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PROJECTIVE VERSIONS OF SPATIAL PARTITION QUANTUM

GROUPS

NICOLAS FAROSS

Abstract. We generalize categories of spatial partitions in the sense of Cébron-
Weber by introducing new base partitions. This allows us to construct additional
examples of free orthogonal quantum groups but yields the same class of spatial
partition quantum groups as before. Further, we use these new base partitions to
show that the class of spatial partition quantum groups is closed under taking pro-
jective versions and in particular contains the projective version of all easy quan-
tum groups. As an application, we determine the quantum groups corresponding
to the categories of all spatial pair partitions and give explicit descriptions of the
projective versions of easy quantum groups in terms of spatial partitions.

1. Introduction

Spatial partition quantum groups were first introduced by Cébron-Weber in [10]
and are examples of compact quantum groups in the sense of Woronowicz [40, 42].
They generalize easy quantum groups by Banica-Speicher [6] and are obtained by
replacing two-dimensional partitions with three-dimensional spatial partitions.

A spatial partition on m levels p ∈ P(m) consists of k ·m upper points and ℓ ·m
lower points that are partitioned into disjoint subsets by lines. Further, we allow
both upper and lower points to be colored uniformly along the levels. For example,
we have

∈ P(1), ∈ P(2), ∈ P(3).

Given spatial partitions on the same number of levels, we can construct new spatial
partitions by forming their tensor product, involution and composition. A category
of spatial partitions in the sense of Cébron-Weber is a set of spatial partitions that
is closed under these operations and contains the base partitions (m), (m) and (m),

(m). Here, p(m) ∈ P(m) denotes the spatial partition that is obtained by placing m
copies of the partition p along each level.
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By realizing spatial partitions as linear operators, categories of spatial partitions
give rise to concrete C∗-tensor categories, which then correspond to spatial parti-
tion quantum groups via Woronowicz Tannaka-Krein duality [41]. In the case of
partitions on one level, these quantum groups are exactly unitary easy quantum
groups [6, 30] and include for example the free orthogonal and free unitary quantum
groups [35], the quantum permutation group [36] or the hyperoctahedral quantum
group [4].

Since easy quantum groups are based on partitions, they form a concrete class
of quantum groups that can be studied and classified using combinatorics [17, 21,
16, 5, 37, 28]. In the case of orthogonal easy quantum groups, the classification has
been completed in [29], whereas the classification in the unitary case is still ongoing.
See for example [31, 15, 18] or the more recent work by Mang [23, 24, 25, 26].

Spatial partition quantum groups have so far been studied in [10, 14]. In [10],
Cébron-Weber show that these quantum groups are closed under glued products,
which implies that the class of spatial partition quantum groups is strictly larger
than the class of easy quantum groups. Further, they provide a partial classification
of categories of spatial pair partitions on two levels and discuss links to the quantum
symmetries of finite-dimensional C∗-algebras.

In [14], the author shows that the category P
(2)
2 of all spatial pair partitions

on two levels gives rise to the classical projective orthogonal group POn yielding
a simpler example of a non-easy spatial partition quantum group. Additionally,
an explicit description of the category of spatial partitions corresponding to the
quantum symmetry group of Mn(C)⊗ Cm is given.

Main results. In [10], Cébron-Weber ask about a generalization of the base parti-
tions (m) and (m) that still allows the construction of compact matrix quantum
groups from categories of spatial partitions. We answer this question by showing
that the previous two base partitions can be replaced with any pairs of spatial
partitions r and s satisfying the conjugate equations

[
r∗ ⊗

(m)
]
·

[
(m)

⊗ s

]
=

(m)

,

[
s∗ ⊗

(m)
]
·

[
(m)

⊗ r

]
=

(m)

.

In the case of one level, the partitions r = and s = are the only solutions to
these equations. However, in the case m ≥ 2, we do not only obtain the previous
base partitions r = (m) and s = (m), but also twisted versions like

r = , s = and r = , s = .

We refer to Proposition 3.10 for a characterization of all possible solutions to these
conjugate equations in the context of spatial partitions.

Using our new base partitions, we can now construct additional examples of free
orthogonal quantum groups in the sense of Van Daele-Wang [11]. In the notation
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of [1], these quantum groups are given by O+(Fσ) and with parameters

Fσ : (C
n)⊗m → (Cn)⊗m, Fσ(ei1 ⊗ · · · ⊗ eim) = ei

σ−1(1)
⊗ · · · ⊗ ei

σ−1(m)

for all n ∈ N and σ ∈ Sm. See also Proposition 4.14 for more details and the precise
statement in full generality.

Although we can construct new examples of spatial partition quantum groups, it
turns out that using our new base partitions, we obtain the same class of quantum
groups as defined by Cébron-Weber.

Theorem 1 (Corollary 4.17). Let G be a spatial partition quantum group defined
by any pair of spatial base partitions satisfying the conjugate equations. Then G is
equivalent to a spatial partition quantum group in the sense of Cébron-Weber defined
by the base partitions (m) and (m).

More generally, we show in Section 4.3 that permuting the points of any category
of spatial partitions along the levels leaves the corresponding quantum group invari-
ant, which makes it possible to reduce any base partitions to the case of (m) and

(m). Still, our new base partitions are useful on a combinatorial level and allow us
to show that the class of spatial partition quantum groups is closed under taking
projective versions.

Consider a compact matrix quantum group G with fundamental representation
u and assume u is unitary. Then its projective version PG is the compact matrix
quantum group defined by the representation u ⊤ u. If G is a classical group, then
PG corresponds exactly to the quotient

PG = G/(G ∩ {λI | λ ∈ C}).

Further, in the case quantum groups, projective versions have for example been
studied in [2, 5, 7, 20]. In this context, our main result can be formulated as follows.

Theorem 2 (Corollary 5.9). Let G be a spatial partition quantum group. Then
PG is again a spatial partition quantum group. Moreover, its category of spatial
partitions is given by Flat−1

m,◦•(C), where C ⊆ P
(m) is the category of spatial partitions

corresponding to G and Flatm,◦• is the functor defined in Section 3.3.

Note that the previous result does not only apply to projective versions PG but
to any compact matrix quantum group defined by a ⊤ -product of the fundamental
representation u and a unitary conjugate representation u•. See Section 5.1 for
further details.

As an application, we consider the categories P(m)
2 of all spatial pair partitions

on m levels. In [6, 14], it is shown that P(1)
2 corresponds to the classical orthogonal

groupOn and that P(2)
2 corresponds to its projective version POn. Using the previous

theorem, we are now able to generalize these results in Section 5.2 to all m ∈ N and
obtain

P(m)
2 ←→

{
POn if m is even,

On if m is odd.
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Finally, we consider projective versions of easy quantum groups in Section 5.3.
Since easy quantum groups are a subclass of spatial partition quantum groups, our
main result implies that their projective versions are again spatial partition quantum
groups. Using a result of Gromada [20], we then derive sets of spatial partitions
generating the categories of the projective versions of orthogonal easy quantum
groups with degree of reflection two. This allows us to describe these quantum
groups explicitly as universal C∗-algebras defined by finite sets of relations.

Overview. We begin in Section 2 with some preliminaries about compact matrix
quantum groups, their representation categories and Woronowicz Tannaka-Krein
duality. Then, we consider the combinatorics of spatial partitions in Section 3 and
introduce our new base partitions. In particular, we characterize all possible base
partitions and introduce two functors between categories of spatial partitions that
are used to prove our main results.

In Section 4, we show how to construct compact matrix quantum groups from
categories of spatial partitions containing our new base partitions and give a de-
scription of these quantum groups in terms of generators and relations. This allows
us to construct the free orthogonal quantum groups O+(Fσ), before we show that
our new base partitions yield the same class of spatial partition quantum groups as
defined by Cébron-Weber.

Finally, we prove in Section 5 that the class of spatial partition quantum groups is
closed under taking projective versions. Further, we determine the quantum groups

corresponding to the categories P
(m)
2 of spatial pair partitions and give explicit

descriptions of the projective versions of some orthogonal easy quantum groups in
terms of spatial partitions.

2. Preliminaries

2.1. Notation. We begin by introducing some notations and conventions that will
be used throughout the rest of the paper.

Let ◦ and • be two colors. Then we denote with

{◦, •}∗ := {1, ◦, •, ◦◦, ◦•, •◦, ••, ◦◦◦, . . .}

the free monoid generated by {◦, •}. It is given by the set of all finite words over
{◦, •} with concatenation as multiplication and the empty word 1 as the identity
element. If x ∈ {◦, •}∗, then we denote with |x| the length of the word x and
with xi ∈ {◦, •} the i-th color. Further, let · : {◦, •}∗ → {◦, •}∗ be the anti-
homomorphism defined by

◦ = •, • = ◦, x · y = y · x ∀x, y ∈ {◦, •}∗.

Next, consider a finite-dimensional Hilbert space V . Then we denote with V
its conjugate Hilbert space where the conjugate of a vector v ∈ V is denoted by
v ∈ V . Using colors, we additionally define V ◦ := V , V • := V and v◦ := v, v• := v
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for all v ∈ V . Further, we extend this notation to tensor products by defining
V ⊗x := V x1 ⊗ · · · ⊗ V xk for all x ∈ {◦, •}∗ with k := |x|.

Let n ∈ N. Then we define [n] := {1, . . . , n} and more generally [n] := [n1] ×
· · · × [nm] for all n := (n1, . . . , nm) ∈ Nm. Additionally, we introduce the Hilbert
spaces Cn := Cn1 ⊗ · · ·⊗Cnm with canonical bases given by ei := ei1 ⊗ · · · ⊗ eim for
all i := (i1, . . . , im) ∈ [n].

Next, consider two finite-dimensional Hilbert spaces V and W . Then B(V,W )
denotes the vector space of all linear operators T : V → W and we define B(V ) :=
B(V, V ). Given an orthonormal basis of V indexed by J and an orthonormal ba-
sis of W indexed by I, we identify elements of B(V,W ) with matrices (T i

j )i∈I,j∈J .

Moreover, if T : V → W is a linear operator, then its conjugate T : V → W is given
by T (v) = T (v) for all v ∈ V . Using colors, we additionally write T ◦ := T, T • := T
and T⊗x := T x1 ⊗ · · · ⊗ T xk for all x ∈ {◦, •}∗ with k := |x|.

Throughout the rest of the paper, we will use basic facts about C∗-algebras, their
tensor products and universal C∗-algebras. For more information on these topics,
we refer to [8]. In particular, we will denote with ⊗ the minimal tensor product of
C∗-algebras.

Let A be a unital C∗-algebra. Then we identify elements u ∈ B(V,W )⊗ A with
A-valued matrices (ui

j)i∈I,j∈J with respect to orthonormal bases of V and W index
by J and I. Moreover, we embed B(V,W ) into B(V,W ) ⊗ A via T 7→ T ⊗ 1 and
define the anti-linear map · : B(V,W )⊗A→ B(V ,W )⊗A by

(T ⊗ a) := T ⊗ a∗ ∀T ∈ B(V,W ), a ∈ A.

With respect to the conjugate bases of V and W , the matrix coefficients of u are
then given by ui

j = (ui
j)

∗
.

Finally, we introduce the Woronowicz tensor products ⊥ and ⊤ from [40]. These
are the bilinear operators defined by

(T ⊗ a) ⊥(S ⊗ b) := TS ⊗ a⊗ b ∈ B(V )⊗ A⊗A,

(T ⊗ a) ⊤(S ⊗ b) := (T ⊗ S)⊗ ab ∈ B(V ⊗W )⊗ A

for all T ⊗ a ∈ B(V )⊗A and S ⊗ b ∈ B(V )⊗A or S ⊗ b ∈ B(W )⊗A respectively.
The matrix coefficients of both operators are given by

(u ⊥ v)ij =
∑

k

ui
k ⊗ vkj , (u ⊤ v)i1i2j1j2

= ui1
j1
· vi2j2

with respect to orthonormal bases of V , W and the induced basis of V ⊗W .

