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We map the complete classical phase diagram of the spin Hamiltonian describing pyrochlore rare-earth
magnets with all symmetry-allowed nearest-neighbor bond-dependent anisotropic two-spin interactions. We
provide a simple derivation of the organization of spins into tensor degrees of freedom describing the multipole
moments of a tetrahedron, whose components correspond to irreducible representations (irreps) of the tetrahedral
symmetry group𝑇𝑑 . By parameterizing the Hamiltonian directly in terms of the energies of the individual irreps,
we perform an exhaustive search of all possible irrep degeneracies which may host stable classical spin liquids.
Doing so reveals four one-parameter families of models along which three phases are degenerate, all four of which
merge at the Heisenberg antiferromagnet and its dual, and we give a complete three-dimensional picture of the
phase diagram showing all of the phases and their intersections. The appearance of two copies of a single irrep
implies an extra degenerate locus which pierces the phase boundaries at special points, yielding two additional
isolated triple points. We demonstrate that one-parameter families of Hamiltonians are characterized by a
topological invariant describing how the ground state spin configuration winds when adiabatically transported
around this degenerate locus, analogous to a “diabolical locus”. We provide a comprehensive catalog of all flat
band degeneracies in the phase diagram and discuss the mechanisms that may allow for or impede the realization
of a variety of classical spin liquids described by tensor gauge fields exhibiting pinch line singularities and
concomitant four-fold pinch points. Lastly, we provide a list of all cases where three irreps are degenerate above
the ground state, which may lead to interesting features in the spin wave spectrum within each ordered phase.
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I. INTRODUCTION

The experimental search for, and theoretical classification
of, exotic states of matter such as topological phases and de-
confined critical transitions, along with their associated spectra
of fractionalized excitation, is a central aim of modern con-
densed matter physics. A core focus is to understand systems
whose low-energy physics is not characterized by conventional
symmetry breaking with a “rigid” order parameter, but instead
exhibits emergent liquid-like characteristics due to strong cor-
relations. A central theme in this effort is that novel physics
emerges when multiple conventional ordering channels com-
pete with each other, becoming “intertwined” and resulting in
physics that is more than the sum of individual parts [1–9].
One class of systems that have made significant advancements
through constant exchange between the experimental and the-
oretical fronts are frustrated magnets [10, 11]—specifically,
magnetic insulators with antiferromagnetic spin interactions
frustrated by triangular motifs, such as occurs on the triangu-
lar, kagome, and pyrochlore lattices. The geometric origin of
the frustration makes such lattices highly favorable for sup-
porting spin liquids—strongly correlated paramagnetic states
which exhibit emergent deconfined gauge fields [12–18].

In three spatial dimensions the pyrochlore lattice is the pre-
mier platform for frustrated magnetism, with multiple families
of compounds for experimental study [19–24] and a solid the-
oretical understanding of the microscopic physics [25]. It
hosts two of the most well-known and canonical examples
of spin liquids: the pyrochlore Heisenberg anti-ferromagnet
(HAFM) [26–28] and the pyrochlore Ising anti-ferromagnet,
more commonly known as spin ice [29]. Both of these are
known to be classical spin liquids, which in the former case
refers to the large-spin limit and in the latter refers to the
limit where transverse spin-flipping terms are not included
in the Hamiltonian.1 These two models correspond to two
distinct limiting cases of the symmetry-allowed spin Hamilto-
nian: completely isotropic interactions versus the maximally
anisotropic limit where spins are constrained to point along
their local high-symmetry easy-axes.

Over time the broader problem of considering all symmetry-
allowed, bond-dependent, anisotropic spin interactions has be-
come necessary as a plethora of pyrochlore materials have been
synthesized and intensively studied [20]. Spatial anisotropies

1 The latter is especially important because it is one of the only examples
where we can derive perturbatively the quantum corrections and map them
to a lattice gauge theory owing to the special geometry of the pyrochlore
lattice [30–33], thus demonstrating the emergent gauge fields at the level
of the microscopic spin operators, rather than as fluctuations about a mean
field ground state [34]. The number of references is far too great to list, see
Ref. [29] for an overview and Ref. [35] for more recent promising results
for the realization of quantum spin ice in Cerium-based pyrochlores.

are generically present in these magnets because the “spins”
are actually crystal field doublets of 4 𝑓 rare earth ions [36],
for which strong spin-orbit coupling makes the interactions
sensitive to the local crystalline symmetries [25]. Such bond-
dependent anisotropies intermediate between the isotropic
and easy-axis limits result in new types of frustration which
can yield interesting novel spin liquids [37–39], most fa-
mously in the exactly solved Kitaev Honeycomb model [40–
42]. Indeed, within the phase diagram of the microscopic
pyrochlore pseudo-spin-1/2 Hamiltonian with four symmetry-
allowed nearest-neighbor spin couplings, a number of classical
spin liquids beyond the HAFM and spin ice models have been
discovered [43–47], including some exhibiting emergent ten-
sor gauge fields [45–47].

Despite many studies, however, a comprehensive picture of
the entire phase diagram and how the various models studied fit
together has not yet appeared. Given the maturity of research
on pyrochlore magnetism, recent advances in the understand-
ing of classical spin liquids [48–51], along with many new
avenues for experimental research [23, 24, 52], it is warranted
to give a complete account of the phase diagram and the vari-
ous places in it where spin liquidity exists or may be present,
how the variety of known examples fit together, and how the
tensorial nature of these spin liquids arises. Whereas previous
studies have looked at either two-dimensional cross sections
of the phase diagram [25, 53–56] or certain 1-parameter mod-
els [43, 46, 57], it is highly desirable to have a complete picture
that plainly visualizes how such cuts of the phase diagram fit
together, along with how the variety of spin liquids coincide
with special degeneracies of the phase diagram. Additionally,
recent work in the study of so-called [58] and “unnecessary
criticality” [59–62] have emphasized that phase diagrams may
contain non-trivial structures other than phase boundaries, and
it would be interesting to know whether such structures exist
in the pyrochlore phase diagram. These are the tasks we take
up in this paper.

A summary of the layout and core results are as follows. In
Section II we introduce the Hamiltonian and its various pa-
rameterizations, where Fig. 1 illustrates the bond-dependent
nature of the anisotropic interactions. We then provide a novel
account of the theoretical basis for the tensorial nature of py-
rochlore spin liquids by deriving the tensor multipole decom-
position of a single tetrahedron (Table I) and exposing how
it corresponds to an analysis of the irreducible representa-
tions (irreps) of the tetrahedral symmetry group, where each
of the four distinct irreps corresponds to one ground state
phase illustrated in Fig. 2. We pay particular attention to the
“canting” of spins due to the continuous mixing of two copies
of a single irrep appearing in the symmetry decomposition,
illustrated in Fig. 3. In Section IV we then take up the is-
sue of parameterizing the Hamiltonian in a way that can be
used to expose all of the possible ground state degeneracies,
which we accomplish by parameterizing in a way that allows
the irrep energies to be tuned independently. This allows us
to give the complete classification of triply-degenerate ground
states in Table III: there are exactly four lines in the phase
diagram along which three phases meet, and all four of these
lines merge together at the HAFM point where all four phases
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become degenerate. There is duality related to switching the
sign of one of the Hamiltonian parameters, denoted 𝐽𝑧±, so
we first map the phase diagram in the 𝐽𝑧± = 0 subspace via
stereographic projection in Fig. 5, before mapping the full
phase diagram in Fig. 6, which shows all of the phases, phase
boundaries, and triple lines, which merge at the HAFM point
and its dual. In the process we uncover a locus along which
the two copies of the repeated irrep are degenerate, and in
Section V we show that this special locus defines a topological
invariant for 1-parameter families of models which encircle it.
Finally, in Section VI we give a full catalog of all degenerate
combinations which yield flat band degeneracies in Tables IV
to VI, along with the spin structure factors computed in the
self-consistent Gaussian approximation in Figs. 9 and 10, and
discuss the connection between pinch lines and fourfold pinch
points in tensor spin liquids, illustrated in Fig. 12. We end in
Section VII with a discussion of all triple degeneracies that
occur in excited states, shown in Fig. 13, which give the phase
diagram some further interesting structure and may have inter-
esting imprints on the excitations above the ground state within
each phase.

II. SYMMETRY CLASSIFICATION OF GROUND STATES

We consider the most general nearest-neighbor spin model
on the pyrochlore lattice,

𝐻 =
1
2

∑︁
𝑖, 𝑗

3∑︁
𝛼,𝛽=1

𝑆𝛼
𝑖 J

𝛼𝛽
𝑖 𝑗 𝑆

𝛽
𝑗 , (1a)

where the first sum is over sites 𝑖 and 𝑗 of the pyrochlore
lattice and 𝛼, 𝛽 index the three components of a spin. The
matrix J contains all symmetry-allowed nearest-neighbor spin-
spin interactions, and we refer to it as the interaction matrix,
restricting to only nearest-neighbor interactions. In this work
we treat the spins in the classical large-spin limit as fixed-length
vectors, with spin length normalized to unity.

A. Hamiltonian and Parameterization of Anisotropic
Interactions

The Hamiltonian parameters can be expressed either in a
global or a local basis, each of which can be useful to identify
special parameter points [25, 55]. If we take 𝛼, 𝛽 to refer to
the global frame Cartesian components of a spin, with 𝑥, 𝑦,
and 𝑧 axes along the cubic symmetry axes, then for two spins
in the 𝑥, 𝑦 plane the interaction matrix has four independent
components

J
𝛼𝛽
𝑖 𝑗 = ©­

«
𝐽1 𝐽3 −𝐽4
𝐽3 𝐽1 −𝐽4
𝐽4 𝐽4 𝐽2

ª®
¬
. (1b)

This form can be deduced by symmetry by considering all
symmetry operations which swap these two spins, which trans-
form as pseduovectors under rotations (discussed further in

Section II C), and demanding that
∑

𝛼𝛽 𝑆
𝛼
𝑖 J

𝛼𝛽
𝑖 𝑗 𝑆

𝛽
𝑗 be invariant.

Since every nearest-neighbor bond is symmetry-equivalent,
there are four free parameters in the Hamiltonian.

These symmetry-allowed interactions can equivalently be
parameterized in a coordinate-free notation as

𝐻 =
∑︁
⟨𝑖 𝑗 ⟩

[
𝐽Heis𝑺𝑖 · 𝑺 𝑗 + 𝐽PD𝑺𝑖 [𝒓𝑖 𝑗 𝒓𝑇𝑖 𝑗 ]𝑺 𝑗 + 𝐽K𝑺𝑖 [𝒏̂𝑖 𝑗 𝒏̂𝑇𝑖 𝑗 ]𝑺 𝑗

+ 𝐽DM𝑫𝑖 𝑗 · (𝑺𝑖 × 𝑺 𝑗 )
]
+ 𝐽SIA

2

∑︁
𝑖

|𝑺𝑖 · 𝒛𝑖 |2, (2)

where 𝑇 denotes transpose, and we refer to the four interac-
tions as: isotropic Heisenberg (Heis), pseduo-dipolar (PD),
Kitaev-like (K), Dzyaloshinskii-Moriya (DM), and a single-
ion anisotropy (SIA). The geometric picture of these interac-
tions is illustrated in Fig. 1, which shows a single tetrahedron of
the pyrochlore lattice inscribed in a cube: 𝒓𝑖 𝑗 ∝ 𝒓 𝑗 − 𝒓𝑖 point
from site 𝑖 to site 𝑗 (gray arrows), where 𝒓𝑖 is the position
of site 𝑖; 𝒏̂𝑖 𝑗 are the normal vectors to the cube faces (orange
arrows); and 𝑫̂𝑖 𝑗 = 𝒏̂𝑖 𝑗 × 𝒓𝑖 𝑗 are the DM vectors. We call the
third term Kitaev-like because it involves only 𝑥, 𝑦, or 𝑧 spin
interactions on each edge—a 𝑧-𝑧 interaction if 𝒓𝑖 𝑗 is in the
𝑥, 𝑦 plane and the others by cyclic permutation. The pseudo-
dipolar term is so called because it it appears when truncating a
dipole-dipole interaction at nearest-neighbor. In the single-ion
anisotropy, 𝒛𝑖 is the local easy-axis direction. While single-
ion anisotropy is irrelevant for spin-1/2 operators, it will be
important for us to include since it is a symmetry-allowed in-
teraction and is required to match the number of parameters
in the Hamiltonian with the number of irreducible representa-
tions of the point symmetry group.

In addition to the global frame, one can utilize a local
symmetry-adapted basis, with a separate frame defined for
each spin. The traditional definitions take the local 𝒛𝑖 along
the 3-fold easy axis, 𝒚̂𝑖 along a 2-fold axis, and 𝒙̂𝑖 = 𝒚̂𝑖 × 𝒛𝑖
lying in a mirror plane. An explicit choice of local coordinates
is given in Appendix A. In terms of the local frame 𝑆𝑥𝑖 , 𝑆𝑦𝑖 ,
and 𝑆𝑧𝑖 components, defining 𝑆±𝑖 = 𝑆𝑥𝑖 ± 𝑖𝑆

𝑦
𝑖 , the Hamiltonian

is given by

𝐻 =
𝐽SIA

2

∑︁
𝑖

(𝑆𝑧𝑖 )2 +
∑︁
⟨𝑖 𝑗 ⟩

[
𝐽𝑧𝑧𝑆

𝑧
𝑖 𝑆

𝑧
𝑗 − 𝐽± (𝑆+𝑖 𝑆−𝑗 + 𝑆−𝑖 𝑆

+
𝑗 )

+ 𝐽±±𝛾𝑖 𝑗 (𝑆+𝑖 𝑆+𝑗 + 𝑆−𝑖 𝑆
−
𝑗 ) + 𝐽𝑧±

(
𝜁𝑖 𝑗 (𝑆+𝑖 𝑆𝑧𝑗 + 𝑆𝑧𝑖 𝑆

+
𝑗 ) + h.c.

) ]
,

(3)

where 𝛾𝑖 𝑗 are cube roots of unity and 𝜁𝑖 𝑗 = −𝛾∗𝑖 𝑗 . The global
and local parameterizations correspond to a change of basis
for J, and are related by a linear map

©­­­­­«

𝐽𝑧𝑧

𝐽±±
𝐽𝑧±
𝐽±

ª®®®®®¬
=

©­­­­­«

− 2
3

1
3 − 2

3 − 4
3

1
6

1
6 − 1

3
1
3

1
3
√

2
1

3
√

2
1

3
√

2
− 1

3
√

2
1
3 − 1

6 − 1
6 − 1

3

ª®®®®®¬

©­­­­­«

𝐽1

𝐽2

𝐽3

𝐽4

ª®®®®®¬
, (4a)
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𝒓𝑖 𝑗

𝒏̂𝑖 𝑗

𝑫̂𝑖 𝑗

𝒛𝑖

FIG. 1. An illustration of a single tetrahedron inscribed in a cube and
the bond-dependent anisotropy vectors which appear in the symmetry-
allowed spin-spin interactions in Eq. (2). The local three-fold easy-
axis 𝒛𝑖 at each corner of the tetrahedron is indicated by a red arrow.
The nearest-neighbor separation vector 𝒓𝑖 𝑗 (gray arrows) point along
the edges of the tetrahedron. The normal vectors 𝒏̂𝑖 𝑗 (orange arrows)
point out of the cube at the midpoint of each tetrahedron edge. The
DM vectors 𝑫̂𝑖 𝑗 (light blue arrows) then lie in the cube faces pointing
along the face diagonals orthogonal to the edges of the tetrahedron
(thin black lines). Since 𝒓𝑖 𝑗 = −𝒓 𝑗𝑖 , 𝑫̂𝑖 𝑗 = −𝑫̂ 𝑗𝑖 ; here we have made
a particular choice of 𝒓𝑖 𝑗 . The total interaction 𝑫̂𝑖 𝑗 · 𝑺𝑖 × 𝑺 𝑗 does
not depend on the order of 𝑖, 𝑗 .

with inverse map

©­­­­­«

𝐽1

𝐽2

𝐽3

𝐽4

ª®®®®®¬
=

©­­­­­«

− 1
3

2
3

2
√

2
3

4
3

1
3

4
3

4
√

2
3 − 4

3
− 1

3 − 4
3

2
√

2
3 − 2

3
− 1

3
2
3 −

√
2

3 − 2
3

ª®®®®®¬

©­­­­­«

𝐽𝑧𝑧

𝐽±±
𝐽𝑧±
𝐽±

ª®®®®®¬
. (4b)

The relations between the three parameterizations Eq. (1b),
Eq. (2), and Eq. (3) are given in Appendix C. The local basis
parameters in Eq. (3) will play a key role throughout this work,
as they expose a number of important symmetries and duali-
ties.2 In particular, the Hamiltonian has a duality by applying
a 𝜋 rotation to each spin about its local 𝒛𝑖 axis and changing the
sign of 𝐽𝑧±. Furthermore, when 𝐽𝑧± = 0, there is an additional
duality applying a 𝜋/2 rotation to each spin about its local axis
and switching the sign of 𝐽±±. In this work we will primarily

2 Note that from a materials perspective the spin operators appearing in
Eqs. (2), (3) and (1a) are actually pseudo-spin operators arising from the
low-energy crystal field doublet of the magnetic rare-earth ions [25, 63].
There are three possible types of doublet, commonly referred to as Kramers,
non-Kramers, and dipolar-octupolar. The Kramers case allows for all cou-
plings in Eq. (3), while the non-Kramers case has the same Hamiltonian
with 𝐽𝑧± = 0 [25]. The dipolar-octupolar case has a simpler Hamiltonian
which reduces to an XYZ-model, whose classical phase diagram can be
parameterized as the surface of a cube, with three copies of the spin ice
phase and three copies of the all-in-all-out phase on the six faces [64], so
we do not consider it here.

take 𝐽SIA = 0, since (𝑆𝑧𝑖 )2 is constant for spin-1/2. One can
consider turning on single-ion anisotropy adiabatically start-
ing from the phase diagram we present here, which will then
drive the system either towards the easy-plane or easy-axis
configurations. In the case of spin-1 pyrochlores [65–67] the
classical approach we use should be modified to account for
the spin-0 state [68].

B. Band Structure and Single-Tetrahedron Physics

The classical phase diagram of this Hamiltonian can be
mapped out by studying a single tetrahedron, because the
Hamiltonian decomposes into identical copies on each tetra-
hedron 𝑡,

𝐻 =
1
2

∑︁
𝑡

4∑︁
𝜇,𝜈=1

∑︁
𝛼,𝛽

𝑆𝛼
𝑡,𝜇J

𝛼𝛽
𝜇𝜈 𝑆

𝛽
𝑡,𝜈 , (5)

where 𝑺𝑡 ,𝜇 is the spin on tetrahedron 𝑡 and sublattice 𝜇. The
interaction matrix J is the same on every tetrahedron, and
the factor of 1/2 accounts for the double-counting of each
nearest-neighbor pair in the sum over 𝜇 and 𝜈. Since the
Hamiltonian is the same on every tetrahedron, by studying the
ground states of a single tetrahedron the ground states of the
entire system can be determined by “lego-brick-rules”, i.e. by
attaching tetrahedra together at their corners and matching the
corresponding spin [55].

Another way to say this is to note that each FCC primitive
unit cell contains four spins, and the possible zero-wavevector
ground states, i.e. those that repeat in every FCC unit cell,
must have the same spin configuration on every tetrahedron.
Thus by solving the single-tetrahedron ground states, one can
construct all the zero-wavevector ground states for the en-
tire lattice. This can also be understood by diagonalizing the
quadratic form in Eq. (1a). Since J commutes with the mag-
netic space group symmetries, it is translationally invariant
and thus block-diagonalized into 12× 12 blocks in the Fourier
basis (corresponding to four 3-component spins per unit cell)
labeled by the crystal momentum wavevector 𝒒. Diagonaliz-
ing therefore yields twelve bands of eigenvalues in reciprocal
space, 𝐽𝑛 (𝒒), where 𝑛 = 1, · · · 12, each corresponding to a nor-
malized eigenvector 𝜓𝒒,𝑛 and a corresponding normal mode

𝑆𝒒,𝑛 =
∑︁
𝑖

∑︁
𝛼

[𝜓𝒒,𝑛]𝛼𝑖 𝑆𝛼
𝑖 , (6)

so that the Hamiltonian is diagonalized into a sum of decoupled
quadratic modes

𝐻 =
1
2

∑︁
𝒒

12∑︁
𝑛=1

𝐽𝑛 (𝒒) |𝑆𝒒,𝑛 |2. (7)

In principle, the normal mode with the smallest eigenvalue
is determines the ground state, though it may occur that one
cannot use the corresponding eigenvectors to construct a state
satisfying the spin-length constraint |𝑺𝑖 |2 = 1 on every site, in
which case the ground state will necessarily include contribu-
tions from some higher-energy normal modes. This does not
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(a) (b) (c) (d) (e) (f)

FIG. 2. Ground states of the pyrochlore lattice, each corresponding to an irrep of 𝑇𝑑 . The vertical black arrow indicates a [001] cubic axis. The
𝑇1 and 𝑇2 irreps each have two additional components given by the same configuration but along the other two Cartesian axes. Common names
from left to right: (a) All-in-all-out (AIAO, 𝐴2), (b,c) Γ5 (𝐸 , split into 𝜓2 and 𝜓3 components), (d) Palmer-Chalker (PC, 𝑇2), (e,f) Splayed
ferromagnet (SFM, 𝑇1). General SFM configurations are canted ferromagnetic configurations obtained from linear combinations of the two
𝑇1 irreps, c.f. Fig. 3. Here we show a choice of basis corresponding to a colinear ferromagnet and a coplanar anti-ferromagnet, which were
derived from the multipole decomposition of a tetrahedron, Eq. (14) and Eq. (18). Colors for each irrep match colors used in other figures in
the rest of the paper.

occur at in the model we are considering here. Since we only
consider nearest-neighbor interactions which act within a unit
cell, it is necessary that the minimum eigenvalue of J occurs
at 𝒒 = 0, and the lowest band(s) must either be flat or disperse
upwards from this minimum.3 Thus all of the ground states
are 𝒒 = 0 spin configurations.

The 𝒒 = 0 block of the interaction matrix commutes with a
12-dimensional representation of the group 𝑇𝑑 describing the
symmetries of a tetrahedron. This representation decomposes
into a collection of irreducible representations (irreps), and
the dimensions of the irreps appearing in the decomposition
correspond to the degeneracies of the eigenvalues at 𝒒 = 0,
i.e. the symmetry protects a set of band touchings at the zone
center, which we discuss in detail in Section II C.

C. Irreducible Representations and Multipole Decomposition

While the irreducible representation analysis has been
known and utilized to study the phase diagram [55, 69], we
present here an intuitive derivation that directly relates it to
the multipole moments of a tetrahedron. Consider four spins
on the corners of a single tetrahedron, with a total of twelve
components 𝑆𝛼

𝜇 . Under the action of 𝑇𝑑 , the corners of the
tetrahedron are permuted while the spins are rotated as angular
momentum (pseudo) vectors. We thus have a 12-dimensional
representation of 𝑇𝑑 , where each 𝑔 ∈ 𝑇𝑑 is represented by a
12 × 12 matrix 𝜌(𝑔), such that after a rotation the spin com-
ponents are given by

[𝜌(𝑔)𝑆]𝛼𝜇 =
∑︁
𝜈,𝛽

[𝜌(𝑔)]𝛼𝛽𝜇𝜈 𝑆𝛽𝜈 . (8)

This is a tensor product representation of a four-dimensional
permutation representation and a 3-dimensional pseudo-vector

3 Furthermore, the maximum eigenvalue also occurs at the zone center, and
the top bands can either be flat or disperse downwards away from the zone
center.

representation, i.e. it can be decomposed as

[𝜌(𝑔)]𝛼𝛽𝜇𝜈 = [𝜋(𝑔)]𝜇𝜈 [𝑅̄(𝑔)]𝛼𝛽 , (9)

where 𝜋(𝑔) is a permutation matrix and 𝑅̄(𝑔) is a rotation ma-
trix. The bar indicates that the spins rotate as angular momenta
means that the components do not change sign under inversions
or reflections, so that 𝑅̄(𝑔) is always a proper rotation matrix.4

The fact that this is a tensor product representation allows
us to straightforwardly deduce the structure of the irrep de-
composition and construct the corresponding invariant linear
combinations of spin components. First, we note that 𝑇𝑑 has
five irreducible representations, which are traditionally de-
noted 𝐴1, 𝐴2, 𝐸 , 𝑇1, and 𝑇2, and which we also denote by 1, 1̄,
2, 3̄, and 3, respectively. The number indicates the dimension
of the irrep while the bar indicates that it picks up an addi-
tional sign under inversions. In particular, the 𝑇1 or 3̄ irrep
acts as pseudovector rotations, while the 𝑇2 or 3 irrep acts as
vector rotations. Let 12 denote the full twelve-dimensional
reducible representation 𝜌, and let 4 denote the permutation
representation, then starting from Eq. (9) we have

12 = 4 ⊗ 3̄
= (1 ⊕ 3) ⊗ 3̄
= (1 ⊗ 3̄) ⊕ (3 ⊗ 3̄). (10)

Here we have utilized a simple fact: every permutation repre-
sentation always contains into a single copy of the trivial rep-
resentation plus a remainder. Furthermore, the permutation
representation is faithful, so the remainder must be the faithful
3 irrep.5 We can thus anticipate that the twelve dimensional
representation can be decomposed into a 3-component pseu-
dovector which is invariant under permuting the spins (1 ⊗ 3),

4 For example, a reflection acts on an axial vector as −1 (inversion) times a
𝜋 rotation in the reflection plane, while on a pseduovector it acts only as a
𝜋 rotation.

