7.2]

Fa(W® © Wa) = 6u(WiWV2)| = T (/pumn (W) (Vo (W) = ma(W2)/5) )
< Vo (W) = mn(W2) /Pl p < deg(Wa)v(ey).
It follows that

[Fa(WP © Wa) = f(WP © W)

< |fn(Wfp ®@ Wa) — o (WiWo)| + | (W1 W) — (Wi Wa)| + |@p(W1Ws) — f(Wlop ® W)
< deg(Wa)v(en) + |pn(WiWy) — (W1 W3)| — 0

as n — oo. Since W and Wy were arbitrary, lim f; = J?in the weak*-topology. This
n—oo

e .. . . . X.A Y.B
means [ is the weak™*-limit of a sequence of finite-dimensional states on o/p)), ® 5y,
Hence f is min-continuous, and thus ¢ is amenable. 0

7.2. Stability of game algebras. Let G be a nonlocal game with a robust determining
pair (I', R). Suppose that there is a unique amenable tracial state 7 on ﬂg‘;@ respecting
all the relations in R and 7 is finite-dimensional. In this section, we show that G must
be a robust self-test for its optlmal quantum strategies. The proof relies on the stability
of the game algebra C*(G) = @/pih,/(R). We outline some key ideas in the following two
paragraphs.

We first demonstrate that there exists a ucp map 6 : C*(G) — o/p, inverting the
quotient map a 527 2o — C*(G) in the sense that every A(n!) —n! € (R). Now
suppose 42% VM — HB(Hp) is the representation given by a near-optimal strategy
S = (HA,HB, {MZ}, {N/},|¥) ). Since the determining pair (I, R) is robust, the rep-

resentation m respects the relations in R approximately. Let 0 be the ucp map from
C*(G) — AB(H) defined by 0 := w0 0, and let V*7(-)V be the Stinespring dilation of 6,
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where 7 : C*(G) — Z(K) is a x-representation and V' : H — K is an isometry. Then
m(nY) — V*7(ny)V is small because

w(nf) = VFEmV = x(n}) — 6(n}) = w(n}) — 7 (0(n})) = 7 (n} — 6(n})),

ny —0(n}) is in R, and 7 respects the relations in R approximately. In other words, 7 is
close to the exact representation 7 under dilation.

One can even derive a constructive bound on the difference between 7(n}) and V*7(ny)V
if nj — 0(ny) can be expressed by relations in R explicitly (see the notion of an R-
decomposition in Definition [@.1]). This forms the core of the quantitative Gowers-Hatami
theorem for C*-algebras that we will introduce in Section In this section, however,
we work with a slightly weaker statement The following proposition illustrates how to
construct a ucp map 0 : C*(G) — @pi; such that every (n?) — n? is in the kernel of 7.

Proposition 7.4. Suppose a nonlocal game G has a determining pair (I',R). Let C*(G)
be the associated game algebra. For every finite-dimensional tracial state T on %’g{ﬁ/[ that
satisfies T(r*r) = 0 for all v € R, there is a ucp map 0 : C*(G) — /35, such that

7((0(0) = @) (0(a) = ) ) =0
for any x-polynomial € C*(nl,y € Y,b € B).

Note that 27}, C*(G), and & VM/I all have generating set {n} : y € Y;b € B}. In
the expression 6(«) — «, the first a is viewed as an element of C*(G), while the second «
is an element of &7}, The proof uses a lifting theorem due to Choi and Effros.

Lemma 7.5 (|[CET76], see also [Arv7T]). Suppose A and B are two unital separable C*-
algebras. Suppose J is a closed two-sided ideal in B. Let q : B — B/J be the quotient

map, and let ¢ : A — B/J be a ucp map. If ¢ is nuclear, then there is a ucp map
0: A— B such that p = qo8.

Proof of Proposition[74. Suppose T is a finite-dimensional tracial state on @7p, satis-
fying 7(r*r) = 0 for all » € R. Let (R) be the closed two-sided ideal generated by
R. Since (R) C Z,, there is a surjective *-homomorphism ¢ : C*(G) — &/p5,/T.
sending « +— « for any *-polynomial a € C*(nj,y € Y,b € B). Since 7 is finite-
dimensional, 7, VM/I is a finite- dlmensmnal C*-algebra, and hence nuclear It follows
that ¢ is nuclear. By Lemma [7H, there is a ucp map 6 : A(G) — 0 iy such that
@ = ¢, o0, where ¢, : 42% VM — ﬁ}{,@/z is the quotient map. For any s-polynomial
a € Cnl,yeY,be B),

¢:(0(a)) = p(@) = a = ¢-()
in /)5 /Z,. Hence f(a) — a € ker ¢, = Z,. O
Proposition [7.4] is used to prove the following stability result.

