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A TITS ALTERNATIVE FOR R-BUILDINGS OF TYPE Ã2

CORENTIN LE BARS, JEAN LÉCUREUX & JEROEN SCHILLEWAERT

Abstract. Let G be a group with a non-elementary action on a (not
necessarily discrete) Ã2-buildings. We prove that, given a random walk
on G, isometries in G are strongly regular hyperbolic with high proba-
bility. As a consequence, we prove a Tits alternative for G, as well as a
local-to-global fixed point result. We also prove that isometries of (not
necessarily complete) R-buildings are semi-simple.

1. Introduction

The celebrated Tits alternative asserts that, in various contexts, the fol-
lowing dichotomy occurs for a finitely generated group G: either G is "small"
(in a sense depending on the context), or G contains a non-abelian free
group. The original statement of Tits [Tit72] treats the case of linear groups,
where he proves that finitely generated groups not containing free groups
are virtually solvable.

Since then, there has been a large amount of work to prove the Tits alter-
native in various contexts: groups acting on hyperbolic spaces [Gro87, The-
orem 5.3.E], mapping class groups and Out(FN ) [BFH00] (see also [Hor16]),
CAT(0) cube complexes [SW05], and many others. A common feature in
all these examples is that they share some kind of non-positive curvature,
and a long-standing question is to know whether groups acting on CAT(0)
spaces satisfy such a Tits alternative.

An impressive progress in that direction was recently obtained by Osajda
and Przytycki, who proved a Tits alternative for finitely generated groups
acting on 2-dimensional CAT(0) complexes with a bound on the order of the
cell stabilizers [OP21]. Our first theorem is also another step in that direc-
tion: we obtain a Tits alternative for countable groups acting on Euclidean
buildings. As a corollary we obtain an result analogous to [OP21] for not
necessarily discrete Euclidean buildings of type Ã2.

We also note that in the case of (simplicial) buildings, although also non-
affine ones, the recent preprint [KOP24] proves a Tits alternative, but un-
der the much stronger assumption that the group acts geometrically on the
building, which had been proved by Ballmann and Brin in the case of Eu-
clidean buildings [BB95, Theorem F]. In [Sta24], S. Stadler also proves a
Tits alternative for geometric actions on Hadamard spaces under the ad-
ditional assumption that Γ satisfies Ballmann’s duality condition. In the
following theorem the word "building" refers to an affine building which is
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not necessarily simplicial, in the sense of Parreau [Par00] for example. We
say the action of G on X is elementary if either G has a bounded orbit in
X or if it has a finite orbit in ∂∞X. Note that another usual notion of non-
elementarity also requires that G does not have an invariant flat. However
in our setup an invariant flat will be contained in an apartment, hence its
boundary will give rise to a finite orbit in the boundary.

Theorem A. A countable group with a non-elementary action on a building
of type Ã2 contains a non-abelian free subgroup.

Remark 1.1. By default the action on a building is by automorphism of
the building, in the sense of [Rou23, §2.1.13] for example. The group of
automorphisms contains a finite-index subgroup formed by type-preserving
automorphisms, see [Rou23, §2.4.6.1]. Since our results are clearly implied
by the same results for a finite-index subgroup, we will also always assume
that our actions are type-preserving. Note that automorphisms of buildings
are isometries. Moreover, by [SST20, Lemma 3.5], we may assume X is an
R-building in which each vertex is special.

We also obtain the following corollary to Theorem A, which as discussed
above is a non-discrete generalization of [OP21]. Following [Kap24, Section
4], we say that the G-action is wandering if for every point x ∈ X, there
exists an neighborhood Ux of x such that the transporter subset

(Ux|Ux)G := {g ∈ G | gUx ∩ Ux 6= ∅}

is finite.

Theorem B. Suppose that a finitely generated group G has a wandering
action on a building X of type Ã2 with uniformly bounded point-stabilizers.
Then G is virtually cyclic, virtually Z

2 or contains a non-abelian free group.

Remark 1.2. Kapovich [Kap24] investigates various notions related to
proper discontinuity, of which wandering action is a weakening. If the build-
ing is simplicial, our only assumption is that point-stabilizers are uniformly
bounded.

Affine buildings of dimension at least 3 have been classified by yet an-
other impressive work of Tits: they are all of algebraic origin, and therefore
amenable to the original methods of Tits. However, in dimension 2, there
are many examples of exotic buildings, not coming from any algebraic con-
struction. This justifies our restriction to dimension 2. Nevertheless, there
are two other irreducible types of affine buildings of dimension 2 (namely,
C̃2 and G̃2). Our methods of proof are unable to reach these cases for the
moment (see Remark 1.3 below).

Another problem, very closely related to the Tits alternative (and which
is sometimes a first step towards it), is sometimes called the local to global
principle. Let G be a finitely generated group acting by isometries on a
metric space X. We call the action locally elliptic if every element of G
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fixes a point in X. A standard question in geometric group theory is the
following: when does that imply that the action of G itself is elliptic, i.e. is
there a global fixed point? The answer is positive in many situations where
X is non-positively curved, see for example the discussion in [HO22].

Our second result is a new proof of the following theorem.

Theorem C (Fixed point). A finitely generated group wich acts on a build-
ing of type Ã2 such that each element fixes a point has a global fixed point.

Once again, similar results were obtained by Norin, Osajda and Przytycki
for various subclasses of CAT(0) triangle complexes [NOP22], which include
2-dimensional simplicial buildings. Furthermore, for not necessarily discrete
Euclidean buildings of type Ã2 and C̃2 by Schillewaert, Struyve and Thomas
[SST20] prove the same theorem. The former uses Helly’s theorem, Masur’s
theorem on periodic trajectories in rational billiards, and methods by Ball-
mann and Brin to find closed geodesics in 2-dimensional locally CAT(0)
complexes, whereas the latter uses intrinsic building theoretic methods us-
ing the local spherical buildings in conjunction with general CAT(0) space
techniques including Busemann functions. Even though Theorem C is cov-
ered by [SST20], the methods of proofs are very different and we have hope
that the current approach could be pushed further to a more general context
(starting with buildings of type G̃2). Breuillard and Fujiwara prove a quanti-
tative version of this result for Bruhat-Tits buildings based on a Bochi-type
inequality [BF21, Theorem 7.16] and ask whether this also holds for the
isometry group of arbitrary affine buildings or finite-dimensional CAT(0)
cube complexes. For CAT(0) square complexes Kar and Sageev [KS19] gave
a positive answer. Another recent result in that direction was obtained very
recently by Izeki and Karlsson [IK24], for general CAT(0) spaces but a more
restrictive class of groups, using methods which are more in the spirit of the
current paper.

The heart of the proofs of both theorems is quite different from the clas-
sical ones, as it relies on results on random walks on the group G. Let
µ be a probability measure on G whose support generates G, we consider
the associated random walk (Zn) on G: in other words, we pick at random
elements gi of law µ, independently, and form the product Zn = g1g2 . . . gn.

Let X be a CAT(0) space, let g be a hyperbolic isometry of X and let
Min(g) := {x ∈ X | d(x, g(x)) = |g|}, where |g| denotes the translation
length of g. We say that g is a regular hyperbolic isometry of X if Min(g)
is at bounded Hausdorff distance from a maximal flat of X.

A regular hyperbolic isometry g of a building X is called strongly regular
if one (and hence all) of its translation axes crosses all the walls of the
unique apartment contained in Min(g). The main interest of strongly regular
elements is that they have a weak form of North-South dynamics, which is
very useful in producing free groups (see [CC15, Section 2]).

Our main result, from which both Theorem C and A follow, is that the
proportion of strongly regular hyperbolic isometries in the random walk
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{Zn} with respect to the action on X goes to 1 almost surely as n goes to
infinity. The assumptions on the random walk in the following statement
will be defined in Section 3.

Theorem D. Let X be a building of type Ã2, let G be a countable group and
let G y X be a non-elementary action by type-preserving automorphisms.
Let µ be a symmetric and admissible probability measure with finite second
moment, and denote by (Zn) the associated µ-random walk. Then

P
(

Zn is a strongly regular hyperbolic isometry
)
−→

n→∞
1.