5 Faithful means that no two group elements map to the same matrix in the
representation.
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i.e. the net dipole moment of a tetrahedron, and the remaining
nine spin components can be grouped into a 3 × 3 tensor de-
scribing the degrees of freedom with zero dipole moment, i.e.
other multipole degrees of freedom of a single tetrahedron.
This tensor will naturally decompose into its scalar trace, its
three anti-symmetric components, and its five symmetric com-
ponents,

12 = 3̄ ⊕ (1̄ ⊕ 3 ⊕ 5̄), (11)

which correspond respectively to the magnetic monopole mo-
ment (1̄), magnetic toroidal dipole moment (3), and magnetic
quadrupole moment (5̄) of the tetrahedron.6 For a system
with full 𝑂 (3) symmetry, the 5-component symmetric part
of a rank-2 tensor would be irreducible, but when restrict-
ing to the subgroup of cubic symmetries it decomposes into
5 = 2 ⊕ 3,7 corresponding to the trace-free diagonal and sym-
metric off-diagonal matrix components. In sum, we have the
final decomposition

12 = 3̄ ⊕ (1̄ ⊕ 3 ⊕ (2 ⊕ 3̄))
≡ 𝑇1∥ ⊕ (𝐴2 ⊕ 𝑇2 ⊕ (𝐸 ⊕ 𝑇1⊥)), (12)

where we have given two distinct labels to the two copies of
the 𝑇1 (3̄) irrep. Each of the irreps corresponds to a ground
state of the tetrahedron.

1. Multipole Decomposition

To obtain further insight into their geometric meaning, we
must construct the corresponding normal modes. Each irrep 𝐼
corresponds to a linear combination of the four spins with the
general form

𝑚𝑎
𝐼 =

1
2

∑︁
𝜇

(𝝍̂𝑎
𝐼 )𝜇 · 𝑺𝜇, (13)

where 𝑎 indexes the components of the irrep. Each the cor-
responds to a distinct set of ground states of the tetrahedron
where the spins are aligned along the local vectors (𝝍̂𝑎

𝐼 )𝜇,
which are summarized in Table I.
𝑻1∥ Irrep—The obvious normal mode is the net magnetic

dipole moment of a single tetrahedron,

M𝛼 ≡ 𝑚𝛼
𝑇1∥ =

1
2

∑︁
𝜇

𝑆𝛼
𝜇 =

1
2

∑︁
𝜇

𝒆𝛼 · 𝑺𝜇, (14)

where we defined 𝒆𝛼 as the unit vector pointing along the
global Cartesian axis 𝛼 ∈ {𝑥, 𝑦, 𝑧}. We use the symbol M to

6 The trace corresponds to the 1̄ representation since one index of the tensor
picks up an extra sign under inversions. Similarly, the anti-symmetric part
of a rank-2 tensor would normally act as a pseudovector, but the extra sign
turns it into a proper vector. We put the bar on the 5̄ to indicate that this
piece also gets the extra sign.

7 This decomposition is widely known as 𝑒𝑔 ⊕ 𝑡2𝑔 in the context of the larger
cubic point symmetry group 𝑂ℎ .

Irrep 𝐼 Dim. (𝝍𝑎
𝐼 )𝜇 Components 𝑎 Multipole

𝐴2 1̄ 𝒛𝜇 — monopole

𝐸 2 {𝒙̂𝜇 , 𝒚̂𝜇} 𝜓2, 𝜓3 quadrupole

𝑇2 3
√︃

3
2 𝒛𝜇×𝒆𝛼 𝛼 ∈ {𝑥, 𝑦, 𝑧} toroidal dipole

𝑇1∥ 3̄ 𝒆𝛼 𝛼 ∈ {𝑥, 𝑦, 𝑧} dipole

𝑇1⊥ 3̄
√︃

3
2𝑃

𝛼𝒛𝜇 𝛼 ∈ {𝑥, 𝑦, 𝑧} quadrupole

TABLE I. The twelve components of the four spins (magnetic dipoles)
on the corners of a single tetrahedron decompose into irreducible rep-
resentations of the tetrahedral symmetry group𝑇𝑑 . Each corresponds
to a multipole moment of the tetrahedral spin configuration, where
the SO(3) quadrupole moment is split into diagonal and off-diagonal
components due to reduction to a cubic symmetry subgroup. Each
irrep 𝐼 has a corresponding set of local unit vectors denoted (𝝍̂𝑎

𝐼 )𝜇 ,
where 𝑎 indexes the components of the irrep and 𝜇 indexes the four
corners of the tetrahedron, defining the normal modes and ground
states. These are derived from the multipole decomposition of a
single tetrahedron, and correspond to the 𝒒 = 0 eigenvectors of the
interaction matrix. The vectors 𝒆𝛼 ∈ {𝒙̂, 𝒚̂, 𝒛} are the Cartesian cubic
axes along the [001] directions, while the 𝒛𝜇 line along local three-
fold easy axes along the [111] directions, c.f. Fig. 1. Definitions of
the vectors 𝒙̂𝜇 and 𝒚̂𝜇 are given in Appendix A. The matrices 𝑃𝛼 are
act as a projector orthogonal to 𝒆𝛼 times a reflection swapping the
remaining two cubic axes.

denote that this corresponds to the net moment of the tetrahe-
dron. This quantity is invariant under permutations of the four
sublattices, so corresponds to the factor (1 ⊗ 3̄) in Eq. (10),
or 𝑇1∥ in Eq. (12). As a sum of spins it naturally transforms
as a pseudovector. This normal mode is saturated when the
four spins are colinear, corresponding to a set of ferromagnetic
ground states shown in Fig. 2(e).

The remaining degrees of freedom must be packaged into a
2-index tensor transforming under (3⊗ 3̄) in Eq. (10). The 3̄ in-
dex comes from the spin component, while the 3 index arose in
Eq. (10) from permutations of the corners, thus we must iden-
tify four vectors on which permutations act as rotations. These
are naturally provided by the four high-symmetry directions of
the tetrahedron, given by the four unit vectors 𝒛𝜇 pointing from
the center of the tetrahedron towards the 𝜇’th corner, because
permuting the corners of a tetrahedron is always equivalent
to rotating it. We thus define the following tensor for each
tetrahedron, which has the desired transformation properties

B =

√
3

2

∑︁
𝜇

𝒛𝜇 ⊗ 𝑺𝜇, B𝛼𝛽 =

√
3

2

∑︁
𝜇

𝑧𝛼𝜇 𝑆
𝛽
𝜇 . (15)

The remaining normal modes can then be extracted by decom-
posing this tensor into its trace, anti-symmetric, and symmetric
components.

𝑨2 Irrep—The simplest irrep is the psuedo-scalar 𝐴2 irrep,
corresponding to the magnetic monopole moment or “mag-
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netic charge” of the tetrahedron, extracted from the trace ofB,8

√
3𝑚𝐴2 :=

∑︁
𝛼

B𝛼𝛼 =

√
3

2

∑︁
𝜇

𝒛𝜇 · 𝑺𝜇 . (16)

This normal mode is saturated when the spins are “all-out”
or “all-in” along their local easy-axes. Such an all-in-all-out
configurations is shown in Fig. 2(a). This scalar changes sign
under inversion since the spins transform as angular momenta,
thus transforming as the 𝐴2 irrep.
𝑻2 Irrep—Next we can extract the anti-symmetric part,

√
2𝑚𝛼

𝑇2
:=

∑︁
𝛽,𝛾

𝜖 𝛼𝛽𝛾B𝛽𝛾 =

√
3

2

∑︁
𝜇

(𝒛𝜇 × 𝒆𝛼) · 𝑺𝜇 . (17)

First, note that this contains no contributions from the easy-
axis components which are killed by the cross product, thus it
corresponds to a set of ground states with spins orthogonal to
their easy axes. This normal mode is saturated occurs when the
spins are coplanar and form a chiral configuration relative to
one of the Cartesian axes, known as the Palmer-Chalker ground
states. There are six such ground states, corresponding to two
chiralities about each of the three Cartesian cubic axes, one is
shown in Fig. 2(d).
𝑻1⊥ Irrep—Lastly, we have the symmetric part of the tensor

with five components, which separates into its diagonal-trace-
free and off-diagonal parts under cubic symmetries. The sym-
metric off-diagonal components of the tensor can be extracted
by defining

√
2𝑚𝛼

𝑇1⊥ =
∑︁
𝛽,𝛾

|𝜖 𝛼𝛾𝛽 |B𝛾𝛽 =

√
3

2

∑︁
𝜇

∑︁
𝛽,𝛾

|𝜖 𝛼𝛾𝛽 |𝑧𝛾𝜇𝑆𝛽𝜇, (18)

the corresponding normal mode vectors lie in the Cartesian
plane orthogonal to the 𝛼 axis with two pointing towards the
central axis and the other two pointing away, shown in Fig. 2(f).
To see this, note that for each 𝛼 the matrix 𝑃𝛼 with components
𝑃𝛼
𝛽𝛾 = |𝜖 𝛼𝛽𝛾 | acts as (i) a projector orthogonal to 𝒆𝛼 and (ii)

a reflection swapping the remaining two Cartesian axes. It
projects each 𝒛𝜇 into one Cartesian plane, where they all point
away from the center of the tetrahedron, then two of them on
opposite corners are mirrored.

E Irrep—Finally, the diagonal-trace-free part. This is the
hardest to represent in a simple geometric form, but it can be
expressed as the three components of B𝛼𝛼 − (1/3) TrB. By
construction only two of the components are linearly indepen-
dent since summing over 𝛼 yields zero. However, there is a
freedom to distribute the trace subtraction over the three ele-
ments. It is useful therefore to define a 3-component quantity
which contains the diagonal components, combining the 𝐴2
and 𝐸 irreps together,

Q𝛼 = B𝛼𝛼 (19)

8 Note that each 𝒎𝐼 is defined with a normalization factor so that
Eq. (13) is satisfied, which ensures that each is a linear combinations of
spins,

∑
𝜇,𝛼 𝑐𝛼𝜇 𝑆

𝛼
𝜇 , where the coefficients 𝑐𝛼𝜇 form a unit-length twelve-

component vector.

such that the trace is given by

Q𝐴2 ≡ TrB = (1, 1, 1) · Q. (20)

We can then separate the trace-free 𝐸 components by choosing
two basis vectors orthogonal to (1, 1, 1), defining

Q𝜓2 ≡
√

3𝑚𝜓2
𝐸 =

√
3 𝒙̂1 · Q with 𝒙̂1 =

1√
6
(1, 1,−2), (21a)

Q𝜓3 ≡
√

3𝑚𝜓3
𝐸 =

√
3 𝒚̂1 · Q with 𝒚̂1 =

1√
2
(1,−1, 0), (21b)

which are then packaged into the 2-component𝐸 normal mode,

𝒎𝑎
𝐸 =

(
𝑚

𝜓2
𝐸

𝑚
𝜓3
𝐸

)
. (22)

The corresponding ordering vectors are harder to write down
than the previous ones, but they can be obtained by noting that
𝒙̂1 and 𝒚̂1 form an orthonormal basis with 𝒛1 on one corner
of the tetrahedron, which can be extended to an orthonormal
basis {𝒙̂𝜇, 𝒚̂𝜇, 𝒛𝜇} on each of the four corners of the tetrahedron
using the fourfold improper rotation symmetry (ninety degree
rotations about a Cartesian axis followed by mirroring through
the orthogonal plane), given explicitly in Appendix A. These
correspond to the so-called 𝜓2 and 𝜓3 configurations, shown
in Fig. 2(b,c), where in the 𝜓2 configurations spins lie in local
mirror planes, while in the 𝜓3 configurations spins lie along a
local 2-fold rotation axis.

2. Single Tetrahedron Irrep Energies

Inverting these definitions, we can re-package the irrep nor-
mal modes 𝑚𝑎

𝐼 into the vector and tensor degrees of freedom
as

M = ©­«
𝑚𝑥

𝑇1∥
𝑚𝑦

𝑇1∥
𝑚𝑧

𝑇1∥

ª®¬
, (23a)

B =
1√
2

©­­­
«

√
2Q𝑥 𝑚𝑧

𝑇1⊥
+ 𝑚𝑧

𝑇2
𝑚𝑦

𝑇1⊥ − 𝑚
𝑦
𝑇2

𝑚𝑧
𝑇1⊥ − 𝑚𝑧

𝑇2

√
2Q𝑦 𝑚𝑥

𝑇1⊥ + 𝑚𝑥
𝑇2

𝑚𝑦
𝑇1⊥ + 𝑚

𝑦
𝑇2

𝑚𝑥
𝑇1⊥ − 𝑚𝑥

𝑇2

√
2Q𝑧

ª®®®
¬
, (23b)

Q =
1√
3

©­­­«
𝑚𝐴2 + 1√

2
𝑚𝜓2 +

√︃
3
2𝑚𝜓3

𝑚𝐴2 + 1√
2
𝑚𝜓2 −

√︃
3
2𝑚𝜓3

𝑚𝐴2 −
√

2𝑚𝜓2

ª®®®¬
. (23c)

Thus we have demonstrated how the irreducible representation
normal modes can be conveniently packaged into a tensors
which encode the tetrahedral multipole moments. We can
compute the energies of the different irreps, i.e. the 𝒒 = 0
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eigenvalues in Eq. (7), as9

𝐽𝑎𝐼 =
1
4

∑︁
𝜇>𝜈

∑︁
𝛼𝛽

(𝜓̂𝑎
𝐼 )𝛼𝜇 J𝛼𝛽𝜇𝜈 (𝜓̂𝑎

𝐼 )𝛽𝜈 . (24)

For 𝐼 ≠ 𝑇1, these are the components of the 𝒒 = 0 eigenvectors
of J on a single tetrahedron, and the 𝐽𝑎𝐼 are the corresponding
eigenvalues. Symmetry guarantees that eigenvalues corre-
sponding to the same irrep 𝐼 are degenerate, i.e. the 𝐽𝑎𝐼 ≡ 𝐽𝐼
are independent of 𝑎. These values are listed in Table II. The
single-tetrahedron Hamiltonian can be expressed as

𝐻 =
∑︁

𝐼∈{𝐴2 ,𝐸,𝑇2 ,𝑇1∥ ,𝑇1⊥ }
𝐽𝐼 |𝒎𝐼 |2 + 2𝐽𝑇1∥ ·𝑇1⊥𝒎𝑇1∥ · 𝒎𝑇1⊥ (25)

where we included a symmetry-allowed cross-term between
the two 𝑇1 irreps, which we treat in the next section. The tetra-
hedron energy can also be expressed in terms of the multipole
moments by using the following identities

|M|2 = |𝒎𝑇1∥ |2 (26a)
1
4

Tr[(B +B𝑇 )2] = 𝑚2
𝐴2

+ |𝒎𝐸 |2 + |𝒎𝑇1⊥ |2, (26b)

1
4

Tr[(B −B𝑇 )2] = −|𝒎𝑇2 |2, (26c)

1
3

Tr[B]2 = 𝑚2
𝐴2
, (26d)

|Q|2 = 𝑚2
𝐴2

+ |𝒎𝐸 |2. (26e)

The last term is only allowed due to the reduction from SO(3)
to cubic rotational symmetries, which splits the energies of the
𝐸 and 𝑇1⊥ irreps. Note that we have the sum rule

Tr[BB𝑇 ] + |M|2 =
∑︁
𝐼

|𝒎𝐼 |2 =
∑︁
𝜇

|𝑺𝜇 |2 = const. (27)

The cubic symmetry-allowed coupling between the 𝑇1⊥ and
𝑇1∥ can be written as

𝒎𝑇1∥ · 𝒎𝑇1⊥ =
1√
2

∑︁
𝛼𝛽𝛾

|𝜖 𝛼𝛽𝛾 |M𝛼B𝛽𝛾 . (28)

We discuss decoupling the two 𝑇1 irreps in the next section.

D. 𝑇1 Mixing and Canting Angle

Since there are two 𝑇1 irreps they can have a symmetry-
allowed coupling in the Hamiltonian and can therefore mix.
The 𝑇1∥ and 𝑇1⊥ irrep order parameters derived from the mul-
tipole decomposition we will refer to as the global 𝑇1 irreps,
since they involve the components of spins relative to the global

9 The prefactor normalizes the (𝝍̂𝑎
𝐼 )𝜇 when treated as a single 12-component

vector. Note that since these are defined as unit vectors on each sublattice,
it follows that

∑
𝜇 | (𝝍̂𝑎

𝐼 )𝜇 |2 = 2.

FIG. 3. The mixing of the two 𝑇1 irreps induces canting of the spins.
The canting angle relative to the local easy axes, 𝜃𝑐 , which decouples
the two 𝑇1 irreps is defined modulo 𝜋/2. Defining 𝜃𝑇1− as the canting
angle of the lower-energy 𝑇1 irrep, then 𝜃𝑇1+ = 𝜃𝑇1− + 𝜋/2 is the
canting angle of the higher-energy 𝑇1 irrep, and these two angles are
defined modulo 𝜋. There are some special canting angles which we
note here: 𝑇1,ice corresponds to spins aligned in 2-in 2-out fashion
along the easy axes, whose complement 𝑇1,planar is ferromagnetic
with spins orthogonal to the easy axes. 𝑇1∥ is the colinear spin
configuration along the global Cartesian axes (𝜃𝑇1∥ = cos−1 (1/√3)),
whose complement 𝑇1⊥ has all spins lying in a plane, c.f. Fig. 2(e,f).
Each angle 𝜃 has a dual angle −𝜃 corresponding to rotating all spins
by 𝜋 about their local easy axes, which is the dual irrep when the sign
of 𝐽𝑧± is flipped.

Cartesian axes. Their coupling in the Hamiltonian is of the
form

𝐻𝑇1∥⊕𝑇1⊥ =

(
𝒎𝑇1∥
𝒎𝑇1⊥

)𝑇 (
𝐽𝑇1∥ 𝐽𝑇1∥ ·𝑇1⊥

𝐽𝑇1∥ ·𝑇1⊥ 𝐽𝑇1⊥

) (
𝒎𝑇1∥
𝒎𝑇1⊥

)
, (29)

where the cross term is controlled by the global 𝐽3 parameter
in Eq. (1b) and the single ion anisotropy,

𝐽𝑇1∥ ·𝑇1⊥ =

√
2

3
(𝐽SIA + 3𝐽3), (30)

which prefer for spins to cant away from the global Cartesian
axes and towards the local three-fold axes. The amount of
canting is determined by eliminating the coupling between the
two 𝑇1 irreps, which is achieved by defining rotated 𝑇1 modes

(
𝒎𝑇1𝜙

𝒎𝑇1𝜙′

)
=

(
cos 𝜙 sin 𝜙
− sin 𝜙 cos 𝜙

) (
𝒎𝑇1∥
𝒎𝑇1⊥

)
. (31)
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These rotated𝑇1 modes have a simple interpretation: each spin
cants in one of the mirror planes according to

𝑚𝛼
𝑇1𝜙

=
∑︁
𝜇

(cos(𝜙)𝒆𝛼 + sin(𝜙) (𝝍̂𝛼
𝑇1,⊥ )𝜇)︸                                ︷︷                                ︸

(𝝍̂𝛼
𝑇1𝜙

)𝜇

·𝑺𝜇 . (32)

and similarly for 𝑇1𝜙′ . The critical angle 𝜙𝑐 which decouples
the two 𝑇1 irreps is then given in terms of the global irrep
parameters by solving the equation

tan(2𝜙𝑐) = 2𝐽𝑇1∥ ·𝑇1⊥
𝐽𝑇1⊥ − 𝐽𝑇1∥

. (33)

Note that 𝜙𝑐 is only defined modulo 𝜋/2, i.e. it does not tell us
whether the𝑇1 irrep with angle 𝜙𝑐 or 𝜙𝑐+𝜋/2 has lower energy.
Diagonalizing the matrix in Eq. (29) yields the energies of the
decoupled 𝑇1 normal modes

𝐽𝑇1± =
1
2

(
𝐽𝑇1∥ + 𝐽𝑇1⊥ ±

√︃
(𝐽𝑇1∥ − 𝐽𝑇1⊥ )2 + 4𝐽𝑇1∥ ·𝑇1⊥

2
)
, (34)

where the ± indicates the higher or lower energy eigenvalue.
For solutions of Eq. (33) in the range 𝜙𝑐 ∈ (−𝜋/4, 𝜋/4), if
𝐽𝑇1∥ < 𝐽𝑇1⊥ then 𝑇1− = 𝑇1𝜙𝑐 , while the opposite inequality
implies 𝑇1− = 𝑇1𝜙′

𝑐
.

1. Easy-Axis Limit of 𝑇1 Irreps

It is through canting and mixing the two 𝑇1 irreps that
one connects the global irreps to the local symmetry-adapted
description in Eq. (3). Writing the canting angle equation
Eq. (33) in terms of the local couplings,

tan(2𝜙𝑐) = 2
√

2− 72𝐽𝑧±
2𝐽± + 4𝐽±± + 𝐽𝑧𝑧 + 16

√
2𝐽𝑧± − 𝐽SIA

, (35)

exposes a special critical angle—when 𝐽𝑧± = 0 the canting
angle is given by

𝜙0 ≡ tan−1 (2
√

2)/2 = cos−1 (
√︁

2/3). (36)

At this special canting angle, the local vectors in Eq. (32)
are aligned along or orthogonal to the local three-fold axis
𝒛𝜇. This occurs precisely when 𝐽𝑧± = 0, i.e. when the local
𝑧-components of the spin are completely decoupled from the
local transverse components. We refer to the two correspond-
ing irreps as

𝑇1𝜙0 ≡ 𝑇1,planar, 𝑇1𝜙′
0
≡ 𝑇1,ice, (37)

using the notation of Ref. [55]. The 𝑇1,ice irrep corresponds
to the ground states of spin ice, with two spins pointing “in”
and two spins pointing “out” of the tetrahedron. The 𝑇1,planar
irrep corresponds to ferromagnetic configurations with spins
in their local easy-planes. It is very useful to express the
canting relative to the local easy axes rather than the global
Cartesian axes, by defining

𝜃 = 𝜙 − 𝜙0. (38)

The canting angle relative to the local axis that decouples the
two 𝑇1 irreps then satisfies the equation

tan(2𝜃𝑐) =
2𝐽𝑇1,ice ·𝑇1,planar

𝐽𝑇1,ice− 𝐽𝑇1,planar

=
8𝐽𝑧±

2𝐽± + 4𝐽±± + 𝐽𝑧𝑧 − 𝐽SIA
, (39)

where the corresponding couplings are listed in Table II. From
this equation it is evident that switching the sign of 𝐽𝑧± corre-
sponds to switching the sign of 𝜃𝑐.

This is all summarized in Fig. 3, which shows the how
the spin configuration of the 𝑇1 irreps evolves as the canting
angle rotates. To each configuration there is a corresponding
dual configuration with the opposite sign of the canting angle,
corresponding to a 𝜋 rotation of each spin about its local easy
axis. For a given set of exchange parameters, one of the
two 𝑇1 irreps will have a lower energy, and we denote the
corresponding angle by 𝜃𝑇1± , in which case the higher energy
irrep has angle 𝜃𝑇1+ = 𝜃𝑇1− + 𝜋/2. These angles are defined
modulo 𝜋, since a 𝜋 rotation returns to the same 𝑇1 irrep with
the spin orientations reversed, i.e. the time-reversed state.