2.2. Compact matrix quantum groups. Compact quantum groups were first
introduced by Woronowicz [40, 42] as a generalization of classical compact groups
and provide the general framework for easy quantum groups and spatial partition
quantum groups. In the following, we will restrict ourselves to compact matrix
quantum groups, which are a class of compact quantum groups defined by a single
unitary representation. We refer to [39, 3] for a detailed introduction to compact
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matrix quantum groups and to [33, 27] for the general case of compact quantum
groups.

Definition 2.1. Let V be a finite-dimensional Hilbert space, A be a unital C∗-
algebra and u ∈ B(V ) ⊗ A. Then G := (A, u) is called a compact matrix quantum
group if

(1) A is generated as C∗-algebra by the matrix coefficients

{(ϕ⊗ idA)(u) | ϕ ∈ B(V,C)} ,

(2) u is unitary and u is invertible,

(3) there exists a ∗-homomorphism ∆: A→ A⊗ A, such that

(idB(V )⊗∆)(u) = u ⊥ u.

The element u is called the fundamental representation of G. Further, we denote the
C∗-algebra A with C(G) and the dense ∗-algebra generated by the matrix coefficients
with O(G).

Note that we have chosen a basis-independent definition of compact matrix quan-
tum groups. This allows us to keep track of the tensor product structure of the
underlying Hilbert space V and does not force us to identify Cn ⊗ Cn with Cn2

in
an arbitrary way.

Examples of compact matrix quantum groups are Wang’s free orthogonal and free
unitary quantum groups [35] or its deformations in the sense of Van Daele-Wang [11].
Using the notation of Banica [1], these quantum groups are defined as follows.

Definition 2.2. Let n ∈ Nm, F ∈ B(Cn) be invertible and denote with ι : Cn → Cn

the linear isomorphism defined by ι(ei) = ei for all i ∈ [n]. Define the universal
unital C∗-algebras

Ao(F ) := C∗(uij | u is unitary and u = (Fι) u (Fι)−1),

Au(F ) := C∗(uij | u and (Fι) u (Fι)−1 are unitary)

generated by the coefficients of a matrix u := (ui
j)i,j∈[n]

. Then

O+(F ) := (Ao(F ), u), U+(F ) := (Au(F ), u)

are the free orthogonal and the free unitary quantum groups with parameter F .
Moreover, we define O+

n := O+(idCn) and U+
n := U+(idCn).

Additional examples of compact matrix quantum groups are the quantum permu-
tation group S+

n [36], the hyperoctahedral quantum groups H+
n [4] or more generally

easy quantum groups [6] and spatial partition quantum groups [10]. We introduce
spatial partition quantum groups in Section 4, which includes easy quantum groups
as a special case. For a more detailed introduction to easy quantum groups, we refer
to [38, 39].

As in the case of classical groups, one can generalize the notion of subgroup and
isomorphic groups to the setting of compact matrix quantum groups.
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Definition 2.3. Let G andH be compact matrix quantum groups with fundamental
representations u on V and v on W . Then

(1) H is a subgroup of G and we write H ⊆ G if there exists a unitary Q : W → V
and a unital ∗-homomorphism ϕ : C(G)→ C(H) with

ϕ(u) = QvQ−1,

(2) G and H are isomorphic and we write G = H if H ⊆ G and the previous
∗-homomorphism ϕ is a ∗-isomorphism,

(3) G and H are isomorphic as compact quantum groups if there exists a unital
∗-isomorphism ϕ : C(G)→ C(H) with

(ϕ⊗ ϕ) ◦∆G = ∆H ◦ ϕ.

Note that an isomorphism between compact quantum groups is more general
and does not respect the fundamental representation of a compact matrix quantum
group. In particular, it allows us to compare quantum groups with fundamental
representations of different dimensions.

Finally, we introduce representations of compact matrix quantum groups, which
will be discussed in more detail in the following.

Definition 2.4. Let G be a compact matrix quantum group. A representation of
G on a finite-dimensional Hilbert space V is an invertible element v ∈ B(V )⊗C(G)
that satisfies

(idB(V )⊗∆)(v) = v ⊥ v.

Consider a compact matrix quantum group G on a Hilbert space V . Then its
fundamental representation u ∈ B(V ) ⊗ C(G) and the trivial representation 1 ∈
B(C) ⊗ C(G) are always representations. Further, if v and w are representations,
then both v and v ⊤ w are again representations.

2.3. Representation categories and rigidity. Next, we recall that representa-
tions of a compact matrix quantum group have the structure of a tensor category,
which allows us to formulate Woronowicz Tannaka-Krein duality in the next section.
We refer to [41, 33, 27, 19] for more on the representation theory of compact matrix
quantum groups and to [13] for tensor categories in general.

We begin by introducing intertwiners between representations.

Definition 2.5. Let G be a compact matrix quantum group with representations
v on V and w on W . Then the space of intertwiners between v and w is given by

Hom(v, w) := {T ∈ B(V,W ) | Tv = wT} .

Consider a compact matrix quantum group G. Then we can construct a category
Rep(G) with objects given by finite-dimensional unitary representations of G and
morphisms Hom(v, w) given by intertwiners between v and w. Additionally, we can
use the ⊤-operator and the adjoint T ∗ of intertwiners to define a monoidal and a ∗-
structure on this category. The following proposition summarizes its most important
properties.
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Proposition 2.6. The finite-dimensional unitary representations of a compact ma-
trix quantum group are a concrete monoidal ∗-category in following the sense:

(1) idV ∈ Hom(v, v) for every representation v on V .

(2) Hom(v, w) is a linear subspace of B(V,W ) for all representations v on V
and w on W .

(3) If S ∈ Hom(v, w) and T ∈ Hom(w, x), then ST ∈ Hom(v, x).

(4) If T ∈ Hom(v, w), then T ∗ ∈ Hom(w, v).

(5) If S ∈ Hom(v, w) and T ∈ Hom(x, y), then S ⊗ T ∈ Hom(v ⊤ x, w ⊤ y).

In addition to the previous properties, the representation category of a compact
matrix quantum group is rigid in the sense that every unitary representation has a
conjugate representation.

Definition 2.7. Let G be a compact matrix quantum group with unitary represen-
tations u◦ on V and u• on W . Then u• is conjugate to u◦ if there exist intertwiners
R ∈ Hom(1, u◦

⊤ u•) and S ∈ Hom(1, u•
⊤ u◦) satisfying the conjugate equations

(R∗ ⊗ idV ) · (idV ⊗S) = idV , (S∗ ⊗ idW ) · (idW ⊗R) = idW .

Note that the representation u• is also called a dual of u◦ and the intertwiners R
and S are called duality morphisms. We refer to [13] and [27] for the definition of
rigidity in a more general context.

In [41], it is shown that the representation category of a compact matrix quantum
groups is generated by tensor powers of its fundamental representation u and its
conjugate representation. Thus, it will be enough to consider only the fundamental
representation u◦ := u with conjugate u• in the following. Further, we introduce
the notation ux := ux1 ⊤ . . . ⊤ uxk for all x ∈ {◦, •}∗ with k := |x| > 0. In the case
x = 1, we define u1 := 1 as the trivial representation.

Note that the conjugate of a representation is not unique but is only determined
up to unitary equivalence. Furthermore, the representation u◦ is in general not
conjugate to u◦ since it is not necessarily unitary. However, we show in the following
that any conjugate representation u• is equivalent to u◦ and this equivalence is
defined by the solutions R and S of the conjugate equations.

Proposition 2.8. Consider a compact matrix quantum group with fundamental
representation u◦ on V and let F ∈ B(V ) be invertible. If u• := Fu◦F−1 is unitary,
then u◦ and u• are conjugate with duality morphisms R and S given by

Rij = F j
i , Sij = (F

−1
)
j

i

with respect to any basis of V and its conjugate basis.

Proof. A proof can be found in [19]. One checks directly that

u◦(u◦)∗ = 1 ⇐⇒ R ∈ Hom(1, u◦
⊤ u•),

u•(u•)∗ = 1 ⇐⇒ S ∈ Hom(1, u•
⊤ u◦).
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Thus, R and S are intertwiners. Further, they satisfy the conjugate equations since

(R∗ ⊗ idV ) · (idV ⊗S) = F
−1
F , (S∗ ⊗ idV ) · (idV ⊗R) = FF−1.

�

Proposition 2.9. Let G be a compact matrix quantum group with unitary repre-
sentation u◦ on V . Assume u• is a unitary representation on V that is conjugate to
u◦ with duality morphisms R and S. Then u• = Fu◦F−1, where F ∈ B(V ) is given
by F i

j = Rji with respect to any basis of V and its conjugate basis.

Proof. The representation u◦ is equivalent to a unitary representation that is con-
jugate to u◦, see [27, Example 2.2.3]. Further, [27, Proposition 2.2.4] shows that

conjugates are unique up to equivalence. Hence, there exists an invertible F̃ ∈ B(V )

such that u• = F̃ u◦F̃−1. The previous proposition then implies that

R̃ ∈ Hom(1, u◦
⊤ u•), S̃ ∈ Hom(1, u•

⊤ u◦),

where R̃ and S̃ are the solutions to the conjugate equations defined by F̃ . As in [18,
Theorem 3.4.6], we compute

(S̃∗ ⊗ idV ) · (idV ⊗R) = FF̃−1 ∈ Hom(u•, u•),

which yields

u• = FF̃−1u•F̃F−1 = Fu◦F−1.

�

2.4. Woronowicz Tannaka-Krein duality. In the case of classical groups, Tannaka-
Krein duality [12] allows the reconstruction of a compact group from an abstract
category of representations. A similar result for compact matrix quantum groups
was first proven by Woronowicz in [41].

There exist multiple proofs of Woronowicz Tannaka-Krein duality at various levels
of abstraction, see for example [41, 27, 22, 19]. In the following, we choose the
approach of Gromada [19], which is most suitable for the setting of categories defined
by partitions. Thus, we begin by introducing the notion of an abstract two-colored
representation category that captures the properties of the representation category
of a compact matrix quantum group discussed in the previous section.

Definition 2.10. Let V be a finite-dimensional Hilbert space. A two-colored rep-
resentation category C is a collection of linear subspaces C(x, y) ⊆ B(V ⊗x, V ⊗y) for
all x, y ∈ {◦, •}∗ satisfying the following properties:

(1) idV ⊗x ∈ C(x, x) for all x ∈ {◦, •}∗.

(2) If S ∈ C(x, y) and T ∈ C(y, z), then ST ∈ C(x, z).

(3) If T ∈ C(x, y), then T ∗ ∈ C(y, x).

(4) If S ∈ C(w, x) and T ∈ C(y, z), then S ⊗ T ∈ C(wy, xz).
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(5) There exist R ∈ C(1, ◦•) and S ∈ C(1, •◦) satisfying the conjugate equations

(R∗ ⊗ idV ) · (idV ⊗S) = idV , (S∗ ⊗ idV ) · (idV ⊗R) = idV .

Woronowicz Tannaka-Krein duality now states that given any two-colored repre-
sentation category C, there exists a unique compact matrix quantum group whose
representation category Rep(G) is given by C.

Theorem 2.11 (Woronowicz Tannaka-Krein duality). Let C be a two-colored repre-
sentation category on a Hilbert space V . Then there exists a unique compact matrix
quantum group G with fundamental representation u◦ on V and unitary representa-
tion u• on V , such that

Hom(ux, uy) = C(x, y) ∀x, y ∈ {◦, •}∗.

First, let us comment on the uniqueness of the unitary representation u• in the
previous theorem. Since C contains a pair of morphisms R and S satisfying the
conjugate equations, the representations u◦ and u• are conjugate. Proposition 2.9
then implies that u• = Fu◦F−1 with F i

j = Rji. Thus, the representation u• is
uniquely determined by the category C.

Next, consider the uniqueness of the quantum group G. The proof of Woronowicz
Tannaka-Krein duality in [19] shows that all relations of the dense ∗-algebra O(G)
are spanned by the intertwiner relations

Tux = uyT ∀x, y ∈ {◦, •}∗, T ∈ C(x, y).

Hence, O(G) is uniquely determined by the category C up to ∗-isomorphism. In
contrast, the C∗-algebra C(G) is not unique but it is always possible to choose
C(G) as the maximal C∗-completion of O(G). In this case, G is uniquely defined
by the following universal property.