Theorem D is analogous to, for instance, [FLM18, Theorem 11.5] where
it is proven that the proportion of contracting elements for random walks in
CAT(0) cube complexes goes to 1, or to [LB24a, Theorem 1.2], where the
author shows a similar result for random walks with contracting elements
in Hadamard spaces.

Its proof relies heavily on a recent result obtained by the first author in
[LB24b]. In particular he proved that, under a second moment assumption
on µ, (Zno) converges almost surely to a regular (i.e. in the interior of a
chamber) point of the boundary, for any base-point o ∈ X (see Section 3.2
for more precise statements).

Remark 1.3. Theorem D hinges on the existence of an opposition invo-
lution in type Ã2 which is non-trivial on every type of vertices. If the
opposition involution is trivial on the types of vertices (which is the case for
buildings of type C̃2 or G̃2), it follows from the results of [Qui02, Théorème
5.1] that there exists groups with a non-elementary action on a building,
but with no strongly regular hyperbolic elements. In fact the results of
[LB24b] are not true in this context. While we still hope that our methods
could be able to find hyperbolic elements and to prove a Tits alternative in
the general case, it seems that the necessary adaptations would be highly
non-trivial.

We conclude the introduction with an extension of a result by Parreau to
the metrically incomplete case [Par00, Corollaire 4.2].

Theorem E. Isometries of R-buildings are semi-simple.

Acknowledgements. We are grateful to Anne Parreau for suggesting a
simplification of a previous version of the argument in Lemma 4.1, and to
Koen Struyve for the proof strategy of Theorem E. The research of the
third author is supported by the New Zealand Marsden Fund through grant
UOA-2122.

2. Affine buildings

In this section, we define non-discrete affine buildings, and briefly discuss
some of their basic properties, we refer the reader to [Par00] or [Rou23] for
more information.
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2.1. Non-discrete affine buildings. Let (W, V ) be an affine reflection
system, that is W = W0 ⋉ T , where W0 is a finite reflection group and T is
a translation group on V = E

n. We denote by Let a
+ some Weyl chamber

for W , and by a
++ its interior. Let X be a set, and let A be a collection of

injective charts of V into X, which we call an atlas. Each such injection is
called a chart, or marked apartment, and the image A of V by an injection
is called an apartment. We say that (X,A) is an affine building modeled
after (W, V ) if the following axioms are verified.

(A1) The atlas A is invariant by pre-composition with W .
(A2) Given two charts f, f ′ : V → X with f(V ) ∩ f ′(V ) 6= ∅, then U :=

f−1(f ′(V )) is a closed convex subset of V , and there exists w ∈ W
such that f |U = f ′ ◦ w|U .

(A3) For any pair of points x, y ∈ X, there is an apartment containing
both.

Axioms (A1)-(A3) imply the existence of a well-defined distance function
d : X × X → R+, such that the distance between any two points is the
dV -distance between their pre-image under any chart containing both. The
metric space (X, d) is then a CAT(0) space. Every automorphism of X
induces an isometry of (X, d). A Weyl chamber (or sector) in X is the
image of an affine Weyl chamber under some chart f ∈ A.

(A4) Given two Weyl chambers S1, S2 in X, there exist sub-Weyl cham-
bers S′

1 ⊆ S1, S′
2 ⊆ S2 such that S′

1 and S′
1 are contained in the same

apartment.
(A5) For any apartment A and x ∈ X, there exists a retraction ρA,x : X →

A such that ρA,x does not increase distance and ρ−1
A,x(x) = {x}.

If the affine reflection group is not discrete, we say that the building (X,A)
modelled after (W, V ) is non-discrete. We will assume that the system of
apartments A is maximal. We say that X is of type Ã2 if W0 is a spherical
Coxeter group of type A2.

By the axioms (A1)-(A3), there exists a marked apartment f sending the
fundamental closed Weyl chamber a

+ to a Weyl chamber in X based at
x and containing y. The type θ(x, y) of the Euclidean segment [x, y] is the
unique vector in a

+ such that y = f(θ(x, y)). The group G is type-preserving
by assumption: this implies that for any g ∈ G, θ(gx, gy) = θ(x, y).

2.2. Spherical building at infinity. As a CAT(0) space, X has a visual
bordification, given by equivalence classes of rays, two rays being equivalent
if they are at finite Hausdorff d-distance, denoted by X = X ∪ ∂∞X. The
visual boundary ∂∞X can be endowed with a natural topology and isome-
tries of X extend to homeomorphisms on the boundary. Moreover, when
X is separable, the topology on ∂∞X is metrizable. Analogous to defining
ends of trees one can equip ∂∞X with the structure of a spherical building
[Par00, Propriété 1.7].
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2.3. The cone topology on X. The visual boundary is a classical notion
for complete CAT(0) spaces, see e.g [BH99]. For non-complete spaces it
is usually not well-defined (for example, it might depend on a basepoint).
However for Euclidean buildings, even non-complete, it turns out that the
construction still works well, see [Rou23]. We recall below the definition.

Fix a point x0 ∈ X and for x /∈ B(x0, r) define pr(x) to be the unique point
on [x0, x] at distance r from x0. Consider the inverse system of projection
maps pr |B̄(x0,r). We consider lim←− B̄(x0, r) with the inverse limit topology.

A point in this space is given by a map c : [0,∞) → X such that if r′ ≥
r, then pr(c(r′)) = c(r) and the inverse limit topology coincides with the
topology of uniform convergence on compact subsets. The cone topology is
the topology T (x0) such that the natural bijection φ(x0) : X̄ → lim←− B̄(x0, r)
is a homeomorphism. This topology is independent of the basepoint x0.
When we equip ∂∞X with this topology, we call it the visual boundary.

Note that for x a vertex, and F ∞ a facet at infinity, there is an affine facet
based at x in the equivalence class of F ∞, which we denote by Q(x, F ∞).

A detailed account on how to give a topology on the set X ∪ ch(X∞),
and even on X ∪X∞

τ , where X∞
τ represents the set of simplices of type τ of

the spherical building at infinity, is given in [Rou23]. We will not give many
details on the topology, but we summarize here a few results.

A basis of open neighborhoods in ch(X∞) is given by

Ux(y) := {C ∈ ch(X∞) | y ∈ Q(x, C)} ⊆ ch(X∞),(1)

for x, y ∈ X. With this topology, the set of chambers at infinity ch(X∞) is
a totally disconnected space.

The following proposition summarizes some properties of this bordifica-
tion. The set of regular points ∂reg

∞ X is defined as the set of boundary points
ξ ∈ ∂∞X that are strictly supported on a chamber, denoted Cξ.

Proposition 2.1 ([Rou23, §3.2]). Let X be any Euclidean building. Then
there is a topology on X ∪ ch(X∞) for which a basis of open sets of the
chambers at infinity is given by the sets (1). It agrees with the CAT(0)
topology on X. This topology is first-countable and Hausdorff. The map
∂reg

∞ X → ch(X∞) defined by ξ 7→ Cξ is a homeomorphism.

Two chambers in a spherical building are said to be opposite if the gallery
distance between them is maximal, see for instance [Wei03, Chapter 5]. In
this case, there is a unique apartment joining them.

2.4. Retractions. Let X be an affine building, and let C ∈ ch(X∞). If
A is an apartment such that C ∈ ∂A (equivalently, there exists a Weyl
chamber S contained in A representing C). Then there exists a unique
retraction map ρA,C : X → A such that ρA,C preserves the distance on any
apartment containing a chamber representing C, see [Par00, Proposition
1.20]. Moreover, ρA,C does not increase distances. We call ρA,C the canonical
retraction of X on A based at the chamber at infinity C ∈ ch(X∞). In
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particular, for any apartment A′ containing C in its boundary, ρA,C |A′ :

A′ → A is an isomorphism fixing A ∩A′ pointwise.

2.5. Regularity. Again, let us denote by a
+ the fundamental Weyl cham-

ber, and denote by a
++ its interior. Denote by w0 the long element of the

finite Weyl group W0 associated with the affine reflection group W . For
λ ∈ a, the opposition involution j : a+ → a

+ is defined by

j(λ) = w0(−λ).