III. IRREP PARAMETERIZATION OF THE MODEL
SPACE

In the remainder of this paper we will elucidate the struc-
ture of the full classical phase diagram of the nearest-neighbor
spin-1/2 model on the pyrochlore lattice, focusing especially
on the locations of the phase boundaries and the triple and
quadruple points where three or four phases become degener-
ate, respectively. The irrep eigenvalues are given in Table II.
For a given set of parameters, the classical ground state is
given by finding which irrep takes the minimum eigenvalue
and aligning the spins along the associated ordering vectors
in Eq. (13). For classical fixed-length vector spins this is the
minimal energy state, and away from phase boundaries this
should be an accurate product state ansatz for the quantum
ground state. As we will see in detail, there are effectively
four phases, one for each irrep if we don’t distinguish between
the two 𝑇1 irreps. Each phase is the locus of parameter space
within which one irrep has the lowest energy and the others
are separated by a gap. In order to map the phase diagram
it is crucial to identify the locus of parameters along which
multiple ground states are degenerate, i.e. phase boundaries,
triple points, and quadruple points.

A. Irrep Parameterization and 𝐽𝑧± Duality

Our strategy is to parameterize the phase diagram not in
terms of the basis-dependent spin-spin couplings, but rather in
terms of the basis-independent irrep energies 𝐽𝐼 . To achieve
this, we first invert the relations in Table II in order to obtain the
couplings as functions of the irrep eigenvalues. The resulting
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Irrep Local Couplings Global Couplings

𝐽𝐴2 𝐽SIA +3𝐽𝑧𝑧 𝐽SIA −2𝐽1 + 𝐽2 −2𝐽3 −4𝐽4

𝐽𝐸 −6𝐽± −2𝐽1 + 𝐽2 + 𝐽3 +2𝐽4

𝐽𝑇2 2𝐽±−4𝐽±± −𝐽2 + 𝐽3 −2𝐽4

𝐽𝑇1∥
1
3 (𝐽SIA +4𝐽± +8𝐽±± +8

√
2𝐽𝑧±− 𝐽𝑧𝑧) 1

3 𝐽SIA +2𝐽1 + 𝐽2

𝐽𝑇1⊥
2
3 (𝐽SIA + 𝐽± +2𝐽±±−4

√
2𝐽𝑧±− 𝐽𝑧𝑧) 2

3 𝐽SIA − 𝐽2 − 𝐽3 +2𝐽4

𝐽𝑇1∥ ·𝑇1⊥ −
√

2
3 (𝐽SIA −2𝐽±−4𝐽±± +2

√
2𝐽𝑧±− 𝐽𝑧𝑧) −

√
2

3 (𝐽SIA +3𝐽3)
𝐽𝑇1,ice 𝐽SIA − 𝐽𝑧𝑧

1
3 (𝐽SIA +2𝐽1 − 𝐽2 +2𝐽3 +4𝐽4)

𝐽𝑇1,planar 2𝐽± +4𝐽±± 1
3 (4𝐽1 + 𝐽2 −5𝐽3 +2𝐽4)

𝐽𝑇1,ice ·𝑇1,planar −4𝐽𝑧± − 2
√

2
3 (𝐽1 + 𝐽2 + 𝐽3 − 𝐽4)

𝐽𝑇1±
1
2 (2𝐽± +4𝐽±±− 𝐽𝑧𝑧 + 𝐽SIA) ± 1

2

√︁
(8𝐽𝑧±)2 + (2𝐽± +4𝐽±± + 𝐽𝑧𝑧 − 𝐽SIA)2 —

TABLE II. Irrep energies, Eq. (24), and 𝑇1 couplings, Eq. (29), in terms of the global and local basis interaction parameters.

equations are

𝐽𝑧𝑧 =
1
12

[3𝐽𝐴2 − 2𝐽𝐸 − 3𝐽𝑇2 − 3(𝐽𝑇1+ + 𝐽𝑇1− )] (40a)

𝐽± = − 𝐽𝐸
6

(40b)

𝐽±± = − 1
12

(𝐽𝐸 + 3𝐽𝑇2 ) (40c)

|𝐽𝑧± | = 1
12

√︁
−(2𝐽𝐸 + 3𝐽𝑇2 + 3𝐽𝑇1+ ) (2𝐽𝐸 + 3𝐽𝑇2 + 3𝐽𝑇1− )

(40d)

𝐽SIA =
1
4
[𝐽𝐴2 + 2𝐽𝐸 + 3𝐽𝑇2 + 3(𝐽𝑇1− + 𝐽𝑇1+ )] (40e)

For any model with a given sign of 𝐽𝑧±, there is another model
with the opposite sign of 𝐽𝑧± with the same irrep energies,
because only its square appears in the irrep energies 𝐽𝑇1± in
Table II.

This corresponds to a duality transformation of the Hamil-
tonian: applying a 𝜋 rotation of each spin about its local 𝒛𝑖
axis sends 𝑆±𝑖 → −𝑆±𝑖 , changing the sign of the 𝑆𝑧𝑆± term in
Eq. (3) while leaving the rest of the terms invariant. This sign
change can then be cancelled by changing the sign of 𝐽𝑧±. Fur-
thermore, such a rotation maps each irrep back to itself: 𝐴2 is
clearly invariant under this transformation; for the easy-plane
𝐸 and 𝑇2 configurations this sends a spin configuration to its
time-reversed configuration; and 𝑇1 configurations are turned
into other 𝑇1 configurations. As such, reversing the sign of 𝐽𝑧±
relates two Hamiltonians in the same phase. This is clear from
Table II since the energies of the irreps are unchanged.

It is convenient to parameterize the splitting between the
two 𝑇1 irreps,

𝐽𝑇1± ≡ 𝐽𝑇1 ± 𝐽𝛿𝑇1 with 𝐽𝛿𝑇1 ≥ 0, (41)

in order to write Eq. (40d) in the form

|𝐽𝑧± | = 1
12

√︃
(3𝐽𝛿𝑇1 )2 − (2𝐽𝐸 + 3𝐽𝑇2 + 3𝐽𝑇1 )2. (42)

In this form we can see the close relation between 𝐽𝑧± and the
splitting of the two 𝑇1 irreps. In particular, there is a constraint
on the possible eigenvalues,

3𝐽𝛿𝑇1 ≥ |2𝐽𝐸 + 3𝐽𝑇2 + 3𝐽𝑇1 |, (43)

in order that 𝐽𝑧± is real. It is evident that if the two 𝑇1 irreps
are degenerate (𝐽𝛿𝑇1 = 0) then 𝐽𝑧± must be zero, saturating
the inequality. Equation (42) suggests that it is convenient to
define a dimensionless parameter

𝛼 ≡ sign(𝐽𝑧±)
(2𝐽𝐸 + 3𝐽𝑇2 + 3𝐽𝑇1 )

3𝐽𝛿𝑇1

, (44)

so that

|𝐽𝑧± | =
𝐽𝛿𝑇1

4

√︁
1 − 𝛼2, (45)

such that the inequality Eq. (43) is equivalent to |𝛼 | ≤ 1. The
sign prefactor in Eq. (44) has been chosen because it allows
us to interpret the canting formula Eq. (39) geometrically. It
simplifies to

tan(2𝜃𝑐) =
√

1 − 𝛼2

𝛼
= tan

(
cos−1 (𝛼)

)
, (46)

from which we obtain the convenient formula

𝜃𝑐 =
1
2

cos−1 (𝛼) = cos−1

(√︂
𝛼 + 1

2

)
mod 𝜋/2. (47)

B. Parameter Space vs. Model Space

Any real choice of the five symmetry-allowed nearest-
neighbor spin-spin coupling parameters in Eq. (2) or Eq. (3),
each a real number, defines an interaction matrix J and thus
a Hamiltonian. We call this R5 five-dimensional space the
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Degenerate Tuned Parameterization Range Refs.
Irreps Irreps

𝐴2 ⊕ 𝐸 ⊕ 𝑇2 ⊕ 𝑇1⊥ 𝑇1∥ 𝐽𝑧𝑧 = − 1
12Δ𝑇1+ 𝐽± = 1

24Δ𝑇1+ 𝐽±± = 1
12Δ𝑇1+ |𝐽𝑧± | = 1

6
√

2
Δ𝑇1+ — [26, 27]

𝐸 ⊕ 𝑇2 ⊕ 𝑇1− 𝐴2 ⊕ 𝑇1+
𝐽𝑧𝑧 = 1

36 (11Δ𝐴2 − 3Δ𝑇1+ ) 𝐽± = 1
72 (Δ𝐴2 + 3Δ𝑇1+ )

𝐽±± = 1
36 (Δ𝐴2 + 3Δ𝑇1+ ) |𝐽𝑧± | = 1

36
√︁(3Δ𝑇1+ − 2Δ𝐴2 ) (2Δ𝐴2 + 6Δ𝑇1+ )

−3 ≤ Δ𝐴2

Δ𝑇1+
≤ 3

2 [45]

𝐴2 ⊕ 𝑇2 ⊕ 𝑇1− 𝐸 ⊕ 𝑇1+
𝐽𝑧𝑧 = − 1

36 (2Δ𝐸 + 3Δ𝑇1+ ) 𝐽± = 1
72 (−10Δ𝐸 + 3Δ𝑇1+ )

𝐽±± = 1
36 (−Δ𝐸 + 3Δ𝑇1+ ) |𝐽𝑧± | = 1

36
√︁(6Δ𝑇1+ − 2Δ𝐸 ) (3Δ𝑇1+ + 2Δ𝐸 )

− 3
2 ≤ Δ𝐸

Δ𝑇1+
≤ 3 [44]

𝐴2 ⊕ 𝐸 ⊕ 𝑇1− 𝑇2 ⊕ 𝑇1+
𝐽𝑧𝑧 = − 1

12 (Δ𝑇2 + Δ𝑇1+ ) 𝐽± = 1
24 (Δ𝑇2 + Δ𝑇1+ )

𝐽±± = 1
12 (Δ𝑇1+ − 2Δ𝑇2 ) |𝐽𝑧± | = 1

12
√︁(2Δ𝑇1+ − Δ𝑇2 ) (Δ𝑇1+ + Δ𝑇2 )

−1 ≤ Δ𝑇2

Δ𝑇1+
≤ 2

𝐴2 ⊕ 𝐸 ⊕ 𝑇2 𝑇1− ⊕ 𝑇1+ 𝐽𝑧𝑧 = − 1
12Δ𝑇1 𝐽± = 1

24Δ𝑇1 𝐽±± = 1
12Δ𝑇1 |𝐽𝑧± | = 1

12

√︃
(3Δ𝛿𝑇1 )2 − Δ2

𝑇1
−3 ≤ Δ𝑇1

Δ𝛿𝑇1
≤ 3

𝑇2 ⊕ 𝑇1,ice ⊕ 𝑇1,plnr 𝐸 ⊕ 𝐴2 𝐽𝑧𝑧 = 1
4Δ𝐴2 𝐽± = − 1

8Δ𝐴2 𝐽±± = 0 𝐽𝑧± = 0 Δ𝐸 = Δ𝐴2 [43]

𝐸 ⊕ 𝑇1,ice ⊕ 𝑇1,plnr 𝑇2 ⊕ 𝐴2 𝐽𝑧𝑧 = 1
4Δ𝐴2 𝐽± = 1

24Δ𝐴2 𝐽±± = − 1
12Δ𝐴2 𝐽𝑧± = 0 Δ𝑇2 = 2

3Δ𝐴2 [47]
𝐴2 ⊕ 𝑇1,ice ⊕ 𝑇1,plnr 𝐸 ⊕ 𝑇2 — —

TABLE III. List of fourfold and threefold degenerate models. There are two parameter combinations (up to an overall scale) yielding fourfold
degeneracy, both of which have 𝑇1∥ gapped: the Heisenberg antiferromagnet (HAFM) (with 𝐽𝑧± > 0), and its 𝐽𝑧±-dual (with 𝐽𝑧± < 0), denoted
HAFMdual. By gapping one of the four degenerate irreps, we obtain four lines (up to a scale) along which three phases meet, which go from
the HAFM, to 𝐽𝑧± = 0, then return with the opposite sign of 𝐽𝑧± to the HAFMdual. For the last line we used the 𝑇1 splitting parameters defined
in Eq. (53). The remaining three combinations of three degenerate irreps have both 𝑇1 irreps degenerate, which is only possible when 𝐽𝑧± = 0.
Two of these combinations are possible, corresponding to isolated triple points (up to a scale) which do not lie on one of the four triple lines.
There is one other possible combination of three degenerate and two gapped irreps, but it does not admit any solutions with real 𝐽𝑧±, because
𝐴2 is the charge irrep for 𝑇1ice, and their ground states are mutually incompatible (c.f. Fig. 11). We have given references for cases where
examples have appeared previously in the literature (see Section VI B for details). Flat band degeneracies for all cases in this table are listed in
Table VI. Note that reversing the signs of all couplings produces another set of models with triple degeneracies higher in the interaction matrix
spectrum, c.f. Fig. 13.

parameter space (R4 if we set 𝐽SIA = 0). Within this space
is a special point where all couplings are zero, corresponding
to the trivial Hamiltonian 𝐻 = 0. Many of the remaining
non-trivial parameter sets are physically equivalent up to an
overall energy scale. Ideally one would like to parameterize
the space of Hamiltonians modulo such rescalings, which we
call the model space.

One way to parameterize the model space is to simply take
a unit sphere in the parameter space, e.g. using the local
couplings in Eq. (3) (setting 𝐽SIA = 0)

𝐽2
𝑧𝑧 + 𝐽2

±± + 𝐽2
𝑧± + 𝐽2

± = 1. (48)

Of course one could alternatively take the unit sphere in the
basis 𝐽1 · · · 𝐽4 in Eq. (1a), or those in Eq. (2). The unit spheres
in these spaces do not coincide, however, since the transfor-
mation relating these bases of the parameter space, Eqs. (4a)
and (4b), are not orthogonal. The parameter space does not
have a canonical metric to measure distances between param-
eter sets or to define orthogonality, so such a choice of sphere
is arbitrary. In any case such a choice does not yield a useful
parameterization of the space of models. In this section we
provide a parameterization by directly manipulating the irrep
energies.

In full generality, a model is an equivalence class of pa-
rameters, where two parameter sets are equivalent if the band

structure of the interaction matrix J eigenvalues (i.e. the 𝐽𝑛 (𝒒)
in Eq. (7)) differ by either a shift or a re-scaling, i.e. a chang-
ing of the total bandwidth of the band structure of J without
changing the band structure. For nearest-neighbor interac-
tions the band structure of J is completely determined by the
𝒒 = 0 eigenvalues, i.e. the irrep eigenvalues 𝐽𝐼 . Therefore,
a set of irrep eigenvalues determines an interaction matrix J,
with the caveats that (i) each allowed set of irrep eigenvalues
corresponds to a pair of models with opposite signs of 𝐽𝑧±,
and (ii) the inequality Eq. (43) must be satisfied for 𝐽𝑧± to
be real. Consider then the 5-dimensional space of real irrep
eigenvalues 𝐽𝐼 . We define an equivalence relation under affine
rescalings

𝐽𝐼 ∼ 𝐽′𝐼 if 𝐽′𝐼 = 𝑎𝐽𝐼 + 𝑏 (49)

for some real numbers 𝑎 and 𝑏 with 𝑎 > 0. An equivalence
class [𝐽𝐼 ] defines a model, and the space of equivalence classes
is the model space, which has the topology of a 3-sphere.

C. Parameterizing the Model Space with 𝐽SIA = 0

In order to explore the model space, we require a parameteri-
zation which selects a single representative of each equivalence
class of parameter sets, i.e. one which effectively fixes 𝑎 and
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𝑏 in Eq. (49). To do so, we first choose an arbitrary energy
scale 𝐽0 and measure each irrep energy relative to it, defining

𝐽𝐼 = 𝐽0 + Δ𝐼 . (50)

To fix 𝑏, we restrict the allowed parameter sets Δ𝐼 to those for
which min(Δ𝐼 ) = 0. In other words, we fix the energy scale
to be 𝐽0 = min(𝐽𝐼 ), i.e. the ground state energy. In order
to fix 𝑎 we have to fix the overall scale. Here many choices
are possible, but the most obvious is to set max(Δ𝐼 ) = 1.
In other words, we fix the total bandwidth of J to be unity,
which is sensible because it is the natural energy scale in the
Hamiltonian.10

We note with this choice of scale, the 𝐿2 norm on the space
of real eigenvalues induces a dimensionless metric on the
model space, which can (in principle) be used to define how
far apart two models are from each other. While the parameter
space does not have a canonical metric this would be the natural
candidate for a “useful” metric—it measures how far apart two
parameter sets are while holding the total bandwidth constant,
i.e. modulo overall rescaling of the Hamiltonian. This may
be a useful definition for quantitatively assessing how close a
compound is to a phase boundary or a spin liquid [70].

For the purposes of this paper, we will set 𝐽SIA = 0, as
is physically appropriate for spin-1/2 systems. This leads to
helpful simplifications, but the analysis could be extended to
include non-zero 𝐽SIA. Setting Eq. (40e) equal to zero and
solving for 𝐽0, we obtain

𝐽0 = − 1
12

[
Δ𝐴2 + 2Δ𝐸 + 3Δ𝑇2 + 3(Δ𝑇1− + Δ𝑇1+ )

]
. (51)

Substituting back into the remaining four equations, we obtain

𝐽𝑧𝑧 =
1
72

[11Δ𝐴2 − 2Δ𝐸 − 3Δ𝑇2 − 3(Δ𝑇1− + Δ𝑇1+ )], (52a)

𝐽± =
1
72

[Δ𝐴2 − 10Δ𝐸 + 3Δ𝑇2 + 3(Δ𝑇1− + Δ𝑇1+ )], (52b)

𝐽±± =
1
36

[Δ𝐴2 − Δ𝐸 − 6Δ𝑇2 + 3(Δ𝑇1− + Δ𝑇1+ )], (52c)

|𝐽𝑧± | = 1
36

√︃
(9Δ𝛿𝑇1 )2 − [2Δ𝐴2 − 2Δ𝐸 − 3Δ𝑇2 + 3Δ𝑇1 ]2

(52d)

where in Eq. (52d) we have defined for convenience the equiv-
alent of Eq. (41), the average and the splitting between the two
𝑇1 irreps,

Δ𝑇1 ≡
1
2
(Δ𝑇1+ + Δ𝑇1− ), Δ𝛿𝑇1 ≡

1
2
(Δ𝑇1+ − Δ𝑇1− ) ≥ 0. (53)

The full model space is parameterized by tuning the Δ𝐼 subject
to the constraints that

10 For nearest-neighbor interactions the minimum and maximum of the bands
of the interactions matrix always occurs at the zone center because all
interactions on a tetrahedron are within a unit cell.

1. minΔ𝐼 = 0,

2. maxΔ𝐼 = 1,

3. Δ𝑇1+ ≥ Δ𝑇1− ,

4. 𝐽𝑧± is real.

The model space is 3-dimensional, since at a generic point
with one Δ𝐼 set to zero and one set to unity there are three
free parameters to vary. A phase is then the 3-dimensional
locus of parameters where one of the Δ𝐼 is zero and the rest
are positive.11 While there are five Δ𝐼 parameters, we will see
there are only four distinct phases because the two 𝑇1 irreps
mix continuously. Phase boundaries are two-dimensional and
occur when two Δ𝐼 are zero while the remainder are positive.
Triple points are one-dimensional lines along which three Δ𝐼

are zero, one is fixed to unity, and the remaining one is allowed
to vary. Lastly, it is possible to have a quadruple point, an
isolated point where four phases are degenerate.

IV. MAPPING THE PHASE DIAGRAM

The parameterization of Eq. (52) allows us to efficiently
explore the parameter space in a way that makes the phase
boundaries and special subspaces manifest, while decoupling
the rescaling dimension. We will visualize the phase diagram
by stereographically projecting the 3-sphere Eq. (48) into 3-
dimensional space using the mapping

(𝐽𝑧𝑧 , 𝐽±±, 𝐽𝑧±, 𝐽±) ↦→ (𝑋,𝑌, 𝑍) ≡
(

𝐽𝑧𝑧
1 − 𝐽±

,
𝐽±±

1 − 𝐽±
,

𝐽𝑧±
1 − 𝐽±

)
.

(54)
In particular, this 3-sphere has a 2-sphere subspace on which
𝐽𝑧± = 0, dividing into into two hemispheres. Since the phases
are dual under changing the sign of 𝐽𝑧±, the phase diagram
in these two hemispheres is reflected through the 𝐽𝑧± = 0
“equator”, i.e. the “northern” and “southern” hemispheres
of the phase diagram are mirror images of each other. For
completeness, the inverse mapping of Eq. (54) is given by

(𝑋,𝑌, 𝑍) ↦→ 1
𝑅2 + 1

(
2𝑋, 2𝑌, 2𝑍, 𝑅2 − 1

)
, (55)

where 𝑅2 = 𝑋2 + 𝑌2 + 𝑍2.

A. Quadruple Points: Heisenberg Antiferromagnet

To map the structure of the phase diagram, we begin with
the highest-degeneracy four-fold degenerate quadruple points.
These can be searched for manually by setting all but one

11 Note that while the model space has 0 ≤ Δ𝐼 ≤ 1, we will also allow the
Δ𝐼 to vary outside this range in order to parameterize collections of models
with interesting properties (i.e. irrep degeneracies) and to identify special
points in the phase diagram (c.f. Fig. 4). Such parameter sets can always
be re-scaled uniquely back to the model space.
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FIG. 4. Variation of (a) local couplings, (b) global couplings, (c)
irrep energies, and (d) canting angle on the four triply-degenerate
lines in the phase diagram listed in Table III, characterized by tun-
ing one of the irreps 𝐼′ ∈ {𝐴2, 𝐸, 𝑇2, 𝑇1} while keeping the other
three degenerate. (a) Local couplings for the parameterization of the
Hamiltonian Eq. (3) computed from Eq. (52), with 𝐽𝑧± < 0 indicated
by the dashed line. Note that for the case 𝐼′ = 𝐴2 (first column) we
have scaled 𝐽𝑧𝑧 by a factor of 2. (b) Global couplings in Eq. (1b),
with 𝐽𝑧± < 0 indicated by the dashed lines. (c) Irrep eigenvalues
𝐽𝐼 , with the triply degenerate eigenvalues denoted by a thick blue
line, the tuned eigenvalue. (d) Evolution of the canting angles 𝜃𝑇1−
(yellow) and 𝜃𝑇1+ (green) with angles labeled according to Fig. 3,
with 𝐽𝑧± < 0 indicated by the dashed lines. The intersections of
three phases, where three ground states are degenerate, occur for
Δ𝐼 ′/Δ𝑇1+ > 0 and Δ𝑇1+ > 0 (blue region on the right side of each
plot, c.f. Fig. 6). For Δ𝐼 ′ < 0 the irrep 𝐼′ is the ground state but
the other three are degenerate at higher energy (red region on the left
side of each plot, c.f. Fig. 13(a)). Each of these triple lines forms
a closed circle in the phase diagram (c.f. Fig. 13(a)). Columns are
colored according to the irrep colors used in Figs. 5 to 7 and 13. The
triple line 𝐼′ = 𝑇1− (last column) intersects the Heisenberg ferro-
magnet (HFM) and its 𝐽𝑧±-dual, where SO(3) rotational symmetry is
restored, indicated by a black vertical line (c.f. Figs. 7 and 13).