Proposition 2.12. Let G be the compact matrix quantum group in Theorem 2.11
and H be a compact matrix quantum group with fundamental representation w◦ on
W and unitary representation w• on W . If there exists a unitary Q : V →W , such
that

Hom(ux, uy) ⊆ (Q−1)
⊗y
· Hom(wx, wy) ·Q⊗x ∀x, y ∈ {◦, •}∗,

then H is a subgroup G via u◦ 7→ Q−1w◦Q.

Motivated by Woronowicz Tannaka-Krein duality and the previous proposition,
we introduce the following notion of equivalence between compact matrix quantum
groups.

Definition 2.13. Let G be a compact matrix quantum group with fundamental
representation u◦ and conjugate representation u•. A compact matrix quantum
group H with fundamental representation w◦ on W and unitary representation w•

on W is called equivalent to G if there exists a unitary Q : V →W such that

Hom(ux, uy) = (Q−1)
⊗y
·Hom(wx, wy) ·Q⊗x ∀x, y ∈ {◦, •}∗.
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One can check that the previous definition is indeed an equivalence relation be-
tween compact matrix quantum groups. Further, Woronowicz Tannaka-Krein dual-
ity and the previous discussion show that two compact matrix quantum groups G
and H are equivalent if and only if O(G) and O(H) are ∗-isomorphic. Moreover,
this isomorphism is given by u = Q−1wQ, where u and w are the fundamental
representations of G and H respectively.

3. Combinatorics of spatial partitions

In the following, we introduce spatial partitions, their categories and our new
base partitions as purely combinatorial objects. These will then be used again in
Section 4 to define spatial partition quantum groups. Further, we construct two
functors between categories of spatial partitions that will be used to prove our main
results in Section 4 and Section 5.

3.1. Spatial partitions. We begin with spatial partitions, which are the main
combinatorial objects to define categories of spatial partitions. In contrast to [10],
we will not focus on spatial partitions with only white points, but we will consider
colored partitions as described in [10, Remark 2.7].

Definition 3.1. Let m ∈ N. A spatial partition on m levels is a tuple (x, y, {Bi}),
where x, y ∈ {◦, •}∗ and {Bi} is a decomposition of the points

{1, . . . , |x|+ |y|} × {1, . . . , m}

into disjoint subsets called blocks. We call x the upper colors and y the lower colors
of the partition.

Given a spatial partition, we can visualize it as a colored string-diagram as follows.
First, we draw an upper layer consisting of the points (i, j) with 1 ≤ i ≤ |x| and
a lower layer consisting of the points (i, j) with |x| < i ≤ |y|, where in both layers
i increases from the left to the right and j from the front to the back. Then we
connect all points in the same blocks by lines and assign each upper point (i, j) the
color xi and each lower point (|x|+ i, j) the color yi.

Example 3.2. Consider the spatial partition on two levels with upper colors x = ◦•,
lower colors y = ◦◦• and blocks

{(1, 1), (3, 2)}, {(1, 2), (3, 1)}, {(2, 1), (4, 1)}, {(2, 2), (4, 2), (5, 2)}, {(5, 1)}.

Visualizing it as string-diagram yields

(1,1)
(1,2)

(2,1)
(2,2)

(3,1)
(3,2)

(4,1)
(4,2)

(5,1)
(5,2)

−→
(1,1)

(1,2)
(2,1)

(2,2)

(3,1)
(3,2)

(4,1)
(4,2)

(5,1)
(5,2)

−→ .

Note that spatial partitions on one level with only white points are exactly the
partitions appearing for example in the definition of the Temperly-Liebe algebra [32],
the Brauer algebra [9] or more generally orthogonal easy quantum groups [4].
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In the following, we denote with P(m) the set of all spatial partitions on m levels
and with P(m)(x, y) the set of all spatial partitions on m levels with upper colors x
and lower colors y. Further, we introduce the following spatial partitions that will
be used throughout the rest of the paper.

Definition 3.3.

(1) Let x ∈ {◦, •}∗. Then we denote with idx ∈ P
(1)(x, x) the identity partition

on x. It is the spatial partition on one level with upper and lower colors
x, where each upper point is directly connected to the corresponding lower
point, e.g.

id◦ = , id• = , id◦•◦ = .

(2) Let p ∈ P(1)(x, y) be a spatial partition. Then we denote with p(k) ∈
P(k)(x, y) the amplification of p. It is obtained by placing k copies of p
behind each other, e.g.

id(2)
◦ = ,

(3)
= .

(3) Let x, y ∈ {◦, •} and σ ∈ Sm be a permutation on {1, . . . , m}. Then we
denote with σxy ∈ P(m)(1, xy) the spatial partition with lower points xy and
blocks given by {(1, i), (2, σ(i))} for all 1 ≤ i ≤ m. For example, we have

(1)(2)◦• = , (12)◦• = , (132)◦◦ = ,

where the corresponding permutations are written in cycle notation. Simi-
larly, we denote with σx

y ∈ P
(m)(x, y) the rotated version of σxy with upper

color x and lower color y, e.g.

(1)(2)◦• = , (12)◦• = , (132)◦◦ = .

Given spatial partitions on a fixed number of levels m, we can use the following
operations to construct new spatial partitions.

Definition 3.4.

(1) Let p ∈ P(m)(x, y) and q ∈ P(m)(w, z). Then the tensor product p ⊗ q ∈
P(m)(xw, yz) is obtained by placing p and q next to each other, e.g.

⊗ = .

(2) Let p ∈ P(m)(x, y). Then the involution p∗ ∈ P(m)(y, x) is obtained by
swapping the upper and lower points, e.g.

( )∗

= .
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(3) Let p ∈ P(m)(y, z) and q ∈ P(m)(x, y). Then the composition pq ∈ P(m)(x, z)
is obtained by first placing q on top of p and identifying the lower points of q
with the upper points of p. Then these points are removed and the resulting
blocks are simplified, e.g.

· = = .

Finally, we introduce the following properties of spatial partitions that will be
used later.

Definition 3.5. Let p ∈ P(m)(x, y) be a spatial partition. Then p is called

(1) invertible if there exists a spatial partition p−1 ∈ P (m)(y, x) such that p−1p =
idx and pp−1 = idy.

(2) n-graded for some n := (n1, . . . , nm) ∈ Nm if nk = nℓ for all points (i, k) and
(j, ℓ) that are in the same block in p.

(3) pair partition if every block of p has size two.

Note that the inverse of a spatial partition p ∈ P (m)(x, y) is always given by
p−1 = p∗ and in this case p and p∗ are both pair partitions whose blocks form a
bijection between the corresponding upper and lower points, e.g.

p = , p−1 = .

In particular, if p is invertible, then |x| = |y|. In the following, we present a proof
of this statement for the case |x| = |y| = 1, which will be relevant later.

Lemma 3.6. Let p ∈ P(m)(x, y) be invertible with |x| = |y| = 1. Then p = σx
y and

p−1 = (σ−1)
y

x for a permutation σ ∈ Sm.

Proof. As in [17], we denote with t(p) the number of through-blocks of p, i.e. the
number of blocks of p that contain both an upper and a lower point. Then t(p) ≤ m
and equality holds if and only if p = σx

y for a permutation σ ∈ Sm. Further,

t(qp) ≤ min(t(q), t(p)) for any q ∈ P(m)(y, x), see [17, Remark 2.6]. Thus, if p is
invertible, then

m = t(id(m)
x ) = t(p−1 · p) ≤ min(t(p−1), t(p)) ≤ t(p) ≤ m.

This shows t(p) = m and similarly one obtains t(p−1) = m. Thus, both p and p−1

are of the form σx
y and (σ−1)

y

x for a permutation σ ∈ Sm. �

3.2. Categories of spatial partitions. Next, we introduce categories of spatial
partitions as purely combinatorial objects. These will be used again in Section 4,
where we interpret categories of spatial partitions as representation categories of
compact matrix quantum groups.
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Definition 3.7. A category of spatial partitions on m levels is a subset C ⊆ P(m)

that

(1) is closed under compositions, tensor products and involutions,

(2) contains id◦ and id•.

If C ⊆ P(m) is a category of spatial partitions, then we denote with C(x, y) the set
of all spatial partitions in C with upper colors x and lower colors y.

Note that in contrast to [10], we do not include the base partitions (m) and (m)

in the definition. Thus, our definition is more general and includes all categories of
spatial partitions in the sense of Cébron-Weber as special case. However, we will
come back to the role of these base partitions later. Examples of categories of spatial
partitions include

(1) the set P(m) of all spatial partitions on m levels,

(2) the set P(m)
2 of all spatial pair partitions on m levels,

(3) the set NC ⊆ P(1) of all non-crossing partitions, i.e. partitions that can be
drawn without crossing lines in two dimensions.

Additional examples of categories of spatial partitions can for example be found
in [29, 31, 10]. As in the previous examples, categories of spatial partitions are often
defined by specifying a property of spatial partitions. However, it is also possible to
define categories of spatial partition by a generating set.

Definition 3.8. Let C0 be a set of spatial partitions. Then we denote with C :=
〈C0〉 the category generated by C0. It is the smallest category of spatial partitions
containing C0 and consists of all finite combinations of elements in C0 and the base
partitions id◦ and id•.

Consider again the categories of spatial partitions from the previous example.
Using generators, these categories can be written as

P(1) =
〈

, ,
〉
, P(1)

2 =
〈

,
〉
, NC =

〈
,

〉
,

see [29] for further details. Moreover, generators for general P(m) and P(m)
2 can be

found in [10].
In the original definition of spatial partition quantum groups in [10], Cébron-

Weber include the additional base partitions (m) and (m). These are used in the
construction of spatial partitions quantum groups and guarantee that the represen-
tation u is unitary. However, as discussed in Section 2.3 and Section 2.4, it is only
required that there exists a conjugate representation u• that is not necessarily given
by u. This is equivalent to the existence of solutions to the conjugate equations
in the sense of Definition 2.7. Thus, translating the conjugate equations into the
setting of spatial partitions yields the following definition.

Definition 3.9. Let C ⊆ P(m) be a category of spatial partitions. Then C is called
rigid if it contains a pair of duality partitions r ∈ C(1, ◦•) and s ∈ C(1, •◦) satisfying
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the conjugate equations

(r∗ ⊗ id◦) · (id◦⊗s) = id◦, (s∗ ⊗ id•) · (id•⊗r) = id• .

In the case of spatial partitions on one level, the conjugate equations can be
visualized diagrammatically as follows:

r∗

s

= ,

s∗

r

= .

In particular, this shows that r = and s = are the only solutions in the case
m = 1. Further, one checks that the duality partitions r = (m) and s = (m)

of Cébron-Weber satisfy the conjugate equations, which implies that categories of
spatial partitions in the sense of [10] are always rigid. However, for m ≥ 2, there
exist additional solutions given by spatial partitions like

r = , s = and r = , s = .

The following proposition characterizes all possible solutions of the conjugate
equations in the context of spatial partitions.

Proposition 3.10. Duality partitions in the sense of Definition 3.9 are exactly of
the form r = σ◦• and s = σ−1

•◦ for a permutation σ ∈ Sm.

Proof. Fix a number of levels m and assume r ∈ P(m)(1, ◦•) and s ∈ P(m)(1, •◦)
are a pair of duality partitions. Define the new partitions r′ ∈ P(m)(◦, •) and
s′ ∈ P (m)(•, ◦) by moving the lower points (1, i) for 1 ≤ i ≤ m to the upper layer.
Then the conjugate equations (visualized only for one level) yield

s′

r′

=

r∗

s

= ,
r′

s′

=

s∗

r

= .

Thus, r′ and s′ are a pair of inverse partitions and Lemma 3.6 implies that they
are the form r′ = σ◦

• and s′ = (σ−1)
•
◦ for a permutation σ ∈ Sm. Hence, we obtain

r = σ◦• and s = σ−1
•◦ by moving the upper points (1, i) for 1 ≤ i ≤ m back to the

lower layer.
Conversely, let σ ∈ Sm and define the partition r = σ◦• and s = σ−1

•◦ . By tracing
the blocks in the first conjugate equation, one checks that each point (1, i) in r is
connected to (2, σ(i)), which is again connected to (2, σ−1(σ(i))) = (2, i) in s. Thus,
the first conjugate equation

(r∗ ⊗ id◦) · (id◦⊗s) = id◦

is satisfied. Similarly, one checks that the second conjugate equation is satisfied,
which shows that r and s are duality partitions. �
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So far, we have only considered categories of spatial partition C as purely combi-
natorial objects. However, we can also give them the structure of a category in the
usual sense by defining the set of objects Ob(C) := {◦, •}∗ and the set of morphisms

Hom(x, y) := C(x, y) = C ∩ P(m)(x, y) ∀x, y ∈ {◦, •}∗.