Proposition 7.6. LetG = (X,Y, A, B, 1, V) be a nonlocal game with a v-robust determine
pair (I, R). Suppose p € C, is the um’que optimal quantum correlation for G and there is
a unique amenable tracial state T in T®(I',R). Then there exists a full-rank projective
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quantum model S for p such that the following holds. For any sequence of projective
quantum models

Su = (Mo, 1AM ()} ANY ()}, ) ), m € N
with hm Hps —plli = 0, there is a function n : N — Rs¢ with lim n(n) = 0 such that
n—oo
Sn = SforallneN.

Proof. By Proposition [6.4] 7 extends to a state f which is the unique state on %’PVM Rmin
%gvﬁ/[ that can achieve p. Note that p is a quantum correlation. This means f and
T must be finite-dimensional, and hence f is the unique finite-dimensional state on
AP @min Ay for p, and 7 is the unique tracial state in Tﬁ(ﬁ)(F, R). Since p is the
unique optimal quantum correlation for G, by Lemma [4.3] p is an extreme point in Cj.
Hence by Theorem [6.2] p is a self-test for all quantum models, and G is a self-test for
its optimal quantum strategies. Let 7 : % oy — Ma(C) be the finite-dimensional ir-
reducible s-representation given by part (d) of Theorem [6.2] and let T be the unique
irreducible *-representation of C*(G) given by part (d) of Theorem . Then m =T ogq

by Corollary BI2, where q : @735, — C*(G) is the quotient map. Let M(f = 7(7%)T and
N} :=m(n}) for all a,b, z,y, and let |@4) := % S % i) @ |i). Then by Corollary .7,

5= (C.C% (I (Y. o)

is a quantum model for G, and the triple (C{RCLTA® Tg, |pa)) is a GNS representation

of f , where T4 ® g is the associated representation of S.
Let 0 : C*(G) — 52713/‘/% be the ucp map given by Proposition [7.4] that satisfies

7((#(0) = @) (0(a) = ) ) =0

for any *-polynomial o over {n{ : y € Y,b € B}. For every n € N, let 72 @ 72 be the
associated representation of Sy, and let p7y = Trys (|1hn) (¥n) and pf = Tryga (Jthn) (¢n)).

Claim 7.7. There are integers r,,s, € N, and isometries I4,, : 7—[,‘11 — C'® C™ and

Ip, : HE — C? ® C* such that

(7.2) §A.(n) = |1, (M2 @ Lo ) Lay — MZ(n)||,4 — 0, and

(7.3) 88,(n) == || I, (N} ® Lean) I, — NY ()|, — O

as n — oo for all a,b,x,y.

Proof of Claim[7.7. Without loss of generality, we can write every S, in its balanced form
Sp = (Ch, C™ Mg ()}, {N) (n)}, [9hn) )

Let p, be the reduced density of [1,) on C% and let ¢, := fs,

state on @/p e @ ok induced by S,,. By Propos1t10n | any weak™*-accumulation point
¢ of {¢,, : n € N} is an amenable tracial state in 7 (T, R) By the hypothesis, T7®)(I', R)
has a unique amenable tracial state 7. So we must have ¢ = 7. By passing a subsequence,

we conclude that lim ¢, = 7 is the weak*-topology.
n—oo

is the
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Now consider the ucp maps 62 := 7806, n € N from C*(G) — %(C). Since 7 is the
unique finite-dimensional irreducible -representation of C*(G), any finite-dimensional *-
representation of C*(G) is a direct sum of 7’s. By the Stinespring dilation theorem, there
are s, € N and isometries Ip,, : Cd — C?Y® C*,n € N such that

6,/ () = I (F() @ Leon ) I
for all @ € C*(G). It follows that

Tim |73, (7(0) @ Leww ) I — 72 ()12, = lim 02 (a) = 75 ()2,
= lim Tr,, o7 ((e<a) —a)" (6(a) — a))

= 1im 6, ((8() — a)"(6(c) — a) )
= 7((0(c) = a)" (0(a) = ) ) =0
for any #-polynomial a over {n; : y € Y,b € B}. Taking a = n;, Equation (73] follows.
Note that every % is a *-polynomial over {n; : y € Y,b € B} and is self-adjoint in
,Q/;/{/@. So 7(7Z) and 77 (v¥) are self-adjoint, and the above calculation also implies
* ~¢ o\ T 2\ T * ~( x x
||IB,n(7T(fya) ® ]]'(CS")IBJL - ﬂ-f (Va) ||2n = ||IB,n(7T(fya) ® ]ICS”)IB,TL - 7Tf(fya)H{z
= 7((0030) = 72)" (002) = 72) ) =0
as n — 0o0. Again, since (I', R) is v-robust, by part (b) of Lemma [7.2]
17 (V) /P = Voumn (va)lle < e v (en),

where €, := w,(G) —w(G; S,) — 0 asn — oo. Here ||7¥]|11 is the first Sobolev 1-seminorm
of the x-polynomial v (see [MSZ23| for a definition). Hence