Δ𝐼 to zero in Eq. (52) and checking whether solutions exist
with real 𝐽𝑧±. This immediately rules out the possibility of
fourfold degeneracies with only 𝐴2, 𝐸 , or 𝑇2 gapped. This
leaves only one possibility: Δ𝑇1+ > 0 and all others are zero.
This corresponds to the Heisenberg antiferromagnet (HAFM)
point, with Hamiltonian

𝐻HAFM ≡ 𝐸0 + Δ𝑇1+

∑︁
𝑡

|𝒎𝑇1∥ |2 =
Δ𝑇1+

4

∑︁
⟨𝑖 𝑗 ⟩

𝑺𝑖 · 𝑺 𝑗 , (56)

which has 𝐽𝑧± > 0. The HAFM has a massively degener-
ate classical ground state manifold characterized by the zero-
net-moment constraint 𝒎𝑇1∥ = 0 on every tetrahedron, corre-
sponding to the large degeneracy of the irreps, a prototypical
example of a classical spin liquid which has been extensively
studied [26–28, 71–76]. Since every model determined by a
set of eigenvalues with 𝐽𝑧± ≠ 0 has a dual with the opposite
sign of 𝐽𝑧±, there is a second fourfold-degenerate point in the
phase diagram which we will refer to as HAFMdual [25]. The
Hamiltonian at this point can be written as

𝐻HAFM− ≡ 𝐸0 + Δ𝑇1+

∑︁
𝑡

|𝒎𝑇dual
1∥

|2, (57)

where the gapped 𝑇dual
1∥ spin configuration, as well as the zero-

energy 𝑇dual
1⊥ , are shown in Fig. 3.

B. Triple Lines and Points

Starting from the HAFM points where all four phase are
degenerate, Δ𝐴2 = Δ𝐸 = Δ𝑇2 = Δ𝑇1− = 0, one can lift the
degeneracy of one of the four phases, thus tuning along a line
where three phases are degenerate. The resulting parameter
sets for these four triply degenerate lines are given in Table III.
For the ones where the gapped irrep is 𝐼 ′ ∈ {𝐴2, 𝐸, 𝑇2}, the
line can be parameterized by the ratio Δ𝐼 ′/Δ𝑇1+ . The fourth
line where both 𝑇1 irreps are gapped can be parameterized this
way, but is better parameterized by the average and splitting
of the two 𝑇1 irreps, Eq. (53). The point Δ𝐼 ′ = 0 corresponds
to the HAFM points, from which one can tune Δ𝐼 ′/Δ𝑇1+ con-
tinuously until it reaches a maximum allowed value at which
𝐽𝑧± = 0. Each line then continues by reversing the sign of 𝐽𝑧±
and tuning Δ𝐼 ′/Δ𝑇1+ back to zero, ending at the other HAFM
point. Figure 4 shows the evolution of (a) the local exchange
couplings, (b) the global exchange couplings, (c) the irrep en-
ergies, and (d) the canting angle along these lines. The right
side of each plot with blue background is the region where the
the triply degenerate irreps are the ground state. The left side,
with red background, has the triply degenerate irreps in the
excited states, and is discussed further in Section VII.

There are three other possible combinations of three degen-
erate ground state irreps in which Δ𝑇1− = Δ𝑇1+ = 0 along with
one other irrep. According to Eq. (42) this is only possible
when 𝐽𝑧± = 0. Two such cases are possible, when Δ𝐸 = 0 or
Δ𝑇2 = 0, corresponding to isolated triple points in the phase
diagram. The third case with Δ𝐴2 = 0 has no solutions. This
exhausts all possibilities for three irreps to be degenerate in the
ground state.
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𝐽±± = 0

𝐽𝑧𝑧 = 0
𝐽± = 0

FIG. 5. The phase diagram restricted to 𝐽𝑧± = 0. (a) Fixing 𝐽𝑧𝑧 < 0 and varying 𝐽± and 𝐽±±, three triple-points are indicated by black dots.
The blue line indicates the locus on which the two 𝑇1 irreps are degenerate defined by Eq. (58), i.e. along this line all canting angles in Fig. 3
are degenerate. (b) Fixing 𝐽𝑧𝑧 > 0, again showing three triple points. The degenerate 𝑇1 line (blue) separates the 𝑇1,planar from the 𝑇1,ice
ground states, though they are continuously connected (i.e. in the same phase) out of the 𝐽𝑧± = 0 phase. The intersection of this line with the
phase boundary between the 𝑇1 and either 𝑇2 or 𝐸 phases yields the isolated triple points. (c) The two phase diagrams at left can be joined
together by considering a unit 2-sphere in the 3-dimensional parameter space of 𝐽𝑧𝑧 , 𝐽±, and 𝐽±±, shown here. The 𝑇1,ice phase is on the back
of the sphere. In order to visualize the entire surface of the sphere we perform a stereographic projection (illustrated in (d) inset) onto the flat
plane. Here we show a disk corresponding to 𝐽± ≤ 0.53. The excluded region corresponding to the northern cap of the sphere, see inset (d), is
always in the 𝐸 phase.

C. The 𝐽𝑧± = 0 Plane: Stereographic Projection

Since the model space is a 3-sphere, the 𝐽𝑧± = 0 locus may
be thought of as the “equator”, with the topology of a 2-sphere.
It divides the 3-sphere into northern and southern hemispheres
which are dual to each other under changing the sign of 𝐽𝑧±
and performing a 𝜋 spin rotation about the local axes. Within
the 𝐽𝑧± = 0 subspace this spin-rotation duality is promoted to a
symmetry. Within this subspace there is an additional duality:
performing a 𝜋/2 rotation of each spin about the local 𝒛𝑖 sends
𝑆±𝑖 → ∓𝑖𝑆±𝑖 , which can be compensated by switching the sign
of 𝐽±± [25]. Unlike the duality switching the sign of 𝐽𝑧±
discussed in Section III A, which relates two parameter sets
in the same phase, reversing the sign of 𝐽±± relates different
phases since it changes the irrep energies in Table II. Referring
to the ground states in Fig. 2 and Fig. 3, the 𝐽±± duality switches
𝜓2 ↔ 𝜓3 and 𝑇2 ↔ 𝑇1,planar. However, it ensures that the
phase boundaries will be symmetric across 𝐽±± = 0 within the
𝐽𝑧± = 0 subspace. This duality is promoted to a symmetry
when 𝐽±± = 𝐽𝑧± = 0.

Within the 𝐽𝑧± = 0 subspace, the relevant couplings are
𝐽𝑧𝑧 , 𝐽±, and 𝐽±±, meaning that there is no direct coupling
between the local easy-axis and easy-plane spin components.
The ground states are therefore either easy-axis Ising orders
(ferro- or antiferromagnetic), or easy-plane XY orders. The
Ising ferromagnetic order occurs for dominant 𝐽𝑧𝑧 ≪ 0 and
corresponds to the 𝐴2 all-in-all-out order. The Ising anti-

ferromagnetic state occurs in the opposite limit 𝐽𝑧𝑧 ≫ 0, cor-
responding to the 𝑇1,ice ground states. For dominant 𝐽± ≫ 0
the 𝐸 irrep is the ground state. Further selection of the en-
ergetically degenerate 𝜓2 and 𝜓3 configurations occurs due
to order-by-disorder induced by spin wave fluctuations about
the ground state. Lastly, large 𝐽±± ≫ 0 selects the 𝑇2 order,
while large 𝐽±± ≪ 0 selects the 𝑇1,planar configurations. Since
𝐽𝑧𝑧 = 0 is a degenerate case where the Hamiltonian becomes
a pure XY model, it is standard to use 𝐽𝑧𝑧 as the energy scale,
considering two separate cases depending on the sign of 𝐽𝑧𝑧 ,
while varying the ratios 𝐽±/|𝐽𝑧𝑧 | and 𝐽±±/|𝐽𝑧𝑧 |. This yields
the two phase diagrams in Fig. 5(a) and (b).

Within these two diagrams one can clearly distinguish six
triple points where three phases are degenerate, corresponding
to the four lines and two special points that we identified in
Table III. The two special points occur when both 𝑇1 irreps are
degenerate, at the ends of the line separating the 𝑇1,planar and
𝑇1,ice regions of the phase diagram. As we saw from Eq. (42),
the degeneracy of the two 𝑇1 irreps is only possible when
𝐽𝑧± = 0, and meaning that there is no phase boundary between
two distinct 𝑇1 phases when 𝐽𝑧± ≠ 0, i.e. there is only a single
𝑇1 phase. It is therefore interesting to identify the locus on
which the two 𝑇1 irreps are degenerate, i.e. all canting angles
in Fig. 3 are degenerate, which is contained within the 𝐽𝑧± = 0
subspace. From Table II (setting 𝐽SIA = 0) this occurs when
the square root which splits to the two 𝑇1 energies is zero, i.e.
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FIG. 6. The full phase diagram, including the four 3-fold degenerate lines which run from the HAFM to the HAFMdualmodels, crossing
through the plane with 𝐽𝑧± = 0. (a) Stereographically projected triple lines listed in Table III, which pass through the 𝐽𝑧± = 0 plane.a Phases
in the plane are colored the same as in Fig. 5, and the triply-degenerate lines are colored according to which of the four irreps is gapped along
with 𝑇1+. Above (below) the plane corresponds to 𝐽𝑧± positive (negative). (b) A top-down view of (a), with the 𝐽𝑧𝑧 = 0, 𝐽± = 0, and 𝐽±± = 0
lines indicated. (c) A “cartoon” version of the projection where we have “straightened out” the lines and phase boundaries to emphasize the
topology of the phase diagram. The 𝐽𝑧± = 0 plane is shown along with the four triple lines as in (a) and (b), along with the phase boundaries.
Each phase has three boundaries, one with each of the other phases. The exterior region of the diagram is in the 𝐸 phase. The 𝐴2 and 𝑇2
phases are enclosed by the yellow and blue phase boundaries, respectively. When turning on 𝐽𝑧± ≠ 0 there is only a single contiguous 𝑇1
phase, indicated by the red phase boundary. The 𝐽𝑧± > 0 portion of the 𝑇1 ⊕ 𝐸 phase boundary is not shown in order to expose the interior
region of the 𝑇1 phase and its phase boundaries with the 𝐴2 and 𝑇2 phases. An undistorted version of the phase boundaries according to the
stereographic projection Eq. (54) is shown in Fig. 7.
a These lines can be parameterized as in Eq. (70), then normalized to the unit sphere Eq. (48), then mapped via Eq. (54).

when

2𝐽± + 4𝐽±± + 𝐽𝑧𝑧 = 0 and 𝐽𝑧± = 0 (𝐽𝑇1+ = 𝐽𝑇1− ). (58)

The solution of this equation is shown by the blue line in
Fig. 5(a,b). Along this line all canted 𝑇1 configurations in
Fig. 3 are degenerate.

In order to unify Fig. 5(a) and (b) into a single two-
dimensional phase diagram, we consider the unit sphere in
the space spanned by 𝐽±±, 𝐽𝑧𝑧 , and 𝐽±. This is the “equator”
of the 3-sphere defined by Eq. (48). This 2-sphere is shown in
Fig. 5(c), with the phases colored the same as in Fig. 5a,b. In
this figure the 𝑇1,ice region is on the back of the sphere and not
visible. In order to visualize the entire surface of the sphere,
we use the stereographic map defined by Eq. (54) to project
the surface of the sphere onto a plane. The inset Fig. 5(d) il-
lustrates how stereographic projection maps the surface of the
sphere to a plane. We have chosen the azimuthal axis to be the
𝐽± axis, which becomes the radial direction on the projected
surface. The top of the sphere is in the 𝐸 phase, so that after

projecting onto a plane all of the phase boundaries appear near
the origin, surrounded by the large-𝐽± 𝐸 phase, which extends
to infinity.

D. Big Picture: The Full Phase Diagram

We now have all the pieces to put together the full phase
diagram using the stereographic projection Eq. (54) from the 3-
sphere to 3-dimensional euclidean space. Using the projected
𝐽𝑧± = 0 plane from Fig. 5 as our baseline, turning on 𝐽𝑧± takes
us into the third (vertical) dimension. First, Fig. 6(a,b) adds to
the 𝐽𝑧± = 0 plane the four triple lines, along each of which three
irreps are degenerate and one is gapped. They are labeled and
colored according to which irrep is gapped along that line with
Fig. 6(a) showing an edge-one perspective and (b) showing a
top-down view. All four meet at the two HAFM points above
and below the plane, with the region above (below) this plane
corresponding to 𝐽𝑧± positive (negative). The HAFM sites
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below the plane while its dual sits above the plane.
In order to visualize the phase boundaries in this three-

dimensional space in a static two-dimensional image, it is
convenient to deform the phase diagram in order to “straighten
out” the four triple lines. We thus provide the topologically
equivalent and simpler to visualize picture shown in Fig. 6(c).
By choosing the “point at infinity” to be deep in the 𝐸 phase,
all of the phase boundaries are located near the origin, and
the exterior region is all in the 𝐸 phase. We could have
chosen the point at infinity to be deep within any of the four
phases, and obtained a qualitatively similar phase diagram
with the other three phases located near the origin. We have
colored the phase boundaries surrounding the 𝐴2 phase yellow,
those surrounding the 𝑇2 phase blue, and those surrounding
the 𝑇1 phase red. Gridlines on the phase boundaries are added
as guides to the eye to emphasize the 3-dimensionality of
the surfaces, but do not have any special meaning. We have
excluded the 𝐽𝑧± > 0 phase boundary between the𝑇1 phase and
the 𝐸 phase in order to show the interior region of the 𝑇1 phase
and expose its phase boundaries with the 𝐴2 and 𝑇2 phases
along with their triple line. Each of the four phases is enclosed
by three phase boundaries where it touches one of the other
phases. The 𝐽𝑧± ≥ 0 region of each phase is topologically
equivalent to a tetrahedron, and the same for the 𝐽𝑧± ≤ 0
region, thus each phase has the topology of two tetrahedra
glued along a triangular face. Figure 6 constitutes a primary
result of this work: a complete picture of the pyrochlore phase
diagram showing all of the phases, phase boundaries, triple
lines, and quadruple points.

V. TOPOLOGICAL CANTING CYCLES

In this section we investigate the locus on which the two
𝑇1 irreps are degenerate, defined by Eq. (58). Whereas the
energetic crossing of two different irreps in the ground state
implies a phase transition, there is only one 𝑇1 phase in which
the canting angle varies continuously, so the crossing of the
𝑇1 irreps is not a phase transition. This is a type of level
repulsion: in order to make the square root zero in the last
row of Table II, we have to tune two separate parameter sets
to be zero. In Fig. 6 one can see that the locus where the
two 𝑇1 irreps are degenerate (blue arc in the 𝐽𝑧± = 0 plane)
“pierces” each of the 𝑇1 ⊕ 𝑇2 and 𝑇1 ⊕ 𝐸 phase boundaries
once, giving rise to the two isolated triple points in the phase
diagram. It passes within the 𝑇1 phase as a special line of
degeneracy along which all canting angles are degenerate in
the ground state, but it does not form a phase boundary. We
have indicated with a small black loop a path surrounding the
line of 𝑇1 degeneracy entirely contained within the 𝑇1 phase.
Moving along such a loop, one 𝑇1 irrep is the unique ground
state and the other is gapped, while the canting angle varies
continuously. In other words the eigenvectors of the interaction
matrix rotate in the𝑇1 subspace, going around the cycle shown
in Fig. 3. Starting from a point with 𝑇1− = 𝑇1,ice (𝜃𝑇1− = 0)
and 𝑇1+ = 𝑇1,planar, going halfway around the loop the canting
angle continuously rotates by 𝜋/4 until the two 𝑇1 irreps have
swapped, then continuing around the ground state returns to

𝑇1,ice but with the opposite orientation of spins, i.e. a 𝜋 rotation
in Fig. 3. This is an indication that the phase diagram has some
interesting extra structure beyond the energetics of the phases,
which we investigate further in this section.

A. Two Families of Hamiltonians

To investigate the canting behavior in more detail, as well
as to illustrate the utility of having a complete phase diagram,
we consider two particular one-parameter models—one which
has constant canting angle and one on which the canting an-
gle winds—and show how they fit in and are related in the
phase diagram. Figure 7 shows the same phase diagram as
Fig. 6(a,b), but with the “true” phase boundaries computed
from the stereographic projection, rather than the deformed
version shown in Fig. 6(c). Note in particular that the 𝑇1 phase
appears larger than the 𝐴2 and 𝑇2 phases—while the 𝑇1 and 𝑇2
phases are symmetric in the 𝐽𝑧± = 0 plane, as seen in Fig. 6(b),
turning on 𝐽𝑧± ≠ 0 promotes the 𝑇1 phase, which is the ground
state in the large-|𝐽𝑧± | limit.

The first family is what we will call the Heisenberg-plus-
𝐽𝑧± model, by tuning both 𝐽Heis from Eq. (2) and 𝐽𝑧± from
Eq. (3). Up to an overall scale, this is a 1-parameter family of
Hamiltonians, which can be parameterized as 𝐽Heis = cos 𝜃 and
𝐽𝑧± = sin 𝜃. This family is interesting because it corresponds
to the triple line with 𝐴2, 𝐸 and 𝑇2 degenerate, while both
𝑇1 irreps are tuned—the last triple line in Table III and the
last column in Fig. 4. It is shown by the red circle in Fig. 7,
which passes through both the Heisenberg ferromagnet (HFM)
and anti-ferromagnet (HAFM) points, along with both of their
duals. Part of this line lies on the triple intersection of the 𝐴2,
𝐸 , and 𝑇2 phases, while the remainder passes through the 𝑇1
phase. Since this family encloses the line where both 𝑇1 irreps
are degenerate, the canting angle winds by 𝜋 as we go around
it while the two 𝑇1 irrep energies never cross, as seen in the
last column of Fig. 4(c) and (d).

The second model is the Heisenberg-plus-Dzyloshinskii-
Moriya (H+DM) model [57, 77–79], which was recently stud-
ied in detail in Ref. [57], with Hamiltonian

𝐻H+𝐽𝑧± =
∑︁
⟨𝑖 𝑗 ⟩

(𝐽Heis𝑺𝑖 · 𝑺 𝑗 + 𝐽DM𝑫𝑖 𝑗 · 𝑺𝑖 × 𝑺 𝑗 ). (59)

This is a 1-parameter family of model up to a scale, which can
be parameterized by 𝐽Heis = cos 𝜃 and 𝐽DM = sin 𝜃. This family
is experimentally interesting because it is believed that the DM
interaction should be the leading correction to the Heisenberg
interaction in transition-metal pyrochlore insulators [57]. The
resulting family is shown by the green circle in Fig. 7. Starting
from the HAFM, it enters the 𝐴2 phase, passes through the
𝐴2 ⊕ 𝑇1 phase boundary into the 𝑇1 phase, meets the HFM
point, then meets the isolated triple point on the 𝑇1 ⊕ 𝐸 phase
boundary (studied in more detail in Ref. [47] where it was
dubbed the dipolar-quadrupolar-quadrupolar or “DQQ” point),
then lies along the 𝑇1 ⊕ 𝐸 phase boundary until it meets the
HAFM again. This model is particularly interesting because
it has 𝐽3 = 0, meaning that the canting angle is constant for
this model and the 𝑇1 irreps decouple into 𝑇1∥ and 𝑇1⊥. For
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FIG. 7. Here we show the “true” 3D stereographically projected phase
diagram from Fig. 6(a,b) with the actual phase boundaries indicated,
whereas Fig. 6(c) showed a deformed version that emphasized the
topology. The inset (top right) shows the same from the back side.
Here we have colored the triple lines black, along with the inter-
sections of the phase boundaries with the 𝐽𝑧± = 0 plane. The red
circle is the Heisenberg-plus-𝐽𝑧± family, which corresponds to the
triple line along which 𝐴2, 𝐸 , and 𝑇2 are degenerate (last column
of Fig. 4), which contains the Heisenberg anti-ferromagnet (HAFM),
the Heisenberg ferromagnet (HFM), and both of their 𝐽𝑧±-duals. The
green circle is the Heisenberg-plus-Dzyloshinskii-Moriya (H+DM)
family [46, 57, 80], which passes through the HAFM, the HFM, the
“DQQ” isolated triple point and its ferromagnetic counterpart. Be-
cause this family has 𝐽3 = 0, it lies on a surface of constant canting
where the 𝑇1 irreps decompose as 𝑇1∥ ⊕ 𝑇1⊥. This surface can be
parameterized as a sphere in the 𝐽1-𝐽2-𝐽4 space, corresponding to
𝛼 = 1/3 in Fig. 8. Along an arc from the DQQ point to the HAFM
the H+DM model runs along the intersection of this constant-canting
surface and the 𝐸 ⊕ 𝑇1 phase boundary (red) where the ground state
irreps are 𝐸 ⊕ 𝑇1⊥ which form a symmetric trace-free tensor, which
was studied in Ref. [46].

this model the two 𝑇1 irreps cross each other when it crosses
the locus where the two 𝑇1 irreps are degenerate (blue line in
Fig. 7): on the side with 𝐽𝑧± > 0 we have Δ𝑇1∥ < Δ𝑇1⊥ , while
on the side with 𝐽𝑧± < 0 we have Δ𝑇1∥ > Δ𝑇1⊥ .

B. Surfaces of Constant Canting

Since the condition for the decoupling into 𝑇1∥ and 𝑇1⊥
to occur is that 𝐽3 = 0, the one-dimensional H+DM family
can be extended to a two-dimensional family on which the
canting angle is constant by tuning the 𝐽2 coupling in Eq. (1b)
(or the Kitaev-like coupling in Eq. (2)). This family can be
parameterized by the unit sphere in the 𝐽1-𝐽2-𝐽4 parameter

space, meaning that it is a 2-sphere in the phase diagram
which intersections the circular 𝑇1-degenerate locus, only part
of which is shown in Figs. 6 and 7 by the blue arc. On the
𝐽𝑧± positive (negative) side of this sphere the lower-energy 𝑇1
irrep is 𝑇1∥ (𝑇1⊥).

For any canting angle 𝜃 there is a corresponding 2-sphere on
which the canting angle is constant, given by the intersection
of the 3-sphere Eq. (48) and the linear subspace satisfying
equation Eq. (39), written as

tan(2𝜃) (2𝐽± + 4𝐽±± + 𝐽𝑧𝑧) − 8𝐽𝑧± = 0. (60)

Thus the entire 3-sphere phase diagram is foliated into 2-sphere
subspaces which intersect each other on the locus where the
two 𝑇1 irreps are degenerate defined by Eq. (58). Along any
path on such a surface that crosses this line the energies of
the two 𝑇1 irreps cross each other. In particular, the 𝐽𝑧± = 0
2-sphere in Fig. 5 is the constant-canting surface with 𝜃 = 0,
and the blue line divides it into two halves on which 𝑇1− is
either 𝑇1,ice or 𝑇1,planar.

This foliation of the phase diagram is illustrated in Fig. 8.
We use the convenient parameter 𝛼 ∈ [−1, 1] defined in
Eq. (44) to parameterize the canting angle as in Eq. (47). Note
that 𝛼 = 1/3 corresponds to the decomposition 𝑇1∥ ⊕ 𝑇1⊥, and
|𝛼 | = 1 corresponds to 𝑇1,ice ⊕ 𝑇1,planar. Figure 8(a) shows a
collection of constant-canting 2-spheres for different values of
𝛼, each of which is only partially shown to make the folia-
tion structure visible. A cross section of the phase diagram
is shown in Fig. 8(b) with various constant-canting surfaces
indicated, demonstrating how the phase diagram is foliated.
We can treat 𝛼 as a periodic variable, identifying 𝛼 = −1 and
𝛼 = 1, since both values result in the same surface. How-
ever, if we think of the spheres as being oriented, then going
once around the 𝛼 cycle reverses the orientation of the sphere,
meaning one must go around the cycle twice to get back to the
original orientation. Correspondingly, following a path like
the black loop with an arrow in Fig. 8(b) that stays within the
𝑇1 phase, the ground state angle 𝜃𝑇1− winds by 𝜋 in Fig. 3 rather
than 2𝜋. If the system were adiabatically transported around
such a cycle it would return to the same ground state but with
all spins reversed.

C. “Diabolical” Loci from Duplicate Irreps

The line on which the two 𝑇1 irreps are degenerate is anal-
ogous to so-called “diabolical loci” [58] and “unnecessary
criticality” [59–62]. These are gapless manifolds contained
inside a single gapped phase, rather than on a phase boundary.
They can be characterized by higher Berry phase topological
invariants in the space of couplings, which classify general-
ized Thouless pumping cycles that transport symmetry charges
across a system [81–83]. By a bulk-boundary correspondence
they generally imply the existence of boundary phase transi-
tions in the phase diagram [83, 84].