Let x, y ∈ X be points of the building X. By Axiom (A3), there is a marked
apartment f ∈ A containing both, and by Axiom (A2) we can assume that
f(0) = x and f−1(y) ∈ a

+. We say that the segment [x, y] is regular if the
type θ(x, y) is regular, i.e. θ(x, y) = f−1(y) ∈ a

++. If [x, y] is regular, then
both θ(x, y) and j(θ(y, x)) are regular. Notice that in this case, f(a+) is a
Weyl chamber of the building X, contained in A and containing y. Denote
by Cy the chamber at infinity that it represents. Similarly, f(θ(x, y)− a

+)
is a Weyl chamber containing x representing a chamber Cx ∈ ch(X∞).
These chambers are opposite in the spherical building at infinity. In this
case, there exists a unique apartment A joining them, i.e. such that both
chambers belong to A∞.

The following proposition is from [CC15, Proposition 2.10], see also [CMR20,
Proposition 6.1] for the non-discrete case. It roughly states that strongly
regular hyperbolic elements satisfy a weak version of North-South dynamics,
similar to loxodromic isometries in hyperbolic spaces or contracting isome-
tries in CAT(0) spaces.

Proposition 2.2. Let g ∈ Isom(X) be a type preserving strongly regular
hyperbolic element, with unique translation apartment A. Let C−, C+ ∈
ch(X∞) be the repelling (resp. attracting) chamber at infinity for g. Then for
every C ∈ ch(X∞), the limit lim gn(C) exists and coincides with ρA,C−(C),

where ρA,C− is the retraction onto A centered at C−.

2.6. Residue building based at a vertex. Non-discrete buildings still
possess a good notion of (local) alcoves and faces. Let F and F ′ be two
facets based at a vertex o ∈ X. We say that F and F ′ have the same germ
at o if their intersection is an open neighborhood of o in both F and F ′. The
set of all germs at o that are not reduced to {o} can be given the structure of
a simplicial spherical building, called the residue building based at o [Par00,
Corollary 1.11]. Simplices of maximal dimension of ΣoX are called (local)
alcoves.

For every vertex x ∈ X, we have a canonical morphism of simplicial
complexes

Σx : X∞ → ΣxX(2)

sending any facet at infinity F ∞ to germx(Q(x, F ∞)).
Fix o ∈ X. For every x ∈ X such that [o, x] is regular, there exists

C ∈ ch(X∞) such that x belongs to the interior of Q(o, C), we can associate
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a unique local alcove in ΣoX defined by Σo(x) = germo(Q(o, C)). The
following definition appears in [CL11].

Definition 2.3. We say that a sequence (xn) converges to the chamber at
infinity C ∈ ch(X∞) in the combinatorial sense if for every o ∈ X, there
exists n0 such that for all n ≥ n0, the projection Σo(xn) of xn on the residue
building ΣoX is the chamber Σo(C) = germo(Q(o, C)).

For more on this notion, we refer to [CL11] (in the discrete case) or to
[Rou23, §3.2] for non-discrete affine buildings.

2.7. Panel trees. Recall that a boundary point v ∈ ∂∞X is an equivalence
class of rays, two rays r1 and r2 being equivalent, for which we write r1 ∼ r2,
if they contain subrays that lie in a common apartment and are parallel in
this apartment. We will say that two geodesic rays r1 and r2 are strongly
asymptotic, and write r1 ≃ r2, if their intersection contains a geodesic ray.
For two equivalent geodesic rays r1 and r2 that represent the boundary point
v ∈ ∂∞X, we define their distance to be:

dv(r1, r2) := inf
s

lim
t→∞

d(r1(t + s), r2(t)).

Note that it defines a pseudo-distance [CL11, Section 5.3], and that two
strongly asymptotic rays r1 and r2 satisfy dv(r1, r2) = 0. This pseudo-
distance does not depend on the ≃-strongly asymptotic classes of rays among
rays from the same ∼-equivalence class: on these ≃-classes, it becomes a
distance.

For an affine building of dimension 2 and v a vertex at infinity, the metric
space (Tv , dv) of asymptotic classes of rays in the class of a vertex at infinity
is an R-tree (an affine Ã1-building) called the panel tree at v. The branch
points of this tree correspond to thick walls of X [KW14, §4.26]. Note that
given a vertex v ∈ X∞, there is a well-defined and continuous application
defined by

πv : X −→ Tv

x 7−→ [Q(x, v)],

where [Q(x, v)] is the class (for the strongly asymptotic relation) of the
geodesic ray based at x, in the direction of v.

By [Tit86, Proposition 4] there is a canonical Aut(X)v-equivariant bi-
jection between the set of ends of the panel tree Tv and the set Ch(v) of
chambers of ∂X∞ containing v.

2.8. Reduction: separability. The following proposition will be used to
reduce to the case when X is a separable building.

Proposition 2.4. If Γ is a countable group acting on an affine building X,
then there is a subbuilding Y ⊂ X, of the same type, which is separable and
Γ-invariant.
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In the sequel we fix such an X and Γ.

Lemma 2.5. There exists a Γ-invariant countable sub-building Z of the
same type as X∞.

Proof. Let S0 = A be an apartment in ∂∞X, and let Γ(S0) be its Γ-orbit.
If Γ(S0) is a sub-building we are done. Suppose otherwise. Given two
simplices of Γ(S0) for which there is no apartment containing them yet add
such an apartment. Call the newly obtained set S1. Now repeat the above
construction process with S1 and so on. Then

⋃∞
i=0 Γ(Si) is countable and

Γ-invariant by construction. Moreover it is a subbuilding of the same type
as X∞. �

Proof of Proposition 2.4. Let Z be a countable invariant subbuilding of ∂∞X
which exists by Lemma 2.5. Let Y be the union of all apartments whose
boundary is entirely contained in Z. By construction Y is Γ-invariant. Since
between two opposite chambers of Z there is a unique apartment, Y is a
countable union of apartments, hence is separable.

We have to prove that Y is indeed a sub-building of X. Let x ∈ Y be
a vertex, and C be a chamber of Z. We first claim that there exists an
apartment of Y containing the sector Q(x, C). Indeed, since x ∈ Y there
is an apartment A containing x whose boundary is in Z. In particular
projx(A) is an apartment in ΣxX [Par00, Proposition 1.14]. Hence ΣxX
contains a local alcove which is opposite projx(C). Let C ′ be the chamber
in the boundary of A which projects to this local alcove. Then C and C ′ are
opposite at x, hence there is an apartment containing x, C and C ′. Since
C and C ′ are opposite the apartment of ∂∞X containing them is entirely
contained in Z, and therefore the apartment whose boundary contains both
is in Y . Since this apartment contains Q(x, C), we proved the claim.

Now let x, y ∈ Y , we want to prove that x and y are contained in an
apartment of Y . Then there exists a chamber C in Z such that projy(C) is
opposite projy(x) in ΣxX. Thus there exists an apartment A′ of X contain-
ing Q(y, C) and the convex hull of x and y. In A′ we see that y ∈ Q(x, C).
By the claim above there exists an apartment of Y containing Q(x, C), and
this apartment contains x and y. �

2.9. Reduction: completeness. We let X be a possibly non-discrete or
even non-complete Euclidean building. Let X̄ be the completion of X.

Proposition 2.6. The visual boundaries ∂∞X and ∂∞X̄ are equal.

Proof. Note first that by [KL97] (see also [Str11, Lemma 4.4]) we can, using
ultrapowers, embed X into a complete Euclidean building, which we denote
X̂.

We first claim that ∂∞X̄ is the set of all limit points in ∂∞X̂ of sequences
of points of X. Indeed, one inclusion is clear. For the converse, recall that
the set ∂∞X̄ can be defined as the set of geodesic rays in X̄ starting from
the point o ∈ X (the topology on ∂∞X̄ does not depend upon the choice
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of the basepoint o, see for instance [Rou23, §3.2]). If ξ ∈ ∂∞X̄ , then ξ is
a limit of points on a geodesic ray of X̄. Each of these points is arbitrarily
close to a point of X. So ξ is a limit point (for the topology on X̂ ∪ ∂∞X̂)
of some sequence of points of X.

