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Abstract

In the chemical, pharmaceutical, and food industries, sometimes the order of
adding a set of components has an impact on the final product. These are
instances of the order-of-addition (OofA) problem, which aims to find the op-
timal sequence of the components. Extensive research on this topic has been
conducted, but almost all designs are found by optimizing the D−optimality
criterion. However, when prediction of the response is important, there is
still a need for I−optimal designs. A new model for OofA experiments is
presented that uses transition effects to model the effect of order on the re-
sponse, and the model is extended to cover cases where block-wise constraints
are placed on the order of addition. Several algorithms are used to find both
D− and I−efficient designs under this new model for many run sizes and for
large numbers of components. Finally, two examples are shown to illustrate
the effectiveness of the proposed designs and model at identifying the optimal
order of addition, even under block-wise constraints.
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1. Introduction

In the chemical industry, the process to output a product typically re-
quires several components to be added. The order of adding the components
often influences the quality of the output, and searching for the optimal or-
der is of concern. This problem is known as the Order of Addition (OofA)
problem. For example, as suggested in Chandrasekaran et al. [2], the order
of different alcohols affects the synthesis of disubstituted carbonates. Sim-
ilarly, in the field of engineering, Joiner and Campbell [6] found that the
calibration order of different cryogenic flows influences the precision of the
cryogenic meter due to its sensitivity to temperature changes and the cost
of the overall experiment. In social sciences, Miller and Krosnick [12] found
that candidate name order could have an impact on election results. In job
scheduling problems, the order of performing jobs directly affects the total
job cost Zhao et al. [25]. In Yang et al. [24], the order of four drugs was
varied to study the impact of drug order on the treatment of lymphoma.
Overall, the OofA problem is becoming a multi-disciplinary topic requiring
further research.

In the OofA problem, when the number of components is small, it is
easy to test all possible permutations. However, the experiments become
extremely expensive even with a slight increase in the number of compo-
nents. If there are m components in total, then the number of all possible
permutations is given by m!. For example, when there are six components,
there are 6! = 720 permutations in total. In this article, we denote a single
permutation of m components by a = (a1, . . . , am), and we denote the set of
all m! permutations by Dm.

How should an experiment be designed when it is impossible to test all
the permutations? This article focuses on using the D− and I−optimality
criteria to choose an experimental design. While D−optimal OofA designs
have been studied extensively, the I−optimality criterion has not received
much attention in the OofA literature. An experimental design is a subset of
them! orderings to test. The I−optimality criterion minimizes the integrated
prediction variance over all feasible permutations of them components. Much
of the existing literature on OofA experiments focuses on the D−optimality
criterion, which produces designs that aid with parameter estimation. For
example, Lin and Peng [10] showed a systematic method for constructing
fractional D−optimal OofA designs for the pairwise order model, and Chen
et al. [3] proposed a modified construction method for D−optimal designs
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based on block designs. Mee [11] examined the D−efficiency of a triplets
model that allowed for interactions between pairwise order terms.

The focus on I−optimality is of particular interest when there are con-
straints on the order of addition that limit the number of possible orders
to examine. In real applications, there are often constraints on the order
of some components. For example, in Solvay process of chemical industry,
which is used to produce sodium carbonate (Na2CO3), the addition of NH3-
concentrated solution must be added before CO2. According to Wang and Li
[22], the industry requires the concentrated solution to be ammoniated with
the brine (NaCl) solution first. In such cases, a constrained order-of-addition
problem arises, with pairwise constraints placed on the orders of addition.
Another example is given by scheduling problems, where certain tasks may
need to be completed before others can begin. In this paper, we will examine
cases where the components are grouped into blocks, and the blocks must be
executed in a known order.

The rest of this paper is organized as follows. Section 2 will review existing
methods or the OofA problem. Then, Section 3 will propose a new OofA
model based on transitions between components in a permutation, and also
explain the algorithms we use in the article to find exact designs with high
I−efficiency and D−efficiency. Section 4 will compare the performance of
these algorithms at finding highly efficient designs under these criteria when
the number of components m is large, and traditional exchange algorithms
are inefficient. Finally, Section 5 will provide an example to illustrate the
implementation of the proposed methods.

2. Preliminaries

In order to discuss the proposed methodology, it is helpful to first review
previous research results.

2.1. PWO model by Van Nostrand

Multiple models have been proposed for the OofA problem. For exam-
ple, the component-position model focuses on the absolute positions of the
components, which was suggested by Yang et al. [24]. The pairwise order
(PWO) model was first suggested in Van Nostrand [20]. Consider an experi-
ment when there arem components, wherem is any positive natural number.
Label the components with numbers from one to m. Then for any pair of
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components i, j, where 1 ≤ i < j ≤ m, define the PWO factor xij as

xij(a) =

{
1 if component i is added before j in a

−1 if component i is added after j in a
(1)

For example, supposem = 3. In this case, there would be six possible per-
mutations in total, i.e. D3 = {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}.
D3 can be written as a 6 × 3 matrix, which can be seen in the left side of
Table 1.
When a = (1, 3, 2), x12 = 1 and x23 = −1. Meanwhile, when a = (3, 1, 2),
x13 = x23 = −1. The PWO model can be written as

E(y|a) = β0 +
m−1∑
i=1

m∑
j=i+1

βijxij(a) (2)

This model is denoted as the main effects PWO model in Voelkel [21], and
as the simple pairwise model in Mee [11]. Optimal designs for the PWO
model were constructed by Peng et al. [13], who also considered a tapered
PWO model. There are other versions of the model, such as the triplets
order-of-addition model discussed in Mee [11], and the special cubic Scheffe
model in Becerra and Goos [1] which both consider the triple interaction
of components’ orders. In this article, only the simple pairwise model is
discussed, and it is denoted as the PWO model. There are

(
m
2

)
PWO factors

in total in Model (2). Model (2) can be rewritten as E(y|a) = x̃T β̃, where as

x̃ =


1

x12(a)
x13(a)

...
x(m−1)m(a)

 β̃ =


β0

β12

β13
...

β(m−1)m


From here it can be seen that the PWO model is a special case of multiple
linear regression model. The smallest number of observations required to fit
the model is

(
m
2

)
+ 1. A matrix X can be created based on the vectors of

x̃, i.e. X = (x̃T
1 , x̃

T
2 , . . . , x̃

T
m!). This X matrix is used to calculate different

optimality criteria and therefore determine the optimal design.
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OofA D3 PWO Model X3

x12 x13 x23

1 2 3 1 1 1
1 3 2 1 1 -1
2 1 3 -1 1 1
2 3 1 -1 -1 1
3 1 2 1 -1 -1
3 2 1 -1 -1 -1

Table 1: OofA design matrix and PWO model when m = 3

2.2. Optimality Criteria

In previous research, different criteria have been used to determine the
best designs for OofA experiments. The most popular isD−optimality, which
maximizes the determinant of the moment matrix; this was discussed in Be-
cerra and Goos [1], Sambo et al. [16], Li and Deng [9]. Similarly, other opti-
mality criteria have been examined, such as Q−optimality, A−optimality in
Li and Deng [9], G−optimality, and EI−optimality in Li and Deng [9]. Let
Xf be the matrix of PWO variables for every feasible permutation. Let Xn

be a matrix of n rows from Xf . A commonality among the criteria is that
they are based on the moment matrix M , defined as M = XT