While those studied examples generally have the critical sur-
face completely contained inside a single phase, here we have
a line which bridges between two phase boundaries. Nonethe-
less, the winding of the canting angle around this line may
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FIG. 8. Illustration of how the phase diagram is foliated into surfaces of constant canting angle, which are spheres that intersect along the locus
where the two 𝑇1 irreps are degenerate. Here we parameterize the canting angle using the parameter 𝛼 in Eq. (47). (a) The 3D stereographically
projected phase diagram from Fig. 6(a,b), along with the full circular locus of 𝑇1 degeneracy (blue circle). For various canting angles we show
a portion of the corresponding surface of constant canting (c.f. the color legend on the right). Each such surface is a sphere, which we have cut
open for visualization. All of these surfaces intersect on the circular locus where the two 𝑇1 irreps are degenerate and all canting angles have
the same energy. (b) The same but for a two-dimensional slice of the phase diagram which intersects the locus of 𝑇1 degeneracy at two points
(blue circles with white borders). The 𝑇1,ice regime is a short pink line with white border extending from the right blue dot towards the right
phase boundary. A black loop with arrowhead indicates a path in the parameter space that encloses the locus of 𝑇1 degeneracy within the 𝑇1
phase, about which the ground state evolves halfway around Fig. 3. Note that the 𝛼 = 1/3 surface corresponds to 𝑇1∥ ⊕ 𝑇1⊥ decoupling, while
|𝛼 | = 1 corresponds to 𝑇1,ice ⊕ 𝑇1,planar, whose corresponding sphere is the 𝐽𝑧± = 0 plane.

be analogous to a symmetry charge pump. The phenomenon
occurs here due to the presence of multiple copies of a single
irrep, as a kind of level repulsion between the corresponding
eigenvalues. Whereas tuning to a phase boundary requires
tuning only a single parameter, making the two 𝑇1 irreps de-
generate, i.e. setting 𝐽𝑇1+ = 𝐽𝑇1− from Table II, requires tuning
two independent parameters. Thus the locus is one dimension
lower than the phase boundary. This guarantees the existence
of a locus where the two 𝑇1 irreps are degenerate which is
not itself a phase boundary, around which the corresponding
eigenvectors of the interaction matrix wind.

This phenomenon should be quite common in the phase di-
agrams of quadratic corner-sharing-cluster Hamiltonians (i.e.
those on line graph lattices [28]), and we sketch here the basic
idea. Performing a symmetry decomposition for all the spins
in a cluster into irreducible representations will result in 𝑑 dis-
tinct irreps 𝐼, each with multiplicity 𝑛𝐼 . The total number of
symmetry-allowed tuning parameters must be equal to the to-
tal number of distinct copies of irreps, 𝐷 =

∑𝑑
𝐼=1 𝑛𝐼 , meaning

that the model space is topologically a (𝐷 − 1)-sphere. There
should be a single (𝐷 −1)-dimensional phase for each distinct
irrep appearing in the decomposition, because all duplicates of
an irrep are allowed to couple and can be continuously rotated
into each other. For 𝑛𝐼 copies of an irrep one must perform
an SO(𝑛𝐼 ) rotation in the irrep eigenspace to decouple them,
meaning that there will be 𝑛𝐼 (𝑛𝐼 − 1)/2 “canting angles” pa-
rameterizing elements of SO(𝑛𝐼 ). Note that, because the irrep

eigenvectors are only defined up to an overall sign, we actually
only need an element PSO(𝑛𝐼 ) ≃ SO(𝑛𝐼 )/Z2. At a generic
point in the phase one copy of the irrep has the lowest energy,
and the canting angles vary continuously as the parameters are
tuned. One then expects critical loci within the phase where
multiple copies of the irrep are degenerate. A dimension 𝑑𝑙
locus can then be linked by a (𝐷−1) − 𝑑𝑙 −1-sphere, resulting
in a topological winding cycle characterized by an element of
the homotopy group 𝜋𝐷−𝑑𝑙−2 (PSO(𝑛𝐼 )).

In the case of the pyrochlore studied here with zero single ion
anisotropy we have 𝐷 = 4, 𝑑𝑙 = 1, and 𝑛𝐼 = 2, meaning that a
1-parameter family of Hamiltonians carries a 𝜋1 (PSO(2)) ≃ Z
winding number which counts how many times 2𝜃𝑐 winds
around the 𝑇1-degenerate locus. We can in principle define
a Berry connection in the parameter space whose holonomy
measures the winding,

𝑎𝜇 ∝ ⟨𝜓0,𝑇1− ,𝛼 |
𝜕

𝜕𝐽𝜇
|𝜓0,𝑇1− ,𝛼⟩, (61)

where |𝜓0,𝑇1− ,𝛼⟩ is one of the 𝒒 = 0 eigenvector of the inter-
action matrix corresponding to the lowest-energy 𝑇1 irrep (the
result is independent of 𝛼), and 𝐽𝜇 indicates the 𝜇’th coupling
parameter. It is notable that within the 𝑇1 phase a 1-parameter
family with non-zero topological index must cross through the
𝑇1,ice surface where the system is a deconfined spin liquid, but
it is unclear if this should be a generic property of such canting
cycles. Outside the 𝑇1 phase the line of degeneracy and the
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topological invariant associated to 1-dimensional families of
Hamiltonians is well-defined, even though the𝑇1 irreps are not
in the ground state. A signature of this degeneracy is likely
to be identifiable in the magnon spectrum within the other
phases. We leave the study of such topological winding cycles
in the phase diagrams of classical spin models for future study.

VI. FLAT BAND DEGENERACIES

We lastly turn to tabulating the flat band degeneracies in-
duced by tuning multiple irreps to be degenerate. Having
zero-energy flat bands (measured relative to the minimum
eigenvalues of J) is a prerequisite for a classical spin liquid
with Heisenberg spins, and almost always a prerequisite for
Ising spins as well.12 The presence of flat bands at zero energy
implies that any spin configuration constructed from the eigen-
vectors of those flat bands is a ground state, generally meaning
that the system has a massive ground state manifold. This
ground state manifold is characterized by the local constraint
on every tetrahedron that the spin configuration has no overlap
with the gapped irreps. This may be formulated as an emer-
gent Gauss law for an emergent tensor gauge field [28, 49, 50],
and the resulting phase is a classical deconfined liquid, a sort
of condensate of a massive number of ground state configu-
rations. Excitations are violations of the Gauss law coming
from exciting locally the gapped irreps, and behave as charges
of the emergent gauge theory.

This can be seen at the level of the band structure, where
the excitations correspond to a set of quadratically dispersing
bands which touch the flat bands at the zone center.13 It is also
possible for the quadratic band touchings to be not only at a
point but along an extended line, or possibly along a plane.
Even in the cases without zero-energy flat bands, zero-energy
flat planes or flat lines can occur. In this section we consider
all possible flat band degeneracies of the nearest-neighbor py-
rochlore Hamiltonian by considering different combinations
of irrep degeneracies. We have tabulated all such cases as
follows: Table IV lists flat degeneracies within each phases,
Table V lists them for the phase boundaries, and Table VI lists
them for the triply degenerate lines and points. In this section
we discuss how these enhanced degeneracies may or may not
give rise to spin liquids.

A. Ground State Selection vs. Spin Liquidity

Having a set of flat bands suggests a massive ground state
degeneracy and classical spin liquidity, but it does not guar-
antee the presence of a classical spin liquid, owing the hard

12 The only counter-example that we know of is the Ising antiferromagnet on
the triangular lattice, which does not have flat bands but nonetheless has
power-law decaying correlations at low temperature [85].

13 Models with further-neighbor interactions may realize cases where the
quadratic band touchings occur away from the zone-center [48], but these
do not occur in the nearest-neighbor model considered here.

spin length constraint. The pyrochlore phase diagram hosts a
plethora of interesting flat bands, but it is unlikely that these
will all realize stable spin liquids. Heuristically, there is com-
mon folklore that the fewer the number of flat bands (relative
to the total number of bands) the more likely the system is
to fail to realize a spin liquid. Since we now have at hand a
large family of models hosting a variety of flat degeneracies
listed in Tables V and VI it is worthwhile to distinguish the
mechanisms that may preempt classical spin liquidity and lead
to more traditional ground state selections which are likely to
play a role in the pyrochlore phase diagram.

Classical spin configurations can be viewed as living inside
the linear space 𝑉 = R3𝑁spin for 𝑁spin ∝ 𝐿3 spins with three
spin components each, where 𝐿 is the linear dimension of the
system.14 The physical classical spin configuration space is a
non-linear subspace defined by |𝑺𝑖 |2 = 1 for every spin, de-
noted ℳ, which is topologically a product of 2-spheres. The
interaction matrix defines a quadratic form on 𝒱, which then
induces an energy function 𝐻 : ℳ → R, the classical Hamil-
tonian, on the non-linear physical configuration space ℳ. Let
ℱ denote the null space of the interaction matrix (spanned by
the zero-energy eigenvectors, assuming the minimum eigen-
value is set to zero). The ground state manifold𝒢 of the system
is determined by the intersection

𝒢 = ℱ ∩ℳ. (62)

Of course actually determining the structure of this ground
state manifold is generally a hard problem [86, 87].15

1. Symmetry Breaking

The most common situation is that ℱ is 1-, 2-, or 3-
dimensional, corresponding to one 𝒒 = 0 irrep having the
lowest energy. In that case 𝒢 usually consists of a discrete
set of states related by the discrete space group symmetries,
of which one is spontaneously chosen below a critical temper-
ature, breaking the symmetry. All spin wave excitations are
then gapped as the ground state is a stable minimum of the
Hamiltonian. We can expand this function to quadratic order
in small perturbations around a point in 𝒢 by parameterizing
ℳ locally in a small patch. For each spin 𝑺𝑖 define a local
orthonormal basis {𝒙̃𝑖 , 𝒚̃𝑖 , 𝒛𝑖} such that in the ground state all

14 For example, the FCC primitive cell contains four spins, and we can con-
struct an 𝐿 × 𝐿 × 𝐿 periodic system with 𝑁spin = 4𝐿3 spins.

15 It may happen that the intersection is empty, 𝒢 = ∅. Then the true ground
state manifold is the locus in ℳ where 𝐻 takes its minimum value, which is
greater than the minimum eigenvalue of the interaction matrix. Examples
with Ising spins are easy to construct, where ℳ is a discrete space—a prod-
uct of 0-spheres, corresponding to the corners of a hypercube. In particular
this happens in all Hamiltonians of the form 𝐻 =

∑
𝑐

( ∑
𝑖∈𝑐 𝑆𝑧

𝑖

)2 with an
odd number of spins per cluster 𝑐, since the constraint

∑
𝑖∈𝑐 𝑆𝑧

𝑖 = 0 cannot
be satisfied. This happens in the nearest-neighbor Ising antiferromagnet on
the kagome [88] and triangular [85] lattices. We are not aware of any ex-
amples where this occurs with continuous spins—for corner-sharing cluster
Hamiltonians this would mean that some ground states on a single cluster
cannot be constructed from a single irrep.
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spins point along 𝒛𝑖 . Then small deviations away from this
configuration can be parameterized by 𝑆 𝑥̃𝑖 and 𝑆

𝑦̃
𝑖 along with

the constraint

𝑆 𝑧̃𝑖 =
√︃

1 − (𝑆 𝑥̃𝑖 )2 − (𝑆 𝑦̃𝑖 )2. (63)

Taylor expanding the Hamiltonian to quadratic order,

𝐻 = 𝐸0 +
∑︁
𝑖 𝑗

∑︁
𝑎̃,𝑏̃∈{ 𝑥̃, 𝑦̃}

𝑆𝑎̃𝑖 H̃
𝑎̃𝑏̃
𝑖 𝑗 𝑆

𝑏̃
𝑗 + O[(𝑆𝑎̃𝑖 )4], (64)

we obtain the Hessian H̃. If the ground state manifold is
discrete, then the Hessian has all positive eigenvalues. A con-
venient formula for the Hessian is to let P𝑥𝑦 be the rectangular
matrix that projects into the space spanned by the 𝒙̃𝑖 and 𝒚̃𝑖
spin components, then

H̃ = P𝑥𝑦JP𝑥𝑦 + ℎ̃0, (65)

where we have defined the matrix

[ℎ̃0] 𝑎̃𝑏̃𝑖 𝑗 ≡ ©­«
−

∑︁
𝑘

∑︁
𝑐̃,𝑑

𝑧𝑐̃𝑖 J𝑖 𝑗 𝑧
𝑑
𝑗
ª®¬
𝛿𝑖 𝑗P

𝑎̃𝑏̃
𝑥𝑦 . (66)

The first term in Eq. (65) measures the energy cost coming
from the transverse (to the ordering axis) deformation of the
spin configuration, while the second term defined in Eq. (66)
measures the energy cost of reducing the longitudinal compo-
nent (along the ordering axis) of the spin configuration.

2. Order by Disorder

An exception occurs in the pyrochlore 𝐸 phase (dimℱ = 2),
Fig. 2(b,c), which energetically breaks SO(2) spin rotation
symmetry without breaking lattice symmetries. The ground
state manifold is a 1-dimensional circle, 𝒢 ≃ 𝑆1, parame-
terized by continuous rotation of spins about the local easy
axis. In this case, a set of discrete ground states, either 𝜓2
or 𝜓3 in Fig. 2(a,b), are selected at finite temperature due to
the asymmetry of small fluctuations about different points in
𝒢 [25, 53, 55, 89, 90], which is a standard example of order-by-
disorder [91]. While the ground state manifold does not break
lattice symmetries, the spectrum of the Hessian is sensitive to
the fact that different points on𝒢 are symmetry-inequivalent—
the ground state has an accidental SO(2) symmetry that is not
a symmetry of the excited states. The 𝜓2 and 𝜓3 configura-
tions have higher symmetry than generic points on 𝒢, with
spins lying either in mirror planes (𝜓2) or along 𝜋 rotation
axes (𝜓3), and are selected due to enhanced finite-temperature
fluctuations.

While this XY selection due to accidental SO(2) degener-
acy has been well-known for a long time, it was only recently
realized that the same mechanism occurs in the colinear ferro-
magnet ground state [80]. This has an accidental SO(3) sym-
metry in the ground state, from which high-symmetry [001],
[110], and [111] directions are spontaneously chosen at finite

temperature. The authors of Ref. [80] studied the Heisenberg-
plus-DM model (c.f. Fig. 7), but it would be very interesting to
extend their results to the entire𝑇1∥ ⊕𝑇1⊥ constant-canting sur-
face (𝛼 = 1/3 in Fig. 8) in the𝑇1 phase. For 𝐽𝑧± > 0 the ground
state is a colinear ferromagnet, while for 𝐽𝑧± < 0 the ground
state is made of linear combinations of the 𝑇1⊥ configurations
from Fig. 2(f), which also has an accidental SO(3) symme-
try. Furthermore, the 𝐽𝑧±-dual of this constant-canting surface
(𝛼 = −1/3) will also exhibit an accidental SO(3) symmetry in
the 𝑇1 phase.

Assuming one can parameterize all of 𝒢, this sort of order
by disorder can be diagnosed from the Hessian spectrum at
different points in 𝒢. The system generally selects points with
the softest fluctuations out of 𝒢 (fluctuations within 𝒢 always
cost zero energy). This is equivalent to performing a low-
temperature expansion of the free energy, which induces an
entropic potential landscape on the ground state manifold [55,
80].

3. Order by Singularity

Note that despite the standard terminology “ground state
manifold”,𝒢 need not be a manifold in the mathematical sense.
For example, the XY antiferromagnet on a single tetrahedron
has a ground state space𝒢 consisting of three tori which touch
pairwise along three circles [92]. The dimension dim𝒢 of
the ground state subspace is well-defined locally, but there
are singular subspaces where 𝒢 intersects itself where the
dimension is ill-defined. Refs [92–94] have proposed that these
singular points generate “order-by-singularity”, i.e. despite
the degeneracy of the ground state manifold the system selects
the singular points on 𝒢. Heuristically one may view this
mechanism as a sort of “inverse gimbal lock”, where the system
gets stuck near singular points where it has enhanced degrees
of freedom.

If 𝒢 is continuous then one expects there to be gapless
modes in the spin wave spectrum about any point in 𝒢, and
these should be enhanced at the intersection points. Ref. [57]
found that this mechanism selects the𝜓3 states when 𝐸 and𝑇1⊥
are degenerate (c.f. Fig. 7), because the ground state manifold
locally has the form of two circles which intersect at the 𝜓3
configuration. The result is that the spin wave spectrum about
the 𝜓3 state has two gapless modes, whereas at a generic point
in 𝒢 it only has one.

4. Sub-extensive Flat Bands

It can occur that the dimension of ℱ is large but subexten-
sive, e.g. when the interaction matrix has zero-energy flat lines
or flat planes. This is actually quite a common feature through-
out the pyrochlore phase, as tabulated in Tables IV to VI. For
example, the entire 𝑇2 phase along with the 𝑇1,planar portion of
the 𝑇1 phase exhibit flat lines along (ℎℎℎ). Furthermore, the
𝐴2 ⊕ 𝐸 ⊕ 𝑇1 triple line and the 𝑇1 ⊕ 𝑇2 phase boundary ex-
hibit flat planes in the high-symmetry {ℎℎ𝑙} reciprocal space
planes.
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Due to the subextensive degeneracy, 𝒢 can be at most a
subextensive ground state manifold. We believe it is most
likely that 𝒢 will be a discrete space, however. For example,
models with a 𝑇2 or 𝑇1,planar ground state host flat lines, but we
know that these phases do not host 𝒒 ≠ 0 ground states, i.e.
ℱ and ℳ only intersect in the 𝒒 = 0 subspace.16 On the other
hand, Ref. [44] has reported that the 𝑇1 ⊕ 𝑇2 phase boundary
exhibits a spin nematic ground state rather than either 𝑇1 or 𝑇2
order, which may be a common occurrence when flat planes
are present.

One example where 𝒢 is connected and has subextensive
dimension are spiral spin liquids [96–100]. These are mod-
els where the subextensive flat bands form a closed surface
in the Brillouin zone with non-trivial homotopy. In some
models [97] it is known that each point on the zero-energy
flat band corresponds to a ground state, so 𝒢 has the same
dimension as the zero-energy locus. These generally require
fine-tuned further-neighbor interactions that bring bands down
at wavevectors away from the zone center or boundaries [101].
However, we note that it is difficult to differentiate the effects
of order-by-disorder and order-by-singularity, and they likely
often occur in tandem, i.e. the effective entropic potential
which selects a ground state exhibits minima at the singular
points.

5. Extensive Flat Bands and Spin Liquids

If the interaction matrix has 𝑛flat > 0 zero-energy flat
bands out of 𝑛tot total bands,17 then ℱ is a (𝑛flat/𝑛tot)𝑁spin-
dimensional linear subspace of 𝒱 spanned by the flat band
eigenvectors, opening the possibility that the (local) dimension
of 𝒢 is extensive. Having extensive zero-energy flat modes
does not necessarily guarantee that 𝒢 is extensive, however.
There is general folklore that if the number of flat bands is too
low (compared to the total number of bands) the system will
order rather than realize a stable spin liquid, though a proof that
there is a lower bound on the required number is lacking. As a
rough rule of thumb, we can use an elementary formula from
linear algebra: the intersection of a 𝑑-dimensional and 𝑑′-
dimensional linear subspace in a 𝐷-dimensional vector space
has dimension 𝑑 + 𝑑′ − 𝐷.18 “Blindly” applying this formula,
we have

dim𝒢 = dim(ℱ ∩ℳ) ∼ dimℱ + dimℳ − dim𝒱. (67)

We use a ∼ to emphasize that the formula does not strictly
apply because ℳ is not a linear subspace. Since ℳ is a
product of 2-spheres it has dimension dimℳ = (2/3) dim𝒱,

16 The flat lines can, however, have significant impacts on the nature of the
finite-temperature ordering transition, because the corresponding flat modes
will have to be included in a Ginzburg-Landau description of the phase
transition [70, 95].

17 Note that 𝑛tot is three times the number of spins per primitive unit cell,
𝑛tot = 12 for the pyrochlore lattice.

18 We thank Tim Henke for pointing this out to us.

which implies that for 𝒢 to have dimension greater than zero
we should have

dimℱ ≳ dim𝒱/3 (dim𝒢 > 0). (68)

This suggests that at least a third of the bands should be flat to
have a continuous ground state degeneracy. This is far from
a proof, however, since ℳ is not a linear subspace, but we
believe that it should serve well as a general rule of thumb.

There are a few possible scenarios which can then in prin-
ciple distinguish:

1. The intersection is zero-dimensional, dim𝒢 = 0. Then 𝒢

is a discrete space, and at each point in 𝒢 the Hessian is
positive-definite. A generic spin configuration is orthogo-
nal to ℱ. We can distinguish the following cases19

(a) The number of discrete ground states, |𝜋0 (𝒢) |, is of
order one. The system orders.

(b) The ground state entropy is subextensive, such that
log |𝜋0 (𝒢) | ∝ 𝐿𝑘 with 0 < 𝑘 < 3. The system may
potentially undergo dimensional reduction without or-
dering [55].

(c) The ground state entropy is extensive, such that
log |𝜋0 (𝒢) | ∝ 𝐿3. We further differentiate:

i. The ground state is a trivial paramagnet;
ii. the ground state is a symmetry-broken [102, 103]

or fragmented [104, 105] spin liquid;
iii. the ground state is a symmetric spin liquid, as in

the 𝑇1,ice region of the pyrochlore phase diagram.

2. The intersection is sub-extensive, i.e. dim𝒢 ∝ 𝐿𝑘 with
0 < 𝑘 < 3. Then 𝒢 is parameterized locally by a subex-
tensive number of continuous compact parameters. It may
have one or more connected components. A generic spin
configuration has a sub-extensive projection into ℱ.

3. The intersection is extensive, dim𝒢 ∝ 𝐿3, and is param-
eterized locally by an extensive number of parameters. It
may have one or more connected components. A generic
spin configuration has non-zero overlap with ℱ of order
(dim𝒢)/𝐿3. We can further distinguish the following pos-
sibilities:

(a) The system exhibits symmetry breaking, either
i. order-by-singularity selects a ground state;

ii. order-by-disorder selects a ground state;
iii. nematic but liquid-like order [43, 44].

(b) The system exhibits no symmetry breaking, either
i. a liquid-to-liquid crossover [47];

ii. the ground state is a fully symmetric spin liquid,
e.g. the pyrochlore HAFM [26, 28].

19 We use the notation 𝜋0 (𝑋) is the zero’th homotopy group of 𝑋, and | 𝜋0 (𝑋) |
is the number of disconnected components of 𝑋.
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FIG. 9. Evolution of the zero-temperature SCGA structure factors (Appendix D), computed from the projector to the flat bands, for two of
the four 3-fold degenerate lines—𝐸 ⊕ 𝑇2 ⊕ 𝑇1 (top two rows) and 𝐴2 ⊕ 𝑇2 ⊕ 𝑇1 (bottom two rows)—in the cubic (ℎ𝑘0) and (ℎℎ𝑙) planes of
reciprocal space. At the right end is the structure factor for the HAFM, while at the left end is the structure factor of the HAFMdual, while the
middle column is the 𝐽𝑧± = 0 case. All cases show flat lines along (ℎℎℎ), visible in the (ℎℎ𝑙) plane, and fourfold pinch points, visible in the
(ℎ𝑘0) plane. Note that the color scale starts from the minimum intensity and goes to the maximum intensity of the flat band; higher intensities
from the singular band touchings lines and points appear white. The Δ𝐴2 > 0 triple line was first discussed in Ref. [45], but only one point on
the line—the “pinch-line spin liquid” (PLSL), corresponding to 𝐽3 < 0 and all other couplings zero—was studied. The 𝐽𝑧± = 0 point on this
triple line is the 𝐽±±-dual (denoted with an asterisk) of the “DQQ” model from Ref. [47]. The Δ𝐸 > 0 triple line was recently studied in detail
in Ref. [44].

Case 1(a) is likely a common occurrence whenever the num-
ber of flat bands is less than a third of the total number of bands,
following the rule of thumb. Case 1(b) and case 2 both im-
ply there is an obstruction to consistently “gluing together”
single-tetrahedron ground states in a corner-sharing fashion to
build ground states of the entire system, i.e. what Ref. [55]
calls the “Lego-brick” construction. In case 2 𝒢 is connected,
but we expect that the subextensive dimension will result in
either order-by-singularity or order-by-disorder ground state
selection. Unfortunately we do not known any explicit exam-
ples where this case occurs. Lastly, case 3(a) has an extensive
ground state manifold yet a symmetry broken ground state is
selected. We are not aware of examples of possibilities (i) or
(ii), but believe one of these may occur on the Δ𝐸 > 0 line,
where Ref. [44] recently reported selection of the 𝐴2 all-in-all-
out configurations when 𝐽𝑧± is small, we discuss this further
in Section VI C 1.