Moreover, using the language of categories, the tensor product and involution give
categories of spatial partitions the structure of strict monoidal †-categories. See [13]
for precise definitions of these terms.

Using this framework, we can now show that the duality of the objects ◦ and • in
the sense of Definition 3.9 implies the duality of x and x for all objects x ∈ {◦, •}∗.
Thus, our notation of rigidity agrees with the general notation of rigidity as for
example defined in [13] and [27].

Proposition 3.11. Let C ⊆ P(m) be a rigid category of spatial partitions and x ∈
{◦, •}∗. Then C contains a pair of duality partitions r ∈ C(1, xx) and s ∈ C(1, xx)
satisfying the conjugate equations for x and x, i.e.

(r∗ ⊗ idx) · (idx⊗s) = idx, (s∗ ⊗ idx) · (idx⊗r) = idx .

Proof. The statement follows directly by inductively applying [13, Proposition 1.10.7]
in the context of spatial partitions. Alternatively, the duality partitions r and s can
be constructed explicitly by nesting the duality partitions for ◦ and •. �

3.3. Spatial partition functors. Next, we introduce functors between categories
of spatial partitions. These allow us to transform spatial partitions while preserving
their basic operations and will be used in the proofs our main results in Section 4
and Section 5.

Definition 3.12. Let C ⊆ P(n) and D ⊆ P(m) be categories of spatial partitions. A
spatial partition functor F : C → D is given by a function F : {◦, •}∗ → {◦, •}∗ and
functions F : C(x, y) → D(F (x), F (y)) for all x, y ∈ {◦, •}∗ satisfying the following
properties:

(1) F (1) = 1 and F (xy) = F (x)F (y) for all x, y ∈ {◦, •}∗

(2) F preserves the category operators, i.e.

F (p · q) = F (p) · F (q), F (p∗) = F (p)∗, F (p⊗ q) = F (p)⊗ F (q)

for all (composable) p, q ∈ C,

(3) F (idx) = idF (x) for all x ∈ {◦, •}
∗.

Note that a functor does not necessarily preserve the number of levels of spatial
partitions. Using the language of categories, we also introduce the notion of fully
faithful functors.

Definition 3.13. Let F : C → D be a spatial partition functor. Then F is called
fully faithful if the functions F : C(x, y)→ D(F (x), F (y)) are bijections for all x, y ∈
{◦, •}∗.
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A simple example of a spatial partition functor is obtained by decoloring spatial
partitions. Formally, we define F : P(m) → P(m) by

F (x) := ◦|x| ∀x ∈ {◦, •}∗,

F (p) := (◦|x|, ◦|y|, {Bi}) ∀p := (x, y, {Bi}) ∈ P
(m).

Since F preserves the block structure of spatial partitions, one can check directly
that it satisfies all properties in Definition 3.12 and that F is fully faithful. However,

F is not surjective in the sense that its image does not contain
(m)

. In particular,
this shows that the image of a spatial partition functor is not necessarily again a
category of spatial partitions.

Next, we present two additional examples of spatial partition functors that will
be used again in the context of spatial partition quantum groups in Section 4 and
Section 5.

3.3.1. Permuting levels. Let σ, τ ∈ Sm be permutations. Then we obtain a functor
Permσ,τ : P(m) → P(m) by permuting the levels of white points using σ and the levels
of black points using τ . Consider for example σ = (12) and τ = (1)(2). Then

Permσ,τ

−−−−−→ .

Using the permutation partitions introduced in Definition 3.3, we can define Permσ,τ

as follows.

Definition 3.14. Let σ, τ ∈ Sm and define

q◦σ,τ := σ◦
◦, q•σ,τ := τ •• , qxyσ,τ := qxσ,τ ⊗ qyσ,τ ∀x, y ∈ {◦, •}∗, |xy| > 1.

Then the permutation functor Permσ,τ : P(m) → P(m) is given by

Permσ,τ (x) := x ∀x ∈ {◦, •}∗,

Permσ,τ (p) := qyσ,τ · p · (q
x
σ,τ )

−1 ∀p ∈ P(m)(x, y).

Example 3.15. Consider again the spatial partition from the initial example with
σ := (12) and τ = (1)(2). Then

q•◦σ,τ = , q◦◦•σ,τ = ,

which yields

Permσ,τ

−−−−−→ = .

Next, we verify that the permutation functor Permσ,τ is indeed a spatial partition
functor in the sense of Definition 3.12 that additionally is fully faithful.
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Proposition 3.16. Permσ,τ is a fully faithful spatial partition functor.

Proof. Since Permσ,τ preserves colors, it follows immediately that it respects the
concatenation of colors. Further, Lemma 3.6 implies q∗σ,τ = q−1

σ,τ , which yields

Permσ,τ (p)
∗ = ((qxσ,τ )

−1)
∗
· p∗ · (qyσ,τ )

∗ = Permσ,τ (p
∗) ∀p ∈ P(m)(x, y).

Similarly, one verifies directly that

Permσ,τ (p1 · p2) = Permσ,τ (p1) · Permσ,τ (p2),

Permσ,τ (p1 ⊗ p2) = Permσ,τ (p1)⊗ Permσ,τ (p2)

for all (composable) p1, p2 ∈ P(m). Hence, Permσ,τ respects the category operations.
Additionally, we have

Permσ,τ (idx) = qxσ,τ · idx ·(q
x
σ,τ )

−1 = idx ∀x ∈ {◦, •}∗,

which shows that Permσ,τ is spatial partition functor. Finally, one checks that

Permσ,τ (Permσ−1,τ−1(p)) = Permσ−1,τ−1(Permσ,τ (p)) = p ∀p ∈ P(m),

which implies that Permσ,τ is bijective on the sets P(m)(x, y). Thus, it is fully
faithful. �

Finally, we introduce n-graded permutations and show that Permσ,τ maps cate-
gories of spatial partitions to categories of spatial partitions while preserving rigidity.

Definition 3.17. Let n := (n1, . . . , nm) ∈ Nm. A permutation σ ∈ Sm is called
n-graded if ni = nσ(i) for all 1 ≤ i ≤ m.

Proposition 3.18. Let σ, τ ∈ Sm be n-graded permutations and C ⊆ P(m) be a
n-graded rigid category of spatial partitions. Then Permσ,τ (C) is again a n-graded
rigid category of spatial partitions.

Proof. Define D := Permσ,τ (C). Since Permσ,τ respects the category operations,
it follows directly that D is closed under compositions, tensor products and invo-
lutions. Further, Permσ,τ (idx) = idx ∈ D for all x ∈ {◦, •}∗, which shows that
D is a category of spatial partitions. Since C rigid, there exists a pair of duality
partitions r ∈ C(1, ◦•) and s ∈ C(1, •◦) satisfying the conjugate equations. Then
Permσ,τ (r) ∈ D(1, ◦•) and Permσ,τ (s) ∈ D(1, •◦) also satisfy the conjugate equa-
tions, which implies that D is again rigid. Finally, observe that permuting the levels
of a n-graded spatial partition by a n-graded permutation yields again a n-graded
spatial partition. Thus, D is also a n-graded category of spatial partitions. �

3.3.2. Flattening partitions. Next, we introduce the functor Flatm,z that flattens
spatial partitions along the levels and is used in Section 5 in the context of projective
versions of spatial partition quantum groups. Its definition is motivated by [10,
Remark 2.4 & 2.8], where Cébron-Weber consider the bijection

{1, . . . k + ℓ} × {1, . . .m} ∼= {1, . . . , m · (k + ℓ)}
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that identifies a point (i, j) with the point m · (i − 1) + j. This bijection induces
a bijection between the sets of spatial partitions P(m)(◦k, ◦l) and P(1)(◦mk, ◦ml) by
rearranging the points accordingly, e.g.

∈ P(3)(◦1, ◦2) ∼= ∈ P(1)(◦3, ◦6).

It respects the composition, tensor product and involution of spatial partitions, but
it fails to preserve the base partitions as defined in [10] when applied to categories
of spatial partitions.

Next, we generalize the previous bijection to the case of m levels and colored
spatial partitions. Note that we reverse the order of black points in the follow-
ing definition since in the context of quantum groups the representation u ⊤ w is
equivalent to w ⊤ u. See Section 5 for further information.

Definition 3.19. Let m, d ≥ 1 and x, y ∈ {◦, •}∗ with k := |x| and ℓ := |y|. Define
the bijections

ϕx,y
m,d : {1, . . . , k + ℓ} × {1, . . . , m · d} → {1, . . . , (k + ℓ) · d} × {1, . . . , m}

given by

(i, j + k ·m) 7→

{
(i · d− d+ k + 1, j) if (xy)i = ◦,

(i · d− k, j) if (xy)i = •,

for all 1 ≤ i ≤ k + ℓ, 1 ≤ j ≤ m and 0 ≤ k < d.

In the special case x = ◦k, y = ◦ℓ and m = 1, we obtain exactly the bijection of
Cébron-Weber from the beginning of the section. A more general case on four levels
is visualized in the following example.

Example 3.20. Consider four levels of points with upper colors x = ◦ and lower
colors y = ◦•. Then applying ϕ := ϕx,y

2,2 to these points yields

(1,1)
(1,2)

(1,3)
(1,4)

(2,1)
(2,2)

(2,3)
(2,4)

(3,1)
(3,2)

(3,3)
(3,4)

ϕ

−−−→ (1,1)
(1,2)

(2,1)
(2,2)

(3,1)
(3,2)

(4,1)
(4,2)

(6,1)
(6,2)

(5,1)
(5,2)

∼=
(1,1)

(1,2)
(2,1)

(2,2)

(3,1)
(3,2)

(4,1)
(4,2)

(5,1)
(5,2)

(6,1)
(6,2)

where the relabeled points are again rearranged according to our usual convention.

By extending this bijection to the blocks of spatial partitions, we obtain for ex-
ample

ϕ

−−−→ .

In particular, we observe that black points are flattened in reverse order. Using
these bijections ϕx,y

m,d from Definition 3.19, we can now define the functor Flatm,z.
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Definition 3.21. Let m ∈ N and z ∈ {◦, •}∗ with d := |z| > 1. Define the spatial
partition functor Flatm,z : P(m·d) → P(m) by

Flatm,z(◦) := z, Flatm,z(•) := z = zd · · · z1

and
Flatm,z(p) :=

(
Flatm,z(x),Flatm,z(y), {ϕ

x,y
m,d(Bi)}

)

for all spatial partitions p := (x, y, {Bi}) ∈ P
(m·d).

If z = ◦ · · · ◦, then Flatm,z preserves colors and only applies the permutations ϕx,y

m,|z|

as in the previous example. However, in the general case, we obtain for example

Flat2,◦•

−−−−−→ ,

Flat1,◦◦•

−−−−−→ .

It remains to verify that Flatm,z is indeed a spatial partition functor.

Proposition 3.22. Flatm,z is a fully faithful spatial partition functor.

Proof. By definition, Flatm,z respects the concatenation of colors. Further, Flatm,z

respects compositions and involutions since it permutes the points of spatial only
depending on the upper colors x and lower colors y. Moreover, Flatm,z moves points
at back levels in consecutive groups of size m to the front, which also implies that
it respects tensor products. Finally,

Flatm,z(id
(m·|z|)
◦ ) = id(m)

z , Flatm,z(id
(m·|z|)
• ) = id

(m)
z

yields that Flatm,z maps identity partitions to identity partitions. Thus, Flatm,z is
a spatial partition functor. Additionally, it is fully faithful since the maps ϕx,y

m,d are
bijections. �

The following proposition now shows that the pre-image under Flatm,z preserves
categories of spatial partitions, rigidity and gradings. This will be used again in
Section 5, where it allows us to relate the category of a spatial partition quantum
group to the category of its projective versions. Note that the proof relies on our
generalization of base partitions and the statement would not hold in the setting of
spatial partition quantum groups defined by Cébron-Weber.