nXn/n, where
n is the number of runs in a PWO design. For parameter estimation, we
focus on D−optimality, i.e., |M |1/q, where q is the number of columns of M ,
where larger values of the D−optimality criterion are preferred. For predic-
tion variance, we choose to focus in minimizing the I−optimality criterion,
which minimizes the average prediction variance over an experimental region.
Goos et al. [4] noted that G−optimal designs seek to minimize the max-
imum prediction variance over the experimental region. Since G−optimal
designs only minimize the maximum prediction variance, this article focuses
on I−optimality instead, also known as V−optimality in Goos and Syafitri
[5]. Becerra and Goos [1] suggested that the I−optimality criterion has
advantages compared to other criterion, as it focuses on obtaining precise re-
sults. This criterion aims at minimizing the average variance in our predicted
response over all feasible permutations under a particular set of pairwise con-
straints. Let the I−optimality criterion be I = trace(M−1XT

f Xf ). Smaller
values of I indicate better designs.
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In the OofA literature, I−optimal designs have been previously examined
for main effect models, but not much attention has been given to designs for
models with higher-order interactions. Notably, Schoen and Mee [17] showed
that any design that is an orthogonal array of strength 2 in m components is
an I−optimal design for the main effects PWO model. They did examine the
relative D−efficiency of certain orthogonal arrays in a model with interaction
terms, but the I−efficiency has yet to be investigated. Also, these orthogonal
arrays do not exist in all sizes; for example, Schoen and Mee [17] acknowledge
that OofA orthogonal arrays of strength 2 only exist for run sizes that are
a multiple of 12. It is important to develop flexible methods that allow
arbitrary run sizes to accommodate for constrained experimental budgets.

Denote the I−optimality of the full constrained design matrix as Ifull,
and the D−optimality of the full design matrix as Dfull. For the design
matrix corresponding to a subset of the full design with an I−optimality
of Ireduced, one can find the relative I−efficiency as

Ifull
Ireduced

. The relative
I−efficiency is written this way so that higher relative efficiencies are better
for the reduced design. For D−optimality (since larger values are better),
the relative D−efficiency is Dreduced

Dfull
.

3. Proposed Methods

3.1. A Transition Effect (TE) Model

Suppose there are m components to be sequentially added. Let a =
(a1, a2, . . . , am) be a permutation of (1, . . . ,m). Let τ(a) be the expected
response the order a. Model (3) is proposed for the OofA experiment, which
is given by

τ(a) = β0 +
m∑
j=1

m∑
k=1,k ̸=j

βj,kxj,k(a), (3)

where x(j,k)(a) = 1 if component k directly follows component j in a, and
0 otherwise. In model (3), βj,k represents the effect of adding component k
directly after adding component j on the expected response. We refer to this
as the “transition effect” from component j to k. As a small example, suppose
m = 3 and a = (3, 1, 2). Then τ(a) = β0 + β3,1 + β1,2. These coefficients
can be estimated using least squares. Constraints are required to estimate
the parameters in Model (3). This is because

∑m
j=1

∑m
k=1,k ̸=j xj,k(a) = m− 1

for every a ∈ Dm, since m − 1 transitions must occur in a permutation of
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m components, which creates a linear dependency with the intercept. For
this reason, we assume that δm,m−1 = 0. This model has 2

(
m
2

)
estimable

parameters.
Model (3) assumes that as each component is added, the effect of the

permutation on the response is a sum of the effects of direct transitions; i.e.,
transitions between adjacent components in the permutations. A general-
ization of this model would be to include effects that represent transitions
between components that are further apart. Suppose, for a permutation
a = (a1, . . . , as, . . . , au, . . . , am), that as = j and au = k. Define the transi-
tion length from j to k as d(j, k, a) = u−s. This transition length is not sym-
metric; for example, if a = (3, 1, 2, 4), then d(3, 2, a) = 2, but d(2, 3, a) = −2.
A model that includes transitions of lengths 1 and 2 is

τ(a) = β0 +
m∑
j=1

m∑
k=1,k ̸=j

[
βj,kxj,k(a) + δj,kx

(2)
j,k(a)

]
, (4)

where x
(2)
j,k(a) = 1 if d(j, k, a) = 2, and x

(2)
j,k(a) = 0 otherwise. In this case,

δj,k represents the effect of the length two transition from component j to
k. Model (4) has 2m(m − 1) parameters. However, since every permuta-
tion of (1, . . . ,m) must have m − 2 transitions of length 2, it follows that∑m

j=1

∑m
k=1,k ̸=j x

(2)
j,k(a) = m − 2, which would lead to scenarios where the

model matrix is not full rank. Therefore, we set δm,m−1 = βm,m−1 = 0 to
ensure identifiability for m ≥ 5 for this model.

A useful initial result for constructing optimal designs under the transition
effect model is given below in Corollary 1.

Corollary 1 (Full Design is Optimal). Let Dm be the full design that uses
each of the m! orders exactly once. Let Xm be the model matrix expansion
of Dm under model (3) or model (4), and let Mf = (1/m!)XT

mXm. Let ϕ
be an optimality criterion that is concave and permutation invariant. Then,
ϕ(Mf ) ≥ ϕ(M(w)) for any design measure w over Dm.

Corollary 1 shows that the full design, which uses each of the m! possible
orders exactly once, is ϕ−optimal for any criterion ϕ that is concave and
permutation invariant under the length-one and length-two transition effect
models. The method of proving this result is very similar to Theorem 1 of
Peng et al. [13]. To evaluate the quality of a design, it is important to be
able to quickly find its D− or I−efficiency. Finding the D− or I−efficiency
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of the full design could be done by enumerating all m! permutations of the m
components, finding the corresponding moment matrix, and then evaluating
the criterion, which involves a costly matrix operation (determinant for D,
or inverse for I). To save time, a closed form of the moment matrix of the
full design is derived in Theorem 1.

Theorem 1 (Moment Matrix for the Full Design Under Model (3)). Let
Dm be the full design that uses all m! permutations only once. Let Xm be
the model matrix expansion of Dm under Model (3), with the constraint that
βm,m−1 = 0. Let q = 2

(
m
2

)
− 1. Then it follows that

XT
mXm/m! =

[
1 (1/m)1T

(1/m)1 [(m− 1)!Iq + (m− 2)!V ]/m!

]
, (5)

where 1 is a conformable column vector of 1s, and V is a q× q matrix whose
columns are indexed by the pairs (1, 2), . . . , (1,m), (2, 1), . . . , (2,m), . . . , (m, 1), . . . , (m,m−
2), with elements

V(i,j),(k,ℓ) =

{
0 if i = k or j = ℓ or i = ℓ, j = k,

1 otherwise.

Theorem 1 is helpful for finding the D− and I−efficiencies of the full
design without enumerating all m! possible permutations. A similar result is
shown for Model (4) using Theorem 2 below.

Theorem 2 (Moment Matrix for the Full Design Under Model (4)). Let
Dm be the full design that uses all m! permutations only once. Let Xm be
the model matrix expansion of Dm under Model (4), with the identifiability
constraints βm,m−1 = δm,m−1 = 0. Then it follows that

XT
mXm/m! =

 1 (1/m)1T m−2
m(m−1)

1T

(1/m)1 [(m− 1)!Iq + (m− 2)!V ]/m! [(m− 3)!/m!]Q
m−2

m(m−1)
1 [(m− 3)!/m!]QT [(m− 2)(m− 2)!Iq +R]/m!

 ,

(6)

where V is as defined in Theorem 1, the elements of Q are

Q(i,j),(k,ℓ) =


m− 2 if i = k, j ̸= ℓ or i ̸= k, j = ℓ,

m− 3 if i ̸= ℓ, j = k, or i = ℓ, j ̸= k,

m− 4 if {i, j} ∩ {k, ℓ} = ∅
0 otherwise,

(7)

8



and the elements of R are

R(i,j),(k,ℓ) =


[(m− 6)(m− 5) + 4(m− 4)](m− 4)! if {i, j} ∩ {k, ℓ} = ∅
(m− 4)[(m− 3)!] if i = ℓ, j ̸= k or i ̸= ℓ, j = k

0 otherwise.