Now assume that (xn)n∈N is a sequence of points of X converging to

ξ ∈ ∂∞X̄, with ξ in the interior of a chamber at infinity C ∈ ch(X̂∞) (of the

spherical building at infinity X̂∞ of the Euclidean building X̂). Let o ∈ X
be a vertex. Then by definition the geodesic segments [o, xn] converge (uni-
formly on every compact) to the geodesic ray [o, ξ) which is in the interior
of the sector Q(o, C). In particular, for n large enough, the germ of [o, xn]
is in the interior of the local alcove projo(C). It follows that for every o ∈ X
we have Σo(C) is a local alcove of the residue building ΣoX. We claim that
this implies that C ∈ ch(X∞).

Indeed, let (xn) be as before a sequence of points in X that converge to ξ.
For any o ∈ X, the geodesic ray [o, ξ) is contained in the interior of the Weyl

chamber Q(o, C) ⊆ X̂ . In particular, the sequence (xn) is asymptotically
uniformly σmod-regular in the sense of [KLP18, Definition 3.1]. Fix o ∈ X.
Consider the geodesic ray c : [o,∞) → X̄ starting from o representing ξ.
For any n, pick xn ∈ X such that d(xn, c(n)) ≤ ε, for ǫ fixed (where we still

denote by d the metric on X̂). Let Cn ∈ ch(X∞) be chambers at infinity of
X such that for all n,

Cn ∈ {D ∈ ch(X∞) | xn ∈ Q(o, D)}.

Such chambers exist because of axiom (A3) for the Euclidean building X,
and because [o, xn] is a regular segment in X. Now by convexity of the dis-
tance in CAT(0) spaces, we have that for every n ≤ m ∈ N, xn is contained
in the 2ε neighborhood N2ǫ(Q(o, Cm)) of Q(o, Cm). Therefore, we can apply
[KLP18, Lemma 3.79]: there exists C ′ ∈ ch(X∞) such that (xn) converges
to C ′ conically. At the same time, since (xn) is an asymptotically uniformly
regular sequence contained in a tubular neighborhood of Q(o, C), [KLP18,
Lemma 3.76] ensures that (xn) converges to C conically. By uniqueness of
the limit, we get that C = C ′ ∈ ch(X∞).

Putting everything together we get that ∂∞X̄ does not contain any regular
point (of the spherical building X̂∞) which is not already in ∂∞X. Now we
know that ∂∞X̄ is the boundary of a complete CAT(0) space. In particular it
is π-geodesic for the angular metric [BH99, Theorem II.9.13]. If ξ′ ∈ ∂∞X̄ is
not regular, then there exists a chamber C ⊂ ∂∞X which contains a regular
point ξ with ∠(ξ, ξ′) < π (where ∠ is the angular metric on ∂∞X̂). Let C0

be the projection of C on the facet containing ξ (in ∂∞X̂). By π-geodesicity
of ∂∞X̄, the ∠-geodesic ray from ξ′ to some point in C is in ∂∞X̄ . Thus this
geodesic ray intersects the chamber C0 of ∂∞X̂. In particular C0 contains a
point ξ′′ ∈¯̂X, and by the previous argument it follows that C0 ∈ ∂∞X. But
ξ′ is contained in the boundary of C0, and since ∂∞X is a spherical building
we get that ξ′ ∈ ∂∞X. �
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Corollary 2.7. If G is a group with a non-elementary isometric action on
X, then the G-action on X̄ is also non-elementary.

Proof. If the action is elementary on X, then there is a bounded orbit in X
(hence in X̄) or a finite orbit in ∂∞X = ∂∞X̄, so that the action on X̄ is
non-elementary.

If the G-action on X̄ is elementary, then either there is a finite orbit in
∂∞X = ∂∞X̄ and the action on X is elementary, or there is a bounded
orbit (hence a fixed point) in X̄ , and since G acts by isometries there is a
bounded orbit in X, so that the action is again elementary. �

We can also deduce that isometries are semi-simple from Proposition 2.6.

Proof of Theorem E. Let g be an isometry of the R-building X. As in the
proof of Proposition 2.6 we start by embedding X in a metrically complete
X ′. Since X ′ is complete the action of g on X ′ is either elliptic or hyperbolic
[Par00, Corollaire 4.2].

Assume first that the action of g on X ′ is elliptic, that is, fixes a point
of X ′. Then all g-orbits on X are bounded. Hence, as G = 〈g〉 is finitely
generated, it fixes a point of X by [Str11, Main Theorem 1] and is thus
elliptic.

Hence we may assume the action of g on X ′ is hyperbolic. By [BH99,
II.6.8(1)] there exists a translation axis L whose endpoints x+ (the attracting
fixed point) and x− (the repelling fixed point) on the boundary ∂X ′ of X ′

are fixed by g.
As X̄ is a closed convex complete subset of X ′, there exists a projection

π : X ′ → X such that ∀x ∈ X ′, π(x) is uniquely defined and d(x, π(x)) =
d(x, X̄) = infy∈X̄ d(x, y) [BH99, Lemma 2.4]. Let x ∈ X ′. Since g is an

isometry of X, it leaves the set X̄ invariant. In particular, we have that
d(x, π(x)) = d(x, X̄) = d(g(x), X̄). Since d(x, π(x)) = d(g(x), g(π(x)) we
have by uniqueness of the projection that π(g(x)) = g(π(x)).

Now if x ∈ Min(g), we have that d(π(x), g(π(x))) = d(π(x), π(gx)) ≤
d(x, gx) since π is distance non-increasing. Therefore, π(x) ∈ Min(g). In
particular, the 〈g〉-translates of the geodesic segment [x, gx] define an axis.
This axis is contained in X̄ because X̄ is convex and g-invariant. Hence we
may assume that the axis L belongs to X̄.

Since ∂∞X̄ = ∂∞X by Proposition 2.6 we obtained that {x−, x+} ⊂ ∂X.
Consider the union Y (resp. Y ′) of all geodesic lines in X (respectively

X ′) with endpoints equal to {x−, x+}. By [KL97, Proposition 4.8.1], the
spaces Y and Y ′ are sub-building of X and X ′ respectively (in fact they are
products of a flat and a thick building). Moreover, rank(Y ) = rank(X) − 1
and rank(Y ′) = rank(X ′)− 1. Note that when we remove the flat factor we
get the more standard construction of a transverse building, described for
example in [Rou23, Theorem 3.3.14.1]. Also note that Y is by construction
a sub-building of Y ′.
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The induced action of g on Y ′ has a fixed point (corresponding to L) and
hence the action on Y ′ and thus also Y has bounded orbits. By [Str11, Main
Result 1] g has a fixed point p on Y . Let M be the axis in X corresponding
to p. By the Flat Strip Theorem [BH99, II.2.13] the axes L and M bound
a flat strip. Since g acts as a translation on both L and M we obtain
M ⊂ Min(g), thus the action of g on X is hyperbolic. �

3. Stationary measures

The notion of stationary measure is a fundamental tool in the study of
random walks on groups. After recalling the standard general background
we explain here the main results from [LB24b].

3.1. Generalities. Let us first recall the general background on random
walks and notations that we will use. Let G be a discrete countable group,
and let µ be a probability measure on G. Let (Ω,P) be the probability space
(GN, µ⊗N), with the product σ-algebra. The space Ω is called the space of
(forward) increments. The application

(ω, n) ∈ Ω× N 7→ Zn(ω) = ω1ω2 . . . ωn,

defines the random walk on G generated by the measure µ.
Let (X, d) be a metric space endowed with its Borel σ-algebra and let

φ : G→ Isom(X) be an isometric G-action. The data (Ω,P, S, f, φ) defines
a measurable random dynamical system

Ω× N×X → X

(ω, n, o) 7→ φ(Zn(ω))o.