Proposition 3.23. Let n := (n1, . . . , nm) ∈ Nm and z ∈ {◦, •}∗ with d := |z| ≥ 1.
If C ⊆ P(m) is a n-graded rigid category of spatial partitions, then

Flat−1
m,z(C) := {p ∈ P

(m·d) | Flatm,z(p) ∈ C}

is a (n · · ·n)-graded rigid category of spatial partitions, where

(n · · ·n) := (n1, . . . , nm, . . . , n1, . . . , nm) ∈ N
m·d.
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Proof. Define D := Flat−1
m,z(C). Since Flatm,z respects all operations on spatial

partitions, it follows that D is closed under compositions, involutions and tensor
products. Similarly, Flatm,z maps identity partitions to identity partitions, which
implies idx ∈ D for all x ∈ {◦, •}∗. Thus, D is a category of spatial partitions. Now,
assume C is rigid. The Proposition 3.11 shows that there exist spatial partitions
r ∈ C(1, zz) and s ∈ C(1, zz) satisfying the conjugate equations for z and z. Since
Flatm,z is fully faithful, there exist r̃ ∈ D(1, ◦•) and s̃ ∈ D(1, •◦) with Flatm,z(r̃) = r
and Flatm,z(s̃) = s. These satisfy the conjugate equations for ◦ and • such that D
is also rigid. Finally, assume C is n-graded. Since Flatm,z only moves levels in
consecutive groups of size m to the front, it follows immediately that D is (n · · ·n)-
graded. �

4. From spatial partitions to quantum groups

In the following, we use spatial partitions from the previous section to define
spatial partition quantum groups. We then describe these quantum groups in terms
of universal C∗-algebras and show that the free orthogonal quantum groups O+(Fσ)
can be constructed from our new base partitions. Finally, we show that all resulting
quantum groups are invariant under permuting levels, which implies that our new
base partitions yield the same class of quantum groups as in [10].

Our definition of spatial partition quantum groups follows the one in [10], which
generalizes the definition of easy quantum groups in [6, 30]. However, we discuss
additional technicalities that arise when combining colors with our new base parti-
tions.

4.1. Spatial partition quantum groups. In order to define spatial partition

quantum groups, we need to associate a linear operator T
(n)
p to each spatial partition

p ∈ P(m). However, we first have to introduce some additional notation.

Definition 4.1. Let p ∈ P(m)(x, y) be a spatial partition and i1, . . . , i|x|, j1, . . . , j|y| ∈
Nm be multi-indices of the form ik = (ik,1, . . . , ik,m) for 1 ≤ k ≤ |x| and jk =
(jk,1, . . . , jk,m) for 1 ≤ k ≤ |y|. Label each upper point (k, ℓ) of p with the index ik,ℓ
and each lower point (|x|+ k, ℓ) with the index jk,ℓ. Then define

(δp)
i1,...,i|x|
j1,...,j|y|

:=

{
1 if all points in each block have equal labels,

0 otherwise.

Example 4.2. Consider the spatial partition p := ∈ P(2)(◦, ◦•) and the

indices i1 := (i1,1, i1,2), j1 := (j1,1, j1,2), j2 := (j2,1, j2,2) ∈ N2. Then

(δp)
i1
j1,j2

=

j1,1
j1,2
j2,1
j2,2

i1,1
i1,2

= δi1,1j1,2δi1,2j1,1δj2,1j2,2 ,

where δkℓ denotes the usual Kronecker delta.
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Now, we can assign linear maps to spatial partitions as follows.

Definition 4.3. Let p ∈ P(m)(x, y) be a n-graded spatial partition. Then define
the linear map

T (n)
p : (Cn)⊗x → (Cn)⊗y,

(
T (n)
p

)i1,...,iℓ
j1,...,jk

:=
(
δp
)j1,...,jk
i1,...,iℓ

,

where k := |x|, ℓ := |y| and the coordinates are with respect to the canonical bases

(ex1
j1
⊗ · · · ⊗ exk

jk
)
j1,...,jk∈[n]

, (ey1i1 ⊗ · · · ⊗ eyℓiℓ )i1,...,iℓ∈[n]

of (Cn)⊗x and (Cn)⊗y respectively.

A spatial partition quantum group is a compact matrix quantum group where
the intertwiner spaces between tensor powers of its fundamental representation u◦

and its conjugate representation u• are spanned by linear maps associated with a
category of spatial partitions.

In contrast to [10], the conjugate representation u• will no longer be given by u◦

but depend on the corresponding category of spatial partitions. Further, we include
a possible change of basis in the definition such that the notion of spatial parti-
tion quantum group is compatible with isomorphisms of compact matrix quantum
groups.

Definition 4.4. Let G be a compact matrix quantum group with fundamental
representation u◦ on V and unitary representation u• on V . Then G is a spatial
partition quantum group if there exists a n-graded rigid category of spatial partitions
C ⊆ P(m) and a unitary Q : Cn → V , such that

Hom(ux, uy) = span
{
Q⊗y · T (n)

p · (Q−1)
⊗x
| p ∈ C(x, y)

}
∀x, y ∈ {◦, •}∗.

Since the category C contains a pair of spatial partitions solving the conjugate
equations, it follows that u• is conjugate to u◦. Before we discuss how this con-
jugate representation u• depends on C, we first show that for every rigid category
of spatial partitions, there exists a corresponding spatial partition quantum group.

This requires the following proposition, which states that the mapping p 7→ T
(n)
p is

almost functorial.

Proposition 4.5. Let n := (n1, . . . , nm) ∈ N
m and p, q ∈ P(m) be n-graded spatial

partitions. Then

(1) T
(n)
p ⊗ T

(n)
q = T

(n)
p⊗q

(2)
(
T

(n)
p

)∗
= T

(n)
p∗

(3) T
(n)
p · T (n)

q = Nα · T (n)
pq , where N := n1 · · ·nm and α ∈ N denotes the number

of removed loops when composing p and q (if the composition is defined).

Proof. See [10, Proposition 3.7]. �

Using the previous proposition, we can now show the existence of spatial partition
quantum groups using Woronowicz Tannaka-Krein duality.
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Theorem 4.6. Let C ⊆ P(m) be a n-graded rigid category of spatial partitions.
Then there exists a unique compact matrix quantum group Gn(C) with fundamental
representation u◦ on V := Cn and a unitary representation u• on V , such that

Hom(ux, uy) = span
{
T (n)
p | p ∈ C(x, y)

}
∀x, y ∈ {◦, •}∗.

Proof. Define the linear subspaces

Ĉ(x, y) := span
{
T (n)
p | p ∈ C(x, y)

}
⊆ B(V ⊗x, V ⊗y)

for all x, y ∈ {◦, •}∗. Then Proposition 4.5 implies that Ĉ is closed under composi-
tion, involution and tensor products as in Definition 2.10. Further, one checks that

T
(n)
idx

= idV ⊗x ∈ Ĉ(x, x) for all x ∈ {◦, •}∗. Since C is rigid, there exists a pair of spa-
tial partitions r ∈ C(1, ◦•) and s ∈ C(1, •◦) satisfying the conjugate equations. By

Proposition 4.5, the operators R := T
(n)
r and S := T

(n)
s satisfy again the conjugate

equations for u◦ and u• because no closed loops are removed when composing r and

s. Thus, the subspaces Ĉ(x, y) form a two-colored representation category in the
sense of Definition 2.10 and the statement follows by applying Theorem 2.11. �

Remark 4.7. As discussed in Section 2.4, the quantum group Gn(C) from the
previous theorem is uniquely determined by the following universal property. Let H
be a compact matrix quantum group with fundamental representation w◦ on V and
unitary representation w• on V . If there exists a unitary Q : Cn → V , such that

Hom(ux, uy) ⊆ (Q−1)
⊗y
· Hom(wx, wy) ·Q⊗x ∀x, y ∈ {◦, •}∗,

then H is a subgroup of G via the map u◦ 7→ Q−1w◦Q.

Remark 4.8. It follows directly from the definition that a compact matrix quantum
group is a spatial partition quantum group if and only if it is equivalent to Gn(C)
for a n-graded rigid category of spatial partitions C.

Next, we come back to the conjugate representations u• of spatial partition quan-

tum groups and show that u• can be expressed in terms of u◦ and unitaries F
(n)
σ .

Definition 4.9. Let σ ∈ Sm be a n-graded permutation. Then define the linear

map F
(n)
σ : Cn → Cn by

F (n)
σ (ei1 ⊗ · · · ⊗ eim) = ei

σ−1(1)
⊗ · · · ⊗ ei

σ−1(m)
∀(i1, . . . , im) ∈ [n].

Note that the mapping σ 7→ F
(n)
σ defines a unitary representation of n-graded

permutations on Cn, i.e. we have F
(n)
σ · F (n)

τ = F
(n)
στ and

(
F

(n)
σ

)∗
=
(
F

(n)
σ

)−1
=

F
(n)
σ−1 for all n-graded σ, τ ∈ Sm. Additionally, we write F

(n)

σ for the corresponding
conjugate operator.

Using the linear maps F
(n)
σ , we can now describe the conjugate representations

u• of spatial partition quantum groups of the form Gn(C).
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Proposition 4.10. Let C ⊆ P(m) be a n-graded rigid category of spatial partitions
containing duality partitions σ◦• and σ−1

•◦ . Then the conjugate representation u• of

Gn(C) is given by u• = F
(n)

σ u◦
(
F

(n)

σ

)−1

.

Proof. Denote with u◦ the fundamental representation of Gn(C) and define r := σ◦•

and s := σ−1
•◦ . Since r and s are a pair of duality partitions, Proposition 4.5 implies

that R := T
(n)
r and S := T

(n)
s satisfy the conjugate equations for u◦ and u•. Hence,

Proposition 2.9 yields u• = Fu◦F−1 with F defined by F i
j = Rj,i for all i, j ∈ [n].

Next, we compute

F i
j =

(
T (n)
r

)j,i
= (δr)j,i = δj1iσ(1)

· · · δjmiσ(m)
=
(
F (n)
σ

)i
j

for all i := (i1, . . . , im), j := (i1, . . . , jm) ∈ [n]. Thus, F = F
(n)
σ . �

The previous proposition shows that the conjugate representation u• of Gn(C)
is uniquely determined by the category C. Since any spatial partition quantum
group is equivalent to a Gn(C), it follows that the conjugate representation u• of a
general spatial partition quantum group is uniquely determined by the corresponding
category C and the change of basis Q.

Since the linear maps F
(n)

σ are unitary, the previous proposition additionally im-

plies that the representation u◦ =
(
F

(n)

σ

)−1

u•F
(n)

σ is again unitary. This shows
that u◦ is a conjugate representation of u◦ and that every spatial partition quantum
group is a subgroup of U+

n . We will come back to this fact in Section 4.3, where we
show the intertwiners spaces of a spatial partition quantum groups are still spanned
by spatial partition when we replace u• by u◦.

4.2. Presentations of spatial partitions quantum groups. Next, we describe
the C∗-algebras C(Gn(C)) from the previous section as universal C∗-algebras. If the
category of spatial partitions C is generated by a finite set of spatial partitions, then
we obtain a universal C∗-algebras defined by a finite set of relations. In particular,

this allows us to show that the quantum groups O+(F
(n)
σ ) are spatial partition

quantum groups.
We begin by extending the notation Gn(C) to arbitrary sets of spatial partitions

that generate a rigid category of spatial partitions.

Definition 4.11. Let C0 ⊆ P(m) be a set of n-graded spatial partitions with duality
partitions σ◦•, σ

−1
•◦ ∈ 〈C0〉. Denote with A the universal unital C∗-algebra generated

by the entries of a matrix u := (ui
j)i,j∈[n]

and relations

(1) u◦ := u and u• := F
(n)

σ u
(
F

(n)

σ

)−1

are unitary,

(2) T
(n)
p ux = uy T

(n)
p for all x, y ∈ {◦, •}∗ and p ∈ C0 ∩ P(m)(x, y).