(8)

3.2. The TE Model Under Block Constraints

We now consider a case where constraints are placed on the order-of-
addition, and all m! permutations of (1, . . . ,m) are no longer feasible exper-
imental runs. Consider an experiment with m components, where each of
the components is placed into one of c blocks labeled b1, . . . , bc such that if
i, j ∈ {1, . . . , c} and i < j, then all components in block bi must come before
all components in block bj. This way, all components within a block may be
arranged in any order, but the c blocks have a fixed order.

Figure 1: Example of Block Constraints

For example, in Figure 1 there are ten components that are arranged into
three blocks. Components 1,2,3, and 4 belong to block b1, components 5,6,
and 7 belong to block b2, and the remaining components 8,9, and 10 belong to
block b3. All components in block 1 precede all components in block 2, and all
components in block 2 precede all components in block 3. As Figure 1 shows,
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it is convenient to represent these constraints as a directed acyclic graph,
which we denote as G. Equivalently, we may represent the set of constraints
with a set of directed edges B = {(i, j) | i precedes j in G, where i, j ∈
{1, . . . ,m}}.

When block constraints are present, it is mainly of interest to identify
the optimal order within each block. This is because the order of the blocks
is known, so the focus shifts to finding the order of the components in each
block that is optimal. Therefore, we simplify the length 1 transition-effect
model (3) by only considering transition effects between components within
the same block. This reduced model is

τ(a) = β0 +
c∑

i=1

m∑
j=1

m∑
k=1,k ̸=j

I(j, k ∈ bi)βj,kxj,k(a), (9)

where I(j, k ∈ bi) = 1 if components j and k both belong to block bi,
and I(j, k ∈ bi) = 0 otherwise. Notice that for any feasible permutation
that satisfies the block constraints,

∑m
j=1

∑m
k=1,k ̸=j I(j, k ∈ bi)xj,k(a) = mi,

where mi is the number of components in block bi. Since this would create
a linear dependency, we set exactly one transition effect to zero per block to
ensure identifiability. Similarly, the length 2 transition-effect model (4) can
be reduced to

τ(a) = β0 +
c∑

i=1

m∑
j=1

m∑
k=1,k ̸=j

I(j, k ∈ bi)
[
βj,kxj,k(a) + δj,kx

(2)
j,k(a)

]
, (10)

where I(j, k ∈ bi) is defined as it is for Model (9). To evaluate the I− and
D− efficiencies of the full designs for these reduced models, it is important to
be able to quickly construct the moment matrix without having to enumerate
all possible permutations. Corollary 2 shows how this can be accomplished.

Corollary 2 (Moment Matrix for the Full Design Under Model (9)). Suppose
that the m components are arranged into c blocks b1, . . . , bc such that if i < j,
then all components in bi must precede all components in bj. Re-label the
components so that components 1, . . . , n1 are in b1, ni−1 + 1, . . . , ni are in
block bi for i = 2, . . . , c − 1, and nc−1 + 1, . . . ,m are in bc. Let mi be the
number of components in block bi. Let Dm be the full design that uses each
of the N =

∏c
i=1(mi)! feasible permutations exactly once. Let Xm be the

model matrix expansion of Dm under Model (9), with the constraint that

10



βm,m−1 = 0. For i = 1, . . . , c, let qi = 2
(
mi

2

)
− 1, and let Vi be a qi× qi matrix

that is defined similarly to Theorem 1. Then it follows that

XT
mXm/N =


1 (1/m1)1

T (1/m2)1
T . . . (1/mc)1

T

(1/m1)1 M1
1

m1m2
1q1×q2 . . . 1

m1mc
1q1×qc

(1/m2)1
1

m2m1
1q2×q1 M2 . . . , 1

m2mc
1q2×qc

...
...

...
. . .

...
(1/mc)1

1
mcm1

1qc×q1
1

mcm2
1qc×q2 . . . Mc

 ,

(11)

where 1 is a conformable column vector of 1s, 1qi×qj is a qi × qj matrix of
ones, and

Mi = [(mi − 1)!Iqi + (mi − 2)!Vi]/N

for i = 1, . . . , c.

3.3. Finding Efficient Exact Designs

Several approaches exist for finding efficient exact experimental designs
under an optimality criterion. For small values of m, it is very fast to enu-
merate all m! possible runs (or fewer, if block constraints are present), and
one can use an exchange algorithm to find an efficient design. In this case,
a convenient solution is to use optFederov() in R, which can be found in
AlgDesign package Wheeler [23]. However, for large m (e.g. m ≥ 9), it
becomes costly to enumerate all m! possible runs, and this approach can
be inefficient. Therefore, we propose methods for finding exact designs with
high efficiency that do not require enumerating all feasible orders of addition.

3.3.1. Simulated Annealing

An algorithm that can be used to find efficient designs is the simulated
annealing algorithm Kirkpatrick et al. [8]. Simulated annealing (SA) is a
general method for finding the minimum (or maximum) of a function. In
general, the algorithm starts with an initial solution, and then proposes a
new solution somewhere in the neighborhood of the current solution. This
new solution is accepted with a probability that depends on a “temperature”
and the values of the function at the current and proposed solutions. The
temperature is a function that decreases (or “cools”) as the number of iter-
ations increase. When the number of iterations is still low, the temperature
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is high, which gives sub-optimal solutions a higher probability of being ac-
cepted. As the temperature cools, the algorithm will eventually only select
new solutions that strictly improve the optimality of the solution.

Algorithm 1: Simulated Annealing with Block Constraints

Input: A number of components m, set of constraints B, sample
size n, optimality criterion ϕ, and the number of iterations ni.
1. Randomly initialize D(0), generate M (0), and calculate
I(0) = ϕ(M (0)). Set I∗ = I(0).
for t = 1, 2, . . . , ni do

while A new design has not been found do
2. Randomly select a row i and column j of D(0), where
j ∈ {1, 2, . . . ,m− 1}, and exchange elements in positions j
and j + 1 in the ith row of D(0) to get a new matrix D(1).
if the constraints in B are not violated then

3. Keep D(1) and exit the loop.
end

end

4. Find M (1) and store I(1) = ϕ(M (1)).
if U < exp {−[I(1) − I(0)]/[1/ log(t+ 1)]} then

5. Update D(0) = D(1), M (0) = M (1), I(0) = I(1).
6. If I(0) < I∗, then update D∗ = D(0) and I∗ = I(0).

end

end
return D∗

Algorithm 1 uses simulated annealing to generate designs that try to mini-
mize an optimality criterion ϕ(·). For I−optimality, ϕ(M) = trace(M−1Mf ),
and for D−optimality, ϕ(M) = −log(|M |). In the unconstrained case, Mf

can be quickly found using Theorem (1) for Model (3), or Theorem (2) for
Model (4), so complete enumeration of the full design is not required to evalu-
ate the I−efficiency of the design. If block constraints are present, Corollary
2 can be used to do this. At each iteration, a new design matrix is pro-
posed by swapping adjacent components, provided that this does not violate
the pairwise constraints. Instead of automatically adopting the new design,
a new design is accepted with probability exp {−[I(1) − I(0)]/[1/ log(t+ 1)]},
where I(0) is the ϕ−optimality of the previous design, I(1) is the ϕ−optimality
of the proposed design, and t is the current iteration number. This means
that it is possible to accept designs that have worse ϕ−optimality earlier on
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in the algorithm, which is helpful for exploring the space of possible designs
and avoiding becoming stuck at a locally optimal design. As t increases, the
algorithm will focus on finding more optimal designs.