1847 () =72 (7)Mo = It (m) = 72 () s = [l (it () = 7 (7)) @ L i) |
I (mi) @ 1 = 1@ m/ () o) + (7 ()" @ L= 1@ w7 (72) [)
vien) + I1m7 () von = Voumn () IF < (Iallin + 1) (en),

— 0 as n — o0o. Note that (%(V(f))T = M(f Taking r,, = s, and I4, = Ip, for alln € N,
it follows that

<
<

125 (M @ Lera) Lan = M () ],
< (7 ()" @ Teon) I = 78 (72) Mo + 1M () = 77 (3)
— 0 as n — o0o. So Equation (7.2)) follows. O
Claim 7.8. There are unit vectors |k,) € C'* @ C**,n € N such that
(T4)  Man® Lnn (M) @ NY(0) [6)) = (02 © N ) @ o) | = 0 as n = o
for all a,b,x,y.



ROBUST SELF-TESTING FOR NONLOCAL GAMES WITH ROBUST GAME ALGEBRAS 47
Proof of Claim[7.8. Since G is a self-test, we let A be its spectral gap, and let

d(n) = Z w(x,y)V(a,blz,y) (52[1(71) + 551,(71)) ,n € N.

a7b7x7y

Since f is the unique finite-dimensional optimal state on AR VM Smin eszf]fi}ﬁ for G, by
Proposition LTIl and Remark [.12] there is a unit vector |k,) € C'™» @ C* for every n € N
such that

1T @ Ipn (Mg (n) @ Ny (n) [0)) = (Mg @ N [¢a) ) @ [5)]|

< A x,a(n) + 55{,(”)
for all a,b,z,y. By Claim [, lim §',(n) = lim 6,(n) = 0, and hence lim d(n) = 0.
n—oo n—oo ¥’ n—00
So Equation (7.4) follows. O

For every n € N, let

n(n) = max { [ Lan @ I (M2 () @ NY () [0)) — (M @ NY lpa) ) @ )l

x?y7a7b

Then S, = S for all n € N, and lim n(n) = 0 by Claim [I.8 This completes the

n—oo

proof. O

7.3. General results.

Theorem 7.9. Let G = (X,Y, A, B, 1, V') be a nonlocal game with a robust determining
pair (I',R). Suppose p € C, is the unique optimal quantum correlation for G. Then the
following statements are equivalent.

(a) p is a robust self-test for all quantum models.
(b) p is an abstract state self-test for all states on opg iy Omin oo
(¢) p is an abstract state self-test for all states on pyy; Qmin Dy

(d) There is a unique amenable tracial state T on </pi%s, such that
(i) T(r*r) =0 for all™ € R and

(i) T(vany) = pla, bz, y) for all a,b,z,y.
Proof. (a)=(b) follows from Theorem B.8

(b)=(c): Suppose p is an abstract state self-test for all states on .o, @min D niyva-
That is, there is a unique state f on .o, @min Zpera for p. By Lemma B3, p has a full-
rank projective quantum model, so f must be ﬁnlte—dlmensmnal and projective. Hence
f drops to a finite-dimensional state f on 42% VM Pmin 42% o and f is a state for p. Now
assume for the sake of contradiction that there is another state f’ ;é f on AR VM ® A piy
that can achieve p. Then the pull-back of /" on At i %POVM is a state for p but
is distinct to f, a contradiction. Hence f is the unique state on % VM Rmin %]Z{ﬁd for p.
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(c)=(d): By Proposition [6.4] any amenable tracial state in 7®)(I', R) extends uniquely
to a state on 5271;){‘}‘]?4 RPmin %g{ﬁ/[ for p. If there is a unique state f on 52%1;){‘}‘]?4 Rmin %]Z{ﬁ/] for

p, then 7 := f|,_ v5 must be the unique amenable tracial state in T@(T,R).
"PVM

(d)=(a): Suppose there is a unique amenable tracial state 7 in T® (I, R). Let S be
the full-rank projective quantum model given in Proposition We first claim the p
is a robust self-test for projective quantum models with ideal model S. Assume for the
sake of contradiction that there is a Jg > 0 and a sequence of projective quantum models
Sn,n € N such that €, := ||ps, — pll1 = 0 as n — oo, but for every n € N, the relation
I S does not hold. By Proposition [7.6, there is a function n : N — R such

that lim n(n) = 0 and S, =, S for all n € N. Take a big enough N € N such that
n—o0

n(N) < ép. Then Sy =5, S , which contradicts the assumption. We conclude that p is

a robust self-test for projective quantum models. Note that the ideal model S is full-
rank and projective. By |[Bap+23, Theorem 4.1], p is a robust self-test for all quantum
models. U

In terms of robust self-testing for nonlocal games, we state the following theorem.

