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The recent experimental observation of quantum anomalous Hall (QAH) effects in the rhom-
bohedrally stacked pentalayer graphene has motivated theoretical discussions on the possibility of
quantum anomalous Hall crystal (QAHC), a topological version of Wigner crystal. Conventionally
Wigner crystal was assumed to have a period acrystal = 1/

√
n locked to the density n. In this work we

propose new types of topological Wigner crystals labeled as QAHC-z with period acrystal =
√

z/n.
In rhombohedrally stacked graphene aligned with hexagon boron nitride (hBN), we find parameter
regimes where QAHC-2 and QAHC-3 have lower energy than the conventional QAHC-1 at total
filling ν = 1 per moiré unit cell. These states all have total Chern number Ctot = 1 and are con-
sistent with the QAH effect observed in the experiments. The larger period QAHC states have
better kinetic energy due to the unique Mexican-hat dispersion of the pentalayer graphene, which
can compensate for the loss in the interaction energy. Unlike QAHC-1, QAHC-2 and QAHC-3 also
break the moiré translation symmetry and are sharply distinct from a moiré band insulator. We
also briefly discuss the competition between integer QAHC and fractional QAHC states at filling
ν = 2/3. Besides, we notice the importance of the moiré potential. A larger moiré potential can
greatly change the phase diagram and even favors a QAHC-1 ansatz with C = 2 Chern band.

Introduction Fractional quantum anomalous
Hall (FQAH) effects, defined as fractional quantum Hall
(FQH) effects [1, 2] at zero magnetic field, have been
theoretically proposed to be possible in a narrow Chern
band [3–11]. In recent years, various moiré systems
have been proposed as promising candidates [12–22].
Integer quantum anomalous Hall (QAH) effects have
been reported in twisted bilayer graphene (TBG) aligned
with hexagon boron nitride (hBN) [23, 24], ABC-trilayer
graphene/hBN moiré system [25], transition metal
dichalcogenide (TMD) moiré heterobilayers [26] and
homobilayers [27]. Later, FQAH was finally realized in
twisted MoTe2 homobilayers [28–31] and rhombohedrally
stacked pentalayer graphene [32, 33]. In twisted MoTe2,
the first valence band has a nonzero Chern number
C = 1 [13, 34, 35], resembling a Landau level, which
makes FQAH states at fractional fillings quite natural.
In contrast, in the pentalayer graphene system, even the
integer QAH effect at ν = 1 is a surprise because the
moiré potential is too weak to open a band gap.

Theoretical progress has been made to understand the
integer filling ν = 1 for pentalayer graphene [36–44].
Although there is no band gap at the single particle
level because electrons are pushed to layers far away
from the aligned hBN and feel only a weak moiré po-
tential, Hartree Fock calculations [36–38, 40, 41] show
that interactions can spontaneously generate a large crys-
tal potential at the mean field level, providing a nar-
row Chern band with C = 1. In the limit of a vanish-
ing moiré potential, the phase is a topological version
of Wigner crystal, dubbed as quantum anomalous Hall
crystal (QAHC) [37, 38]. Similar physics is predicted to
appear in rhombohedrally stacked nlayer-layer graphene
with nlayer = 4, 6, 7, later verified by experiments [45–48].
The new concept of QAHC has attracted lots of atten-
tions [49–54]. However, there are debates on whether
the QAH insulator is really different from a moiré band

insulator and the role of the moiré potetial [55]. In this
paper we ask the following question: can we find a QAHC
state which also breaks the moiré translation symmetry,
thereby sharply distinguished from a moiré band insu-
lator? If an integer QAH effect is realized at fractional
filling, it is guaranteed to break translation symmetry, as
observed in twisted bilayer-trilayer graphene [56]. Here
we present surprising results showing that even the inte-
ger QAH insulator at ν = 1 may break moiré translation
symmetry.

Given that the moiré potential is a perturbation, we
can first consider the moiréless limit. We extend the
quantum anomalous Hall crystal concept and use QAHC-
z to label a crystal with a unit cell size z times larger
than the usual QAHC or Wigner crystal. Specifically,
the crystal period is given by acrystal =

√
z/n, where n is

the electron density. Previous Hartree Fock calculations
were restricted to QAHC-1 without any enlargement of
the unit cell at ν = 1. In contrast, we also include the
possibilities of QAHC-2 and QAHC-3 in our new Hartree
Fock calculations and find that they can be favored in
certain parameter space spanned by the twist angle and
the displacement field δD. These new crystals have 2 or 3
bands fully occupied, but still have a total Chern number
Ctot = 1, consistent with the QAH effect with σxy =
e2/h. Unlike QAHC-1, they break the moiré translation
symmetry and are unambiguously beyond band insulator
descriptions.