3.3.2. Bubble Sorting Algorithm

Another possible algorithm for finding efficient fixed designs is to use a
sorting algorithm. The general idea is to iteratively “sort” each row of the
design to find the order of the components in each row that maximize the
optimality criteiron of the entire design. In Lin and Peng [10], the bubble sort
algorithm was used to find efficient OofA designs under the D−optimality
criterion. This procedure is summarized in Algorithm 2 below, which is
adapted to handle block constraints.
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Algorithm 2: Bubble Sort with Block Constraints

Input: A number of components m, set of constraints B, sample
size n, optimality criterion ϕ, and the number of maximum
iterations itermax.
1. Randomly initialize D(0) with n rows, and generate M (0).
Calculate I(0) = ϕ(M (0)).
for iter = 1, 2, . . . , itermax do

for r = 1, 2, . . . , n do
2. Still Sorting = True.
while Still Sorting do

for j = i, . . . ,m− 1 do
3. Select the rth row of D(0), then check if the elements
in positions j and j + 1 can be exchanged to get a
new matrix D(1).
if the constraints in B are not violated then

4. Find M (1) and store I(1) = ϕ(M (1)).
if I(1) < I(0) then

5. D(0) = D(1), M (0) = M (1), I(0) = I(1).
Still Sorting = True.

else
6. Still Sorting = False.

end

end

end

end

end

end

8. Store the best design so far as D∗ = D(0) and the corresponding
efficiency I∗ = I(0).
return D∗

As an example, suppose we have a design matrix with n rows for m = 4
components, and the first row of it is (1, 3, 2, 4). The bubble sort algorithm
will first try to swap 1 and 3. It will compare the ϕ−efficiency of the design
with 1,3 to the design with 3,1. If the new design is better, 1 and 3 will
be swapped. Suppose they are swapped, so the first row is now (3, 1, 2, 4).
Then, the algorithm will try switching 2 and 1. The algorithm will continue
along this row until it is unable to swap two adjacent elements in a way
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that improves the design efficiency. Once the first row is “sorted” (i.e., the
best ordering is found for the first row), the procedure continues for the
following rows of the design matrix. This process is repeated itermax times
for the entire matrix. Overall, Algorithm 2 is a greedy algorithm, since it
only performs exchanges that strictly improve the ϕ−optimality criterion.

3.3.3. Greedy Randomized Adaptive Search Procedure (GRASP)

Another algorithm that can be used to find efficient designs is the Greedy
Randomized Adaptive Search Procedure (GRASP). GRASP is a metaheuris-
tic that iterates two main steps: first, a randomized greedy construction
method is used to construct an initial solution, and then, a local optimiza-
tion procedure is used to improve the solution Resende and Ribeiro [14].
This procedure is repeated several times, and the best solution is returned at
the end. In this case, a “solution” is a design with n runs. The randomized
greedy construction method constructs a random design with n runs and a
nonsingular moment matrix. It then considers several pairwise exchanges,
and randomly selects one of the q best exchanges, for some natural number
q. This way, more varied initial design are proposed. Our implementation of
the GRASP algorithm is summarized in Algorithm 3.
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Algorithm 3: GRASP with Block Constraints

Input: A number of components m, set of constraints B, sample
size n, optimality criterion ϕ, number of candidates ncand, and the
number of iterations ni.
for t = 1, 2, . . . , ni do

1. Randomly find a design D(0) with n runs and non-singular
moment matrix M , and calculate I = ϕ(M). Set q = 10.
Initialize a list L of length ncand.
for i = 1, 2, . . . , ncand do

2. Randomly select a row ri and column ji of D to exchange,
where j ∈ {1, . . . ,m− 1}, and exchange elements in
positions ji and ji + 1 of the rth row of D(0) to get D(i).
if the constraints in B are not violated then

3. Find M (i) and store ϕ(M (i)) in the ith position of L.
4. Store the values of ri and ji used to construct D(i).

end

end
5. Let Iq be the indices of the qth smallest elements of L.
6. Randomly select an index ℓ from Iq. Let D

(ℓ) be the design
found from exchanging the elements in positions jℓ and jℓ + 1 in
row rℓ of D

(0).
7. Use a local search procedure with D(ℓ) as the initial design to
find a locally optimal design and its ϕ−criterion. Store this
design as the new D(0). When t is a multiple of 10, update
q = max(q − 1, 1).
8. Store the design with the lowest ϕ−criterion so far as D∗.

end
return D∗

Algorithm 3 first finds a random design D with n runs with a non-singular
moment matrix M . In Steps 2-4, ncand possible exchanges are considered,
each resulting in ncand possible designs. The ϕ−criteria are found for each
candidate design, and are stored in a list L. In Step 5, the designs with the q
smallest ϕ−criteria are identified (i.e. the best q designs), and one of the best
q designs is randomly selected in Step 6. Steps 1 to 6 comprise the “greedy
randomized construction” procedure that is common to GRASP algorithms
Resende and Ribeiro [14]. The value of q (initialized at 10) determines the
quality of designs that the algorithm is willing to consider for the initial
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design D. Smaller values of q mean that the GRASP algorithm will only
consider exchanges that have better efficiency, which correspond to lower
ϕ− values in this case. When q = 1, the algorithm is fully greedy in the
sense that it only considers the best exchanges in each iteration. After an
initial design is constructed, it is passed to a local search procedure in Step
7, and the best ϕ−optimality is stored in Step 8. The role of the local search
procedure is to find the best design among a set of neighboring designs. In
our implementation, the local search procedure randomly selects one pair
of adjacent components in each row, and swaps them if it would result in
a more optimal design. Steps 1 to 8 repeat ni times. Intuitively, higher
values of ncand and ni lead to more efficient designs, since this would allow
for more design search attempts. In our implementation, we found that using
ncand = 250 and ni = 100 were sufficient for identifying highly efficienct exact
designs.

4. Empirical Results

In this section, the algorithms introduced in Section 3.3 are used to con-
struct designs under various scenarios. The relative D− and I− efficiencies
of these designs are compared to that of the full design, which uses all feasible
permutations. The goal is to see if efficient, cheaper designs could be found
in a variety of different settings and under various constraints on the pairwise
order of the components. These comparisons are made with no constraints
in Section 4.1 and with block constraints in Section 4.2. In all scenarios,
comparisons are made for relatively large numbers of components m ≥ 9.

4.1. Unconstrained Relative Efficiencies

The Simulated Annealing, Bubble Sort, and GRASP algoirthms were
used to find D− and I− efficient designs for m = 9, 10, 11. These designs
were found for varying sample sizes, denoted ns = 400, 500, 600. These sizes
were chosen because they are a small proportion of the m! available runs,
and in each case the sample size is larger than 2

(
m
2

)
+ 1, which is sufficient

for estimating all parameters in Model (3). Each algorithm was executed 20
times, and the median relative D− and I−efficiencies were the recorded in
Tables 2 and 3, respectively.