Then Gn(C0) := (A, u) is the spatial partitions quantum groups defined by C0.
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First, note that the compact matrix quantum group Gn(C0) from the previous
definition is well-defined. Indeed, A is generated by the elements ui

j and by the first
relations, u is unitary and u is invertible. Further, one checks that both relations
are compatible with the comultiplication, see also Definition 2.2 and [41].

Next, we show that the C∗-algebra C(Gn(C0)) and thus the quantum groupGn(C0)
does not depend on the particular choice of duality partitions σ◦•, σ

−1
•◦ ∈ 〈C0〉. How-

ever, we first need the following lemma.

Lemma 4.12. Let C0 ⊆ P(m) be a set of n-graded spatial partitions generating a
rigid category of spatial partitions C := 〈C0〉 and consider the quantum group Gn(C0).
Then

span
{
T (n)
p | p ∈ C(x, y)

}
⊆ Hom(ux, uy) ∀x, y ∈ {◦, •}∗.

Proof. Proposition 2.6 and Proposition 4.5 imply that T
(n)
p⊗q, T

(n)
p∗ and T

(n)
pq are also

intertwiners of Gn(C0) for all (composable) p, q ∈ C0. Thus, we obtain inductively

that T
(n)
p is an intertwiner for all p ∈ C. The statement follows by applying the

linearity of intertwiner spaces from Proposition 2.6. �

Now, consider the quantum group Gn(C0) and assume C := 〈C0〉 contains a dif-
ferent pair of duality partitions r := τ◦• and s := τ−1

•◦ for τ ∈ Sm. Then the linear

maps R := T
(n)
r and S := T

(n)
s are intertwiners by the previous proposition and the

proof of Proposition 4.10 shows that u• = F
(n)

τ u
(
F

(n)

τ

)−1

. Therefore, u• and the
C∗-algebra C(Gn(C0)) do not depend on the particular choice of duality partitions
in Definition 4.11.

If C0 = C is already a category of spatial partitions, then the notation Gn(C0) of
the previous definition and Gn(C) of Theorem 4.6 overlap. However, the following
proposition shows that both quantum groups coincide in this case and that more
generally Gn(〈C0〉) and Gn(C0) agree.

Proposition 4.13. Let C0 ⊆ P(m) be a set of n-graded spatial partitions generating
a rigid category of spatial partitions C := 〈C0〉. Then the compact matrix quantum
groups Gn(C) and Gn(C0) from Theorem 4.6 and Definition 4.11 are isomorphic.

Proof. Denote with u and w the fundamental representations of Gn(C0) and Gn(C)
respectively. Then Lemma 4.12 and the universal property of Gn(C) yield the in-
clusion Gn(C0) ⊆ Gn(C) via w 7→ u. Conversely, C0 ⊆ C and Proposition 4.10 show
that w satisfies all defining relations of u. Thus, the universal property of C(Gn(C0))
yields the inverse inclusion Gn(C) ⊆ Gn(C0) via u 7→ w. Therefore, both quantum
groups are isomorphic. �

Using the description of spatial partition quantum groups as universal C∗-algebras,

we can now construct the free orthogonal quantum groups O+(F
(n)
σ ) from spatial

partitions.

Proposition 4.14. Let σ ∈ Sm be a n-graded permutation and C :=
〈
σ◦•, σ

−1
•◦ ,

(m)〉
.

Then Gn(C) and O+(F
(n)
σ ) are isomorphic.
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Proof. Denote with u =: u◦ the fundamental representation of Gn(C) and with w =:

w◦ the fundamental representation of O+(F
(n)
σ ). Further, denote with ι : Cn → Cn

the linear isomorphism given by ι(ei) = ei for all i ∈ [n]. Then u is a unitary
and Proposition 4.10 yields that its conjugate representation u• is given by u• =

F
(n)

σ u
(
F

(n)

σ

)−1

. Since ι = T
(n)
(m) ∈ Hom(u•, u◦), we have ιu• = u◦ι, which implies

u = u◦ = ιu•ι−1 =
(
ιF

(n)

σ

)
u
(
ιF

(n)

σ

)−1

=
(
F (n)
σ ι

)
u
(
F (n)
σ ι

)−1
.

Thus, the universal property of C(O+(F
(n)
σ )) yields the inclusion Gn(C) ⊆ O+(F

(n)
σ )

via w 7→ u.
Conversely, define w• := ι−1wι, which is unitary since both w and ι are unitary.

Further, we have ιw• = ιι−1wι = w◦ι, which shows T
(n)
(m) = ι ∈ Hom(w•, w◦). By the

definition of O+(F
(n)
σ ) and the argument before, we also have

w• = ι−1wι =
(
ι−1F (n)

σ ι
)
w
(
ι−1F (n)

σ ι
)−1

= F
(n)

σ w◦
(
F

(n)

σ

)−1

.

Hence, Proposition 2.8 shows that w◦ and w• are conjugate via intertwiners R ∈
Hom(1, w◦•) and S ∈ Hom(1, w•◦) given by

Ri,j = (F
(n)

σ )
j

i , Si,j = (F
(n)
σ−1)

j

i
∀i, j ∈ [n].

As in proof of Proposition 4.10, this is equivalent to R = T
(n)
σ◦• and S = T

(n)

σ−1
•◦
. There-

fore, w satisfies all the defining relations of C(Gn(C0)) with C0 := {σ◦•, σ
−1
•◦ ,

(m)
}.

Since Gn(C0) = Gn(C) by Proposition 4.13, the universal property of C(Gn(C0))

yields the inverse inclusion O+(F
(n)
σ ) ⊆ Gn(C) via u 7→ w. �

Note that O+(F ) and O+(QFQT ) are isomorphic for any unitary Q, see for

example [33]. Since F
(n)
τ F

(n)
σ

(
F

(n)
τ

)T
= F

(n)
τστ−1 , this implies that O+(F

(n)
σ ) and

O+(F
(n)

τστ−1) are isomorphic for all σ, τ ∈ Sm. Thus, O+(F
(n)
σ ) depends only on the

conjugacy class of σ.

4.3. Permuting levels. In Section 3.3.1, we introduced the functor Permσ,τ that
permutes the levels of a spatial partition depending on the color of the points. In
the following, we show that Permσ,τ leave the quantum groups Gn(C) invariant.
This implies that our new duality partitions yield the same class of spatial partition
quantum groups as defined by Cébron-Weber in [10].

The main work to prove this result will be done in the following technical lemma

about the linear maps T
(n)
Permσ,τ (p)

.

Lemma 4.15. Let σ, τ ∈ Sm be n-graded permutations. Consider a compact matrix
quantum group with fundamental representation u◦ on Cn and unitary representation

u• on Cn. Define the unitary representations û◦ := u◦ and û• :=
(
F

(n)

τσ−1

)−1

u• F
(n)

τσ−1 .
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Then

T
(n)
Permσ,τ (p)

∈ Hom(ux, uy) ⇐⇒
(
F (n)
σ

)⊗y
T (n)
p

((
F (n)
σ

)−1)⊗x

∈ Hom(ûx, ûy)

for all p ∈ P(m)(x, y).

Proof. Let p ∈ P(m)(x, y) and recall from Definition 3.14 that

Permτ,ρ(p) := qyσ,τ · p · (q
x
σ,τ )

−1.

Define the linear operators Qz
σ,τ := T

(n)
qzσ,τ

for all z ∈ {◦, •}∗. Then

(Q◦
σ,τ )

i

j
= (δq◦σ,τ )

j

i
= δj1iσ(1)

. . . δjmiσ(m)
= (F (n)

σ )
i

j

for all i := (i1, . . . , im), j := (j1, . . . , jm) ∈ [n]. Hence, Q◦
σ,τ = F

(n)
σ and similarly one

shows Q•
σ,τ = F

(n)

τ . Since F
(n)
σ and F

(n)

τ come from a unitary representation, it fol-
lows inductively that Qz

σ,τ defines a unitary representation of n-graded permutations
in Sm × Sm. Thus, we can write

T
(n)
Permτ,ρ(p)

= Qy
σ,τ · T

(n)
p · (Qx

σ,τ )
−1 = (Qy

id,τσ−1 ·Q
y
σ,σ) · T

(n)
p · (Qx

id,τσ−1 ·Qx
σ,σ)

−1.

Hence, T
(n)
Permτ,ρ(p)

∈ Hom(ux, uy) if and only if

(Qy

id,τσ−1 ·Q
y
σ,σ) · T

(n)
p · (Qx

id,τσ−1 ·Qx
σ,σ)

−1 · ux

= uy · (Qy

id,τσ−1 ·Q
y
σ,σ) · T

(n)
p (Qx

id,τσ−1 ·Qx
σ,σ)

−1,

which is again equivalent to

Qy
σ,σ · T

(n)
p · (Qx

σ,σ)
−1 · (Qx

id,τσ−1)
−1 · ux ·Qx

id,τσ−1

= (Qy

id,τσ−1)
−1 · uy ·Qy

id,τσ−1 ·Q
y
σ,σ · T

(n)
p · (Qx

σ,σ)
−1.

Since

(F (n)
σ )

⊗z
= Qz

σ,σ, ûz = (Qz
id,τσ−1)

−1uzQz
id,τσ−1 ∀z ∈ {◦, •}∗,

we conclude that

T
(n)
Permσ,τ (p)

∈ Hom(ux, uy) ⇐⇒
(
F (n)
σ

)⊗y
T (n)
p

((
F (n)
σ

)−1)⊗x

∈ Hom(ûx, ûy).

�

Using the previous lemma, we can now show that the spatial partition functor
Permσ,τ leaves the quantum groups Gn(C) invariant.

Theorem 4.16. Let C ⊆ P(m) be a n-graded rigid category of spatial partitions
and σ, τ ∈ Sm be n-graded permutations. Then Gn(C) and Gn(Permσ,τ (C)) are
isomorphic.
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Proof. Define D := Permσ,τ (C) and denote with u◦, u• and w◦, w• the fundamental
representation and conjugate representation of Gn(C) and Gn(D) respectively. Since
the functor Permσ,τ is fully faithful and does not change colors, we have

Hom(wx, wy) = span
{
T (n)
p | p ∈ D(x, y)

}
= span

{
T

(n)
Permσ,τ (p)

| p ∈ C(x, y)
}

for all x, y ∈ {◦, •}∗. Define ŵ◦ := w◦ and ŵ• :=
(
F

(n)

τσ−1

)−1

w• F
(n)

τσ−1 . Then
Lemma 4.15 yields

span
{(

F (n)
σ

)⊗y
T (n)
p

((
F (n)
σ

)−1)⊗x

| p ∈ C(x, y)
}
⊆ Hom(ŵx, ŵy),

which is equivalent to

Hom(ux, uy) ⊆
((
F (n)
σ

)−1)⊗y

· Hom(ŵx, ŵy) ·
(
F (n)
σ

)⊗x
.

Thus, the universal property of Gn(C) and ŵ◦ = w◦ yield the inclusion

Gn(D) ⊆ Gn(C), u◦ 7→
(
F (n)
σ

)−1
w◦F (n)

σ .

Since C = Permσ−1,τ−1(D), the same argument also yields the inverse inclusion

Gn(C) ⊆ Gn(D), w◦ 7→
(
F

(n)

σ−1

)−1
u◦F

(n)

σ−1 .

Therefore, Gn(C) and Gn(D) are isomorphic. �

The previous theorem might be generally useful for determining the quantum
groups associated with concrete categories of spatial partitions. However, as an
immediate consequence, we obtain that the class of spatial partition quantum groups
defined with our new duality partitions agrees with the class of spatial partition
quantum groups defined by Cébron-Weber in [10].

Corollary 4.17. Let G be a spatial partition quantum group. Then G is equivalent
to Gn(C) for a n-graded rigid category of spatial partitions C ⊆ P(m) containing the
duality partitions (m) and (m).

Proof. As discussed in Remark 4.8, any spatial partition quantum group G is equiv-
alent to Gn(D) for a n-graded rigid category of spatial partitions D ⊆ P(m) contain-
ing some duality partitions σ◦• and σ−1

•◦ . By the previous theorem, this quantum
group is again equivalent to Gn(C), where C := Permid,σ−1(D) contains the duality
partitions

Permid,σ−1(σ◦•) =
(m), Permid,σ−1(σ−1

•◦ ) =
(m).