If the system avoids these ordering mechanisms, this leaves
cases 1(c) and 3(b). Case 1(c)(i), a trivial paramagnetic ground
state, can occur for example in a Potts model with a large num-
ber of states, where the system is trivially disordered to zero
temperature. Case 1(c)(ii) means that the system exhibits an
extensive but unsaturated ordered moment, while continuing to

fluctuate as a spin liquid to zero temperature. Case 3(b)(i) was
recently reported in Ref. [47] which we discuss briefly in the
next section. Finally, cases 1(c)(iii) and 3(b)(ii) correspond to
discrete and continuous symmetric spin liquids, respectively,
many examples of which are known.

B. Identified Pyrochlore Spin Liquids

Previous studies have looked at a variety of spin liquid mod-
els on the pyrochlore lattice emerging at the triple-intersection
of phases. The earliest recognized was the HAFM, which has
long been a canonical example of a classical spin liquid [26–
28, 72–75]. Referring to the first row of Table VI, it has six
flat bands with three quadratically dispersing bands touching
at 𝒒 = 0. At low temperature each tetrahedron is constrained
to have zero net spin, i.e. 𝑇1∥ is gapped (c.f. Eq. (56)). The
low-temperature 𝑇 → 0+ spin-spin correlations (𝑇 being tem-
perature) ⟨𝑆𝑖𝑆 𝑗⟩ are 1/𝑟3 power-law decaying [27, 28]. Their
Fourier transform, the spin structure factor,

𝑆(𝒒) = 1
𝐿3

∑︁
𝑖, 𝑗

⟨𝑆𝑖𝑆 𝑗⟩𝑒−𝑖𝒒 · (𝒓 𝑗−𝒓𝑖 ) , (69)
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exhibits characteristic “pinch-point” correlations, i.e. a diffu-
sive profile with bow-tie singularities located at zone centers
due to the long-range correlations arising from a local con-
straint [27, 28, 75]. The HAFM structure factor is shown in the
right-most column of Fig. 9. As we have discussed throughout
this paper, there is an additional HAFMdualmodel with nega-
tive 𝐽𝑧±, whose physics is exactly the same and whose ground
states are in bijection with those of the HAFM by a 𝜋 rotation
about the local easy axis. The corresponding structure factor
is shown in the left-most column of Fig. 9.

In 2016 another model was found, the “pinch line spin liq-
uid” (PLSL) [45], which was identified with the model 𝐽3 < 0
and 𝐽1 = 𝐽2 = 𝐽4 = 0 in terms of the global basis parameters
in Eq. (1b). Ref. [45] discussed this model as a particular
example of a family of models characterized by gapping 𝐴2
and 𝑇1+, i.e. the Δ𝐴2 > 0 line in Fig. 6, though the authors
did not parameterize the entirely family. The interest in this
model was that it exhibits pinch line singularities rather than
pinch points, i.e. singular correlations everywhere along the
high-symmetry (ℎℎℎ) line in reciprocal space. It corresponds
to the second row of Table VI, hosting four flat bands and a
singe flat line along the high-symmetry (ℎℎℎ) lines in recipro-
cal space plus three quadratically dispersing bands at the zone
center. From the rest of the table it is clear that pinch lines are
actually not unique to this model or this triple line—indeed
they appear at all the triple intersections.

In 2017 the “pseduo”-HAFM (pHAFM) point was pointed
out in Ref. [43], which is just the HAFM in the local basis,
i.e. 𝐽± = −𝐽𝑧𝑧/2, 𝐽𝑧𝑧 > 0, and 𝐽±± = 𝐽𝑧± = 0. The physics
of this model is identical to the HAFM, since they are mapped
to each other by a local on-site mapping of each spin from its
local frame to the global frame. We have marked this in Fig. 6,
it is the isolated triple point occurring on the 𝑇2 ⊕ 𝑇1 phase
boundary where it is pierced by the line of 𝑇1 degeneracy. It
has degenerate irreps𝑇2⊕𝑇1,ice⊕𝑇1,planar in Table VI. Ref. [43]
also studied the 𝑇2 ⊕ 𝑇1,planar line, i.e. the intersection of the
𝑇1 ⊕ 𝑇2 phase boundary and the 𝐽𝑧± = 0 plane, and found the
system exhibits a finite-temperature spin liquid regime with
a phase transition to nematic phase at low temperature with
broken rotational symmetry.

In 2020 another non-trivial spin liquid was then found, the
so-called “rank-2 U(1)” spin liquid [46]. This was inspired
by a surge of interest in gauge theories with a symmetric
rank-2 tensor electric fields, which are prototypical fractonic
theories [106–109] whose excitations have highly constrained
mobility due to local conservation of dipole and quadrupole
moments. Ref. [45] first showed how to organize the irreps into
a tensor, and Ref. [46] exploited this structure by recognizing
that a low-energy symmetric trace-free tensor field could be
obtained by gapping the 𝐴2 (trace component) and 𝑇2 (anti-
symmetric components) on each tetrahedron, along the with
the vector 𝑇1∥ . This leaves only 𝑇1⊥ ⊕ 𝐸 in the ground state,
which together form the desired symmetric trace-free tensor on
each tetrahedron. This occurs along a one-dimensional locus
in the 𝑇1 ⊕ 𝐸 phase boundary along which 𝐽3 = 0, so that the
decoupled𝑇1 irreps are𝑇1,ice and𝑇1,planar. This line is precisely
traced by restricting the Hamiltonian Eq. (2) to only Heisen-
berg and DM interactions, which is shown in Fig. 7 by the green

circle (the inset shows how this family runs long the 𝑇1 ⊕ 𝐸
phase boundary). However, just being on this phase bound-
ary is insufficient degeneracy for flat bands (c.f Table V), and
the system selects the 𝐸 phase ground states [57]. Ref. [46]
attempted to remedy this ordering by introducing breathing
anisotropy to relax some of the constraints on a subset of tetra-
hedra. The rank-2 U(1) spin liquid is then obtained at finite
temperatures, though the system still orders at sufficiently low
temperature [110].

In 2023 Ref. [47] studied another spin liquid, which
was called the “dipolar-quadrupolar-quadrupolar” (“DQQ”)
model. This is the second isolated triple point other than the
pHAFM, sitting at the intersection of the 𝑇1 ⊕ 𝐸 phase bound-
ary and the 𝑇1-degenerate line in Fig. 6, i.e. with degenerate
irreps 𝐸 ⊕ 𝑇1,ice ⊕ 𝑇1,planar in Table VI. This model was found
to exhibit a classical liquid-to-liquid crossover, where the spin
ice states are entropically selected from the ground state man-
ifold at very low temperatures. It also has a 𝐽±±-dual model,
which is the point on the Δ𝐴2 > 0 line at 𝐽𝑧± = 0.

Recently, Ref. [44] studied the line with Δ𝐸 > 0, and found
that for small 𝐽𝑧± it exhibits a ground state selection of 𝐴2
order, while for larger 𝐽𝑧± (closer to the HAFM) it exhibits a
nematic ordering similar to that on the 𝑇2 ⊕ 𝑇1,planar line. It
was also reported that the nematic symmetry breaking occurs
ubiquitously on the 𝑇1 ⊕ 𝑇2 phase boundary, which may be a
consequence of flat planes (rather than flat bands), c.f. Table V.

Finally, Ref. [111], which appears concurrently with this
work, performed an exhaustive search of all degenerate com-
binations of irreps and determined the corresponding Gauss
laws and stability for pyrochlore spin liquids. They identify
the HAFMdual model and show that theΔ𝐴2 > 0 line is a stable
spin liquid family, but otherwise have found that there are no
additional stable classical spin liquids with nearest-neighbor
interactions.

Before moving on, we note that further-neighbor interac-
tions can stabilize entirely novel spin liquids, in particular the
author has shown in Ref. [102] the existence of a 2-form U(1)
classical spin liquid with Ising spins on the pyrochlore lattice,
by generalizing the zero-divergence constraint of spin ice to
a zero-curl constraint. Its isotropic extension generalizes the
HAFM spin liquid, and the possibility of anisotropic general-
ization of 2-form U(1) spin liquids remains an open possibility.

C. Catalog of Pyrochlore Flat Bands

With the full structure of the phase diagram now plainly
exposed in Fig. 6, we can systematically account for all possible
degenerate combinations of irreps, how they relate to each
other in the phase diagram, and how they generate flat bands.
Starting with the triple lines, these can be parameterized by a
single parameter 𝑥 ∈ [−1, 1], such that

sign(𝐽𝑧±) = sign(𝑥) and
Δ𝐼 ′

Δ𝑇1+
= max

(
Δ𝐼 ′

Δ𝑇1+

)
(1 − |𝑥 |),

(70)
where the maximum is given by the right hand side of the
inequalities in Table III. Note that for 𝐼 ′ = 𝑇1− the line is
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FIG. 10. Spin structure factor for flat band cases not on the two lines shown in Fig. 9. (a) On the Δ𝑇− > 0 line there are two flat bands with
pinch line singularities. Because the ground state does not involve a 𝑇1 irrep, the ground state physics is independent of position along this line,
and the structure factor does not evolve along it. (b) The Δ𝑇2 > 0 line does not have flat bands (only flat planes) except when 𝐽𝑧± = 0. Note
that in both cases (a) and (b) the 𝐴2 phase is accidentally degenerate and does not contribute to the flat bands. (c) The isolated pseudo-HAFM
triple point [43] contains decoupled contributions from 𝑇1,ice and the planar 𝑇1 and 𝑇2 irreps. (d) The isolated “DQQ” triple point [47] contains
decoupled contributions from the 𝑇1,ice and the planar 𝑇1 and 𝐸 irreps. (e) The planar 𝐸 and 𝑇2 irreps combine to form non-trivial flat bands
on this phase boundary. (f) The planar 𝐸 and 𝑇1 irreps combine to form non-trivial flat bands on this phase boundary in the 𝐽𝑧± = 0 plane. (g)
The planar 𝑇2 and 𝑇1 irreps combine to form non-trivial flat bands on this phase boundary in the 𝐽𝑧± = 0 plane. This region was studied in
Ref. [43] and found to be a nematic spin liquid. (h) The structure factor in the nearest-neighbor spin ice (NNSI) region of the 𝑇1 phase. Note
that (a) is equivalent to (e) plus extra intensity at zone center due to the extra decoupled 𝐴2 irrep; (b) is equivalent to (f) for the same reason;
(c) is equivalent to (g) plus (h); and (d) is equivalent to (f) plus (h).

parameterized in Table III according to the splitting of the 𝑇1
energies, but for the Δ𝑇1− ≥ 0 portion it can be parameterized
as in Eq. (70) with 0 ≤ Δ𝑇1−/Δ𝑇1+ ≤ 1/2. For all four lines this
parameterization yields the HAFM at 𝑥 = 1 and the HAFMdual
at 𝑥 = −1. The flat band degeneracies on these lines are listed
in Table VI.

For each of the lines we have computed the zero-temperature
spin structure factor,20 Eq. (69), in the self-consistent Gaussian
approximation (SCGA) [75, 112, 113] in the limit of zero
temperature, which is proportional to the projector 𝑃ℱ to the
flat band subspace (c.f. Appendix D),

𝑆(𝒒)𝑇→0+ =
𝑛tot

3𝑛flat

∑︁
𝜇,𝜈

∑︁
𝛼

[𝑃ℱ (𝒒)]𝛼𝛼
𝜇𝜈 (SCGA). (71)

The touching of the dispersive bands with the flat bands give
rise to characteristic pinch singularities in these structure fac-
tors. Figure 9 shows the evolution of the structure factor along
the Δ𝐴2 > 0 and Δ𝐸 > 0 lines, both exhibiting a combination
of pinch lines and pinch points. The triple line with Δ𝑇1− > 0
has no dependence on the canting angle because both 𝑇1 irreps
are gapped along this line, meaning that the structure factor is
the same everywhere on this line, shown in Fig. 10(a). The
last triple line, with Δ𝑇2 > 0 has no flat bands, only flat planes,
except when 𝐽𝑧± = 0, shown in Fig. 10(b). The remaining two
triple points, the pHAFM and “DQQ” models, are shown in

20 While it would be more experimentally relevant to present neutron scatter-
ing cross sections, these would require a choice of 𝑔-tensor which relates
the pseudo-spin to the magnetic moment of the ion, which is a material-
dependent quantity that must be determined on a case-by-case basis. The
spin structure factor corresponds to an isotropic 𝑔-tensor.

Fig. 10(c,d). Various phase boundaries also exhibit flat band
degeneracies, which are shown in Fig. 10(e,f,g). Lastly, the
structure factors for spin ice, i.e. the 𝑇1,ice ground state, are
shown in Fig. 10(h).

1. Trivially Stacked Band Touchings and Easy-Axis Selection

Simply tuning additional irreps to be degenerate does not
necessarily enhance the flat band degeneracies, meaning that
the long-wavelength band structure at these points is just a
trivial “stacking” of the band structure of the separate irreps,
i.e. an accidental degeneracy. We should therefore ask which
combinations of irreps enhance the degeneracies beyond the
individual components. Another way to state this is, there is a
topological invariant associated to how the normalized eigen-
vectors of the interaction matrix wind around the reciprocal
space loci where flat bands touch dispersive bands [49, 50];
when we add additional band touching degeneracies, does the
topological invariant change? For this reason we also provide
the degeneracies within each phase in Table IV and on each
phase boundary in Table V.

Checking the cases in Table V containing 𝑇1,ice and com-
paring to the corresponding degeneracies in Table IV shows
that the three boundaries between the 𝐽𝑧± = 0 𝑇1,ice region
of the neighboring phases (c.f. Fig. 5(b)) do not obtain any
additional flat degeneracies beyond those 𝑇1,ice and the neigh-
boring phase. This is because in the 𝐽𝑧± = 0 plane the 𝑇1,ice
irrep contains only the easy-axis spin components, while the
ground state irreps of the surrounding phases contain only
the easy-plane spin components. Thus tuning to these phase
boundaries simply “stacks” the degeneracies of the two sides,
as the irreps are decoupled when 𝐽𝑧± = 0.
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Phase Flat
Bands

Flat
Planes

Flat
Lines

Quadratic
Points

𝐴2 0 0 0 1×Γ
𝐸 0 0 0 2×Γ
𝑇2 0 0 1× (ℎℎℎ) 2×Γ
𝑇1 0 0 0 3×Γ

𝑇1,planar 0 0 1× (ℎℎℎ) 2×Γ
𝑇1,ice 2 0 0 1×Γ

TABLE IV. Flat degeneracies within each phase (c.f. Fig. 2). For
the 𝑇1 phase additional degeneracies occur when 𝐽𝑧± = 0. 𝑇2 and
𝑇1,planar have flat lines along the (ℎℎℎ) directions, while 𝑇1,ice hosts
two flat bands corresponding to the spin ice ground states. Note that
the sum of numbers in each row equals the dimension of the irrep in
the first column—the number of zero modes at the Γ (𝒒 = 0) point.

Phase
Boundary

Flat
Bands

Flat
Planes

Flat
Lines

Quad.
Points

𝐴2 ⊕ 𝐸 0 0 0 3×Γ

𝐴2 ⊕𝑇2 0 0 1× (ℎℎℎ) 3×Γ

𝐴2 ⊕𝑇1 0 0 1× (ℎℎℎ) 3×Γ

𝐸 ⊕𝑇2 2 0 1× (ℎℎℎ) 2×Γ

𝐸 ⊕𝑇1 0 0 2× (ℎℎℎ) 3×Γ
𝐸 ⊕𝑇1,ice 2 0 0 3×Γ
𝐸 ⊕𝑇1,planar 2 0 1× (ℎℎℎ) 2×Γ

𝑇2 ⊕𝑇1 0 1× {ℎℎ𝑙} [2× (ℎℎℎ)] 3×Γ
𝑇2 ⊕𝑇1,ice 2 0 1× (ℎℎℎ) 3×Γ
𝑇2 ⊕𝑇1,planar 4 0 0 2×Γ

𝑇1,ice ⊕𝑇1,planar 2 0 1× (ℎℎℎ) 3×Γ

TABLE V. Flat degeneracies on the phase boundaries. Rows high-
lighted in gray indicate that the flat degeneracies are more than the
sum of parts in Table IV. The 𝐸 ⊕𝑇2 boundary carries two flat bands,
while the 𝐸 ⊕ 𝑇1 and 𝑇2 ⊕ 𝑇1 phase boundaries carry non-trivial flat
bands when 𝑇1 = 𝑇1,planar.

Triple
Line

Flat
Bands

Flat
Planes

Flat
Lines

Quad.
Points

𝐴2 ⊕ 𝐸 ⊕𝑇2 ⊕𝑇1⊥ 6 0 0 3×Γ

𝐸 ⊕𝑇2 ⊕𝑇1 4 0 1× (ℎℎℎ) 3×Γ

𝐴2 ⊕𝑇2 ⊕𝑇1 2 0 2× (ℎℎℎ) 3×Γ
𝐴2 ⊕ (𝑇2 ⊕𝑇1,plnr) 4 0 0 3×Γ

𝐴2 ⊕ 𝐸 ⊕𝑇1 0 1× {ℎℎ𝑙} [2× (ℎℎℎ)] 3×Γ
𝐴2 ⊕ (𝐸 ⊕𝑇1,plnr) 2 0 1× (ℎℎℎ) 3×Γ

𝐴2 ⊕ (𝐸 ⊕𝑇2) 2 0 1× (ℎℎℎ) 3×Γ

𝑇1,ice ⊕ (𝑇2 ⊕𝑇1,plnr) 6 0 0 3×Γ

𝑇1,ice ⊕ (𝐸 ⊕𝑇1,plnr) 4 0 1× (ℎℎℎ) 3×Γ

TABLE VI. Flat band degeneracies on the triply-degenerate cases
listed in Table III and depicted in Fig. 6. The HAFM points have
the highest degeneracy, which is partially lifted along the four triply-
degenerate lines. Note that flat {ℎℎ𝑙} planes imply a triple (ℎℎℎ) line
intersection, indicated with square brackets. Note that combining
easy-axis with easy-plane irreps always results in a trivial stacking of
degeneracies, indicated with parentheses on non-highlighted lines.

The same applies for combining the easy-axis 𝐴2 irrep with
any easy-plane irreps. For example, the 𝐴2 ⊕ 𝐸 ⊕ 𝑇2 line in
Table VI has the same flat degeneracies of the 𝐸 ⊕ 𝑇2 phase
boundary in Table V plus one extra zone-center quadratic band
touching coming from the 𝐴2 irrep. Correspondingly, the
SCGA structure factor for this line shown in Fig. 10(a) is
exactly the SCGA structure factor of the 𝐸⊕𝑇2 phase boundary
in Fig. 10(e) plus some extra zone-center intensity from the
𝐴2 degeneracy (not visible in the figure). The same occurs for
the 𝐴2 ⊕ 𝐸 ⊕ 𝑇1,planar combination in Fig. 10(b) compared to
the 𝐸 ⊕ 𝑇1,planar combination in Fig. 10(f). Similarly, the two
combinations with 𝑇1,ice, (b) and (c), are equivalent to adding
the same combination without 𝑇1,ice, (g) and (f) respectively,
with the 𝑇1,ice structure factor in (h).

Such trivial stacking does not necessarily rule out interesting
physics arising due to the enhanced degeneracy. For example,
the 𝐸 ⊕ 𝑇1,planar ⊕ 𝑇1,ice triple point was studied in detail in
Ref. [47] (dubbed the “DQQ” model), and exhibits a finite-
temperature liquid-to-liquid crossover. At finite temperature it
develops correlations matching the SCGA, while at very low
temperature it selects the spin ice manifold and remains a spin
liquid. The reason is because the degeneracy with the easy-
plane configurations implies that if the spins are aligned along
the easy axis their transverse fluctuations is greatly enhanced,
meaning that the Hessian about the easy-axis configurations
should will contain gapless modes easy-plane modes on each
tetrahedron. The Hessian for a spin ice state has an extensive
number of zero modes, while for a generic ground state it
does not [47]. We believe that this mechanism should be
universal: selection of the easy-axis configurations will be
preferred for all cases in which the ground state irreps split
into decoupled easy-axis and easy-plane components. From
Eq. (65) it clear that if 𝒛𝑖 are along the easy-axis then the
Hessian will inherit all of the zero-energy easy-plane normal
modes of the interaction matrix. In particular, this implies that
cases that are trivially stacked with 𝐴2 will select the all-in-
all-out ground state, an example of order-by-singularity. In
this sense, the liquid-to-liquid crossover of the DQQ model
studied in Ref. [47] is an example of a selection of the ice
manifold due to singularities in the ground state manifold, a
“easy-axis-spin-liquid-by-singularity”.

2. Intertwined Flat Bands

On the other hand, combinations of two easy-plane irreps
always yields an enhanced degeneracy, highlighted gray in Ta-
ble V. For example, 𝑇2 ⊕ 𝑇1,planar has four flat bands despite
neither the 𝑇2 phase nor the 𝑇1,planar region of the 𝑇1 phase
having any flat bands. Such cases exhibit “intertwined” flat
bands which are more than the sum of their parts, meaning
that the topological invariant arising from the winding of the
eigenvectors of the interaction matrix around the degenerate
points in reciprocal space changes. Alternatively, the band
representation with degeneracy does not trivially decompose
into a sum of the components [51]. This will result in addi-
tional degeneracies away from the zone center as well. The
complete list of phase boundaries with intertwined flat bands
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are precisely the three combination of the easy-plane ground
states: 𝐸 ⊕ 𝑇2, 𝐸 ⊕ 𝑇1,planar, and 𝑇2 ⊕ 𝑇1,planar. The three
boundaries of the 𝑇1 phase generically contain intertwined but
subextensive flat bands: 𝐴2 ⊕ 𝑇1 and 𝐸 ⊕ 𝑇1 have intertwined
flat lines while 𝑇2 ⊕ 𝑇1 has intertwined flat planes. Finally,
moving to the triple lines and points in Table VI, the Δ𝑇1− > 0
has no intrinsically new flat bands, it is a trivial stacking of
the 𝐸 ⊕ 𝑇2 phase boundary flat bands with the 𝐴2 irrep. The
Δ𝑇2 > 0 triple line has no flat bands but has intertwined flat
planes. The remaining two triple lines, Δ𝐴2 > 0 and Δ𝐸 > 0,
both have intertwined flat bands, and the HAFM points have
intertwined flat bands.

D. Charge-Flux Intertwinement of Irreps, Band Touchings,
and Gauss Laws

As we have now seen in detail, various degenerate combi-
nations of irreps yield spin liquids, but not all combinations
are possible. Here we provide some further insight into how
the various irreps are interrelated to each other in various spin
liquids, some acting as fluxes and others acting as charges of an
emergent gauge theory.21 The Hamiltonian can be expressed
as22

𝐻 =
∑︁
𝑡

∑︁
𝐼,𝑎

𝐽𝐼 | (𝒎𝑎
𝐼 )𝑡 |2, (72)

where 𝑡 indexes the tetrahedra. For various fine-tuned de-
generacies tabulated in Tables IV to VI various flat bands
appear, some of which support classical spin liquids. For each
of the flat cases there is a quadratic band touching with the
flat bands which determines an emergent Gauss law for the
coarse-grained description of the system in terms of gauge
fluxes [28, 49, 50]. As we have seen, we cannot tune arbi-
trary irreps to be degenerate, some possibilities like 𝐴2 ⊕𝑇1,ice
are not possible. While the irreducible representation analysis
decouples the spin components into seemingly independent
degrees of freedom, there is a non-trivial relation between the
different irrep components.

1. Easy-Axis Irreps

Consider first the limit of the pure-𝐽𝑧𝑧 Hamiltonian with
all other couplings zero. This corresponds to the maximally
anisotropic limit where all spins lie along their easy-axes, with
corresponding irrep decomposition 𝐴2 ⊕ 𝑇1,ice. All other ir-
reps, corresponding to easy-plane modes, do not appear in
the Hamiltonian, their energies are 𝐽𝐼 = 0. Those absent easy-
plane irreps cannot be the ground state, therefore we must have
that 𝐽𝐴2 < 0 and 𝐽𝑇1,ice > 0 or vice-versa, e.g. if 𝐴2 is gapped

21 From the gauge theory perspective, the “fluxes” we are discussing corre-
spond to the electric field, not magnetic (gauge) fluxes.