Theorem 7.10. For any nonlocal game G that has a robust determining pair (I', R), the
following statements are equivalent.

(a) G is a robust self-test for its optimal quantum strategies.

(b) There is a unique optimal state f on gy @min ppas for G and f is finite-

dimensional.

(¢) There is a unique optimal state f on phy @mn Dping for G and f is finite-
dimensional.

d) There is a unique amenable tracial state T on 5B such that 7(r*r) = 0 for all
PVM
r € R and T is finite-dimensional.

Proof. Any one of the above four statements implies G has a unique optimal quantum
correlation. So the theorem follows directly from Theorem [7.9] O

In Theorem [6.8, we have shown that a nonlocal game G is a self-test if and only if the
associated game algebra C*(G) has a unique finite-dimensional tracial state. Part (d) of
Theorem [Z.I0 suggests one may have a similar characterization of robust self-testing: G
is a robust self-test if and only if C*(G) has a unique amenable tracial state 7. However,
as discussed in Remark [5.15] it is possible that an amenable tracial state on ﬂﬁ{,@ whose
kernel contains R drops to a non-amenable tracial state on the quotient C*(G). So it is
possible that C*(G) has a unique amenable tracial state but there are multiple amenable
tracial states on gf,}% that are optimal for G. Nonetheless, if C*(G) has a unique tracial
state 7 and 7 is finite-dimensional, then the tracial state 7 on @p; induced by 7 must
be the unique tracial state (and hence the unique amenable tracial state) that satisfies
7(r*r) =0 for all r € R. We conclude that:
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Corollary 7.11. Suppose a nonlocal game G has a robust determining pair (I',R). Let
C*(G) be the associated game algebra. If C*(G) has a unique tracial state T and T is
finite-dimensional, then G is a robust self-test for its optimal quantum strategies.

7.4. Robust self-testing for XOR and synchronous games. For XOR games, the
robustness of the (I',R) determining pair defined in Proposition was first proved in
[Slo11]. For synchronous games, similar results were observed in [MPS24]. Both cases
were also proved in [Pad24]. We summarize these results in the following proposition.

Proposition 7.12 (Proposition 5.14 and Proposition 5.23 in |[Pad24]).
(1) Let G = (X, A, V) be a synchronous game with w,(G) =1, and let (I', R) be as in
Proposition[6.13. Then (I, R) is a O(e'/*)-robust determining pair for G.
(2) Let G = (I, J, (wi;)) be an XOR game, and let (I, R) be as in Proposition [6.16.
Then (T, R) is a O(e/*)-robust determining pair for G.

Hence for synchronous games and XOR games, we have:
Theorem 7.13. Let G be a synchronous game, and let C*(G) be the associated synchro-

nous algebra. If C*(G) has a unique tracial state T and T is finite-dimensional, then G is
a robust self-test for its perfect quantum strategies.

Theorem 7.14. If p is an extreme point of and the associated XOR correlation
¢ has even rank, then p is a robust self-test for all quantum models.

unbiased
Cq

8. SELF-TESTING IN PARALLEL WITH SYNCHRONOUS GAMES

In this section, we apply our tracial-state characterization of self-testing to study self-
testing in parallel with synchronous games. We first recall that given two nonlocal games
G1 = (X1,Y1, Ay, By, Vi) and Gy = (Xo, Ya, A, By, V), their product Gy X G, is the nonlocal
game (X1 X Xg,Yi X }/Q,Al X Ag,Bl X BQ,‘/I X ‘/2> where

Vi x Vy ((al,a2), (517 b2)|(I1,$2)7 (y1,y2)) = Vi(ahbﬂxhyl)‘@(ambﬂxz,yz)-

When G; = G», their product is just a parallel repetition. It is easy to see that if both
G, and G, are synchronous games, then G; x Gy is also a synchronous game. In this case,
the following characterization for C*(G; X Gy), the synchronous algebra of G; X Gy, was
established in [Man+23].

Theorem 8.1 (Theorem 3.1 in [Man+23]). Let G, and Gy be synchronous games. The
games Gy and Gy have perfect quantum strategies if and only if Gy X Gy does. In this

case, the associated synchronous algebra C*(Gy X Gs) for the product game Gy X Gy is
x-1somorphic to C*(G1) Qmaz C*(G2).