We also study the competition between integer QAHCs
and FQAH states at fractional filling ν = 2/3. Follow-
ing the spirit of the variational method, we compare the
energy of an FQAH state obtained by exact diagonaliza-
tion (ED) and QAHCs from Hartree Fock calculations.
We find that the FQAH state is usually at a lower en-
ergy and is increasingly favored with stronger interaction
strengths and a stronger moiré potential. Among the in-
teger QAH states, the QAHC-1 and QHAC-2 are in close
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competitions, with either one being potentially favored
depending on parameters. Hence we expect a rich phase
diagram in rhombohedral multilayer graphene systems.

Model We employ the continuum model to calculate
the bare band structure, with the Hamiltonian for each
valley and spin given by:

HK = H0 + VMHM , (1)

where H0 represents the Hamiltonian of rhombohedral
pentalayer graphene:

H0 =


H1 Γ Γ̃ 02×2 02×2

Γ† H2 Γ Γ̃ 02×2

Γ̃† Γ† H3 Γ Γ̃

02×2 Γ̃† Γ† H4 Γ

02×2 02×2 Γ̃† Γ† H5

 , (2)

with the block matrices defined as follows:

Hi =

(
( i4 − 1

2 )δD + uA,i −
√
3
2 γ0(k̃x − ik̃y)

−
√
3
2 γ0(k̃x + ik̃y) ( i4 − 1

2 )δD + uB,i

)
, (3)

Γ =

(
−

√
3
2 γ4(k̃x − ik̃y) −

√
3
2 γ3(k̃x + ik̃y)

γ1 −
√
3
2 γ4(k̃x − ik̃y)

)
, (4)

Γ̃ =

(
0 1

2γ2
0 0

)
. (5)

The parameters used are (γ0, γ1, γ2, γ3, γ4) =
(−2600, 358,−8.3, 293, 144) meV. The potential dif-
ference between the top and the bottom graphene
layers is denoted by δD. uA,1 = uB,5 = 0,
uB,1 = uA,5 = 12.2 meV, uA,i = uB,i = −16.4 meV
for other terms. We rotate the graphene as
k̃x + ik̃y = eiθ3(kx + iky), where θ3 = arctan θ

δa
with θ

representing the twist angle between the graphene and
the hBN. δa = ahBN−aG

ahBN
= 0.017, where ahBN and aG are

the lattice constants of graphene and hBN respectively.
The moiré potential, representing the tunneling be-

tween the first graphene layer aligned with the hBN, is
given by:

HM (Gj) =

(
C0e

iϕ0 + Cze
iϕz CABe

i(
(3−j)π

3 −ϕAB)

CABe
i(

(1+j)π
3 −ϕAB) C0e

iϕ0 − Cze
iϕz

)
,

(6)
where the momentum difference given by Gj =

4π√
3LM

(cos( jπ3 − 5π
6 ), sin( jπ3 − 5π

6 ))T for j = 1, 3, 5. For

j = 2, 4, 6, the tunneling is obtained by taking the Her-
mitian conjugate. The parameters are determined from
DFT calculations [57] as C0 = −10.13 meV, ϕ0 = 86.53◦,
Cz = −9.01 meV, ϕz = 8.43◦, CAB = 11.34 meV,
ϕAB = 19.60◦. Here we introduce an artificial parameter
VM in Eq. 1. We project the moiré potential onto the
conduction bands to compare the energies for different
VM values (see the Appendix).
The interaction is given by the Coulomb potential:

HV =
1

2A

∑
l,l′

∑
q

Vll′(q) : ρl(q)ρl′(−q) :, (7)

in whichA is the area of the system, ρl(q) is the density in

the layer l. Vll′(q) =
e2 tanh qλ

2ϵ0ϵq
e−q|l−l

′|dlayer , λ = 30 nm is

the screening length and dlayer = 0.34 nm is the distance
between adjacent layers. In all of the calculations, we use
ϵ = 10 unless specified.
Integer QAHC at ν = 1 For the integer QAH insu-

lator at ν = 1 observed in recent experiments [32, 33, 45],
we focus on the conduction bands. Due to the large
and negative displacement field δD, the conduction elec-
trons mainly stay in the bottom layer, away from the
aligned hBN on the top. As a consequence, the moiré
potential projected onto the conduction band is less than
0.05 meV [37]. The previous theories suggest that the in-
sulator at ν = 1 is a QAHC state [36–38] that is pinned
by this small moiré potential. However, previous studies
have been limited to crystals whose period is the same
as the moiré period. In principle, the topological crys-
tal state can have different crystal periods. We general-
ize the notion of QAHC to QAHC-z, where z ∈ Z, and
the crystal period is labeled as acrystal =