22 Note that this assumes the definitions with normalization prefactors given
in Section II C.

then 𝑇1,ice must be the ground state. To see how these irreps
are coupled, it is instructive to write the Hamiltonian in this
limit in terms of the pyrochlore adjacency matrix,

𝐻𝐽𝑧𝑧 =
𝐽𝑧𝑧
2

∑︁
𝑖 𝑗

𝐴𝑖 𝑗𝑆
𝑧
𝑖 𝑆

𝑧
𝑗 (local 𝑧)

= const. + 𝐽𝐴2

∑︁
𝑡

|𝑚𝐴2 |2, (73)

where 𝐴𝑖 𝑗 = +1 if 𝑖 and 𝑗 are nearest-neighbor sites and zero
otherwise. On a single tetrahedron, this has the form

𝐴𝑖 𝑗 =
©­­­«

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

ª®®®¬
(𝑖, 𝑗 ∈ 𝑡), (74)

which has a single eigenvalue +3 corresponding to the 𝐴2
irrep and a triply degenerate eigenvalue −1 corresponding to
the 𝑇1,ice irrep, whose associated eigenvectors are

𝐴2 : (+1, +1, +1, +1) (75)

𝑇1,ice :



(+1, +1,−1,−1)
(+1,−1, +1,−1)
(−1, +1, +1,−1)

(76)

Notice that the three 𝑇1,ice eigenvectors differ from the 𝐴2
eigenvector by reversing two spins. Correspondingly the 𝐴2
ground states are all-in-all-out, Fig. 11(b), while the 𝑇1,ice
ground states are 2-in-2-out, Fig. 11(a). At the lattice level the
2-in-2-out states have “zero divergence” if we think of 𝑆𝑧𝑖 as
carrying a flux in or out of the tetrahedron, while the all-in-
all-out states have maximal divergence. Thus if we associate
the 𝑇1,ice eigenmodes to zero-divergence fluxes, the 𝐴2 eigen-
mode is the corresponding charge which sources a non-zero
divergence. Another way to see this is that there is a sum rule
relating these irreps,

|𝑚𝐴2 |2 + |𝒎𝑇1,ice |2 =
∑︁
𝑖

(𝑆𝑧𝑖 )2. (77)

If all spins lie along the easy axis in the ground state then
the right hand side is a positive constant and either the 𝐴2 or
𝑇1,ice is maximized, implying the other is minimized. Notably
this implies that it is not possible to have both 𝑇1,ice and 𝐴2
degenerate in the ground state, because raising the energy of
one lowers the energy of the other and vice-versa. We see this
in Fig. 6, and also in the fact that the last triple combination in
Table III has no solution.

2. Long-Wavelength Gauss Law

This flux-charge intertwinement has a dramatic conse-
quence in the long-wavelength expansion of the Hamiltonian:
the band structure of 𝒥 has a single and triple degeneracy at
the zone center corresponding to the 𝒒 = 0 single-tetrahedron
irrep eigenmodes, while away from the zone center the bands
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𝑞𝑥

𝑞𝑦
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𝑞𝑦

(h) (i)

FIG. 11. Illustration of the flux-charge relation between irreps. Each
3-component vector irrep acts as a flux, and its corresponding charge
is obtained by reversing two spins. In the long-wavelength limit, gap-
ping one of the charges will force the corresponding flux to have zero
divergence. (a-f) In the easy-axis/easy-plane limit 𝐽𝑧± = 𝐽±± = 0, the
local 𝑥, 𝑦, 𝑧 components are decoupled into three independent charge-
flux combinations: (a,b) The 𝑇1,ice irrep correspond to 2-in-2-out
states with zero lattice divergence, while the 𝐴2 irrep corresponds to
all-in-all-out states with maximal lattice divergence [27, 74, 75]; (c,d)
Flipping two spins from the 𝑇1,planar irrep results in the a 𝜓2 config-
urationl; (e,f) Flipping two spins from a 𝑇2 configuration results in a
𝜓3 configuration. (g) In the isotropic limit the global 𝑥, 𝑦, 𝑧 compo-
nents decouple, the three 𝑇1∥ irrep components M act as the charges,
and the fluxes correspond to the columns of B. (h,i) Illustration of
how gapping the charges yields a zero-divergence constraint on the
fluxes at the level of bands. (h) In the limit where the 𝐴 tetrahedra are
decoupled (zero coupling on the 𝐵 tetrahedra) the irreps label a set of
flat bands, one for the charge and three for the flux, shown on the left.
(i) Turning on the coupling between tetrahedra, the necessity that the
charge is zero on the 𝐵 tetrahedra restricts the allowed configurations
on the surrounding 𝐴 tetrahedra, resulting in the longitudinal (along
𝒒̂) component of the coarse-grained flux becoming dispersive. The
transverse (orthogonal to 𝒒̂) components remain flat.

disperse. Fourier transforming the single-tetrahedron modes,
which vary from tetrahedron to tetrahedron, we can perform
a long-wavelength expansion of the Hamiltonian in which the
single-tetrahedron modes become coarse-grained fields—𝐴2
becomes a scalar field and 𝑇1,ice a vector field 𝑩—and we find
that forcing the 𝐴2 to be zero (taking 𝐽𝑧𝑧 > 0 and going to low
temperature) forces the divergence of 𝑩 to be zero [28, 74, 75].
In the𝑇1,ice ground state the coarse-grained Gauss law can then
be simply read off,

𝒒 · 𝑩𝑇1,ice (𝒒) = 0 ⇔ ∇ · 𝑩𝑇1,ice = 0. (78)

One way to rationalize this is to consider the fact that the
pyrochlore lattice can be divided into two sets of tetrahedra,
“𝐴” and “𝐵”, such that an 𝐴 tetrahedron is surrounded by four
𝐵 tetrahedra and vice-versa. If we turn off the couplings on
the 𝐵 tetrahedra then the bands of the interaction matrix would
be dispersionless (flat) with degeneracies determined by the
single-tetrahedron irreps, Fig. 11(h), corresponding to com-
pletely decoupled 𝐴 tetrahedra which only have to satisfy their
local constraint but can be in arbitrary ground states. Turn-
ing on the 𝐵 tetrahedra couplings, we realize that we cannot
choose the 𝐴 tetrahedra ground states arbitrarily, because we
have to ensure that the 𝐵 tetrahedra are also in a ground state,
thus some of the flat bands from the decoupled limit become
dispersive, Fig. 11(i), with a band touching that remains at the
zone center. This band touching then determines the emergent
Gauss law for the fluxes when the corresponding charges are
gapped: the longitudinal component of the field is suppressed,
while its transverse modes remain free to fluctuate.23

On the other hand, if instead the flux irrep is gapped then
the constraint on the scalar charge must be a zero-gradient
constraint. For example, taking 𝐽𝑧𝑧 < 0 in in the 𝐴2 phase
the long-wavelength expansion can only yield |𝒒 |2𝑚2

𝐴2
, the

bottom band of the interaction matrix disperses upwards, and
the coarse-grained constraint is ∇𝑚𝐴2 = 0.

3. Easy-Plane Irreps

We can extend this relation to the other irreps. First, consider
adding the easy-plane components without anisotropies, i.e.
𝐽±± = 𝐽𝑧± = 0. The easy-plane irreps are 𝐸 , 𝑇2, and 𝑇1,planar,
with Hamiltonian

𝐻𝐽± = −𝐽±
∑︁
𝑖 𝑗

𝐴𝑖 𝑗 (𝑆𝑥𝑖 𝑆𝑥𝑗 + 𝑆
𝑦
𝑖 𝑆

𝑦
𝑗 ) (local 𝑥, 𝑦),

= const. − 𝐽𝐸
∑︁
𝑡

|𝒎𝐸 |2. (79)

It follows from the first line that the local 𝑥 and 𝑦 modes are
decoupled, and the corresponding eigenvectors are again given
by Eq. (76). It then follows from the local 𝑥 components that

23 Note that this “atomic limit” argument only works because the tetrahedra
centers form a bipartite lattice [28], for the non-bipartite case it is possible
that the flat bands become completely gapped [114].
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the 𝑇1,planar modes are fluxes with the 𝜓2 the corresponding
charges, while from the local 𝑦 components it follows that
the 𝑇2 modes are fluxes with 𝜓3 the corresponding charges,
as illustrated in Fig. 11(c-f). Raising the energy of one of
the charge irreps lowers the energy of the corresponding flux,
which should satisfy a zero-divergence condition in the long-
wavelength coarse-grained limit, owing to the sum rule

|𝒎𝐸 |2 + |𝒎𝑇2 |2 + |𝒎𝑇1,planar |2 =
∑︁
𝑖

[(𝑆𝑥𝑖 )2 + (𝑆𝑦𝑖 )2] . (80)

Due to the symmetry of the lattice we cannot split the energy of
the𝜓2 and𝜓3 charges since they are two components of a single
irreducible representation. For 𝐽± < 0 then ground state is a
combination of 𝑇1,planar and 𝑇2 fluxes, which must both satisfy
a zero-divergence constraint in the long-wavelength limit [43],

𝒒 · 𝑩𝑇1,planar (𝒒) = 𝒒 · 𝑩𝑇2 (𝒒) = 0. (81)

This suggests the ground state behaves as two decoupled copies
of a Coulomb phase, though Ref. [43] found that it exhibits
nematic symmetry breaking. For 𝐽± > 0 the 𝐸 ground state is
selected, a “charge condensate” of the 𝜓2 and 𝜓3 irreps, one
of which is chosen via order by disorder [25, 53, 54, 90].

4. Easy-Axis Plus Easy-Plane

Combining the analysis for the pure-𝐽𝑧𝑧 and pure-𝐽±, we
note that the fine-tuned point when 𝐽𝑧𝑧 = −2𝐽± > 0 corre-
sponds to the isolated 𝑇1,ice ⊕ 𝑇1,planar ⊕ 𝑇2 triple point, where
the ground state is described by three Gauss laws, Eqs. (78)
and (81), which is precisely the pHAFM. The Hamiltonian can
be expressed using the three-component diagonal components
of the multipole tensor defined in Eq. (23c), as

𝐻 = 𝐽𝐸/𝐴2

∑︁
𝑡

|Q𝑡 |2, (82)

where 𝐽𝐸 = 𝐽𝐴2 at this point. For 𝐽𝐸/𝐴2 > 0 the ground state is
described by three decoupled Coulomb phases. For 𝐽𝐸/𝐴2 < 0
the ground state becomes the pseduo-ferromagnet (pHFM),
which is a special point on the 𝐴2 ⊕ 𝐸 phase boundary with a
global SO(3) symmetry, see Section VII.

On the other hand there is the 𝐴2 ⊕𝑇2 ⊕𝑇1,planar triple point
when 𝐽𝑧𝑧 < 0. However, as discussed in Section VI C 1 this
will not yield a more complicated Gauss law, instead it just adds
the constraint ∇𝑚𝐴2 = 0. This is one example of a trivially
stacked band degeneracy. The result is that the 𝑇2 ⊕ 𝑇1,planar
and 𝐴2 behaviors compete, and in this case the easy-axis order
winds [44].

5. Isotropic Limit

Next consider the isotropic case, i.e. the Heisenberg model,
which we can write as a sum of three (classically) decoupled

Hamiltonians

𝐻𝐽Heis =
𝐽Heis

2

∑︁
𝛼∈{𝑥,𝑦,𝑧}

(∑︁
𝑖 𝑗

𝐴𝑖 𝑗𝑆
𝛼
𝑖 𝑆

𝛼
𝑗

)
(global 𝑥, 𝑦, 𝑧),

= const. + 𝐽𝑇1∥

∑︁
𝑡

|M𝑡 |2, (83)

where M was defined in Eq. (23a). We can immediately infer
that the three charges are the three components of the net-
moment 𝑇1∥ irrep. The 𝑧-component is shown in Fig. 11(g),
along with the three flux components obtained by reversing
two spins. The flux components precisely corresponding to
the last column of the multipole tensor B, Eq. (23b). Each
column of the tensor corresponds to a flux vector, and indeed
these are precisely the coarse-grained fluxes which were de-
fined in Refs. [74, 75], and we can define B ≡ (𝑩𝑥 , 𝑩𝑦 , 𝑩𝑧).
Each of these fluxes satisfies a coarse-grained zero-divergence
constraint at low temperature when 𝐽Heis > 0,

𝒒 · 𝑩𝛼 (𝒒) = 0. (84)

This can also be expressed as a single tensor Gauss law,

𝒒 ·B = 0 ⇔ 𝜕𝛼B
𝛼𝛽 = 0, (85)

where all nine components of B are allowed to fluctuate un-
restricted. This describes three degenerate sets of two flat
bands and a quadratic band touching, and the low-energy spin
liquid behaves as three disconnected copies of a Coulomb
phase [28, 74].

6. Anisotropy, Tensor Gauss Laws, and Pinch Lines

Both the easy-axis/plane limit, 𝐽±± = 𝐽𝑧± = 0, and the
Heisenberg limit are “isotropic”, in the sense that the Hamilto-
nian decouples into independent 𝑥, 𝑦, 𝑧 components related by
the adjacency matrix, and the corresponding Gauss laws fol-
lows from the adjacency matrix band structure. We can then
consider perturbing either of these limits with anisotropies.
Starting from the easy-axis/plane limit, adding 𝐽±± ≠ 0 splits
the energies of 𝑇2 and 𝑇1,planar. This makes it possible to tune
the 𝐸 irrep to be degenerate with either the 𝑇1,planar or 𝑇2 ir-
rep, which is not possible for 𝐴2 and 𝑇1,ice, because Eq. (80)
involves three irreps, two of which can be degenerate.24 On
the 𝑇2 ⊕ 𝐸 phase boundary, the long-wavelength expansion
can be performed using the tensor B, setting 𝑚𝐴2 = 0 along
with both of the 𝑇1 irreps, so that the long-wavelength field is
a trace-free tensor with diagonal and anti-symmetric compo-
nents. The Gauss law is then given by the tensor expression

24 Interestingly, the charge-flux relation between the easy-plane modes nicely
explains why near the 𝑇1,planar phase boundary the 𝜓3 state is selected
via order by disorder, and similarly near the 𝑇2 phase boundary 𝜓2 is
selected [25]. For example, near the 𝑇2 ⊕ 𝐸 phase boundary, 𝒎𝑇1,planar
is minimized, which stiffens the 𝜓3 fluctuations and makes the 𝜓2 mode
fluctuations softer, driving the order-by-disorder selection.
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Eq. (85), but with the additional constraints that the trace and
symmetric tensor components must be zero. The resulting
band structure has two flat bands with a three-fold band touch-
ing at zone center, but the dispersion away from the band
structure has non-trivial flat lines along the high-symmetry
(ℎℎℎ) directions.25 The existence of these pinch lines is not
necessarily obvious from inspecting the Gauss law as they arise
from additional constraints on the tensor components. Start-
ing from the isotropic Heisenberg point, inducing spin canting
with the 𝐽3 interaction will cause the vector and symmetric-
tensor components to couple due to canting. This results in
more complex constrained tensor Gauss laws, which generi-
cally exhibit flat lines touching flat bands [44–46]. Ref. [111],
which appears concurrently with this work, gives a detailed
prescription for how to derive the inter-tetrahedron constraints
and tensor Gauss laws and has done so for all degenerate irrep
combinations in the pyrochlore lattice.

E. Pinch Lines Imply Four-fold Pinch Points

We close with a brief discussion about the relation between
pinch lines and fourfold pinch points. Fourfold pinch points are
often attributed to rank-2 symmetry tensor gauge theory and
fracton topological order [46, 108], arising from a Gauss law
of the form 𝜕𝑖𝜕 𝑗𝐸𝑖 𝑗 = 0. In a spin liquid this Gauss law would
arise due to a quartic band touching in the spectrum of the
interaction matrix corresponding to a long-wavelength expan-
sion of the form |𝐸 |2 + 𝜉4 (𝑞𝑖𝑞 𝑗𝐸𝑖 𝑗 )2, where 𝜉 is a lengthscale
and 𝐸 is a coarse-grained rank-2 trace-free symmetric tensor
field. As can be seen in Figs. 9 and 10, however, we have a
plethora of four-fold pinch points in a wide variety of flat band
models, none of which are described by a symmetric tensor or
have quartic band touchings. The presence of such four-fold
pinches is likely not indicative of any sort of fracton physics,
however, and instead arises due to the presence of pinch lines,
which appear to be a common feature of tensor spin liquids.

The full three-dimensional structure of the pinch singularity
at the zone center is shown in Fig. 12, which is qualitatively
identical for all the fourfold pinches observable in Figs. 9
and 10. The pinch lines run along the three cube diagonals,
colored red in Fig. 12(a), and intersect at the zone center.
Figure 12(a) shows equal-intensity contours of the structure
factor, which is singular along the pinch lines and goes to a
minimum along the cubic (ℎ00) axes. Slicing through this in
a cubic plane such as (ℎ0𝑙), illustrated in Fig. 12(b), reveals
a fourfold pinch point at the zone center, while cutting along
such a cubic plane away from the zone center reveals four
pinch points where this plane intersects the pinch lines. On
the other hand, cutting along a plane orthogonal to the (ℎℎℎ)
pinch lines reveals a six-fold pinch pattern at the zone center,
or a three-fold pinch pattern away from the zone center, as
illustrated in Fig. 12(c) The three-fold pattern arises due high
intensity on the three cube edges which merge together along
the cube diagonals, which can be seen in Fig. 12(a).

25 The same holds for 𝑇1,planar by the 𝐽±± duality when 𝐽𝑧± = 0.

(a)

(b) (c)

FIG. 12. Three-dimensional structure of a fourfold pinch point. Here
we have plotted the 𝒒 = 0 pinch points from the Δ𝐸 > 0 line with
𝑥 = 0.1, but all fourfold pinch points visible the in the various struc-
ture factors have the same qualitative structure. (a) equal-intensity
contours of the structure factor for a cube centered at the zone center
with −0.1 ≤ ℎ, 𝑘, 𝑙 ≤ 0.1. Three pinch line singularities run along
the (ℎℎℎ) directions of reciprocal space, i.e. the diagonals of a cube
(red lines), meeting at the zone center. (b) Cutting through this in a
cubic plane such as (ℎ0𝑙) reveals a four-fold pinch structure. Slicing
away from the zone center the pinch lines are visible as three-fold
pinch point singularities. Cutting it along a cube diagonal plane like
(ℎℎ𝑙) reveals the pinch lines, c.f. Figs. 9 and 10 (not shown here). (c)
Cutting along a plane orthogonal to (ℎℎℎ) through the zone center
shows a six-fold pinch. Cutting orthogonal to the (ℎℎℎ) line away
from the zone center shows three-fold pinches.

F. Quantum Spin Liquids

In the future it will be interesting to study degenerate inter-
sections of phases in more detail, and to determine whether
any of them gives rise to a stable quantum spin liquid. Un-
fortunately in three dimensions there are few tools available to
determine this. The only example where we have a meaningful
level of analytical control is quantum spin ice, i.e. perturbing
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(a) (b)

𝐸0−

−𝐸0+

FIG. 13. (a) The 𝐽𝑧± > 0 phase diagram showing all four triple lines from Table III including the Δ𝐼 ′ < 0 portions where the triple degeneracy
occurs in the irreps above the ground state (red region on the left of the plots in Fig. 4). Colors are the same as Figs. 6 and 7. Each is a
circle which winds around the line of “diabolical” 𝑇1 locus (blue line), and all four intersect at the two HAFM points. Points where these lines
intersect the 𝐽𝑧± = 0 plane (left and right ends of plots in Fig. 4) are labeled (𝐼′)0±, where ± denotes the sign of Δ𝐼 ′ : + indicates this irrep is
gapped and − indicates it is the ground state. (b) The “ferro” versions of the three triple lines and two isolated triple points, with reversed signs
of all couplings 𝐻 → −𝐻. The Heisenberg-plus-𝐽𝑧± family (red circle, c.f. Fig. 7) with both Δ𝑇1± ≠ 0 maps to itself, while the other three are
mapped to new lines with triple degeneracies above the ground state. All four intersect at the two HFM points. The intersections with 𝐽𝑧± = 0
are indicated with a minus sign compared to the same labels in (a). Note that HFM≡ −HAFM, pHFM≡ −pHAFM, and 𝑇0−

1 = −𝑇0+
1 .

around the classical spin liquid point 𝐽𝑧𝑧 > 0 with all other
couplings zero. There, we can perform a direct mapping from
the spin Hamiltonian to a U(1) lattice gauge theory Hamilto-
nian [30], where the 𝑆𝑧𝑖 operators map to electric field operators
and the spin raising and lowering operators 𝑆±𝑖 map to elec-
tric field raising and lowering operations exp(±𝑖𝐴), where 𝐴
is the lattice vector potential. This is only possible because
the transverse fluctuations can be treated perturbatively on top
of a classical Ising limit. This method—treating the classical
ground state manifold as electric field eigenstates and spin-
flipping terms as Wilson string operators—cannot be applied
to study, say, the quantum HAFM, because the isotropic nature
of the classical ground state means there is no preferred way
to split spin operators into longitudinal and transverse com-
ponents. Indeed the ground state of the quantum HAFM has
been debated extensively, with the general view being that it
exhibits some form of order, symmetry breaking, or dimen-
sional reduction [76, 113, 115–118].

It will, in the long term, be interesting to determine whether
the various degenerate loci in the pyrochlore phase diagram
host quantum spin liquids. In particular, it will be interest-
ing to understand the quantum ground states along the four
triply degenerate lines and how they merge together at the
quantum HAFM point. Previous studies have classified var-
ious types of quantum spin liquid mean field ground state
wavefunctions are compatible with the symmetries of the py-
rochlore lattice [8, 119–122]. Ref. [8] emphasized how these

are closely related to the competition of various intertwined
irrep orders. Beyond mean field analysis, numerical meth-
ods will be required. Unfortunately Quantum Monte Carlo
algorithms are not generic enough to explore the entire phase
diagram efficiently, and other powerful numerical methods like
DMRG have extremely limited applicability in three dimen-
sions. Recently, new pseudo-fermion functional renormaliza-
tion schemes have been developed [57, 67, 76, 123–125], see
Ref. [126] for a review. These methods can detect certain or-
dering instabilities and predict two-point correlation function,
but involve uncontrolled approximations and so must be used
in combinations with other numerical and analytical methods.

VII. TRIPLE DEGENERACIES IN EXCITED STATES

While we have discussed so far the cataloging of cases which
have large degeneracies in the ground state and the resulting
zero-energy flat bands, it is interesting to note that these high
degeneracies can still be present even when they are not at zero
energy. Such excited state degeneracies do not come into play
in the ground state determination but may leave interesting
imprints on the excitations above the ground state, e.g. in
the spin wave (magnon) spectrum. As such, we close by
briefly discussing the loci in the phase diagram where triple
degeneracies occur above zero energy. The effects of these
enhanced degeneracies on the excitation spectrum within each
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phase will be an interesting topic for future study.
As mentioned previously, the triply-degenerate lines param-

eterized in Table III can be continued to negative Δ𝐼 ′ and form
complete circles in the phase diagram, as is shown in Fig. 4.
All four such lines wind non-trivially around the degenerate𝑇1
locus. They are shown in Fig. 13(a) in the 𝐽𝑧± > 0 half of the
phase diagram, along with the two triple points. All four cycles
intersect at the two fourfold-degenerate HAFM points. Each
line, labeled by a single irrep 𝐼 ′ which is tuned while the others
are kept degenerate, intersects the 𝐽𝑧± = 0 plane at two points,
one where Δ𝐼 ′ > 0 and one where Δ𝐼 ′ < 0, which we have
marked and labeled as (𝐼 ′)0± depending on the sign ofΔ𝐼 ′ . The
Δ𝐸 < 0 line is not shown in its entirety as the stereographic
projection maps the 𝐸0− point far from the origin. The (𝐼 ′)0−
points are in a sense “centers” of their respective phases: they
are the points where all three neighboring phases have equal
and maximal gap, implying that these points are equidistant
from all three phase boundaries. This can be seen in Fig. 4(c),
where these points correspond to the left-most limit of each
plot: the triply-degenerate irreps have 𝐽𝐼 = 0 at these points
while Δ𝐼 ′ < 0 reaches its minimum value. The line where both
𝑇1 irreps are tuned, corresponding to the Heisenberg-plus-𝐽𝑧±
model discussed in Section V A, is slightly different. It cannot
be parameterized by Δ𝑇1−/Δ𝑇1+ because both go negative on
part of the path, so we have parameterized it instead by the
splitting of the two 𝑇1 irreps. This lines passes through two
special points in the 𝑇1 phase, namely the Heisenberg ferro-
magnet and its dual. These may respectively be thought of
as two different “centers” of the 𝑇1 phase, because in Fig. 7
one can see that the 𝑇1 phase appears to be the union of two
roughly-spherical lobes centered on these two points.