Tables 2 and 3 show the median relative D− and I− efficiencies, respec-
tively, of designs of size ns to the full design for the simulated annealing (SA),
bubble sort, and GRASP algorithms. For all methods, as the subset size ns
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m ns ns/m! Simulated Annealing Bubble Sort GRASP

9 400 0.0011 0.9111 0.9723 0.9822

500 0.0014 0.9277 0.9809 0.9885

600 0.0017 0.9403 0.9861 0.9919

10 400 0.0001 0.8856 0.9565 0.9725

500 0.0001 0.9098 0.9699 0.9795

600 0.0002 0.9253 0.9773 0.9853

11 400 < 0.0001 0.8579 0.9368 0.9430

500 < 0.0001 0.8880 0.9554 0.9608

600 < 0.0001 0.9075 0.9663 0.9707

Table 2: Median Relative D− Efficiencies

m ns ns/m! Simulated Annealing Bubble Sort GRASP

9 400 0.0011 0.8229 0.9435 0.9642

500 0.0014 0.8576 0.9619 0.9769

600 0.0017 0.8805 0.9725 0.9841

10 400 0.0001 0.7771 0.9114 0.9376

500 0.0001 0.8211 0.9386 0.9583

600 0.0002 0.8508 0.9551 0.9705

11 400 < 0.0001 0.7243 0.8738 0.9021

500 < 0.0001 0.7796 0.9089 0.9332

600 < 0.0001 0.8172 0.9319 0.9517

Table 3: Median Relative I− Efficiencies

increases, the median relative D− and I− efficiency increases. It can be seen
that as m increases, GRASP is the preferred method in terms of relative
D− and I−efficiency. The median relative efficiences of all methods tends
to decrease as m increases; as m increases, the set of all possible designs
grows much larger, so it is more difficult to search for optimal designs. In
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particular, the SA algorithm struggles to find designs with high I−efficiency
for m = 11 and ns = 400, 500. Both GRASP and bubble sort consistently
outperform SA in terms of the D− and I−optimality criteria. Furthermore,
in every case, the designs found using GRASP have higher median relative
D− and I−efficiencies than those found using bubble sort.

4.2. Constrained Relative Efficiencies

The Simulated Annealing, bubble sort, and GRASP algorithms were also
used to find D− and I−efficient designs under block constraints for m =
9, 10, 11. For each value of m, the number of blocks c was varied, and values
of c = 2, 3 were considered. This was done to examine the effect of the
number of blocks on the relative D− and I−efficiencies of the designs. In
each scenario, the number of components were placed as evenly as possible
among the c blocks. Ifm was not evenly divisible by c, extra components were
placed in the latter blocks. Tables 4 and 5 specifically show the distribution
of the components among the c blocks (m1, . . . ,mc) for each scenario. When
m = 9, designs of size ns = 50, 100 were found; for m ≥ 10, designs of size
ns = 100, 200 were found. The ratio of the sample size ns to the size of the
full design under block constraints (N =

∏c
i=1mi!) is also shown in Tables 4

and 5.
Tables 4 and 5 show the median relative D− and I−efficiencies, respec-

tively, of designs obtained by the SA, Bubble Sort, and GRASP algorithms to
the full design. In both tables, increasing the sample size generally increases
the median relative efficiency of the design with respect to the full design.
All three algorithms typically found designs with higher relativeD−efficiency
than relative I−efficiency, especially in the case when m = 9, n = 50. Of the
three methods used to construct designs, the Bubble Sort algorithm had de-
signs with the lowest relative D− or I−efficiencies in most cases. In Table 4,
the SA algorithm typically performs the best, and it is closely followed by the
GRASP algorithm. This is very different from the unconstrained scenarios
in Section 4.1, where the SA algorithm did not perform well; this differ-
ence likely occurs because the presence of constraints reduces the number of
possible permutations that are feasible in a design.

Table 5 shows that in all but two cases, the GRASP algorithm produces
designs with higher relative I−efficiency than SA and Bubble Sort. The two
exceptions are when m = 9, n = 50, c = 2 and m = 11, n = 100, c = 2;
in both cases, the GRASP algorithm was slightly behind the SA algorithm.
Several entries in Table 4 have relative efficiencies greater than 1, and so does
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m c (m1, . . . ,mc) ns ns/N SA Bubble Sort GRASP

9 2 (4, 5) 50 0.0174 0.9185 0.8737 0.9224

100 0.0347 0.9919 0.9719 0.9902

3 (3, 3, 3) 50 0.2314 0.9857 0.9808 0.9855

100 0.4630 0.9964 0.9957 0.9964

10 2 (5, 5) 100 0.0069 0.9712 0.9446 0.9670

200 0.0138 1.0002 0.9899 0.9988

3 (3, 3, 4) 100 0.1157 1.0038 0.9974 1.0033

200 0.2314 1.0085 1.0069 1.0083

11 2 (5, 6) 100 0.0012 0.9375 0.8999 0.9299

200 0.0024 0.9899 0.9740 0.9880

3 (3, 4, 4) 100 0.0289 0.9961 0.9842 0.9944

200 0.0578 1.0051 1.0016 1.0045

Table 4: Median Relative D−Efficiency Comparison Under Block Constraints

one entry in Table 5. This shows that, in general, when block constraints are
applied, the full design is not necessarily optimal.

5. Example

In this section, an example from Skorobohatyj [18] is used to study the
performance of the Bubble Sort (BB) and GRASP algorithms and to com-
pare the performance of the TE and PWO models at detecting the optimal
order of addition. This data set was created using IBM data and used for the
Sequential Ordering Problem, which was also examined in Karan and Skorin-
Kapov [7]. In this problem, there are m = 11 components in total. The
original problem allows for all 11! possible orders to be examined. To high-
light our method’s ability to handle block constraints, we randomly divided
the components into 3 blocks, which are b1 = {1, 4, 7, 9, 10}, b2 = {2, 6, 8},
and b3 = {3, 5, 11}. In this case, all components in b1 precede all compo-
nents in b2, and all components in b2 precede all components in b3. There
are N = 5!3!3! = 4320 possible orders of addition under these constraints.
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m c (m1, . . . ,mc) ns ns/N SA Bubble Sort GRASP

9 2 (4, 5) 50 0.0174 0.8425 0.7269 0.8256

100 0.0347 0.9419 0.9311 0.9652

3 (3, 3, 3) 50 0.2314 0.9710 0.9608 0.9711

100 0.4630 0.9676 0.9909 0.9928

10 2 (5, 5) 100 0.0069 0.9149 0.8712 0.9219

200 0.0138 0.8764 0.9685 0.9848

3 (3, 3, 4) 100 0.1157 0.9585 0.9807 0.9913

200 0.2314 0.9351 0.9995 1.0020

11 2 (5, 6) 100 0.0012 0.8689 0.7822 0.8530

200 0.0024 0.8475 0.9388 0.9658

3 (3, 4, 4) 100 0.0289 0.9479 0.9570 0.9778

200 0.0578 0.9169 0.9922 0.9976

Table 5: Median Relative I−Efficiency Comparison Under Block Constraints

For each row, the response variable y was found, which represents the cost of
completing all 11 jobs in a particular order. The order with the lowest cost
is optimal.

The BB and GRASP are used to obtain optimal designs of size n = 150
and n = 200, which represent roughly 3.5% and 4.6% of the total number
of available runs, respectively. These algorithms were used to search for
I−optimal designs under the length-one TE model (9). These designs were
used to fit the length-one TE model, the length-two TE model (10), and the
PWO model. Once fit, each of the three models was used to find the order
with the lowest estimated cost. This procedure was repeated 100 times. The
average rank over all 100 attempts was used as a metric to compare the per-
formance of the methods. The results are given in Table 6.