√
z/νaM . The

corresponding reciprocal lattice vector is represented as

G
(z)
i . For values of z/ν = m2

1 + m2
2 + m1m2, where

m1,m2 ∈ Z, the moiré potential is commensurate with
the crystal period, allowing it to pin the crystal. For
other values of z, the ground state energy remains un-
affected by the moiré potential when treated as a first
order perturbation.
Phase diagram of QAH crystals We assume fully

spin and valley polarization [12, 58] and perform HF cal-
culations at ν = 1 for different QAHC-z ansatzes. For
each QAHC-z, the calculation is conducted in a smaller
Brillouin zone (BZ) scaled by 1/

√
z relative to the moiré

Brillouin zone (MBZ), with z electrons per unit cell. We
compare the energies of different crystals with z = 1, 2, 3
and select the one with the lowest energy. The result-
ing phase diagram is shown in Fig. 1(a). The anoma-
lous Hall conductivity is determined by the total Chern
number Ctot for the fully filled bands, i.e., first z HF
conduction bands for QAHC-z. Ctot is 0 or 1 in the
whole phase diagram, consistent with previous studies
restricted to the z = 1 ansatz [36–38]. However, we now
find two additional phases at VM = 1: QAHC-2 and
QAHC-3 with also Ctot = 1. Moreover, we manually in-
crease the moiré potential by setting VM to be 2 and 5 in
Fig. 1(b)(c) to study the effect of a larger moiré poten-
tial. We note that QAHC-1 is favored by larger VM as
expected. For VM = 5, there is also a Ctot = 2 QAHC-1
state in some region of (aM , δD), indicating the possibil-
ity of realizing higher Chern number in the pentalayer
rhombohedral graphene system by enhancing the moiré
potential. We also include results for a different parame-
ter with |γ0| = 3100 meV in the appendix. There we find
QAHC-2 occupies an even larger region for VM = 1. Also
for VM = 2, we can already find QAHC-1 with C = 2.
Although it is still not clear which parameter is more
realistic, we can conclude that the QAHC-2 phase is pos-
sible and the C = 2 QAH insulator can be potentially
stabilized with sufficiently larger VM .
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𝑧, 𝐶!"! :
1,0 2,0 3,0 1,1 2,1 3,1 1,2

𝑧, 𝐶!"! :
1,0 2,0 3,0 1,1 2,1 3,1

𝑧, 𝐶!"! :
1,0 2,0 3,0 1,1 2,1 3,1

(𝑑)(𝑐)

V! = 1 V! = 2

V! = 5 V! = 1

FIG. 1. HF calculation results at ϵ = 10. (a) The phase di-
agram of QAHC as a function of displacement field D and
moiré period aM and VM = 1. The label (z, Ctot) represents
the state is QAHC-z with total Chern number Ctot. We keep
Nb,c conduction bands and Nb,v valence bands in the calcu-
lation. For QAHC-z with z = 1, 2, 3, we set Nb,c to 7, 7 and
9 respectively. Nb,v is taken as 0 for all values of z, since the
valence bands are separated by the large displacement field.
The calculations are performed using an Nk ×Nk grid in the
crystal BZ. For z = 1, 2, 3, we set Nk to 12, 12 and 9 re-
spectively. (b)(c) Similar to (a), but with VM = 2, 5 instead.
(d) For θ = 0.89◦ (aM = 10.7 nm) and VM = 1, displays
of the function |ρ̃(q)| of QAHC-1 (δD = 120 meV), QAHC-2
(δD = 160 meV) and QAHC-3 (δD = 210 meV) respectively.

To distinguish different QAHC-z states, one can mea-
sure the density distributions of conduction electrons,
which is calculated as follows:

ρ(r) =
∑
q

ρ̃(q)e−iq·r, (8)

ρ̃(q) =
1

nN2
k

∑
m1,m2,k

⟨uHF,m1
(k+ q)|uHF,m2

(k)⟩, (9)

where k is defined in the crystal BZ, which is discretized
into Nk × Nk points. Here, |uHF,m1

(k)⟩ represents the
periodic part of the mth

1 conduction HF Bloch wavefunc-
tion, and m1,m2 range over the values 0, 1, ..., Nb,c − 1.
q = n1G1 + n2G2 corresponds to any integer linear
combination of the crystal reciprocal lattice vectors. In
Fig. 1(d), we compare ρ̃(q) for different QAHC-z states,

showing that |ρ̃(G(z)
i )| values are on the same scale.