Lemma 8.2. Let A and B be two C*-algebras. The C*-algebra A ®,nqx B has a unique
finite-dimensional irreducible representation if and only if both A and B have unique
finite-dimensional irreducible representations.
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Proof. We first prove the contrapositive of the “only if” direction. Suppose A has two
different finite-dimensional irreducible representations 74 and ¢4. Let mp be a finite-
dimensional irreducible representation of B. Then 74 ® mp and ¢4 ® wp are different
finite-dimensional irreducible representations for A ®,,.. B.

Now we prove the “if” direction. Suppose A and B have unique finite-dimensional
irreducible representations 74 and 7p on H 4 and Hp respectively. Let 7 : A ®,poe B —
Z(H) be a finite-dimensional irreducible representation of A &4z B Then there are
finite-dimensional representations m4 : A — Z(H) and ng : B — B(H) with commuting
ranges such that m(a ® b) = ma(a)mp(b) for all @ € A and b € B. Note that m4 can be
decomposed into a direct sum of finite-dimensional irreducible representations of A and
T4 is the unique finite-dimensional irreducible representation of A, so H = H4 ® Hp and
T4 =74 ® 1y, for some Hilbert space Hp. Since mp and 74 have commuting ranges and
74 is irreducible, wp(b) acting trivially on H, for all b € B. So 5 = 14, ® 7p for some
representation 7p : B — #B(Hp), and hence m = 74 @ 7. By [Pad+23, Lemma 4.11], 7p
must be irreducible. It follows that 7 & 7 and ™ & 74 ® Tg. d

Recall from Theorem [6.15] that a synchronous game G is a self-test for its perfect
quantum strategies if and only if the associated synchronous algebra C*(G) has a unique
irreducible *-representation. As an immediate consequence of Lemma B.2] we have:

Theorem 8.3. Let G, and Gy be two synchronous games. The product game Gy X Gy is a
self-test for its perfect quantum strategies if and only if both Gy and Gy are self-tests for
their perfect quantum strategies.

This theorem can be easily generalized to more products of copies (aka. parallel repe-
tition) of a synchronous game.

Corollary 8.4. A synchronous game G s a self-test for its perfect quantum strategies if
and only if the parallel repeated game G*" is a self-test for its perfect strategies.

It is natural to ask whether Theorem and Corollary R4 also hold for robust self-
testing.

Conjecture 8.5. Let G and Gy be two synchronous games. The product game Gy X Gy is
a robust self-test for its perfect strategies if and only if both G; and Gy are robust self-tests
for their perfect strategies.

9. A QUANTITATIVE GOWERS-HATAMI THEOREM FOR GAME ALGEBRAS

In [GH17], Gowers and Hatami prove that any finite group G is dilation-stable: if a
function f from G to unitaries respects the multiplication table of G' approximately, then
there must be a representation ¢ of G and an isometry I such that f(g) and I*¢(g)I
are close in ||-||ps. A state-norm version of the Gowers-Hatami theorem was introduced
by Vidick in [Vid1&] and has been widely used in proving robust self-testing results.
In [MPS24], Mancinska, Praksh, and Schafthauser introduce an analog of the Gowers-
Hatami theorem that applies to some C*-algebras. Using this result, they construct a

9Such a representation always exists. For instance, 74 ® g is one, and the unique one, as the proof
shows.
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family of constant-sized nonlocal games that can robustly self-test for maximally entangled
states of unbounded dimension. However, the Gowers-Hatami theorem in [MPS24] is not
quantitative, in the sense that there is no explicit function to characterize the “distance”
between the approximate representations and exact representations. Consequently, the
robustness of their self-tests is non-constructive. In this section, we state and prove the
first quantitative Gowers-Hatami theorem for C*-algebres and show how it can be used
to derive the explicit robustness function of a self-test.
We first need to recall some notions from |[MSZ23].

Definition 9.1 (Definition 3.2 in [MSZ23]). Let A be a *-algebra generated by a set of
unitaries X. Let R C C*(X) be a set of x-polynomials over X. For any *-polynomial
[ € CX) that is trivial in A/(R), we say that Y., \ju;r;v; is an R-decomposition for
fin Aif

(1) u;,v; are x-monomials in C*(X) for all 1 <i <mn,

(2) r; € RUR* for all1 <i<mn,

(8) N\i € C foralll <i<n, and

(4) [ =221 Niugriv; in A.

The size of an R-decomposition Y . \ju;r;v; s Yoy |N|(L+ [|ri]|.a deg(v;)), where ||| 4
is the operator norm in A.

Here a *x-monomial in C*(X’) is a product ajas - - - ar, where k > 0 and a4, ..., ap € XUX*
(the integer k is called the degree). Since all the generators in X are unitary in A, every
u; and v; are unitary in 4. We see that the size of an R-decomposition does not depend
on u;’s at all. This is because later we will evaluate u;r;v; in some state norm ||-||,. Every
w; is unitary in A and ||-||, is left unitarily invariant, so ||u;r;v;||, = ||rivi||,. The size of
an R-decomposition does depend on the degree of the monomials v; because we want to
switch 7; and v; in [|-||, and deg(v;) is the price we need to pay.