If the context is clear, we omit the writing of “φ” and we just denote the
random walk on X based at o by (Zno). If G acts on a Borel space (Z, ν), the
convolution µ∗ν is the pushforward of µ⊗ν by the action map G×Z → Z.
In other words, if f is a bounded measurable function on Z, then

ˆ

Z

f(x)d(µ ∗ ν)(x) =

ˆ

G

ˆ

Z

f(g · x)dµ(g)dν(x).

We will denote by µm = µ∗m the m-th convolution power of µ, where G
acts on itself by left translation (g, h) 7→ gh. We want our random walk to
visit the whole group, which is why we assume that µ is admissible measures,
that is, its support supp(µ) generates G as a semigroup.

Furstenberg introduced the notion of stationary measures, i.e. measures
that are “invariant” under the dynamical system. If (Y,Y) is a standard
Borel G-space, a probability measure ν on Y is said to be µ-stationary if it
satisfies

ν = µ ∗ ν.
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3.2. Stationary measures on Ã2-buildings. The main results of [LB24b]
can be summarized as follows. Here, we let X be a separable complete
building of type Ã2, G a countable group and G y X a non-elementary
action on X by isometries. Let µ be a symmetric and admissible probability
measure with finite second moment on G.

Theorem 3.1 ([LB24b, Theorem 1.4]). There exists a unique µ-stationary
measure ν on X ∪ ch(X∞), and the measure ν gives full mass to ch(X∞).
Furthermore, for P-almost every ω ∈ Ω and any basepoint o ∈ X, the trajec-
tory (Zn(ω)o)n∈N converges to a regular point ξ(ω) of the visual boundary,
which belongs to the interior of some chamber at infinity Cω. The law of Cω

is exactly the measure ν.

We will also use the following fact about the stationary measure.

Theorem 3.2 ([LB24b, Proposition 1.3]). Let ν be the unique µ-stationary
measure on ch(X∞) given by Theorem 3.1. Then ν⊗ ν-almost every pair of
chambers in ch(X∞) are opposite.

Finally, the following fact shows that the convergence of the random walk
takes place in the combinatorial sense too.

Proposition 3.3 ([LB24b, Corollary 7.6]). The random walk (Zn(ω)o) con-
verges almost surely to the chamber Cω ∈ ch(X∞) in the combinatorial
sense, where Cω is given by Theorem 3.1.

Remark 3.4. In fact, the methods of [LB24b] extend to the slightly more
general case where X is a separable Hadamard G-invariant subspace of a
building Z of type Ã2, such that the boundary of X is a spherical sub-
building of Z, see [LB24b, Theorem 1.7].

4. Hyperbolic elements

In this section we assume that either X is a metrically complete separa-
ble building of type Ã2, or by Remark 3.4 that X is a convex, separable,
complete subspace of a building of type Ã2 whose boundary is a spherical
building.

4.1. Proportion of strongly regular hyperbolic elements. In the course
of the proof, we will use the following lemma, which gives an easy criterion
for an isometry to be (strongly regular) hyperbolic in an affine building. In
the case when X is a convex, separable, complete subspace of a building
X̂ of type Ã2 whose boundary is a spherical building, by a strongly regular
hyperbolic isometry we mean a strongly regular hyperbolic isometry of X̂,
all of whose axes lie in X.

Lemma 4.1. Let g be a type-preserving automorphism of X, and assume
that there exists a vertex o ∈ Xs such that go 6= o and the segments [g−1o, o]
and [o, g(o)] are contained in the opposite sectors S1, S2 respectively, both of
which are based at o. Then g is a hyperbolic isometry. If moreover θ(o, go)
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is regular, then g is a strongly regular hyperbolic isometry. Its translation
apartment is the unique apartment containing S1 and S2.

Proof. Since S1 and S2 are opposite sectors based at o, there exists a unique
apartment A containing them [Par00, Proposition 1.12]. By Parreau’s ax-
ioms (A1) and (A2), we can identify A with V by an isometry (the inverse
of a marked apartment) fA,S2

: A→ V sending S2 to the fundamental Weyl
chamber a

++. Since g is type-preserving, the types of θ(g−1o, o) θ(o, go)
are the same. Since θ(g−1o, o) = j(θ(o, g−1o)), where j is the involution
on the fundamental Weyl chamber, the distinct points fA,S2

(g−1o), fA,S2
(o)

and fA,S2
(go) must be aligned. If we repeatedly apply g and g−1 to this

segment, we see that all the iterates of o by g are aligned, and therefore that
g is hyperbolic. The direction of its translation axes is given by θ(o, go).
Therefore, if θ(o, go) is in the interior of the fundamental Weyl chamber,
the translation axes are regular and by [CC15, Lemma 2.3], g is strongly
regular hyperbolic. Note that [CC15, Lemma 2.3] is only stated for simplicial
buildings, but the proof extends verbatim to our context.

In case when X is a subset of a building X̂ , a priori the axes of g could
be in X, but its attractive and repelling endpoints are in ∂∞X, and by
convexity the unique apartment formed by the union of its axes must be
contained in X, so Zn is strongly regular with axis in X. �

The following corollary is immediate from the definition.

Lemma 4.2. Let g ∈ Isom(X) be a strongly regular hyperbolic isometry. Let
γ be an axis of g passing through a vertex o ∈ X such that γ(+∞) belongs to
the interior of the attracting chamber at infinity C+ ∈ ch(X∞), and assume
that γ(0) = o. Then for all t > 0, C+ ∈ Uo(γ(t)).

Proof. Let A be the unique translation apartment of g. Then γ is contained
in A, and so is o. Now for all t > 0, γ(t) ∈ Q(o, C+) and the lemma
follows. �

Corollary 4.3. Let g be a type-preserving isometry of X, and assume that
there exists a vertex o ∈ Xs such that go 6= o and the segments [g−1o, o]
and [o, g(o)] are contained in the opposite sectors S1, S2 respectively, both of
which are based at o. Assume that go belongs to the interior of S1. Then g is
a strongly regular hyperbolic isometry and if we denote by C+ its attracting
chamber at infinity, then C+ ∈ Uo(go).

Proof. If go belongs to the interior S1, then θ(o, go) is regular and by Lemma
4.1, g is strongly regular hyperbolic. By the proof of Lemma 4.1, g−1o, o
and go are aligned and belong to an axis of g. We can then conclude by
Lemma 4.2. �

Recall that two chambers at infinity C and C ′ are opposite if there exists
a unique apartment A whose boundary contain C and C ′. For any o ∈ A, we
say that C and C ′ are opposite at o. Clearly, two chambers are opposite if and
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only if there exists o such that C and C ′ are opposite at o. Notice also that C
and C ′ are opposite at o if and only if their projections germo(Q(o, C)) and
germo(Q(o, C ′)) are opposite local alcoves in the residue building ΣoX, (this
follows from [Par00, Proposition 1.12]). We denote by X∞

o (C) ⊆ ch(X∞)
the set of chambers at infinity that are opposite to C at o.

The following fact is standard, but we include a proof for completeness.

Lemma 4.4. Let C ∈ ch(X∞) and o ∈ X. The set X∞
o (C) is open and

closed.

Proof. If C ′ ∈ X∞
o (C), let A be the unique apartment joining C and C ′,

and let x ∈ Q(o, C ′) be any vertex distinct from o and in the interior of
Q(o, C ′). Let C ′′ ∈ Uo(x), and consider the retraction ρ = ρA,C onto A
centered on the Weyl chamber C. Since Q(x, C) ⊂ A we see that ρ is the
identity in restriction to Q(x, C). Furthermore the image of Q(o, C ′′) by
ρ is a sector of A containing o and x, and therefore is Q(o, C ′). It follows
that the retraction ρ, restricted to Q(o, C ′′)∪Q(o, C) is an isomorphism onto
Q(o, C ′)∪Q(o, C). Therefore ρ(C ′′) = C ′ ; since retractions are distance non-
increasing it follows that C ′′ and C are opposite. Let A′ be the apartment
containing C and C ′′; since the retraction ρ induces an isomorphism between
A′ and A, and fixes o, we have that o ∈ A ∩ A′. This proves that C ′′ ∈
X∞

o (C). Therefore X∞
o (C) contains an open neighborhood of C ′. We deduce

that X∞
o (C) is open.