Future experiments may identify the specific state of
the system under given parameters by measuring ρ̃(q).
Moreover, we present the real space density profile ρ(r)
for QAHC-1, QAHC-2, QAHC-3 in Fig. 2(a)-(c), respec-
tively. In addition, we plot the density profile for the
C = 1 state at VM = 5 in Fig. 2(d). One can clearly see
the different crystal periods and shapes of these phases
at the same filling ν = 1. The corresponding band struc-
tures are shown in Fig. 3.

(𝑎) (𝑏)

(𝑐) (𝑑)

QAHC1, 𝐶!"! = 1 QAHC2, 𝐶!"! = 1

QAHC3, 𝐶!"! = 1 QAHC1, 𝐶!"! = 2

FIG. 2. In (a)-(c), θ = 0.89◦ (aM = 10.7 nm). The density
profiles are shown for (a) (δD = 120 meV, QAHC-1), (b)
(δD = 160 meV, QAHC-2) and (c) (δD = 210 meV, QAHC-
3). In (d), we manually set VM = 5 and plot the density
distribution for θ = 0.78◦ (aM = 11.3 nm), δD = 190 meV.
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(𝑐) (𝑑)

(𝑎) (𝑏)𝐶!"! = 1 𝐶!"! = 1

𝐶!"! = 1 𝐶!"! = 2

FIG. 3. The parameters used in (a)-(d) is the same as in
Fig. 2 (a)-(d). The black dashed line represents the Fermi
energy.

Effect of the kinetic energy The emergence of en-
larged unit cell at ν = 1 is a surprise. Here we pro-
vide some intuition. The preference for QAHC-z with
z > 1 arises from the kinetic energy. The band dis-
persion exhibits a Mexican-hat structure in the origi-
nal BZ of graphene, with the band minimum forming
a ring, as illustrated in Fig. 4(a). The kinetic energy
of the conduction electrons can be reduced by shifting

the momentum distribution, ne(k) =
∑
l⟨c

†
l (k)cl(k)⟩, at

k to k + G
(z)
i in QAHC-z. Here cl(k) represents the

electron operator in the graphene BZ for layer l. In the

region where QAHC-2 and QAHC-3 are favored, G
(z)
i

is located around the ring of the dispersion minimum.
Therefore, ne(k) at the Γ point of the MBZ is trans-
ferred to around the dispersion minimum, reducing the
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(𝑎) (𝑏)

(𝑐) (𝑑)

0
G!
"

(𝜅 # )
G!
$ G!

#

FIG. 4. The results for θ = 0.89◦ (aM = 10.7 nm). (a)
The conduction band of pentalayer graphene in the moiréless
limit at δD = 160 meV. The black and red dashed circle
represent |k| = |G(2)

i | and |k| = |G(1)
i | respectively. (b) The

linecut of the momentum distribution ne(k) at δD = 160 meV.
The blue, orange, green line represents QAHC-1, QAHC-2,
QAHC-3 respectively. (c) The total energy and (d) the kinetic
energy per moiré unit cell of QAHC-z as a function of δD.
The blue line represents EQAHC2 − EQAHC1, the orange line
represents EQAHC3 − EQAHC1.

total kinetic energy. As shown in Fig. 4(b), the momen-
tum distribution ne(k) at the Γ point is close to 1 for
QAHC-1, but is considerably reduced for QAHC-2 and
QAHC-3. To compare the effects of kinetic energy on
total energy, we plot the line cuts of the total energy and
kinetic energy of QAHC-z in Fig. 4(c)(d). In the region
where QAHC-2 and QAHC-3 are energetically preferred
compared to QAHC-1, the kinetic energy is significantly
lower for QAHC-2 and QAHC-3 compared to QAHC-1,
which compensates a higher interaction energy. We con-
clude that the QAHC-2 and QAHC-3 phases are unique
to the Mexican-hat dispersion. We expect them to be
more favored for larger ϵ with reduced interaction.

Competition between FQAH and IQAH at ν =
2/3 Next we turn to the fractional filling ν = 2/3. Previ-
ous theories identify an FCI candidate through ED cal-
culation projected onto the lowest band of the QAHC-1
insulator at ν = 1 [36–38]. However, the calculation is
performed only within a subspace of the full Hilbert space
and is better viewed as a variational calculation. Due
to the variational nature, the method is biased towards
the FCI state and ignore other candidates such as integer
QAHCs with a different crystal period. The recent exper-
iments have observed close competition between integer
and fractional QAH states at fractional filling [33, 45]. To
our best knowledge, there is no feasible framework to in-
clude all possible crystals in an unbiased way. Note that
simply including more Hartree Fock bands from the ν = 1
QAHC-1 ansatz does not really help much, as the multi-

band calculation is still biased towards the acrystal = aM
crystal and ignores the possibilities of other crystals with
different periods. Here we still follow the spirit of varia-
tional calculations and compare energies of different pos-
sible ansatz.