Given any *-algebra A and a set of relations R C A, we say a *x-representation 7w : A —
PB(H) is an (¢, p, R)-representation for some € > 0 and density operator p on H, if

I (r)ll, < e

for all » € R. For example, suppose a nonlocal game G has a v-robust determining pair
(T,R), and let S = (Ha, Hp, {MZ},{N/},|¢)) ) be an e-optimal strategy with associated
representation 74 ® . Then 7 is a (v(€), pp, R)-representation for o), where pp is
the reduced density of |¢) on Hp.

Now we can state our quantitative Gowers-Hatami theorem. In the following, we work
with unitary generators {b, : y € Y'} for M,X’V@.

Theorem 9.2. Let G = (X,Y, A, B, u, V') be a nonlocal game with a v-robust determining
pair (T, R), and let C*(G) = @/yi5,/(R) be the associated game algebra. Suppose there is
a ucp map 0 : C*(G) — ik and a positive real number A such that every 0(b,) — b, has
an R-decomposition in szg{g([ with size at most A. Then for any (E,B, R)-representation

T e, — B(H), there is a x-representation T : C*(G) — B(H) and an isometry
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I:H — H such that

(9.1) 17 (by) = "7 (by) I, < A - v(e)

for all y € Y. If in addition, G is a self-test with spectral gap A, then G is a robust
self-test with robustness O ( )J”[)

Proof. Let m : o/}, — B(H) be a s-representation such that ||7(r)||, < v(e) for all
r € R. Then § := wof defines a ucp map from C*(G) — B(H). By the Stinespring dilation
theorem, there is a *-representation 7 : C*(G) — Z(H) and an isometry I : H — H such
that 0(«) = I*7(a)1 for all @ € C*(G).
Fixay €Y, and let Y"1 | Au;rv; be an R-decomposition in %g{,@ for 6(b,) — b, with
size < A. Since (I', R) is v-robust, for every i,
I (ri)m(i)lly = llm(ro)m () V/ollr = |7 (r:) (7 (v:) /o — v/pr(v:)) + 7 (ri)y/pr(vi) | p
< sl I (0 = /o (wi) e + In(r) 7l
< Il de(vs) - () + vle).

Here we use the facts that every 7(v;) is unitary and |||z is right unitarily invariant. It
follows that

|7 (by) — "7 (by) 1], = ||7T(by) —0(by)ll, = ll7(by) = 7(0(b)) I, = [l (by — O(Dy)) I,
== Z)‘ U7 V5 Hp < ZM |7 (ri )7 (vs Hp

< (Zw(l Il deg(v»)) v(e) < Av(e).

i=1
This proves Equation (@.1]). The rest follows from Proposition 111 U

Remark 9.3. Suppose a nonlocal game G is a self-test and has a robust determining pair.
From the above theorem, we clearly see that the robustness of this self-test is completely
determined by three factors:

(1) How efficiently can the ucp map from the game algebra to the PVM algebra be
expressed by relations in R.

(2) The robustness of the determining pair.
(8) The spectral gap of this self-test.

Here, the spectral gap (as well as the upper bound of the size of R-decompositions) is
a constant that is independent of €, so it can be absorbed in the big-O in Theorem [9.2.
However, we often work with a family of nonlocal games that self-test for growing systems.
In this case, the spectral gaps of this sequence of self-tests may depend on the dimension of
the systems. For instance, in the family of low-weight Pauli braiding tests {G,} [BMZ23],
every G, self-tests n EPR pairs, and the spectral gap of G, is O(1/poly(n)). For this
reason, we keep A in the expression of the robustness function.
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9.1. Example: CHSH and Clifford algebra. In the CHSH game, the verifier samples
a pair (z,y) € Zy X Zs uniformly at random. Upon receiving = and y, Alice and Bob
return a € Zo and b € Zy respectively. They win if and only a4+ b = z-y. So CHSH game
is an XOR game. The game polynomial of CHSH is given by

1 1
Popsy = 3 +Z(ao®bo+&o®bl +ar ®by—ar ®by).
Here we use the binary observables a, := m§ —m{ and b, := nj — n{ as generators.
In Proposition [6.16, we have shown that CHSH has a determining pair (I',R) where

Yo = bojibl,fy = bo\/ibl, and R = {byby + bibo}. The game algebra associated with CHSH

game is C*(G) = #5272 /(R) = Cly, the Clifford algebra of rank 2. The mapping o :
Cly — M5(C) sending by — ox and by — oy deﬁnes a *-isomorphism, so it is the unique
irreducible representation of C'ly. By Theorem[6.8, CHSH is a self-test. The ideal strategy

S = (HA,HB,{AO,AJ {By, B1}, |v)) is given by Ha=Hp =C% Ay = w2z, A =

UX\/;Z’BO = UX>Bl = 0y, and |?/)> = w. Let 7 = ™4 ® 7 be the associated

representation. Then

. 1
T(Ponsn) = 5 +~"(ox ®ox +0zR07)
1

=+ 42(|00> +|11) ) ((00] + (11]) — @(|01> —]10) ) ((01] = (10]).