If now C ′ ∈ ch(X∞) is not opposite to C at o, let y be any vertex in the
interior of Q(o, C ′) and Uo(y) is again an open set of chambers containing
C ′ that are not opposite to C at o. Indeed, their projection on the residue
building ΣoX is the alcove Σo(C ′). This shows that the complement of
X∞

o (C) in ch(X∞) is open, and therefore that X∞
o (C) is closed. �

In the course of the proof, we have shown the following standard but
useful fact (see also [RT21, Theorem 6.2.(i)] and its proof).

Remark 4.5. Let C, D be opposite chambers at infinity and let A be the
unique apartment joining them. Let o ∈ A be any vertex. Let y ∈ A be in
the interior of Q(o, C). Then for all chambers C ′ ∈ X∞

y (D), C ′ is opposite
to D at o, i.e. X∞

y (D) ⊆ X∞
o (D).

Fix o ∈ X. We denote by Oppo(C) ⊆ X the set

Oppo(C) :=
⋃

C′∈X∞

o (C)

int(Q(o, C ′)).

In other words, the set Oppo(C) is the set of all x ∈ X that project onto
an alcove that is opposite to Σo(C) in the residue building ΣoX. Because
Oppo(C) is a union of open sets, it is open for the cone topology.

We define Õppo(C) as Oppo(C)∪X∞
o (C). It is open for the cone topology

on X ∪X∞. Lemma 4.6 below generalizes Remark 4.5.
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Lemma 4.6. If y is a vertex in Q(o, C), then Oppo(C) ⊆ Oppy(C) and
X∞

o (C) ⊆ X∞
y (C).

Proof. We write the proof for X∞
o , the case of Opp is similar, and refer the

reader to Figure 1 in order to follow the argument. If C ′ ∈ X∞
o (C), let A

be the unique apartment containing C and C ′. Then by definition o ∈ A so
Q(o, C) ⊂ A and hence y ∈ A. Now C and C ′ are opposite so C ′ ∈ X∞

y (C).

o

y

C

Õppo(C)

Figure 1. The set Õppo(C) is contained in Õppy(C)

�

Lemma 4.7. Let o ∈ X, C ∈ ch(X∞) and y in the interior of Q(o, C).
Then there exists a bounded continuous function ϕo,y,C : X∪ch(X∞)→ [0, 1]
such that

ϕo,y,C(x) =

{
1, if x ∈ Õppo(C)

0, if x /∈ Õppy(C).

Proof. Let the set F be the closure of Õppo(C) for the cone topology, and

define the set F ′ to be (X∪X∞)−Õppy(C). Both sets are closed. By Lemma
4.6, they are disjoint. The space X∪X∞ is a normal topological space (as it
is metrizable), hence Urysohn’s Lemma (see for instance [Lan83, Theorem
4.2]) applies and there exists a continuous function ϕo,y,C : X ∪ ch(X∞)→
[0, 1] satisfying

ϕo,y,C(F ) = 1 and ϕo,y,C(F ′) = 0,

which proves the Lemma. �

For the rest of this section, we let µ be a symmetric and admissible prob-
ability measure on G, and we denote by ν the unique stationary measure
on ch(X∞) defined by Theorem 3.1. As before, we denote by (Zn(ω)) the
random walk generated by µ on G.

The following result is an application of [FK83, Theorem 1.1].

Lemma 4.8. Let ν be the unique µ-stationary measure on X∪ch(X∞). Let
C be a chamber at infinity and o ∈ X be a vertex. Let y be a point in the
interior of Q(o, C). Then almost surely,

lim
n→+∞

1

n
|{k ≤ n | Z−1

k y ∈ Õppy(C)}| ≥ ν(Õppo(C))
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Proof. Let ϕo,y,C be the function given by Lemma 4.7. As ϕo,y,C is con-
tinuous and bounded, [FK83, Theorem 1.4] (with the uniqueness of the
stationary measure) gives that almost surely,

lim
n→+∞

1

n

n∑

k=1

ϕo,y,C(Z−1
k y) = ν̌(ϕo,y,C).

where ν̌ is the unique µ̌-stationary measure on ch(X∞) given by Theorem
3.1, and µ̌ = ι∗µ, with ι(g) = g−1. Since µ is assumed to be symmetric, we
have ν̌ = ν, so that the above average in fact converges to ν(ϕo,y,C).

As 0 ≤ ϕo,y,C ≤ 1 and ϕo,y,C(x) = 1 if x ∈ Õppo(C) we get that

ν(ϕo,y,C) ≥ ν(Õppo(C)).

Finally, we obtain that

lim
n→+∞

1

n
|{k ≤ n | Z−1

k y ∈ Õppy(C)}| ≥ lim
n→+∞

1

n

n∑

k=1

ϕo,y,C(Z−1
k y)

≥ ν(Õppo(C)).

�

4.2. Proof of Theorem D. In this section our goal is to prove Theorem
D. First we will need the following lemma.

Lemma 4.9. Let o ∈ X and C ∈ ch(X∞). Let {xn} be a sequence of
vertices in Q(o, C) that converges to C in the combinatorial sense. Then for
all C ′ ∈ ch(X∞) opposite to C, there exists no ∈ N such that for all n ≥ no,
C ′ and C are opposite at xn.

Proof. Let C ′ be a chamber opposite to C, let A be the unique apartment
joining them and let x be a vertex in A. By axiom (A4), there exists a
subsector Q(o′, C) of both Q(o, C) and Q(x, C). Since (xn) converges to C
in the combinatorial sense and belongs to Q(o, C), there exists n0 such that
for all n ≥ n0, xn belongs to the interior of Q(o′, C). We can then conclude
by the same argument as in the proof of Lemma 4.4, and say that C and C ′

are opposite at xn for every such n. �

Remark 4.10. The assumption that {xn} remains in a sector (or in a
given apartment, the proof would be the same) is really necessary. To give
a counterexample, take first a sequence of vertices (x′

n) in Q(o, C) that
converges to C in the combinatorial sense. Then define xn to be a vertex at
distance 1 of x′

n but not in Q(o, C). Then (xn) still converges to C in the
combinatorial sense, but if A is an apartment containing Q(o, C) and C ′ is
the chamber opposite to C in A, then for every n large enough the chambers
C and C ′ are not opposite at xn.

Proof of Theorem D. First we reduce to the complete and separable case.
By Proposition 2.4 we can find Y ⊂ X be a separable subbuilding which
is G-invariant. Then the action of G on Y is still non-elementary, and by
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Proposition 2.7 it is still non-elementary on the completion Z = Y of Y . On
the other hand, by [KL97] (see also [Str11, Lemma 4.4]) we can embed X into

a complete Euclidean building, which we denote X̂. So Z is a G-invariant
complete convex separable subspace of X̂ , whose boundary is a spherical
building, and such that the action of G is non-elementary. Hence we can
apply results of the previous section to Z. We write Z∞ for the boundary
∂∞Z, viewed as a spherical building. For C ∈ ch(Z∞) we write Z∞(C) for
the set of chambers in the spherical building Z∞ which are opposite C.

Let x ∈ X, and let Ω′ ⊆ Ω be the measurable set defined as all the ω ∈ Ω
such that (Zn(ω)x)n converges to a chamber Cω ∈ ch(Z∞). We know by
Theorem 3.1 that Ω′ can be taken to have a full measure. Let ν be the unique
stationary measure on Z ∪ ch(Z∞) given by Theorem 3.1. By Theorem 3.2,
two chambers at infinity are almost surely opposite. In particular, replacing
again Ω′ by a full measure subset, we can assume that for every ω ∈ Ω′,
ν(Z∞(Cω)) = 1.