We target the following ansatzes: (I) an FCI state at
fractional filling of the lowest Chern band of the QAHC-1
crystal at ν = 1. We obtain this state through an ED
calculation. We have improved the procedure to get a
self consistent crystal potential directly at the filling ν =
2/3 [37, 59] (see the Appendix). (II) We obtain various
QAHC-z states with integer QAH at ν = 2/3 through
HF calculations. Now the crystal period is acrystal =√
z/νaM and we still have z bands fully occupied.

We find the following competing states: FCI, QAHC-1
and QAHC-2. As shown in Fig. 5(a), we find that the FCI
state is at slightly lower energy than the QAHC-1 state.
But when increasing the dielectric constant ϵ, the inte-
ger QAHC-1 and QAHC-2 states become more favored,
though still at higher energy than the FCI within our
approximation. Among the integer quantum Hall states,
QAHC-2 and QAHC-1 are competing with very close en-
ergy. At small VM , QAHC-1 has a lower energy for the
(aM , D) parameter we used. But with a larger VM , the
energy of QAHC-2 becomes lower than that of QAHC-
1, due to its commensurability with the moiré potential.
We note that QAHC-2 is in the same symmetry class as a
hole crystal, which can be understood as a trivial charge
density wave of holes doped into the QAHC-1 state at
ν = 1. However, as we discussed in the previous section
on ν = 1, the QAHC-2 phase we find does not really
rely on a parent QAH phase at a larger doping. Instead
it may be viewed as a new type of quantum anomalous
Hall crystal, which is favored by the moiré potential at
ν = 2/3.

In summary, we find close competition between FCI
and QAHC-1 and QAHC-2 at ν = 2/3. Within our ap-
proximations, FCI appears to always have lower energy
than the integer QAH states. However, the comparison
may not be fair as the QHAC-1 and QAHC-2 ansatz are
obtained from Hartree Fock calculations. The only confi-
dent statement we can make is that the energies of these
three states are close. Given the large tunability of the
system, all of them might be realized in different parame-
ter regions. We note that the recent experiments [33, 45]
observed an integer QAH insulator at ν = 2/3. Based on
our calculation, we propose either QAHC-1 or QAHC-2
as a possible candidate, which can be only distinguished
by imaging the density profile.

Summary In conclusion, we propose a new class
of quantum anomalous Hall crystals (QAHCs) with
larger crystal periods than the familiar Wigner crystal.
Through Hartree Fock calculations, we demonstrate the
possibility of QAHCs with doubled or tripled unit cell
even at integer filling ν = 1 in pentalayer graphene
aligned with hBN. We also show that the FCI state and
two QAHCs are in close competitions at the fractional
filling ν = 2/3, suggesting a rich phase diagram. In our
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(𝑎) (𝑏)

FIG. 5. HF and ED calculation at δD = 130 meV, θ = 0.89◦

(aM = 10.7 nm). (a) The energy per moiré unit cell of FCI,
QAHC-2 and QAHC-3 at ν = 2/3 as a function of dielec-
tric constant ϵ. The blue line represents EFCI −EQAHC1, the
orange line represents EQAHC2 −EQAHC1, the green line rep-
resents EQAHC3 − EQAHC1. (b) For ϵ = 10, dependence of
the energy per moiré unit cell of FCI, QAHC-1, QAHC-2 and
QAHC-3 on moiré potential factor VM at ν = 2/3.

study we also notice the important role of the moiré po-
tential VM . A larger VM can greatly change the phase
diagram and even favors C = 2 Chern band at ν = 1.
We hope this observation motivates more experimental
efforts in controlling and enhancing the moiré potential,
for example through imprinting a superlattice potential
from Coulomb interaction of another control layer [37].
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Appendix A: Projection of moiré potential

To compare the energy with different VM , we need a consistent energy background. In the charge neutrality scheme,
the vacuum is defined by fully occupying all valence bands of the bare Hamiltonian HK = H0+VMHM . However, the
vacuum energy varies with different VM . There are two ways to address this: (1) Moiréless charge neutrality scheme:
This approach defines the vacuum by occupying all valence bands in the moiréless limit, as described in Ref. [59].
However, the leading order contribution from the moiré potential diverges, as shown in Fig. 2(b) of Ref. [59]. Therefore,
we consider the second way, which is using moiré charge neutrality scheme with projection: We still use the moiré
charge neutrality scheme, but project the moiré potential onto the conduction bands. This ensures that the vacuum
energy remains consistent for different VM .