These are not all of the triply degenerate cases, however,
only the ones that are obtained from the four-fold degenerate
HAFM by lifting the degeneracy of one irrep. The remaining
ones are obtained by flipping the signs of all the couplings,
i.e. changing the sign of the Hamiltonian 𝐻 → −𝐻. This
produces another set of triple lines which all intersect at the
Heisenberg ferromagnet (HFM), shown in Fig. 13(b) along
with two additional triple points, the pseudo-HFM and the fer-
romagnetic version of the DQQ (also appearing in Fig. 7). We
have indicated the locations of the intersections of these lines
with the 𝐽𝑧± = 0 plane, labeled the same as in Fig. 13(a) but
with a minus sign to indicate these are the “ferro” counterparts.
The 𝐼 ′ = 𝑇1 line (red), corresponding to the Heisenberg-plus-
𝐽𝑧± model, is special because this family of Hamiltonians is
mapped to itself under 𝐻 → −𝐻. Since this line connects the
HAFM and HFM points, it connects all of the triply-degenerate
models together.

VIII. CONCLUSION

In this paper we have considered in detail the structure of
the classical phase diagram of rare-earth pyrochlore magnetic
insulators with nearest-neighbor anisotropic interactions, de-
scribed by the Hamiltonian Eqs. (2) and (3) with zero single-
ion anisotropy.

In Section II we gave an intuitive derivation of the organi-

zation of spins into tensor order parameters, corresponding to
the multipole moments of a single tetrahedron. We directly
related the various tensor components to irreducible represen-
tations (irreps) of the tetrahedral symmetry group 𝑇𝑑 , listed in
Table I, each of which corresponds to a ground state shown in
Fig. 2. The presence of two copies of the 𝑇1 irrep results in
the canting cycle shown in Fig. 3. We described how different
irreps are coupled together, were the 3-components vector ir-
reps serve as “fluxes” with corresponding “charges” given by
the three components of 𝐴2 ⊕𝐸 : raising the energy of a charge
lowers the energy of its corresponding fluxes and vice-versa,
and gapping a charge forces a zero-divergence condition on
the corresponding flux.

In Section III we parameterized the model space—the space
of equivalence classes of models differing by affine rescalings,
topologically a 3-sphere—in terms of the relative irrep en-
ergies. This allowed us to perform an exhaustive search of
all possible ground state degeneracies, which uncovered four
triply-degenerate lines where three phases meet, listed in Ta-
ble III, all of which meet at the Heisenberg anti-ferromagnet
point and its 𝐽𝑧±-dual, where all four phases become degener-
ate. Two isolated triple points also occur when 𝐽𝑧± = 0.

In Section IV we visualized the structure of the phase di-
agram by using a stereographic projection from the unit 3-
sphere in the space of the four local couplings to R3. Since
the phase diagram is reflection-symmetric about 𝐽𝑧± = 0, we
first mapped this stereographically in Fig. 5, which yields the
phase diagram of non-Kramers pyrochlore magnets (for which
𝐽𝑧± = 0). We then mapped the phase diagram for 𝐽𝑧± ≠ 0 (al-
lowed for Kramers doublets) in Fig. 6, which exposes all of the
phase boundaries, the four triply-degenerate lines, and shows
how they merge at the two four-fold degenerate HAFM points.
We also noted the locus along which the two 𝑇1 irreps are
degenerate, which is a circle lying in the 𝐽𝑧± = 0 plane. This
locus pierces the 𝑇1 ⊕ 𝑇2 and 𝑇1 ⊕ 𝐸 phase boundaries, giving
rise to the two isolated triple points in the phase diagram.

In Section V we discussed the 𝑇1-degenerate locus in more
detail. Going around any path in parameter space that links it
the canting angle winds by 𝜋. In Fig. 8 we showed how the
phase diagram is foliated into 2-spheres on which the cant-
ing angle is constant, all of which intersection along the 𝑇1-
degenerate locus. This is analogous to “diabolical loci” which
gives the phase diagram a topological structure not evident
from energetic considerations alone. Adiabatically transport-
ing the system around this locus within the 𝑇1 phase will cause
the spins to perform a half-rotation around the canting cycle
illustrated in Fig. 3. There is a topological invariant associ-
ated to 1-parameter families of Hamiltonians which identifies
how many times they wind around the locus. We briefly de-
scribed a general framework for such loci in frustrated magnets
made of corner-sharing clusters in terms of homotopy groups
of PSO(𝑛), a topic we leave for future study.

In Section VI we considered how the enhanced degenera-
cies obtained by tuning degenerate irreps give rise to flat bands,
and how these may lead to spin liquids. We provided a gen-
eral discussion of the connection between flat bands and spin
liquids, and discussed various ground state selection mecha-
nisms that may co-opt the formation of a stable spin liquid. We
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provided an overview of known spin liquids on the pyrochlore
lattice obtained from the anisotropic Hamiltonian, and in Ta-
bles IV to VI provided a catalog of all flat band degeneracies
in the phase diagram, and identified which combinations of
irreps yield flat band degeneracies which are more than the
sum of their parts versus trivially stacked. In Figs. 9 and 10
we provided reference structure factors computed in the self-
consistent Gaussian approximation for various interesting flat
band cases, and described the relation between fourfold pinch
points and pinch lines observed ubiquitously in these models:
Fig. 12 demonstrates the 3D structure of the pinched correla-
tions at the intersection of pinch lines, which when cut produce
fourfold pinch points.

Lastly, in Section VII we identified all loci in the phase dia-
gram where three irreps are degenerate above the ground state,
including both the continuation of the triple phase degenera-
cies into each phase along with their ferro-counterparts which
all intersect at the Heisenberg ferromagnetic points. This is
summarized in Fig. 13.

Beyond the issue of whether any of the flat band cases
we have cataloged host stable quantum spin liquids, in the
future it will be of interest to extend the analysis here to

study the broader phase diagram of breathing pyrochlores,
which can have different couplings on the two symmetry-
inequivalent sets of tetrahedra and may host additional spin
liquids [23, 121, 127]. Furthermore, there may be surpris-
ing physics to be gleaned within the ordered phases of the
pyrochlore in the spectrum of (magnon) excitations, as evi-
denced by the extended 𝑇1-degenerate locus and the various
lines of high degeneracy in the band structure above zero en-
ergy. Lastly, it will be interesting to study in more detail the
canting cycle in the pyrochlore and other frustrated magnets, to
explore its potential connections to diabolical loci, symmetry
pumps, and boundary symmetry breaking, and whether it has
experimentally observable consequences.
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Appendix A: Coordinate Conventions

Although not crucial for the results presented in this paper,
for completeness we provide a set of coordinates for the local
bases and parameterizations discussed throughout the paper.
Defining the cubic axes of the pyrochlore crystal structure to
be along the three Cartesian axes 𝒆𝑥 , 𝒆𝑦 , 𝒆𝑧 , the FCC primitive
vectors can be given by

𝒂1 = 𝑎0
𝒆𝑥 + 𝒆𝑦

2
, 𝒂2 = 𝑎0

𝒆𝑦 + 𝒆𝑧

2
, 𝒂3 = 𝑎0

𝒆𝑧 + 𝒆𝑥
2

,

(A1)
where 𝑎0 is the cubic conventional cell lattice constant. The
four FCC sublattice vectors, corresponding to the four corners
of a tetrahedron, can then be given by

𝒄1 = 0, 𝒄2 = 𝒂1/2, 𝒄3 = 𝒂2/2, 𝒄4 = 𝒂3/2. (A2)

The centers of the tetrahedra form a bipartite diamond lattice
with sublattice positions

𝜹± = ±1
4

4∑︁
𝜇=1

𝒄𝜇, (A3)

where we use 𝜇 to index the FCC sublattices of the pyrochlore
lattice. The four sublattice easy-axis vectors can be then be
specified by normalizing the displacement vector from the
center of a tetrahedron to each corner,

𝒛𝜇 =
𝒄𝜇 − 𝜹+
|𝒄𝜇 − 𝜹+ | . (A4)

Using the notation

[𝑎𝑏𝑐] ≡ 𝑎𝒆𝑥 + 𝑏𝒆𝑦 + 𝑐𝒆𝑧 (A5)

along with 𝑎̄ ≡ −𝑎, we can provide bases for the local frames
at each corner of the tetrahedron (up to normalization),

𝒙̂1 ∝ [112̄] 𝒙̂2 ∝ [1̄1̄2̄] 𝒙̂3 ∝ [1̄12] 𝒙̂4 ∝ [11̄2]

𝒚̂1 ∝ [11̄0] 𝒚̂2 ∝ [1̄10] 𝒚̂3 ∝ [1̄1̄0] 𝒚̂4 ∝ [110]

𝒛1 ∝ [1̄1̄1̄] 𝒛2 ∝ [111̄] 𝒛3 ∝ [11̄1] 𝒛4 ∝ [1̄11] . (A6)

These are shown in Fig. 14. The 𝒙̂𝜇 vectors have been chosen
to lie in mirror planes, while the 𝒚̂𝜇 vectors lie along a 𝐶2
rotation axis. With these convention, referring to Fig. 2 and
Fig. 3, 𝜓2 has all spins along 𝒙̂𝜇; 𝜓3 has all spins along 𝒚̂𝜇, 𝑇2
has two spins along 𝒚̂𝜇 and two along −𝒚̂𝜇; 𝑇1,planar has two
spins along 𝒙̂𝜇 and two along −𝒙̂𝜇; 𝐴2 has all spins along 𝒛𝜇;
and 𝑇1,ice has two spins along 𝒛𝜇 and two along −𝒛𝜇.
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FIG. 14. (a) A single tetrahedron inscribed in a cube showing the
local orthonormal basis vectors defined in Eqs. (A4) and (A6). Red
vectors are 𝒛𝜇 along the local three-fold easy axis. Yellow vectors are
the 𝒙̂𝜇 which lie in mirror planes. Green vectors are the 𝒚̂𝜇 which
lie along local 𝐶2 axes which exchange neighboring tetrahedra. Note
that the 𝜓2 (𝜓3) configurations in Fig. 2 correspond to all spin lying
along 𝒙̂𝜇 (𝒚̂𝜇). Black arrows through the tetrahedron center denote
the cubic [001] directions.

Appendix B: Fourier Transforms

Due to translation invariance the interaction matrix in
Eq. (1a) is diagonal in the Fourier basis. We take the sys-
tem to consist of 𝐿3 unit cells with periodic boundaries, in
which case

J
𝛼𝛽
𝜇𝜈 (𝒒, 𝒒′) ≡

1
𝐿3

∑︁
𝑖∈𝜇

∑︁
𝑗∈𝜈

𝐽
𝛼𝛽
𝑖 𝑗 𝑒𝑖𝒒 ·𝒓 𝑗 𝑒−𝑖𝒒

′ ·𝒓𝑖

= 𝛿𝒒,𝒒′
∑︁
𝑗∈𝜈

𝐽
𝛼𝛽
𝑖 𝑗 𝑒𝑖𝒒 · (𝒓 𝑗−𝒓 𝑗 ) (𝑖 ∈ 𝜇)

≡ 𝛿𝒒,𝒒′𝐽
𝛼𝛽
𝜇𝜈 (𝒒), (B1)

where the sums are restricted to sites in a single sublattice. For
nearest-neighbor interactions it is useful to define a modified
adjacency matrix of the pyrochlore lattice,

A𝑖 𝑗 =




1 𝑖, 𝑗 are nearest-neighbors,
1/2 𝑖 = 𝑗 ,

0 otherwise,
(B2)

whose Fourier transform is

A𝜇𝜈 (𝒒) = (2 − 𝛿𝜇𝜈) cos[𝒒 · (𝒄𝜇 − 𝒄𝜈)] . (B3)

The Fourier transformed nearest-neighbor interaction matrix
is then

J
𝛼𝛽
𝜇𝜈 (𝒒) = 𝐽

𝛼𝛽
𝜇𝜈 A𝜇𝜈 (𝒒), (B4)

where the 12 × 12 matrix 𝐽
𝛼𝛽
𝜇𝜈 is given in Eq. (C2). The on-

site term in Eq. (B2) is added to allow for the on-site single-
ion anisotropy interaction, which is double counted in the
unrestricted double sum in Eq. (1a). For reciprocal space we
use Miller indices relative to the cubic conventional unit cell,
denoted with round brackets

𝒒 =
2𝜋
𝑎0

(ℎ𝒆𝑥 + 𝑘𝒆𝑦 + 𝑙𝒆𝑧) ≡ (ℎ𝑘𝑙). (B5)

Appendix C: Mapping Between Parameterizations

The number of free parameters in the interaction matrix J
in Eq. (1a) is restricted by symmetry. A given space group 𝐺
acts on the spin configuration 𝑆𝛼

𝑖 by permutation of the site
index 𝑖 and pseudovector rotation of the spin components index
𝛼. For nearest-neighbor interactions in the (non-breathing)
pyrochlore lattice, the interaction matrix is the same on every
tetrahedron, so the symmetry constraints can be obtained from
just looking at the symmetry group of the tetrahedron, 𝑇𝑑 ,
with action defined by the representation 𝜌 in Eq. (9). The
allowed spin-spin couplings can be deduced from the fact that
the Hamiltonian on a tetrahedron reduces to a sum over the
irrep order parameters squared, or by looking for the solutions
of

J = 𝜌(𝑔)J𝜌(𝑔)−1 ∀𝑔 ∈ 𝐺. (C1)

1. Global Frame 𝐽1-𝐽4

With the conventions in Appendix A, the symmetry-allowed
matrix elements in Eq. (1a) for a single tetrahedron, denoted
J
𝛼𝛽
𝜇𝜈 where 𝜇, 𝜈 index sublattices (tetrahedron corners), take

the form

©­­­­­­­­­­­­­­­­­­«

©­«
𝑑 𝑑 𝑑
𝑑 𝑑 𝑑
𝑑 𝑑 𝑑

ª®¬
©­«
𝐽1 𝐽3 𝐽4
𝐽3 𝐽1 𝐽4
𝐽4 𝐽4 𝐽2

ª®¬
©­«
𝐽1 𝐽4 𝐽3
𝐽4 𝐽2 𝐽4
𝐽3 𝐽4 𝐽1

ª®¬
©­«
𝐽2 𝐽4 𝐽4
𝐽4 𝐽1 𝐽3
𝐽4 𝐽3 𝐽1

ª®¬
©­«
𝐽1 𝐽3 𝐽4
𝐽3 𝐽1 𝐽4
𝐽4 𝐽4 𝐽2

ª®¬
©­«
𝑑 𝑑 𝑑
𝑑 𝑑 𝑑
𝑑 𝑑 𝑑

ª®¬
©­«
𝐽2 𝐽4 𝐽4
𝐽4 𝐽1 𝐽3
𝐽4 𝐽3 𝐽1

ª®¬
©­«
𝐽1 𝐽4 𝐽3
𝐽4 𝐽2 𝐽4
𝐽3 𝐽4 𝐽1

ª®¬
©­
«
𝐽1 𝐽4 𝐽3
𝐽4 𝐽2 𝐽4
𝐽3 𝐽4 𝐽1

ª®¬
©­«
𝐽2 𝐽4 𝐽4
𝐽4 𝐽1 𝐽3
𝐽4 𝐽3 𝐽1

ª®¬
©­«
𝑑 𝑑 𝑑
𝑑 𝑑 𝑑
𝑑 𝑑 𝑑

ª®¬
©­«
𝐽1 𝐽3 𝐽4
𝐽3 𝐽1 𝐽4
𝐽4 𝐽4 𝐽2

ª®¬
©­«
𝐽2 𝐽4 𝐽4
𝐽4 𝐽1 𝐽3
𝐽4 𝐽3 𝐽1

ª®
¬

©­
«
𝐽1 𝐽4 𝐽3
𝐽4 𝐽2 𝐽4
𝐽3 𝐽4 𝐽1

ª®
¬

©­
«
𝐽1 𝐽3 𝐽4
𝐽3 𝐽1 𝐽4
𝐽4 𝐽4 𝐽2

ª®¬
©­«
𝑑 𝑑 𝑑
𝑑 𝑑 𝑑
𝑑 𝑑 𝑑

ª®¬

ª®®®®®®®®®®®®®®®®®®¬

,

(C2)
where for compactness we have used a bar to indicate a neg-
ative, 𝐽4 = −𝐽4 and 𝑑 = −𝑑, and defined 𝑑 = 3𝐽SIA (c.f.
Eq. (2)). Equation (1b) showed only the matrix elements for
𝜇 = 1 and 𝜈 = 2.
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2. Global Frame Coordinate-Free

In Eq. (2) we provided another version of the Hamiltonian
with various named interactions: Heisenberg, pseudo-dipolar,
Kitaev-like, and Dzyaloshinskii-Moriya (DM). Their defini-
tions are provided by Fig. 1. They are directly related to the
global-basis parameters 𝐽1 through 𝐽4. It suffices to compare
the interaction matrix 𝐽

𝛼𝛽
𝜇𝜈 in Eq. (C2) for a single pair 𝜇 ≠ 𝜈.

With the conventions for the vectors given in Fig. 1 and Ap-
pendix A, we have the identification for sublattices 𝜇 = 1 and
𝜈 = 2

©­«
𝐽1 𝐽3 −𝐽4
𝐽3 𝐽1 −𝐽4
𝐽4 𝐽4 𝐽2

ª®¬
=

©­­«
𝐽Heis + 𝐽PD/2 𝐽PD/2 𝐽DM/

√
2

𝐽PD/2 𝐽Heis + 𝐽PD/2 𝐽DM/
√

2
−𝐽DM/

√
2 −𝐽DM/

√
2 𝐽Heis + 𝐽K

ª®®¬
.

(C3)

3. Local Frame

To obtain the local basis Eq. (3), let 𝑅𝜇 denote the SO(3)
matrices rotating from the global Cartesian basis {𝒆𝑥 , 𝒆𝑦 , 𝒆𝑧}
to the local basis on each sublattice defined by Eq. (A4) and
Eq. (A6), and let 𝑄 denote the non-unitary transformation

𝑄 = ©­«
1 𝑖 0
1 −𝑖 0
0 0 1

ª®¬
: (𝑆𝑥𝜇, 𝑆𝑦𝜇, 𝑆𝑧𝜇) ↦→ (𝑆+𝜇, 𝑆−𝜇 , 𝑆𝑧𝜇), (C4)

let 𝑅 denote the block-diagonal matrix diag(𝑅1, 𝑅2, 𝑅3, 𝑅4)
and let 𝑄 denote the block-diagonal matrix diag(𝑄,𝑄,𝑄,𝑄)
Then the local couplings in Eq. (3) are obtained by transform-
ing Eq. (C2) as

Jlocal = (𝑄−1)†RJglobal R
−1𝑄−1, (C5)

where † denotes the conjugate transpose. Note that the complex
phase factors appearing in Eq. (3) depend on the convention
for the local bases. With the choice of basis from Appendix A,
they are

©­­­­­­­­­­­­­­­­­­­
«

©­«
0 0 0
0 0 0
0 0 1

ª®
¬

©­
«
1 1 1
1 1 1
1 1 −1

ª®
¬

©­
«
1 𝜔2 𝜔
𝜔 1 𝜔2

𝜔2 𝜔 −1

ª®
¬

©­
«
1 𝜔 𝜔2

𝜔2 1 𝜔
𝜔 𝜔2 −1

ª®¬
©­
«
1 1 1
1 1 1
1 1 −1

ª®¬
©­«
0 0 0
0 0 0
0 0 1

ª®¬
©­«
1 𝜔 𝜔2

𝜔2 1 𝜔
𝜔 𝜔2 −1

ª®¬
©­«
1 𝜔2 𝜔
𝜔 1 𝜔2

𝜔2 𝜔 −1

ª®¬
©­«
1 𝜔2 𝜔
𝜔 1 𝜔2

𝜔2 𝜔 −1

ª®¬
©­«
1 𝜔 𝜔2

𝜔2 1 𝜔
𝜔 𝜔2 −1

ª®¬
©­«
0 0 0
0 0 0
0 0 1

ª®¬
©­«
1 1 1
1 1 1
1 1 −1

ª®¬
©­
«
1 𝜔 𝜔2

𝜔2 1 𝜔
𝜔 𝜔2 −1

ª®
¬

©­
«
1 𝜔2 𝜔
𝜔 1 𝜔2

𝜔2 𝜔 −1

ª®¬
©­«
1 1 1
1 1 1
1 1 −1

ª®¬
©­«
0 0 0
0 0 0
0 0 1

ª®¬

ª®®®®®®®®®®®®®®®®®®®¬

,

(C6)
where 𝜔 = 𝑒2𝜋𝑖/3. The relation between the global and local
coupling parameters are given in Eqs. (4a) and (4b).

Appendix D: SCGA Structure Factors

In the self-consistent Gaussian approximation (SCGA), the
spin length constraint is relaxed to a Gaussian distribution
whose variance is enforced by a Lagrange multiplier 𝜆. Given
a quadratic spin Hamiltonian 𝐻 of the form Eq. (1a), we define
the SCGA Hamiltonian

𝐻SCGA = 𝐻 + 𝑇
∑︁
𝑖

𝜆𝑖 |𝑺𝑖 |2, (D1)

where 𝑇 is temperature. The partition function is then simply
a multivariate Gaussian integral,

𝑍SCGA =
∫ ∏

𝑖,𝛼

d𝑆𝛼
𝑖 exp(−

∑︁
𝑖 𝑗

∑︁
𝛼𝛽

𝑆𝛼
𝑖 (𝜆𝑖𝛿𝑖 𝑗𝛿𝛼𝛽︸    ︷︷    ︸

Λ𝛼𝛽
𝑖 𝑗

+𝛽J𝛼𝛽𝑖 𝑗 )𝑆𝛽𝑗 ),

(D2)
where 𝛽 = 1/𝑇 is the inverse temperature and 𝛿 is the Kro-
necker delta. Correlation functions are then simply given by

⟨𝑆𝛼
𝑖 𝑆

𝛽
𝑗 ⟩ ≡ G

𝛼𝛽
𝑖 𝑗 = ( [Λ + 𝛽J]−1)𝛼𝛽𝑖 𝑗 . (D3)

The Lagrange multipliers are solved for self-consistently via
the constraint

1 = ⟨|𝑺𝑖 |2⟩ =
∑︁
𝛼

( [Λ + 𝛽J]−1)𝛼𝛼
𝑖𝑖 . (D4)

Since every site is symmetry-equivalent in the pyrochlore lat-
tice, the Lagrange multipliers are all the same, 𝜆𝑖 ≡ 𝜆, and the
self-consistency condition can be solved by averaging over all
sites,

1 =
1

𝑁spins
Tr[𝜆1 + 𝛽J]−1, (D5)

where 1 is the identity. We assume that the minimum eigen-
value of J has been shifted to zero, let ℱ denote the kernel
of J, and let 𝑁0 = dimℱ denote the number of zero eigen-
values of J.26 In the limit of high temperature 𝛽 → 0 the
solution is 𝜆 = 3 (the number of spin components). In the
low-temperature limit 𝛽 → ∞ all positive eigenvalues of J are
suppressed in the inverse, and the solution is 𝜆 = 𝑁0/𝑁spins. If
𝑁0 is subextensive then 𝑁0/𝑁spins → 0 in the thermodynamic
limit 𝑁spins → ∞, meaning that 𝜆 vanishes at some critical
temperature 𝑇𝑐, indicating a breakdown of the SCGA and a
phase transition. If the number of zero eigenvalues is exten-
sive, i.e. J has zero-energy flat bands, with 𝑁0 = 3𝑁spins 𝑓
for 0 < 𝑓 = 𝑛flat/𝑛tot < 1, then the solution is 𝜆 = 3 𝑓 . The
zero-temperature correlation functions are then given by the
projector 𝑃ℱ to the kernel of J,

lim
𝑇→0

G =
1

3 𝑓
𝑃ℱ . (D6)

We use this formula to calculate the structure factor plots in
Figs. 9 and 10.

26 If not, then let 𝑣 denote the minimum eigenvalue and redefine J → J − 𝑣1
and Λ → Λ + 𝛽𝑣1.
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