2
So the spectral gap Acpsy of CHSH game is ‘2[ It is well-known that the robustness of
the determining pair (I, R) is O(y/€) (see e.g., [Zha24] for a sum-of-squares approach).
By Remark [0.3] now computing the robustness of the CHSH self-test boils down to con-
structing the desired ucp map.

V32
4
V2

Lemma 9.4. There is a ucp map 0 : Cly — g%}% sending

1
(92) b() — b() — §b1(60b1 + blbo)
1
(93) bl — bl — §b0(bob1 + blbo), and
1
(94) b(]bl — bobl — 5(()0()1 + blb(]).

Since {1, by, by, bob1 } is a basis for Cly, Equations ([0.2) to (9.4]) completely determine 6.
Note that Cls is the full group C*-algebra of the 1-qubit Pauli group P;. This construction
of 0 is given by applying the enhanced Gower-Hatami theorem in [BMZ23] to P; (see also
|Zha24] for a proof that 6 is ucp).

Theorem 9.5. The CHSH game is a robust self-test for its optimal strategies with ro-
bustness O(\/e).

Proof. Let 6 be the ucp map defined in Lemma 0.4, Then %bl(bobl + bibg) is an R-

decomposition for H(bo) — by with size 4 5 and 1b0(bob1 + bi1bg) is an R-decomposition for

0(by) — by with size 5. The spectral gap of CHSH is ¥=. The stability of the determining



54 YUMING ZHAO

pair (I', R) is O(y/€). By Theorem[@.2] the CHSH game is a robust self-test with robustness
O(Ve). O
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APPENDIX A. THE CLOSURE OF FINITE-DIMENSIONAL STATES

In this appendix, we prove Proposition [3.14}

Proposition 3.14. For every state f on &f,f(o”?/M®min %,Zb%M there is a sequence of quan-
tum models S,,n € N such that im,,_,. fs, = f in the weak*-topology.
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Recall that a tensor product model S = (Ha, Hp, {M2},{N/}, ) ) is a model in which

the Hilbert spaces H4 and Hp are not restricted to be finite-dimensional (but we still

assume they are separable). A state f on &gy, @min Dngvy is said to be a tensor

product state if f = fg for some tensor product model S. To prove that any state on
,Q/,%?,M rmin Dy can be approximated by finite-dimensional states, we first show that
any tensor product state can be approximated by finite-dimensional states.

Lemma A.1. For every tensor product model S = (Ha, Hp, {MZ},{N/},|¢)) there is a

sequence of finite-dimensional states { fnYnen 00 Fpgon Omin D pgnay Such that lim f, =
n—o0

fs in the weak*-topology.

Proof. If H or Hp is finite-dimensional, then fg is a finite-dimensional state and the

lemma follows by taking f, = fs for all n € N. Now suppose H and Hp are separable
infinite-dimensional Hilbert spaces. The state |¢) has decomposition

V) = Z Ai|€) @ |mi)

where {A;}ien is a non-negative sequence in (*(N) with >, . A? = 1, and {|;) : i € N}
and {|n;) : i € N} are orthonormal bases for H4 and Hp respectively. For every n € N
we define projections II2 := Y"1 &) (& € B(Ha) and 112 := 37 |mi) (n;] € B(Hp),
finite-dimensional spaces HZ' := IIAH,4 and HZ = IIPHp, and vector state [i,) =
/%n S NG @ |ni) € HE @ HE where i, := /> A2. Then for every n € N,

S = (M HE AT MY TNV, (b))

is a quantum model. Let 74 ® mp be the associate representation of S, and let 7 @ 72
be the associate representation of S, for every n € N.

Claim A.2. Given € > 0, for every monomial o in %Iffo’éM, there exists a Ty € N such
that

(A1) (@) ® 1 |ihn) e mala) @ 1[1)
for alln > Ty.