The original moiré potential is given by:

HM =
∑
k

6∑
j=1

ψ†
1(k)HM (Gj)ψ1(k+Gj), (A1)

where HM (Gj) is defined in Eq. (6) of the main text, and ψz(k) = (fz;A(k), fz;B(k))
T represents the spin-valley

polarized electron operator for the two sublattice in layer z. Thre is only ψ1(k) in HM because the moiré potential
only acts on the first layer aligned with the hBN.

To obtain the projection operator, we diagonalize the moiréless pentalayer graphene Hamiltonian H0, defined in
Eq. (2) of the main text for each k. This yields the matrix form of the projection operator for conduction electrons
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at each k, denoted as Pc(k). The projected moiré potential is then:

H̃M =
∑
k

6∑
j=1

ψ†
1(k)Pc(k)HM (Gj)Pc(k+Gj)ψ1(k+Gj). (A2)

Appendix B: Hartree Fock calculation

We perform Hartree Fock calculation by keeping the first Nb,c conduction bands and the first Nb,v valence bands
in the MBZ. The interaction term can be written as:

HV =
1

2A

∑
q

∑
l,l′

Vl,l′(q) : ρl(q)ρl′(−q) :, (B1)

where ρl(q) =
∑

k,m,m′ c†m(k+ q)Λlm,m′(k,q)cm′(k) represents the density at layer l. Here Λlm,m′(k,q) =

⟨um(k+ q)|Pl|um′(k)⟩, Pl is the projection operator to layer l, m and m′ are band indices. For m = 0, 1, ..., Nb,v − 1,
the indices correspond to the valence bands. For m = Nb,v, Nb,v + 1, ..., Nb,v +Nb,c − 1, the indices correspond to the
conduction bands. The interaction is given by:

Vl,l′(q) =
e2e−q|l−l

′|dlayer tanh (|q|λ)
2ϵϵ0|q|

, (B2)

where dlayer is the distance between adjacent layers, λ is the screening length. We choose dlayer = 0.34 nm and
λ = 30 nm in our calculation. The interaction can be decoupled into Hartree and Fock terms, leading to a mean field
Hamiltonian:

HHF =
∑

k1,k2

∑
m,m′,n,n′ 2 (Vm,m′,n,n′(k1,k2,0)− Vn,m′,m,n′(k1,k2,k2 − k1)) (B3)(

⟨c†m(k1)cm′(k1)⟩ − δm,m′,valence

)
c†n(k2)cn′(k2), (B4)

where m,m′, n, n′ are band indices. δm,m′,valence = 1 while m = m′ and m is valence band, otherwise it is 0. We
include this term because we use the charge neutrality scheme, in which the reference state is all of the valence bands
are occupied. The expectation value ⟨c†m(k1)cm′(k1)⟩ is calculated by using the free fermion mean field state given
by HK +HHF, with all valence bands and z conduction bands occupied. Here z corresponds to the QAHC-z ansatz.
The interaction vertex is calculated as:

Vm,m′,n,n′(k1,k2,q) =
1

2A

∑
l,l′

Vl,l′(q)Λ
l
m,m′(k1,q)Λ

l′

n,n′(k2,−q). (B5)

The mean field energy is calculated as:

EMF =
∑
k,n

ϵn(k)
(
⟨c†n(k)cn(k)⟩ − δn,valence

)
(B6)

+
∑
k1,k2

∑
m,m′,n,n′

(Vm,m′,n,n′(k1,k2,0)− Vn,m′,m,n′(k1,k2,k2 − k1)) (B7)

(
⟨c†m(k1)cm′(k1)⟩ − δm,m′,valence

) (
⟨c†n(k2)cn′(k2)⟩ − δn,n′,valence

)
, (B8)

in which δn,valence = 1 while n is valence band, otherwise it is 0. ϵn(k) is the dispersion of the nth band of HK . In
our HF calculation, we try 40 number of randomized initial ansatz and choose the one with the lowest energy.

Appendix C: ED calculation

We perform ED calculation by projecting the Coulomb interaction into the lowest conduction HF band, which is

the (Nb,v + 1)
th

lowest HF band. The total Hamiltonian is expressed as:

H =
∑
k

ϵ(k)c̃†Nb,v
(k)c̃Nb,v

(k) +
∑

k1,k2,q

V (k1,k2,q)c̃
†
Nb,v

(k1 + q)c̃†Nb,v
(k2 − q)c̃Nb,v

(k2)c̃Nb,v
(k1), (C1)
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where c̃†Nb,v
(k) =

∑
n UNb,vn(k)c

†
n(k) represents the electron operator of the lowest conduction HF band, with c†n(k)

being the electron operator in bare Hamiltonian HK , and n indexing the bands. The dispersion ϵ(k) is obtained by
projecting the dispersion of the kinetic term HK = H0 + VMHM onto the lowest conduction HF band:

ϵ(k) =
∑
n

|UNb,vn(k)|2ϵn(k), (C2)

where ϵn(k) is the dispersion of the nth band of HK . The interaction vertex takes the form:

V (k1,k2,q) =
1

2A

∑
l,l′

Vl,l′(q)Λ
l
HF(k1,q)Λ

l′

HF(k2,−q), (C3)

where ΛlHF(k1,q) = ⟨uHF,Nb.v
(k1 + q)|Pl|uHF,Nb,v

(k1)⟩ is the form factor of the lowest conduction HF Bloch wave-
function on layer l.