�

In Section 4, we have shown that for every spatial partition quantum group, the
representation u is unitary and conjugate to u. However, it remained open if we can
choose u• = u and obtain again a spatial partition quantum group. The previous
corollary now answers this positively. Since (m) = (idSm

)◦•, the previous corollary
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and Proposition 4.10 show that any spatial partition quantum group is equivalent
to a spatial partition quantum group with

u• = F
(n)

idSm
· u ·

(
F

(n)

idSm

)−1

= u.

Thus, we can always choose u• = u without loss of generality in the setting of spatial
partition quantum groups.

5. Projective spatial partition quantum groups

In the following, we use the functor Flatm,z from Section 3.3.2 to show that the
class of spatial partition quantum groups is closed under taking projective versions
or more generally taking tensor powers of u◦ and u•. We then use this result to

compute the spatial partition quantum groups corresponding to the categories P
(m)
2

of spatial pair partition on m levels. Further, we show that all projective versions of
easy quantum groups are again spatial partition quantum groups. A result of Gro-
mada [20] then allows us to describe these projective versions explicitly in terms of
generators and relations, if the underlying quantum group has a degree of reflection
two.

5.1. Tensor powers of spatial partition quantum groups. If w is a unitary
representation of a compact matrix quantum group, then its matrix coefficients can
be used to define a new compact matrix quantum group. Now, assume u is the
fundamental representation of a quantum group G and u is also unitary. Then
w := u ⊤ u yields the projective version of G denoted by PG. If G is a classical
matrix group, then PG corresponds exactly to the classical projective version

PG := G/(G ∩ {λI | λ ∈ C}).

For more information on the projective versions of compact matrix quantum groups,
see for example [7, 20, 3].

More generally, we can use any powers of the fundamental representation u =: u◦

and a unitary representation u• to construct new quantum groups.

Definition 5.1. Let z ∈ {◦, •}∗ with |z| ≥ 1 and G be a compact matrix quantum
group with fundamental representation u◦ and unitary representation u•. Then
define Gz := (A,w), where A ⊆ C(G) is the C∗-algebra generated by the matrix
coefficients of w := uz.

Note that if u• = u◦, then the projective version PG is exactly given by G◦•.
Further, we have shown in the previous sections that u◦ is unitary for all spatial
partition quantum groups and that we can choose u• = u◦ without loss of generality.
Thus, the projective version of every spatial partition quantum group G is well-
defined and given by G◦•.

In the following, we show that if G is a spatial partition quantum group with
corresponding category C ⊆ P(m), then Gz is again a spatial partition quantum
group for all z ∈ {◦, •}∗ with |z| ≥ 1. Moreover, the corresponding category of Gz
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is given by Flat−1
m,z(C), where Flatm,z is the functor from Section 3.3.2. Here, the

fact that Flat−1
m,z(C) is again a rigid category of spatial partition relies on our new

duality partition, see Proposition 3.23.
Since the functor Flat−1

m,z does not preserve colors, our first step is to show that the

representations wx and uFlatm,z(x) are equivalent for all x ∈ {◦, •}∗, where w◦ := uz

and w• := uz.

Lemma 5.2. Let z ∈ {◦, •}∗ with d := |z| ≥ 1 and consider a compact matrix
quantum group with fundamental representation u◦ on V and unitary representation
u• on V . Define w◦ := uz, w• := uz and the unitaries

Q◦ : V
⊗z → V ⊗z, v1 ⊗ · · · ⊗ vd 7→ v1 ⊗ · · · ⊗ vd ∀v1, . . . , vd ∈ V,

Q• : V ⊗z → V ⊗z, v1 ⊗ · · · ⊗ vd 7→ vd ⊗ · · · ⊗ v1 ∀v1, . . . , vd ∈ V.

Then

Qx :=

|x|⊗

i=1

Qxi
∈ Hom

(
wx, uFlatm,z(x)

)

for all x ∈ {◦, •}∗ and m ∈ N.

Proof. First, consider the case x = ◦. Then w◦ = uz = uFlatm,z(◦) and Q◦ = id⊗z
V ∈

Hom(uz, uz). Next, consider the case x = • and choose an orthonormal basis (vi)i∈I
of V inducing canonical bases for V ⊗z and V ⊗z indexed by i1, . . . , id ∈ I. With
respects to these bases, the matrix entries of w• = uz are given by

(uz)
i1,...,id
j1,...,jd

=
(
(uz)i1,...,idj1,...,jd

)∗
=
(
(uz1)i1j1 · · · (u

zd)idjd
)∗

= (uzd)
id
jd
· · · (uz1)

i1

j1

for all i1, . . . , id, j1, . . . , jd ∈ I. On the other hand, we have uFlatm,z(•) = uz and

(uz)
i1,...,id
j1,...,jd

= (uzd)
i1

j1
· · · (uzd)

id
jd
.

Thus, performing a change of basis using Q• yields uz = Q−1
• · u

z · Q•, which is
equivalent to Q• ∈ Hom(w•, uFlatm,z(•)).

Finally, consider an arbitrary x ∈ {◦, •}∗. The previous computations show that
Qxi
∈ Hom(wxi, uFlatm,z(xi)) for all 1 ≤ i ≤ |x|. Since intertwiner spaces are closed

under tensor products and Flatm,z is a functor, this implies

Qx :=

|x|⊗

i=1

Qxi
∈ Hom

(
⊤
|x|
i=1w

xi, ⊤
|x|
i=1 u

Flatm,z(xi)
)
= Hom

(
wx, uFlatm,z(x)

)
.

�

Remark 5.3. As before, let z ∈ {◦, •}∗ with |z| ≥ 1 and G be a compact matrix
quantum group with fundamental representation u◦ and unitary representation u•.
Since both uz and Q• are unitary, the previous lemma also shows that

w• := uz = Q−1
• · u

z ·Q•
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is unitary. Therefore, Proposition 2.8 implies that w• = uz is conjugate to the
fundamental representation w◦ = uz of Gz.

Remark 5.4. Let u and v be unitary representations of a compact matrix quantum
group G and assume there exists a unitary Q ∈ Hom(u, v). Then u = Q−1vQ and
we can write

Hom(u, w) = Hom(v, w) ·Q, Hom(w, u) = Q−1 · Hom(w, v)

for any unitary representation w of G.

Next, we show that for any spatial partition p the linear maps T
(n)
Flatm,z(p)

and

T
(n···n)
p agree up to a change of basis. Here, n · · ·n denotes the d-fold repetition of

n as in Proposition 3.23.

Lemma 5.5. Let n ∈ Nm and z ∈ {◦, •}∗ with d := |z| ≥ 1. Then

Q−1
y · T

(n)
Flatm,z(p)

·Qx = (S−1)
⊗y
· T (n···n)

p · S⊗x

for all p ∈ P(m·d)(x, y), where Qx, Qy are defined in Lemma 5.2 for V = Cn and

S : (Cn)⊗z → C
n···n, ez1i1 ⊗ · · · ⊗ ezdjd 7→ ei1 ⊗ · · · ⊗ eid ∀i1, . . . , id ∈ [n].

Proof. Let p ∈ P(m·d)(x, y). Define k := |x|, ℓ := |y| and let i1, . . . , iℓ, j1, . . . , jk ∈
[n · · ·n] be of the form

iα := (iα,1,1, . . . , iα,1,m, . . . , iα,d,1, . . . , iα,d,m),

jα := (jα,1,1, . . . , jα,1,m, . . . , jα,d,1, . . . , jα,d,m).

For 1 ≤ β ≤ d, define the slices

i(β)α :=

{
(iα,β,1, . . . , iα,β,m) if xα = ◦,

(iα,β,m, . . . , iα,β,1) if xα = •,
j(β)α :=

{
(jα,β,1, . . . , jα,β,m) if yα = ◦,

(jα,β,m, . . . , jα,β,1) if yα = •.

Then by the definition of S, we have
(
(S−1)

⊗y
· T (n···n)

p · S⊗x
)i1,...,iℓ
j1,...,jk

=
(
T (n···n)
p

)i1,...,iℓ
j1,...,jk

= (δp)
j1,...,jk
i1,...,iℓ

.

On the other hand, the definition of Qx and Qy yields that

(
Q−1

y · T
(n)
Flatm,z(p)

·Qx

)i1,...,iℓ
j1,...,jk

=
(
T

(n)
Flatm,z(p)

)i(1)1 ,...,i
(d)
1 ,...,i

(1)
ℓ

,...,i
(d)
ℓ

j
(1)
1 ,...,j

(d)
1 ,...,j

(1)
k

,...,j
(d)
k

which is given by

(
T

(n)
Flatm,z(p)

)i(1)1 ,...,i
(d)
1 ,...,i

(1)
ℓ

,...,i
(d)
ℓ

j
(1)
1 ,...,j

(d)
1 ,...,j

(1)
k

,...,j
(d)
k

= (δFlatm,z(p))
j
(1)
1 ,...,j

(d)
1 ,...,j

(1)
k

,...,j
(d)
k

i
(1)
1 ,...,i

(d)
1 ,...,i

(1)
ℓ

,...,i
(d)
ℓ

.

The statement of the lemma now follows, since

(δp)
j1,...,jk
i1,...,iℓ

= (δFlatm,z(p))
j
(1)
1 ,...,j

(d)
1 ,...,j

(1)
k

,...,j
(d)
k

i
(1)
1 ,...,i

(d)
1 ,...,i

(1)
ℓ

,...,i
(d)
ℓ

by the definition of Flatm,z. �



32 NICOLAS FAROSS

Using the previous two lemmas, we can now prove our main theorem and show
that quantum groups of the form Gn(C)z are again spatial partition quantum groups.

Theorem 5.6. Let C ⊆ P(m) be a n-graded rigid category of spatial partitions
and z ∈ {◦, •}∗ with |z| ≥ 1. Then Gn(C)

z is equivalent to Gn···n(D) with D :=
Flat−1

m,z(C).

Proof. Denote with u◦, u• and ŵ◦, ŵ• the fundamental representation and conjugate
representation of Gn(C) and Gn···n(D) respectively. Further, denote with w◦ :=

(u◦)z the fundamental representation of Gz and with w• := (u◦)z its conjugate
representation, see Remark 5.3. Then Lemma 5.2 in combination with Remark 5.4
and fact that Flatm,z is fully faithful imply that

Hom(wx, wy) = Q−1
y ·Hom(uFlatm,z(x), uFlatm,z(y)) ·Qx

= span
{
Q−1

y · T
(n)
p ·Qx | p ∈ C(Flatm,z(x),Flatm,z(y))

}

= span
{
Q−1

y · T
(n)
Flatm,z(p)

·Qx | p ∈ D
}

for all x, y ∈ {◦, •}∗. By Lemma 5.5, we have

Q−1
y · T

(n)
Flatm,z(p)

·Qx = (S−1)
⊗y
· T (n···n)

p · S⊗x

for a unitary S : (Cn)⊗z → C
n...n, which yields

Hom(wx, wy) = span
{
(S−1)

⊗y
· T (n···n)

p · S⊗x | p ∈ D(x, y)
}

= (S−1)
⊗y
· Hom(ŵx, ŵy) · S⊗x.

Therefore, Gn(C)
z and Gn...n(D) are equivalent. �

Since every spatial partition quantum group is equivalent to a quantum group
of the form Gn(C), we can use the following proposition to transfer the previous
theorem to all spatial partition quantum groups.

Proposition 5.7. Let G and H be compact matrix quantum groups with fundamen-
tal representations u◦, û◦ and conjugate representations u•, û• respectively. If G and
H are equivalent, then Gz and Hz are equivalent for all z ∈ {◦, •}∗ with |z| ≥ 1.

Proof. Since G and H are equivalent, there exists a unitary S such that

Hom(ux, uy) = S⊗y ·Hom(ûx, ûy) · (S−1)
⊗x

∀x, y ∈ {◦, •}∗.