Table 6 shows the average of the optimal order’s position in 100 prediction
attempts. From the table, we can notice that both TE models outperform
PWO model under both design algorithms and for both sample sizes. When
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BB GRASP
n 150 200 150 200

PWO 54.78 46.39 45.58 56.73
TE1 18.58 13.11 14.91 14.62
TE2 8.50 12.61 10.60 18.10

Table 6: Average rank of the estimated optimal order. Lower ranks are more optimal.

n = 150, the length-two TE model (TE2) is only slightly better than the
length-one TE model (TE1), while it achieves a better result with the BB
algorithm when n = 200. However, the length-one TE model is better with
the GRASP algorithm compared to the length-two TE model when n = 200.
The two design algorithms have similar performance with the length-one TE
model when n = 200, and bubble sorting outperformed GRASP when the
PWO model was used when n = 150. Furthermore, it is noticed that if
n becomes even larger, the difference in average ranking between BB and
GRASP diminishes under the length-one TE model, though the gap between
PWO and TE remains. Overall, TE1 is more stable than TE2, and its
results improve as the sample size increases. This example shows that, with
an appropriately selected design, the TE model can identify orders with lower
cost more frequently than the PWO model.

6. Conclusion and Further Research Interests

This article introduced a transition effect model for the Order-of-Addition
(OofA) problem. This model represents the response using transitions be-
tween nearby components in the model. Initial theory shows that the full
design is ϕ−optimal for the proposed transition effect models under many
criteria, and closed-form constructions for the moment matrix of the full de-
sign were provided. These initial results provide a fast way to evaluate the
D− and I−optimality criterion of any design relative to the full design. A
novel implementation of a Greedy Randomized Adaptive Search Procedure
(GRASP) was implemented to search for cost-efficient designs with high ef-
ficiency relative to the full design. This algorithm was compared with Sim-
ulated Annealing (SA) and Bubble Sort (BB), which are two alternative
approaches for constructing highly efficient OofA designs. In Section 4, em-
pirical results showed that GRASP and Bubble Sorting both outperformed
the SA algorithm in terms of finding efficient designs under the D− and the
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I−optimality criteria. In Section 5, the proposed TE model was shown to be
better than the PWO model in terms of average rank of predicted optimal
order. Furthermore, the GRASP algorithm outperformed bubble sort when
the sample size was smaller.

There is more work that can be done to extend this research. One re-
search direction would be to focus on a more general case of constraints.
For example, what would happen if constraints exist on the pairwise order
of components, but the components are not divided into even blocks? In
Section 4, it was observed that the full design was not D− or I−optimal in
some cases. The theoretical results in this paper show D−optimality for the
full design in the unconstrained case, but this does not generalize to cases
where pairwise constraints exist on the order of addition. It would also be
useful to develop theory for the closed-form construction of optimal frac-
tional OofA designs under a transition-effect model. Additional avenues of
research would be developing transition-effect that include other covariates
in addition to the order of addition, such as mixture proportions Rios and
Lin [15] or factorial effects Tsai [19].
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Appendix - Proofs

Lemma 1. Let a ∈ Dm. Let x(a) be the model matrix expansion of a under
a length ℓ transition effect model, where ℓ ∈ {1, 2}. Let π ∈ Dm. For
a permutation a ∈ Dm, let πa = (πa1 , πa2 , πa3 . . . , πam). Then there is a
permutation matrix Rπ such that x(πa)T = x(a)TRπ.

Proof. Let π ∈ Dm and a ∈ Dm. Let j and k be distinct elements of
{1, 2, . . . ,m}. If d(j, k, a) = ℓ, then by definition of πa, d(πaj , πak , πa) = ℓ.
Hence, it follows that xjk(a) = xπj ,πk

(πa) for any pair jk.

If ℓ = 1, let R
(1)
π be a matrix with columns and rows indexed by the

pairs (12, 13, ...(m − 1)m) such that R
(1)
π (jk, πj, πk) = 1 for each pair jk

and the remaining elements are 0. Then x(πa)T = x(a)Tdiag(1, R
(1)
π ) for

any π ∈ Dm. So, Rπ = diag(1, R
(1)
π ) is a signed permutation matrix which

satisfies the lemma.
If ℓ = 2, let

Rπ =

1 0 0

0 R
(1)
π 0

0 0 R
(2)
π

 (12)

whereR
(2)
π is a matrix with columns and rows indexed by the pairs (12, 13, . . . , (m−

1)m) such that R
(2)
π (jk, πj, πk) = 1 for each pair jk and the remaining el-

ements are 0, and 0 is a conformable matrix of zeroes. Then x(πa)T =
x(a)TRπ for any π ∈ Dm.

Proof of Corollary 1.

Proof. The structure of this proof is very similar to that of Theorem 1 in
Peng et al. [13] (which is why we denote this as a Corollary). We write the
proof in its entirety for clarity and convenience.

Let Dm be the set of all m! permutations of (1, 2, . . . ,m). Let ϕ be a crite-
rion that is concave and permutation invariant. As in the proof of Lemma 1,
let x(a) represent the model matrix expansion of a under a transition-effect
model of length 1 or 2. Then Mf = (1/m!)

∑
a∈Dm

x(a)x(a)T .
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Let w be an arbitrary design measure over Dm. For π ∈ Dm, let πa =
(πa1 , . . . , πam), and let πw be the design measure that assigns, for each a ∈
Dm, weight w(a) to the circuit πa. By concavity of ϕ, we have that

ϕ
( ∑

π∈Dm

1

m!
M(πw)

)
≥

∑
π∈Dm

1

m!
ϕ
(
M(πw)

)
(13)

Notice that, for a fixed a ∈ Dm, {πa | π ∈ Dm} = Dm, which implies

1

m!

∑
π∈Dm

M(πw) =
1

m!

∑
a∈Dm

∑
π∈Dm

w(πa)x(πa)x(πa)T (14)

=
m!

m!

∑
a∈Dm

w(a)Mf = Mf . (15)

Also notice that, by Lemma 1,

ϕ
(
M(w)

)
= ϕ

( ∑
π∈Dm

w(πa)x(πa)x(πa)T
)
= (16)

ϕ(RT
πM(w)Rπ) = ϕ(M(w)) (17)

where the last equality follows because ϕ is permutation-invariant. By sub-
stituting (15) and (17) into the inequality (13), we find that

ϕ
(
Mf

)
≥ 1

m!

∑
π∈Dm

ϕ
(
M(w)

)
= ϕ

(
M(w)

)
, (18)

for any design measure w over Dm. This concludes the proof.

Proof of Theorem 1. Let Dm be the full design that uses all m! permu-
tations exactly once. Let Xm be the model matrix expansion of Dm under
Model (3), with the constraint that βm,m−1 = 0. Let X0 = [1, . . . , 1]T denote
the column of Xm that corresponds to the intercept β0. Let Xj,k denote the
column of Xm that corresponds to the transition effect βj,k. Let q = 2

(
m
2

)
−1.

Let i, j, k, ℓ be four distinct elements of {1, . . . ,m}. Then, the following are
true:

(a) XT
0 X0 =

∑
a∈Dm

1 = m!
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(b) XT
0 Xj,k =

∑
a∈Dm

xj,k(a) = (m− 1)!. The last equality is true because
all permutations of (1, . . . ,m) where j directly precedes k can be con-
structed by treating (j, k) as a single component and finding the set of
all (m−1)! permutations of the (m−1) components {(j, k), a1, . . . , am−2},
where as ∈ {1, . . . ,m} \ {j, k}, s = 1, . . . ,m− 2.

(c) XT
i,jXi,k =

∑
a∈Dm

xi,j(a)xi,k(a) = 0 because for any a ∈ Dm, if i
directly precedes j, then i cannot directly precede k; similarly, if i
directly precedes k, then i cannot directly precede j. Therefore, no
permutation of (1, . . . ,m) will simultaneously yield xi,j(a) = 1 and
xi,k(a) = 1.