Applying the particle-hole transformation c̃Nb,v
(k) → h̃†Nb,v

(k), we obtain the total Hamiltonian including the

kinetic and interaction term:

H =−
∑
k

(
ϵ(k) + 2

∑
k′

(V (k,k′,0)− V (k,k′,k′ − k))

)
h̃†Nb,v

(k)h̃Nb,v
(k)

+
∑

k1,k2,q

V (k1,k2,q)h̃
†
Nb,v

(k1 + q)h̃†Nb,v
(k2 − q)h̃Nb,v

(k2)h̃Nb,v
(k1) + E0.

(C4)

Here ϵ(k)−
∑

k′ (V (k,k′,0)− V (k,k′,k′ − k)) equals to the HF dispersion. E0 is the energy of the ν = 1 insulating
state:

E0 =
∑
k

(
ϵ(k) +

∑
k′

(V (k,k′, 0)− V (k,k′,k′ − k))

)
. (C5)

Therefore, we are using the hole picture relative to the ν = 1 state, applying the dispersion and the form factor of
the HF band to perform the ED calculation.

In the ED calculation, we define the many body Hamiltonian in the hole picture relative to the ν = 1 spin-valley
polarized Chern insulator. We stress that performing the calculation in the electron picture will lead to double-
counting issues. In our main text, ν = 2/3 filling is treated as 1/3 filling in terms of holes relative to the ν = 1 Chern
insulator. Since the ν = 1 parent state is spin-valley polarized, the hole creation operator of the other spin or valley
species is meaningless, allowing us to access only spin-valley polarized FCI states within this framework.

Appendix D: Self consistent ED calculation at fractional filling beyond the rigid band approximation

We go beyond the rigid band approximation and perform a self consistent calculation at ν = 2/3 directly. The
procedure is similar to the standard self consistent HF calculation in Eq. B4, but in this case, the expectation value
⟨c†m(k1)cm′(k1)⟩ is directly obtained from the many body FCI state at ν = 2/3, instead of a free fermion mean field
state. During each iteration, we get bands from the mean field Hamiltonian HK +HHF, where the creation operator
c̃†m(k) corresponds to the m = 0, 1, ... bands.
An FCI state at ν = 2/3 can be constructed for the band generated by c̃Nb,v

(k). In principle, we can use ED to get
the FCI state and calculate the expectation value, which enters the self consistent equation in Eq. B4 to generate a new
HMF. However, we simplify the process by noting that the FCI state has an almost uniform momentum distribution.
Thus, we approximately have:

⟨c̃†m(k1)c̃m′(k1)⟩ ≈ νδm,Nb,v
δm′,Nb,v

, (D1)

where c̃†m(k) =
∑
n Umn(k)c

†
n(k) is the electron operator of the mth mean field band and c†n(k) is the electron operator

in the band of the bare HK , with n is the bare band index. The expectation value ⟨c†m(k1)cm′(k1)⟩ which enters
Eq. B4 can now be calculated as:

⟨c†m(k1)cm′(k1)⟩ ≈ νU∗
Nb,vm

(k1)UNb,vm′(k1). (D2)
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Appendix E: Integer QAHC-z at ν = 2/3

Besides the FQAH states at ν = 2/3, we also target the integer QAHC-z as variational ansatzes. As discussed
in the main text, for z/ν = m2

1 + m2
2 + m1m2 with m1,m2 ∈ Z, the moiré potential is commensurate with the

crystal period. We consider z = 1, 2, 3, only QAHC-2 is commensurate with the moiré potential. In this case,
acrystal =

√
z/νaM =

√
3aM . Suppose the reciprocal vector of the QAHC-2 crystal at ν = 2/3 is gj , j = 1, 2, 3, 4, 5, 6.

The relation between Gj and gj is:

G1 = g1 − 2g2, (E1)

G2 = 2g1 − g2, (E2)

G3 = g1 + g2, (E3)

G4 = −g1 + 2g2, (E4)

G5 = −2g1 + g2, (E5)

G6 = −g1 − 2g2. (E6)

Then we can write the moiré potential in the basis of gj and perform the calculations.