Fix ω ∈ Ω′. Take a sequence of vertices (xn) such that xn+1 is in the inte-
rior of Q(xn, Cω) for every n, and (xn) converges to C in the combinatorial
sense. Applying Lemma 4.9 we see that

Z∞(Cω) =
⋃

n0≥0

⋂

n≥n0

Z∞
xn

(Cω)

Since xn+1 is in the interior of Q(xn, C), we have by Lemma 4.6 that
Z∞

xn
(Cω) ⊂ Z∞

xn+1
(Cω). Therefore, Z∞(Cω) =

⋃
n0≥0 Z∞

xn0
(Cω), and we ob-

tain that
lim

n→+∞
ν(Z∞

xn
(Cω)) = 1.

Fix ε > 0. It follows that there exists an o = o(ε, ω) ∈ Z such that
ν(Z∞

o (Cω)) ≥ 1− ε. Fix y in the interior of Q(o, Cω). Finally, fix y′ ∈ Z in
the interior of Q(y, Cω). By Lemma 4.8 and Lemma 4.6 we have

lim
n→+∞

1

n
|{k ≤ n | Z−1

k y′ ∈ Õppy′(Cω)}| ≥ ν(Õppy(Cω)) ≥ ν(Õppo(Cω)) ≥ 1− ε

By Lemma 4.6, Õppy(Cω) ⊆ Õppy′(Cω). By Proposition 3.3, (Zn(ω)y′)
converges to Cω in the combinatorial sense: the projection of Zn(ω)y′ on

Σy′X̂ is the constant local alcove c(ω) := Σy′(Cω) for all n sufficiently large,
say n0. For all n ≥ n0, Lemma 4.1 implies that Zn(ω) is strongly regular.

It follows that

lim
n→+∞

1

n
|{k ≤ n | Zk is strongly regular hyperbolic}| ≥ 1− ε.

As ε was arbitrary and Ω′ is of full measure, we obtain the result. �

In fact, the proof also gives a control on where the attractive/repelling
fixed points of the strongly regular element lie. If g ∈ Aut(X) is strongly
regular, then its oriented axis ℓ is contained in a unique apartment A, and
its positive endpoint ℓ(+∞) is contained in the interior of a unique chamber
at infinity of A, which we call its attracting chamber in ch(Z∞). Similarly
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ℓ(−∞) is contained in a chamber at infinity called the repelling chamber of
g.

Using the techniques from the proof of Theorem D, we can derive the
existence of a pair of independent strongly regular hyperbolic isometries in
the following sense.

Proposition 4.11. There exists a pair of strongly regular hyperbolic el-
ements g1, g2 with attracting and repelling chambers C+

1 , C−
1 and C+

2 , C−
2

respectively such that C+
1 , C−

1 , C+
2 , C−

2 ∈ Z∞ are pairwise opposite.

Proof. By Theorem D, there exists a strongly regular hyperbolic element g1
with attracting and repelling chambers at infinity C+

1 and C−
1 respectively.

For every chamber C ′ ∈ ch(Z∞), Z∞(C ′) is open in ch(Z∞) and by Theorem
3.2, for ν-almost every C ′ ∈ ch(Z∞), ν(Z∞(C ′)) = 1. As a consequence,
we can assume that ν(Z∞(C+

1 )∩Z∞(C−
1 )) = 1. By Theorem 3.1, for every

U ⊆ ch(Z∞),

ν(U) = P(ω | (Zn(ω)o) converges to C ′, C ′ ∈ U),

where the convergence is meant in the combinatorial sense. Therefore, the
measurable set

{ω ∈ Ω | (Zn(ω)o) converges to C ′, C ′ ∈ Z∞(C+
1 ) ∩ Z∞(C−

1 )}

is of full P-measure. Call this set Ω′, and let ω ∈ Ω′. By assumption,
there exists Cω ∈ Z∞(C+

1 ) ∩ Z∞(C−
1 ) such that (Zn(ω)o) converges to Cω.

Applying the same argument as before, there exists D in the support of ν
such that D is opposite to C+

1 , C−
1 and Cω.

Let A be the unique apartment joining Cω and D, and let o ∈ A be any
vertex. Let y ∈ A be in the interior of Q(o, D). Then by Lemma 4.6, the set
V := Z∞

y (Cω) contains D and for all D′ ∈ V , Cω and D′ are opposite. Since

Z∞(C+
1 ) ∩ Z∞(C−

1 ) is open, up to taking a point y deeper into the Weyl
chamber Q(o, D), we can moreover assume that V ⊆ Z∞(C+

1 ) ∩ Z∞(C−
1 ).

Now since V contains D and D belongs to the support of ν, ν(V ) := m > 0.
In particular,

ν(Õppy(Cω)) ≥ m > 0.

We can now apply the same argument as in the proof of Theorem D to build
strongly regular hyperbolic elements. By Lemma 4.8,

lim
n→+∞

1

n
|{k ≤ n | Z−1

k y ∈ Õppo(Cω)}| ≥ ν(Õppy(Cω)) ≥ m

Since Zn(ω)o converges to Cω, by the same argument as in the proof of
Theorem D, we conclude that there exists an infinite number of n such
that Zn(ω) is a strongly regular hyperbolic isometry. See Figure 2 for a
(1-dimensional) illustration.

As moreover Cω ∈ Z∞(C+
1 ) ∩ Z∞(C−

1 ) ∩ Z∞(D), there exists n0 such
that for all n ≥ n0, Uo(Zn(ω)o) ⊆ Z∞(C+

1 ) ∩ Z∞(C−
1 ) ∩ Z∞(D). Fix

n ≥ n0 such that Zn(ω) is a strongly regular hyperbolic isometry and such
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that Z−1
n (ω)o ∈ Õppy(Cω). By Corollary 4.3, the attracting chamber at

infinity C+
2 of Zn(ω)o is contained in Uo(Zn(ω)o) and the repelling chamber

at infinity C−
2 belongs to Uo(Z−1

n o). As y was arbitrarily deep inside the
Weyl chamber Q(o, D), we can then obtain C−

2 ∈ Z∞(C+
1 ) ∩ Z∞(C−

1 ) and
the proposition is proven. �

y o

ZnoZ−1
n o

D Cω

C+
2C+

1

C−
1

C−
2

Figure 2. Construction of independent strongly regular hy-
perbolic isometries

4.3. Local-to-global fixed point theorem. First, we recall a fixed point
property for trees due to Serre for simplicial trees [Ser80, Corollary I.6.5.3]
and to Morgan and Shalen for R-trees [MS84, Proposition II.2.15].

Proposition 4.12. Let G be a finitely generated group acting on a tree. If
each element of G has a fixed point, then G has a global fixed point.

Proof of Theorem C. By Theorem D, we see that the action of G on X must
be elementary. If G has a bounded orbit then by Struyve’s extension of the
Bruhat-Tits fixed point theorem [Str11, Main Result 1] we conclude that G
has a fixed point in X.

If not, then G has a finite orbit on ∂∞X. In this case, G has a finite index
subgroup G0 which fixes a boundary vertex in ∂∞X, and therefore a facet
v of the building at infinity. Hence G0 acts on the corresponding panel tree
Tv. The projection πv : X → Tv is G0-equivariant, so the action on Tv is
still elliptic. By Proposition 4.12, G0 fixes a point in Tv, which we denote by
ξ0. By [SST20, Lemma 3.3] it follows that g fixes some point xg in π−1

v (ξ0).
Hence it fixes a half-line [xg, v), whose projection on Tv is ξ0.

Now let {g1, . . . , gn} be a generating set for G0. Then each gi fixes a
half-line [xgi , v) which projects to ξ0. Since all these lines have the same
projection, it follows that any two of them intersect. Therefore there is a
half-line contained in all the [xgi , v), which is fixed pointwise by all of the
finitely many generators of G0, and therefore by all of G0. Therefore G
has a finite orbit on X, and again by [Str11, Main Result 1] the theorem is
proved. �
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4.4. Tits alternative. The proof of Theorem A is based on the following
well-known "ping-pong" Lemma, which we state for cyclic subgroups.