Proof of Claim[A.2. We prove this claim by induction on the degree %k of the monomial
a. Since p, — 1 as n — oo, there is a T' € N such that 1 — u,, < €/2 and /1 — p2 <¢/2
forall n >T. So

[[9on) = 1N < M= ) [0) |+ N |ton) = (O] < T = i + /1 = i <€

for all n > T. Equation (A.I)) holds for £ = 0. Now assume it holds for all monomials
of degree k for some k > 0. Let o« = ay - - - g1 be a monomial of degree k£ + 1, and let
/

o = g -aprp. By the induction hypothesis, there exists a 77 € N such that

Q) ® 1 [Yy) Rejo a(a) @ 1 1)
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for all n > Ty. For every i,j € N, let s;5 := (§, 7| ma(a) @ L|p). Since 37, o [sy]* =
|7ma(c) @ 1 J0)||2 < 1, there is a Ty € N such that

2‘82]‘2 > Z|Sw|2 (€/2)?

ij=1 ij>1
for all n > T5. Note that ||ma(c)|lop < 1. It follows that
Ta(@) @ L) Rz Iy @ I (ma(0r) @ 1[9)) ) = Iima(on) @ IL) (ma(e) @ 1 [4) )
R Momaan) @ ITF (7 (o) @ 1|eh) ) = I ma(an) I (o) @ 1 [y,
AT (@) @ 1|¢,) = mp () @ 1 [¢y,)

for all n > T := max{Ty,T2}. So Equation (A.]) holds for all monomials of degree k + 1.
This completes the proof. O

= T

Similarly, for any ¢ > 0 and monomial g € ,Q/;/bB;/M, there exists a Ts € N such that

(A.2) L@, (B7) [¢n) ~e 1@ 75(57) [¥) .

for all n > Tp. Then by Lemma BI6, lim fs (o ® 8) = f(a ® B) for all monomials «
n—oo

and 5. So the lemma follows. O

The above lemma illustrates that the weak*-closure of the set of finite-dimensional
states contains all tensor product states. To prove the set of finite-dimensional states is
weak*-dense, we only need to show that the set of tensor product states is weak*-dense.
Recall the following well-known fact (see e.g. [KR97, Corollary 4.3.10]).

Lemma A.3. Suppose A C B(H) is a concretely represented unital C*-algebra, and let

f be a state on A. Then for every e > 0 and every finite set of elements ay,--- ,a, € A,
there are coefficients Ay, -+, Ay > 0 with Zle Ai = 1 and vectors 1), -+, |¢Yr) € H
such that

k

Z (il ailyy)] <€

forall1l <i<n.
This lemma can be used to prove:

Lemma A.4. For every state [ on /pg OVM Rumin Ao OVM there is a sequence of tensor
product models { S, }nen such that lim fg = f in the weak*-topology.
n—oo

Proof. We first fix any faithful representations &y, C B(Ha) and )i, € B(Hp)
for some Hilbert spaces H 4 and Hpz. Then ,Q/,%?,M(X)minﬂgé%M is the C*-algebra generated
by the concrete operators m* @ ny, (a,b,z,y) € Ax Bx X xY, where each m? ® n} acts
on Hy ® Hp. For every n € N, let

C(n) := {a® B : & monomial in eszflfo’?/M, 3 monomial in o733, deg(a) 4 deg(8) < n}
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be the set of monomials in ,Q/,%?,M Rmmin ,Q/ povy Of degree < n. Then C(n) is a finite set
and C(n) C C(n+1) for all n € N. For every n € N, by Lemma- \.3| there are coefficients

AL ,A(") > 0 with Zl.“j A" = 1 and vectors |1/1§n)) : \wkn ) € Ha®Hp such that
n n 1
(A.3) fla®p) — }:A ¢|a®5w<ﬂ<—muma®ﬁea)

Then S, := (Ha, Hp, {ma}, {n{}, pn) is a tensor product model with a mixed state p, :=
SO N [0 (0], Equation (A3) implies

|fla®B) = fs,(a® B)] < 1 for all o« ® B € C(n).

Then for every € > 0 and every monomial o ® B € o, OVM Qmin gf,?b?,M,

|fla®B) — fs.(a®pB)| <e
for all n > max{[1],deg(a) + deg(3)}. So lim fs,(a® ) = f(a® j) for any monomial
a ® . The lemma follows. A O
Proof of Proposition|[3.14]. Let f be a state on eszf]fO’?/M Drmin Dpgyyyy- By Lemma [A4 there
is a sequence of tensor product models {S, },en such that f = lim fs, in the weak*-
topology. Then for every n € N, by Lemma [A] there is a sequeng; gf finite-dimensional

states { f,gf )}meN such that fg, = lim fr(,? ) in the weak*-topology. Hence { f,g")}neN is a
m—0o0

sequence of finite-dimensional states such that f = lim fT(L") in the weak*-topology. We
n—oo

conclude that the set of finite-dimensional states on &g, Omin P peny is a weak*-dense
subset of the state space of gy Omin Fodvas O
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