(d) XT
i,jXk,j =

∑
a∈Dm

xi,j(a)xk,j(a) = 0 because for any a ∈ Dm, if i
directly precedes j, then k cannot directly precede j; similarly, if k
directly precedes j, then i cannot directly precede j. Therefore, no
permutation of (1, . . . ,m) will simultaneously yield xi,j(a) = 1 and
xk,j(a) = 1.

(e) XT
i,jXj,i =

∑
a∈Dm

xi,j(a)xj,i(a) = 0, because for any a ∈ Dm, i cannot
be both directly before and directly after j, so there is no permutation
that simulatenously satisfies xi,j(a) = 1 and xj,i(a) = 1.

(f) XT
i,jXk,ℓ =

∑
a∈Dm

xi,j(a)xk,ℓ(a) = (m − 2)!. This is true because
there are exactly (m − 2)! permutations of (1, 2, . . . ,m) where com-
ponent i is placed directly before component j and (simultaneously)
component k is placed directly before component ℓ. To see this, no-
tice that the set of all permutations of (1, . . . ,m) that place i directly
before j and k directly before ℓ can be constructed by treating i and
j as a single component (i, j), treating k and ℓ as a single compo-
nent (k, ℓ), and then finding all permutations of the m − 2 compo-
nents {(i, j), (k, ℓ), a1, . . . , am−4}, where as ∈ {1, . . . ,m}\ {i, j, k, ℓ} for
s = 1, . . . ,m− 4.

(g) XT
i,jXi,j =

∑
a∈Df

[xi,j(a)]
2 =

∑
a∈Df

xi,j(a) = (m− 1)!. The last equal-

ity follows from case (b).

Let V , 1, and Iq be as defined in Theorem 1. Then, the results from (a)
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through (g) imply that

M = XT
mXm/m! =

1

m!


XT

0 X0 XT
0 X1,2 . . . XT

0 Xm,m−2

XT
1,2X0 XT

1,2X1,2 . . . XT
1,2Xm,m−2

...
...

. . .
...

XT
m,m−2X0 XT

m,m−2X1,2 . . . XT
m,m−2Xm,m−2


(19)

=
1

m!

[
m! (m− 1)!1T

(m− 1)!1 (m− 1)!Iq + (m− 2)!V

]
(20)

=

[
1 (1/m)1T

(1/m)1 [(m− 1)!Iq + (m− 2)!V ]/m!

]
(21)

which yields the desired result. This completes the proof.

Proof of Theorem 2. Let Dm be the full design that uses all m! permu-
tations exactly once. Let Xm be the model matrix expansion of Dm under
Model (4), with the constraints that βm,m−1 = 0 and δm,m−1 = 0. Let

q = 2
(
m
2

)
− 1. Partition Xm = [X0, X

(1)
m , X

(2)
m ], where X0 = [1, . . . , 1]T , X

(1)
m

is a m! × q matrix with columns corresponding to length one transition ef-
fects, and X

(2)
m is a m!× q matrix with columns corresponding to length two

transition effects. Notice that

M = XT
mXm/m! =

1

m!


XT

0 X0 XT
0 X

(1)
m XT

0 X
(2)
m

X
(1)T
m X0

(
X

(1)
m

)T

X
(1)
m

(
X

(1)
m

)T

X
(2)
m

X
(2)T
m X0

(
X

(2)
m

)T

X
(1)
m

(
X

(2)
m

)T

X
(2)
m

 (22)

From Theorem 1, we know that XT
0 X0 = m!, XT

0 X
(1)
m = (m − 1)!1T ,

and [X
(1)
m ]TX

(1)
m = (m − 1)!Iq + (m − 2)!V . Therefore, we only need to

determine the values of XT
0 X

(2)
m , [X

(1)
m ]TX

(2)
m , and [X

(2)
m ]TX

(2)
m to complete the

theorem. Let X
(1)
i,j denote the column of X

(1)
m that corresponds to the length

one transition effect βi,j. LetX
(2)
i,j denote the column ofX

(2)
m that corresponds

to the length two transition effect δi,j. Let i, j, k, ℓ be four distinct elements
of {1, . . . ,m}. Then, the following are true:

(a) XT
0 X

(2)
i,j =

∑
a∈Dm

x
(2)
i,j (a) = (m−2)[(m−2)!]. This is true because, for

any permutation a, there are m− 2 ways to place components i and j
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in a that satisfy d(i, j, a) = 2; for each placement of components i and
j, there are (m− 2)! permutations of the remaining components.

(b) [X
(1)
i,j ]

TX
(2)
i,j =

∑
a∈Dm

xi,j(a)x
(2)
i,j (a) = 0 because for any a ∈ Dm,

d(i, j, a) cannot be equal to both 1 and 2. Similarly, [X
(1)
i,j ]

TX
(2)
j,i = 0.

(c) [X
(1)
i,j ]

TX
(2)
i,ℓ =

∑
a∈Dm

xi,j(a)x
(2)
i,ℓ (a) = (m−2)[(m−3)!], because xi,j(a) =

x
(2)
i,ℓ (a) = 1 implies that the sequence (i, j, ℓ) occurs in a. There are

(m − 2) possible placements of this sequence. For each placement of
(i, j, ℓ), there are (m− 3)! permutations of the remaining components.

(d) [X
(1)
i,j ]

TX
(2)
k,j =

∑
a∈Dm

xi,j(a)x
(2)
k,j(a) = (m−2)[(m−3)!], because xi,j(a) =

x
(2)
k,j(a) = 1 implies that the sequence (k, i, j) occurs in a. There are

(m − 2) possible placements of this sequence. For each placement of
(k, i, j), there are (m− 3)! permutations of the remaining components.

(e) [X
(1)
i,j ]

TX
(2)
j,ℓ =

∑
a∈Dm

xi,j(a)x
(2)
j,ℓ (a) = (m − 3)[(m − 3)!]. Notice that

xi,j(a) = x
(2)
j,ℓ (a) = 1 implies that the sequence (i, j, b, ℓ) is in a for some

b ∈ {1, . . . ,m} \ {i, j, ℓ}. For a given value of b, there are m − 3 ways
to place this sequence. For each b and each placement of the sequence,
there are (m − 4)! permutations of the remaining components. Since
there are m−3 possible values of b, there are (m−3)[(m−3)(m−4)!] =

(m−3)[(m−3)!] permutations in Dm that satisfy xi,j(a) = x
(2)
j,ℓ (a) = 1.

(f) [X
(1)
i,j ]

TX
(2)
k,i =

∑
a∈Dm

xi,j(a)x
(2)
k,i (a) = (m − 3)[(m − 3)!]. Notice that

xi,j(a) = x
(2)
k,i (a) = 1 implies that the sequence (k, b, i, j) is in a for some

b ∈ {1, . . . ,m} \ {i, j, k}. For a given value of b, there are m− 3 ways
to place this sequence. For each b and each placement of the sequence,
there are (m − 4)! permutations of the remaining components. Since
there are m−3 possible values of b, there are (m−3)[(m−3)(m−4)!] =

(m−3)[(m−3)!] permutations in Dm that satisfy xi,j(a) = x
(2)
k,j(a) = 1.

(g) [X
(1)
i,j ]

TX
(2)
k,ℓ =

∑
a∈Dm

xi,j(a)x
(2)
k,ℓ(a) = (m− 4)[(m− 3)!]. Suppose com-

ponent i is placed directly before component j. This leaves m − 2
remaining positions to place component k. Two of these positions
will not leave enough room to place component ℓ two positions to the
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right, so for a given placement of i and j, there are only m − 4 feasi-
ble positions for k and ℓ. There are m − 4 remaining components to
be placed; therefore, for a given position of (i, j), there are (m − 4)!

permutations in Dm that satisfy x
(2)
k,ℓ(a) = 1. Since k and ℓ take up

two positions, there are m − 3 ways to place component i and have
room to place component j directly after i. Therefore, there are a to-
tal of (m − 3)(m − 4)[(m − 4)!] = (m − 4)[(m − 3)!] ways to satisfy

xi,j(a) = x
(2)
k,ℓ(a) = 1.