Appendix F: Details of QAHC-z enrgy

We present the energy per moiré unit cell for QAHC-z with z = 1, 2, 3 in Fig. 6(a), (b), (c) respectively. The blank
regions correspond to the metal phase or the trivial Wigner crystal phase. The calculations were conducted with
ϵ = 10. For QAHC-1 and QAHC-2, we keep Nb,v = 0 valence bands and Nb,c = 7 conduction bands, using a 12× 12
grid in the crystal Brillouin zone for the HF calculations. For QAHC-3, we keep Nb,v = 0 valence bands and Nb,c = 9
conduction bands, using a 9 × 9 grid in the crystal Brillouin zone for the HF calculations. We also show the energy
difference of different QAHC states in Fig. 6(d)-(f), in which we only keep the negative value.

(𝑏) (𝑐)

(𝑑) (𝑒)

(𝑎)

(𝑓)

FIG. 6. The energy per moiré unit cell for (a) QAHC-1, (b) QAHC-2 and (c) QAHC-3. The energy difference per moiré unit
cell for (d) EQAHC2 − EQAHC1, (e) EQAHC3 − EQAHC1 and (f) EQAHC3 − EQAHC2.

Appendix G: Demonstration of convergence in HF calculation

In the main text, we set Nb,v = 0 and Nb,c = 7, 7, 9 for QAHC-1, QAHC-2, and QAHC-3 respectively to perform the
Hartree Fock calculation. The calculations are performed using an Nk×Nk grid in the crystal BZ, with Nk set to 12,
12, and 9 for z = 1, 2, 3, respectively. To demonstrate the convergence of our calculation, we select specific parameters
with δD = 160 meV and θ = 0.89◦ (aM = 10.7 nm), and then increase Nb,c and Nk to perform the calculation, as
shown in Fig. 7(a)(b) respectively. In the limit Nb,c → ∞ and Nk → ∞, the QAHC-2 state converges to have the
lowest energy.
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(𝑎) (𝑏)

FIG. 7. (a) The energy per moiré unit cell of QAHC-z varies with 1/Nb,c. The energy difference converges to a positive value
as Nb,c → ∞. For z = 1, 2, 3, we choose Nk = 18, 12, 9 respectively. (b) The energy per moiré unit cell for QHAC-z with
z = 1, 2, 3 is plotted as a function of 1/Nk. We choose Nb,c = 9 for z = 1, 2, 3.

Appendix H: Phase diagram with another parameter

In other reference [38], people use a different set of parameters. The parameters they used are (γ0, γ1, γ2, γ3, γ4) =
(−3100, 380,−21, 290, 141) meV. Compared to Eq. 3 in the main text, they assume the potential difference is uniform
in the system and ignore the term of uA,i, uB,i. For the moiré potential term, it is:

HM (Gj) =

(
V0 + V1e

iψ V1e
i(

(3−j)π
3 +ψ)

V1e
i(

(1+j)π
3 +ψ) V0 + V1e

i(− 2π
3 +ψ)

)
, (H1)

where the momentum difference given by Gj =
4π√
3LM

(cos( jπ3 − 5π
6 ), sin( jπ3 − 5π

6 ))T for j = 1, 3, 5. For j = 2, 4, 6, the

tunneling is obtained by taking the Hermitian conjugate. The parameters are (V0, V1, ψ) = (28.9 meV, 21 meV,−0.29).
We use the new parameter for the free Hamiltonian HK and retain the same parameters as in the main text,

(λ, dlayer, ϵ) = (30 nm, 0.34 nm, 10), for the Coulomb interaction term HV to perform the Hartree Fock calculation,
obtaining the phase diagram at ν = 1 shown in Fig. 8.



11

(𝑎) (𝑏)

𝑧: 𝑧:

(𝑑)(𝑐)

𝑐!"!: 𝑐!"!:

FIG. 8. (a) The phase diagram of QAHC as a function of displacement field D and moiré period aM . We keep Nb,c conduction
bands and Nb,v valence bands in the calculation. For QAHC-z with z = 1, 2, 3, we set Nb,c to 7,7 and 9 respectively. Nb,v

is taken as 0 for all values of z, since the valence bands are separated by the large displacement field. The calculations are
performed using an Nk ×Nk grid in the crystal BZ. For z = 1, 2, 3, we set Nk to 12, 12 and 9 respectively. (a) Dependence of
z on D and aM for VM = 1. (b) Dependence of z on D and aM for VM = 2. (c) Dependence of Ctot on D and aM for VM = 1.
(d) Dependence of Ctot on D and aM for VM = 2.
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