Denote with w◦ := (u◦)z and ŵ◦ := (û◦)z the fundamental representations of Gz and

Hz. Then Remark 5.3 shows that w• := (u◦)z and ŵ• := (û◦)z are the corresponding
conjugate representations. Let x, y ∈ {◦, •}∗ and define x̃ := Flat1,z(x) and ỹ :=
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Flat1,z(y). Then Lemma 5.2 and Remark 5.4 show that

Hom(wx, wy) = Q−1
y · Hom(ux̃, uỹ) ·Qx

= Q−1
y · S

⊗ỹ · Hom(ûx̃, ûỹ) · (S−1)
⊗x̃
·Qx

= Q−1
y · S

⊗ỹ ·Qỹ · Hom(ŵx, ŵy) ·Q−1
x̃ · (S

−1)
⊗x̃
·Qx.

Thus, Gz and Hz are also equivalent. �

Corollary 5.8. Let G be a spatial partition quantum group and z ∈ {◦, •}∗ with
|z| ≥ 1. Then Gz is a spatial partition quantum group.

Proof. SinceG is a spatial partition quantum group, it is equivalent to Gn(C) for a n-
graded rigid category of spatial partitions C ⊆ P(m). Then the previous proposition
shows that Gz is equivalent to Gn(C)z, which is a spatial partition quantum group
by Theorem 5.6. �

As a special case, it follows that the class of spatial partition quantum groups is
closed under taking projective versions.

Corollary 5.9. Let G be a spatial partition quantum group. Then PG is a spatial
partition quantum group.

Proof. By Corollary 4.17 and the discussion at the end of Section 4.3, we can assume
that the conjugate representation of G is given by u• = u◦. In this case, PG = G◦•,
which a spatial partition quantum group by Corollary 5.8. �

5.2. Categories of all spatial pair partitions. As a first application of the pre-

vious theorem, we consider the quantum groups associated with the categories P(m)
2

of all spatial pair partitions on m levels, i.e. spatial partition on m levels with every
block of size two.

It is shown in [6] that the category P(1)
2 of pair partitions on one level corresponds

to the classical orthogonal group On. Further, the author shows in [14] that the

category P(2)
2 of spatial pair partition on two levels corresponds to the classical

projective orthogonal group POn. In the following, we determine quantum groups

in the remaining cases m ≥ 3 and show that G(n,...,n)(P
(m)
2 ) is equivalent to O◦···◦

n .
Note that in contrast to our definition, the categories in [6, 14] are defined in terms

of colorless partitions. However, in our setting, P(m)
2 contains the spatial partition

(m) that corresponds to the C∗-algebraic relations ui
j = (ui

j)
∗
making the generators

self-adjoint. Thus, our quantum groups G(n,...,n)(P
(m)
2 ) agree with the corresponding

orthogonal quantum groups in [6, 14]. See also [30] for more on the relation between
orthogonal and unitary easy quantum groups.

Proposition 5.10. Let m ≥ 1 and n ∈ N. Then G(n,...,n)(P
(m)
2 ) is equivalent to Oz

n

with z := ◦m.
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Proof. Since the functor Flat1,z does not change the size of blocks, pair partitions
are mapped to pair partitions and we have

Flat−1
1,z(P

(1)
2 ) = P(m)

2 .

Since Gn(P
(1)
2 ) = On, Theorem 5.6 implies that G(n,...,n)(P

(m)
2 ) is equivalent to Oz

n.
�

By relaxing our notion of isomorphism of compact matrix quantum groups, we
can give a more explicit description of the resulting quantum groups O◦···◦

n .

Proposition 5.11. Let n ∈ N and z := ◦m with m ≥ 1. Then

Oz
n =

{
On if m is odd,

POn if m is even,

as compact quantum groups.

Proof. Denote with u the fundamental representation of On. First, we assume that
m is odd, i.e. m = 2k + 1. Then, consider the inclusion C(Oz

n) →֒ C(On), which is
injective and respects the comultiplication. Since u is orthogonal, we compute

∑

j1,...,jk∈[n]

ui0
j0
u1
j1
u1
j1
. . . u1

jk
u1
jk
= ui0

j0

( n∑

j1=1

u1
j1
u1
j1

)

︸ ︷︷ ︸
=1

. . .

( n∑

jk=1

u1
jk
u1
jk

)

︸ ︷︷ ︸
=1

= ui0
j0
∈ C(Oz

n)

for all i0, j0 ∈ [n]. Thus, the inclusion is also surjective and defines an isomorphism
of compact quantum groups.

Next, we assume thatm is even, i.e.m = 2k. Then, we have an inclusion C(Oz
n) →֒

C(POn) and compute

∑

j2,...,jk∈[n]

ui0
j0
ui1
j1
u1
j2
u1
j2
. . . u1

jk
u1
jk
= ui0

j0
ui1
j1

( n∑

j2=1

u1
j2
u1
j2

)

︸ ︷︷ ︸
=1

. . .

( n∑

jk=1

u1
jk
u1
jk

)

︸ ︷︷ ︸
=1

= ui0
j0
ui1
j1

for all i0, j0, i1, j1 ∈ [n]. Thus, ui0
j0
ui1
j1
∈ C(Oz

n), which shows that the inclusion is
surjective and defines an isomorphism of compact quantum groups. �

5.3. Projective easy quantum groups. Consider an easy quantum group G.
Then its projective version PG might not be an easy quantum group in general.
However, since easy quantum groups are a subclass of spatial partition quantum
groups, it follows from Theorem 5.6 that projective versions of easy quantum groups
are again spatial partition quantum groups. Thus, it is always possible to describe
projective versions of easy quantum groups in terms of spatial partitions.

If G corresponds to a category of partitions C, then the proof of Theorem 5.6
shows the category of its projective version PG is given by Flat−1

1,◦•(C). This is
particularly useful if the category C can be characterized via an abstract property
as in the case of spatial pair partitions in the previous section. On the other hand,
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if the category C is only given by a set of generators, then it might be difficult in
general to obtain a generating set for the category of its projective version.

However, in the special case when G is an orthogonal quantum group with degree
of reflection two, Gromada [20] provides a result that allows us to convert generators
of C to generators of its projective version.

Proposition 5.12 ([20]). Consider an orthogonal compact matrix quantum group
G ⊆ O+(F ) with fundamental representation on Cn and degree of reflection two.
Consider an admissible generating set S of Rep(G) containing the duality mor-
phisms. Then Rep(PG) is generated by S and idCn ⊗S ⊗ idCn.

Here, an orthogonal compact matrix group with fundamental representation u
has degree of reflection two, if

Hom(u⊤ k, u⊤ ℓ) = {0} ∀k, ℓ ∈ N, k + ℓ even.

Further, a linear map T ∈ S is called admissible, if T is of the form T : (Cn)⊗k →

(Cn)⊗ℓ with k and ℓ even. Note that we can always use the duality morphisms to
bring any intertwiner of a degree of reflection two quantum group into admissible
form. See [20] or [27] for further details.

Next, we reformulate Proposition 5.12 in the setting of spatial partition quantum
groups, before we apply it to concrete examples of easy quantum groups.

Proposition 5.13. Let n ∈ N and C ⊆ P(1) be a category of spatial partitions
generated by and a set C0 ⊆ P(1) such that

(1) C0 contains the partition ,

(2) every p ∈ C0 has only white points,

(3) if p ∈ C0 has upper colors x and lower colors y, then |x| and |y| are even.

Then PGn(C) is equivalent to G(n,n)(D), where D ⊆ P(2) is generated by
(2)
,

Flat−1
1,◦•(C0) and Flat−1

1,◦•(id◦⊗C0 ⊗ id◦).

Proof. Since C contains the partitions and , it follows that C also contains the
partitions and . Thus, Proposition 4.14 implies that Gn(C) ⊆ O+

n is an orthog-
onal quantum group and we have u = u after identify Cn with Cn. Moreover, it

follows from Definition 4.11 that the intertwiners S := {T (n)
p | p ∈ C0} generate the

category Rep(G) in the sense of [20]. Therefore, we can apply Proposition 5.12 and
obtain that the representation category Rep(PG) is generated S and idCn ⊗S⊗ idCn

in the sense of [20]. The proof Theorem 5.6 and in particular Lemma 5.5 now show
that we can use the functor Flat1,◦• translate these new generators back to spatial

partitions. Further, we have to add again the spatial partition
(2)

to obtain an
orthogonal quantum group. Thus, PGn(C) is equivalent to G(n,n)(D) where D is

generated by
(2)
, Flat−1

1,◦•(C0) and Flat−1
1,◦•(id◦⊗C0 ⊗ id◦). �

Now, we can apply the previous proposition to easy quantum group with degree
of reflection two. Figure 1 presents the result for easy quantum groups described
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easy quantum group generators C0 projective generators D0

On , , , ,

O∗
n , , , ,

O+
n ,

Hn , , , , , , ,

H∗
n , , , , , , ,

H+
n , , , ,

S ′
n , , , , , , , , , ,

S ′+
n , , , , , , ,

B′
n , , , , , , ,

B′+
n , , , ,

B#∗
n , , , , , , ,

B#+
n , , , ,

Figure 1. Generators for categories of easy quantum groups and

their projective version. The spatial partitions and
(2)

are omitted.

in [29], see also the appendix of [34]. It contains the generators for the corresponding
categories of spatial partitions as well as their projective versions. Note that the

spatial partitions and
(2)

are included implicitly.
Figure 1 does not include the quantum groups Sn, Bn, S

+
n and B+

n since these
do not have a degree of reflection two. However, their projective versions depend
only on the even part of their respective categories of spatial partitions, which are
exactly the categories of S ′

n, B
′
n, S

′+
n and B′+

n .
We can now use Figure 1 and Definition 4.11 to describe the C∗-algebras A :=

C(G(n,n)(D)) of the previous projective quantum groups as universal unital C∗-
algebras generated by a finite set of relations. Since the fundamental representation
of a projective easy quantum group is defined on Cn ⊗ Cn, it follows that A is gen-
erated by the coefficients of the matrix u :=

(
ui1i2
j1j2

)
with i1, i2, j1, j2 ∈ [n]. Further,

one checks that the category D always contains = (12)◦◦ such that the duality

partitions of D are given by (12)◦•, (12)•◦ Thus, we have u• := F (12)uF
−1

(12), which

can be written using matrix coefficients as (u•)i1i2j1j2
= (ui2i1

j2j1
)
∗
. The C∗-algebra A

then satisfies the relations

uu∗ = u∗u = 1, u•(u•)∗ = (u•)∗u• = 1
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making both u and u• unitary. Further, the intertwiner T
(n,n)
(2) yields the relation

T
(n,n)
(2) u• = uT

(n,n)
(2) or equivalently (ui2i1

j2j1
)
∗
= ui1i2

j1j2
. Finally, the C∗-algebra A satisfies

the relations T
(n,n)
p u⊤ k = u⊤ ℓT

(n,n)
p for all p ∈ D0. For the partitions given in

Figure 1, these relations can be explicitly written as follows, where again all indices
are quantified over [n].

: 1 =
∑

ℓ1,ℓ2

ui1i2
ℓ1ℓ2

: ui1i4
j1j2

=
∑

ℓ1,ℓ2

ui1i2
j1ℓ1

ui3i4
ℓ2j2

: δi1i2 =
∑

ℓ

ui1i2
ℓℓ : δi2i3u

i1i4
j1j2

=
∑

ℓ

ui1i2
j1ℓ

ui3i4
ℓj2

: ui2i1
j1j2

= ui1i2
j2j1

: ui1i3
j1j2

ui2i4
j3j4

= ui3i4
j1j3

ui1i2
j2j4

: δi1i2u
i1i1
j1j2

= δj1j2u
i1i2
j1j1

: δi2i3u
i1i2
j1j2

ui2i4
j3j4

= δj2j3u
i1i2
j1j2

ui3i4
j2j4

:
∑

k

ui2k
j1j2

=
∑

ℓ

ui1i2
ℓj1

:
∑

k

ui1i3
j1j2

uki4
j3j4

=
∑

ℓ

ui1i2
j1ℓ

ui3i4
j2j4

: δi1i4u
i3i2
j1j2

=
∑

ℓ

ui1i2
ℓj2

ui3i4
j1ℓ

: δi2i5u
i1i4
j1j2

ui3i6
j3j4

=
∑

ℓ

ui1i2
j1ℓ

ui3i4
j3j2

ui5i6
ℓj4
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