(h) [X
(2)
i,j ]

TX
(2)
i,j =

∑
a∈Dm

[x
(2)
i,j (a)]

2 =
∑

a∈Dm
x
(2)
i,j (a) = (m − 2)[(m − 2)!]

by part (a).

(i) [X
(2)
i,j ]

TX
(2)
j,i =

∑
a∈Dm

x
(2)
i,j (a)x

(2)
j,i (a) = 0 because i cannot be both be-

fore and after j.

(j) [X
(2)
i,j ]

TX
(2)
k,i =

∑
a∈Dm

x
(2)
i,j (a)x

(2)
k,i (a) = (m − 4)[(m − 3)!]. In this case,

if x
(2)
i,j (a) = x

(2)
j,ℓ (a) = 1, then the sequence (k, b, i, c, j) must be in a

for some components b, c ∈ {1, . . . ,m} \ {i, j, k}. For fixed values of
b and c, there are m − 4 ways to place this sequence. For each of
these placements, there are (m − 5)! permutations of the remaining
components. There are m − 3 possible values for b (since b can be in
1, . . . ,m, but b ̸= i, j, k), and given b, there are m−4 possible values for

c. Therefore,
∑

a∈Dm
x
(2)
i,j (a)x

(2)
k,i (a) = (m−3)(m−4)(m−4)[(m−5)!] =

(m− 4)[(m− 3)!].

(k) [X
(2)
i,j ]

TX
(2)
j,ℓ =

∑
a∈Dm

x
(2)
i,j (a)x

(2)
j,ℓ (a) = (m − 4)[(m − 3)!]. In this case,

if x
(2)
i,j (a) = x

(2)
j,ℓ (a) = 1, then the sequence (i, b, j, c, ℓ) must occur in a

for some b, c ∈ {1, . . . ,m} \ {i, j, ℓ}. By the same counting argument
in part (j), the result follows.

(ℓ) [X
(2)
i,j ]

TX
(2)
k,ℓ =

∑
a∈Dm

x
(2)
i,j (a)x

(2)
k,ℓ(a) = [(m−6)(m−5)+4(m−4)][(m−

4)!]. This is true because there are m − 2 possible positions to place
component i so that component j may be placed two spaces to the right
of i. Of these m−2 possibilities, consider the following four placements
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of i and j,

i, a1, j, a2, . . . , am−2

a1, i, a2, j, . . . , am−2

a1, a2, . . . , am−4, j, am−3, i, am−2

a1, a2, . . . , am−3, j, am−2, i,

where a1, . . . , am−2 represent available positions. In these four se-
quences, if component k is placed in one of the first m− 2− 2 = m− 4
available positions, then there is space to place component ℓ two spaces
to the right of it. Once the 4 components i, j, k, ℓ have been placed,
there are (m− 4)! permutations of the remaining m− 4 components.

In the remaining m− 2− 4 = m− 6 possible positions of i and j, there
are only m − 5 ways to place k so that j is exactly two spaces to the
right of it (as i or j will take up one of the remaining placements).
Once the 4 components i, j, k, ℓ have been placed, there are (m − 4)!
permutations of the remaining m− 4 components.

Overall, these statements imply that

[X
(2)
i,j ]

TX
(2)
k,ℓ = 4(m− 4)[(m− 4)!] + (m− 6)(m− 5)[(m− 4)!] (23)

= [(m− 6)(m− 5) + 4(m− 4)][(m− 4)!]. (24)

The equation in (a) shows that XT
0 X

(2)
m = (m−2)[(m−2)!]1q. The equations

in (b) to (g) show that [X
(1)
m ]TX

(2)
m = [(m− 3)!]Q. The remaining equations

show that [X
(2)
m ]TX

(2)
m = (m− 2)(m− 2)!Iq +R. It follows from (22) that

M =

 1 (1/m)1T m−2
m(m−1)

1T

(1/m)1 [(m− 1)!Iq + (m− 2)!V ]/m! [(m− 3)!/m!]Q
m−2

m(m−1)
1 [(m− 3)!/m!]QT [(m− 2)(m− 2)!Iq +R]/m!

 ,

(25)

which completes the proof.

Proof of Corollary 2. Suppose that the m components are arranged into
c blocks b1, . . . , bc such that if i < j, then all components in bi must precede
all components in bj. As stated in Corollary 2, label the components so that
components 1, . . . , n1 belong to b1, components ni−1 + 1, . . . , ni belong to
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block bi for i = 2, . . . , c − 1, and nc−1 + 1, . . . ,m belong to the final block
bc. Let Dm be the full design that uses each of the N =

∏c
i=1(mi)! feasible

permutations exactly once, where mi is the number of components in block
bi, i = 1, . . . , c. Let qi = 2

(
mi

2

)
− 1, and let Vi be a qi × qi matrix that is

defined as in Theorem 1, and let Iqi denote the identity matrix of dimension
qi. Let 1 be a conformable vector of ones, and 0 be a qi× qi matrix of zeroes.
Let 1qi×qj be a qi × qj matrix of ones.

Partition Xm = [1, X1, X2, . . . , Xc] where Xi is an N × qi matrix whose
columns correspond to the qi length one transitions between components that
are exclusively in block bi, i = 1, . . . , c. It follows that the moment matrix is

M = XT
mXm/N =

1

N


1T1 1TX1 1TX2 . . . 1TXc

XT
1 1 XT

1 X1 XT
1 X2 . . . XT

1 Xc

XT
2 1 XT

2 X1 XT
2 X2 . . . XT

2 Xc
...

...
...

. . .
...

XT
c 1 XT

c X1 XT
c X2 . . . XT

c Xc

 . (26)

By Theorem 1, we have that XT
i Xi = [(mi − 1)!Iqi + (mi − 2)!Vi] for i =

1, . . . , c. Notice that for components j and k belonging to the same block bi,
we have that

1

N

∑
a∈Dm

xj,k(a) =
(mi − 1)!

∏c
ℓ=1,ℓ ̸=i(mℓ!)

N
=

(mi − 1)!
∏c

ℓ=1,ℓ̸=i(mℓ!)∏c
ℓ=1mℓ!

=
(mi − 1)!

mi!
=

1

mi

,

since j appears directly in front of k exactly (mi − 1)! times by item (b) of
Theorem 1, and there are

∏c
ℓ=1,ℓ ̸=i(mℓ!) possible permutations of the other

c− 1 blocks. It follows that 1TXi/N = (1/mi)1
T for i = 1, . . . , c. Similarly,

it follows that for i ̸= j, XT
i Xj/N = (mi−1)!(mj−1)!1qi×qj/N = 1

mimj
1qi×qj .

Finally, notice that 1T1 = N . Substituting these values into the matrix in
(26) yields

XT
mXm/N =


1 (1/m1)1

T (1/m2)1
T . . . (1/mc)1

T

(1/m1)1 M1
1

m1m2
1q1×q2 . . . 1

m1mc
1q1×qc

(1/m2)1
1

m2m1
1q2×q1 M2 . . . , 1

m2mc
1q2×qc

...
...

...
. . .

...
(1/mc)1

1
mcm1

1qc×q1
1

mcm2
1qc×q2 . . . Mc

 , (27)
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where Mi = [(mi − 1)!Iqi + (mi − 2)!Vi]/N for i = 1, . . . , c. This completes
the proof.
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