Lemma 4.13. Let G = 〈a, b〉 be a group generated by two elements acting
on a set Y , and let Y +

1 , Y −
1 , Y +

2 , Y −
2 be four disjoint non-empty subsets in

Y , and let Y ′ be the union of these four sets. If for every k ≥ 0, we have

• ak(Y ′ \ Y −
1 ) ⊆ Y +

1 ,
• a−k(Y ′ \ Y +

1 ) ⊆ Y −
1 ,

• bk(Y ′ \ Y −
2 ) ⊆ Y +

2 ,
• b−k(Y ′ \ Y +

2 ) ⊆ Y −
2 ,

then G is isomorphic to a free group of rank 2.

The proof is similar to the original proof of Tits [Tit72] for linear groups.
It relies on the dynamics of strongly regular hyperbolic elements.

The following lemma gives quantitative control about the speed of con-
vergence.

Lemma 4.14. Let g be a strongly regular hyperbolic element with translation
apartment A and let C−, C+ ∈ ch(X∞) be the repelling (resp. attracting)
chamber at infinity for g. Let o, y ∈ A be vertices such that y ∈ Q(o, C+).
Then there exists N such that for all C ∈ X∞

o (C−), gn(C) ∈ Uo(y) for every
n ≥ N .

Proof. Denote by ξ+ ∈ ∂∞X the attracting fixed point of g. Recall that
g acts as a translation on A, and that gno → ξ+ in the conical sense. As
a consequence, there exists N such that for all n ≥ N , gno ∈ Q(y, C+).
Fix such n ≥ N . For all C ∈ X∞

o (C−), the chamber gn(C) is represented
by the sector Q(gno, gnC). As g acts as a translation, and as by definition
Q(o, C−) and Q(o, C) are opposite sectors at o, Q(gno, C−) and Q(gno, gnC)
are opposite sectors at gno. As a consequence, gno ∈ Q(y, C) and gnC ⊆
Uo(y). �

Proof of Theorem A. By assumption, the action is non-elementary. Hence,
by Proposition 4.11, there exists a pair of strongly regular hyperbolic ele-
ments g1, g2 ∈ G with translation apartments A1, A2 respectively. Denote
by ξ+

1 , ξ−
1 (resp. ξ+

2 , ξ−
2 ) the attracting fixed points in ∂∞X of g1 (resp.

g2), and by C±
1,2 the chamber at infinity for which ξ±

1,2 is an interior point

respectively. Moreover, we can assume that the chambers C+
1 , C−

1 , C+
2 , C−

2
are pairwise opposite. Let o, o′, o′′ ∈ X. By Lemma 4.4, we can choose U+

1 ,
U−

1 , U+
2 , U+

2 open neighborhoods of C+
1 , C−

1 , C+
2 , C−

2 respectively, such that
U+

1 ⊂ X∞
o (C−

1 ) ∩ X∞
o′ (C+

2 ) ∩ X∞
o′′ (C

−
2 ), and similarly for the other indices

and exponents. Furthermore, as the sets {Uo(y)}y∈X form a basis for the

topology of ch(Z∞) for any o, we can choose y1 ∈ Q(o, C+
1 ), y+

2 ∈ Q(o′, C+
1 )

and y−
2 ∈ Q(o′′, C+

1 ) such that U+
1 contains Uo(y1) ∪ Uo′(y+

2 ) ∪ Uo′′(y−
2 ).

Then by Lemma 4.14 we see that there exists N+
1 such that for every

n ≥ N+
1 we get gn

1 (U+
2 )∪ gn

1 (U+
1 )∪ gn

1 (U−
2 ) ⊂ U+

1 . Arguing similarly for the
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other subsets, and replacing g1 and g2 by sufficiently large powers, we can
apply Lemma 4.13 and deduce that g1 and g2 generate a free group.

�

5. Elementary actions

We conclude the paper with the proof of Theorem B.

Proof of Theorem B. By Theorem A we may assume the action is elemen-
tary and by Theorem E, all elements are either elliptic or hyperbolic. If there
is a global fixed point in X, then the group is finite since point-stabilizers
are finite. So we may assume that G contains a subgroup of finite index
G0 which fixes a vertex at infinity v. If all elements of G are elliptic then
by Theorem C there is a global fixed point, hence again the group is finite.
Therefore we henceforth assume that there exists a hyperbolic isometry for
the G-action on X.

As G0 acts on the corresponding panel tree Tv we get that either G0 (and
hence G) contains a non-abelian free group, or G0 fixes a point p of Tv or
an end ξ ∈ ∂Tv.

Suppose first that G0 fixes a point p ∈ Tv. Let g ∈ G0 be a hyperbolic
element in the action on X. Let h ∈ G0 be an elliptic element for the
action on X. As g is hyperbolic, there exists an axis γ on which g acts by
translation, and since g fixes p, we can assume that the strong asymptote
class of γ|[0,∞) is p ∈ Tv. Up to taking g−1, we can assume that v is the
attracting fixed point of g in ∂∞X. Since h is elliptic, if we denote by
o ∈ X one of its fixed points, h fixes the ray γ′

|[0,∞) representing [o, v). Now

there exists t0, t1 such that γ|[t0,∞) and γ′
|[t1,∞) are contained in the same

apartment, and are parallel in this apartment. Since h fixes γ′
|[t1,∞) and

also stabilizes the strong asymptote class of the ray r := γ|[t0,∞), it must fix

γ|[t0,∞) pointwise. Let x be a point on r. Since g−nhgn fixes x for all n ≥ 0

and since point-stabilizers are finite, there exists k ≥ 0 such that g−khgk = 1
and therefore h = 1. Thus all non-trivial elements in G0 are hyperbolic.

Let r be a ray in the strong asymptote class of p ∈ Tv. Let x ∈ r be a
point. Let us denote by S(x) the set

S(x) := {g ∈ G0 | x ∈ Min(g)}.

Notice that for any element g ∈ S(x), the ray [x, v) belongs to some axis
γg of g, hence for x′ ∈ [x, v), S(x) ⊆ S(x′). Using the same argument as
before, for any hyperbolic element g ∈ G0, g stabilizes a sub-ray of r. As a
consequence,

∪{S(x) | x ∈ r} = G0.

Since the action is wandering, for every x ∈ r, there exists gx ∈ S(x) of
minimal (non-zero) translation length ℓ(gx). Up to taking its inverse, we
assume that v is the attracting fixed point of gx.
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Now let h ∈ S(x). Again, we assume that v is the attracting fixed point
of h. Since gx is of minimal translation length, and h also acts by positive
translations on [x, v), there exists k ∈ N such that kℓ(gx) = ℓ(h). Con-
sequently, g−k

x h(x) = x and since there are no non-trivial elliptic element,
h = gk

x. In particular, any two element g, h ∈ S(x) commute. As G0 is
the increasing union of all these S(x), for x ∈ r, we have proven that G0 is
abelian, and is Z or Z

2 by the flat torus theorem [BH99, Theorem II.7.1].
We now assume that all elements g ∈ G0 fix the end ξ ∈ ∂Tv. Due to the

canonical Aut(X)v-equivariant bijection ∂Tv ≃ Res(v) between the ends of
Tv and the chambers in the residue Res(v) [Tit86, Proposition 4], it means
that G0 fixes the chamber at infinity C := Cξ associated to ξ. Let us first
prove that there is no non-trivial elliptic element. By contradiction, assume
that there is such an element h. Then as h fixes a point o ∈ X and the
chamber at infinity C, h fixes the sector Q(o, C). Let g be a hyperbolic
element in G0. Let A be an apartment containing Q(o, C) in its boundary.
By [KS17, Lemma 2.2], there exists a unique translation t ∈ Isom(A) of A
such that for all p ∈ gA ∩ A, g−1(p) = t(p). As g−1 also fixes C, there also
exists s ∈ Isom(A) a unique translation of A such that for all p ∈ A∩ g−1A,
g(p) = s(p). In particular, for all p ∈ A ∩ g−1A, g−1 ◦ g(p) = t ◦ s(p) = p,
therefore s = t−1. Then, taking p sufficiently deep in Q(o, C) (for instance,
p ∈ gA ∩ A ∩ t−1(Q(o, C))), we have that ghg−1(p) = p. Since pointwise-
stabilizers are uniformly bounded, there exists q such that gqhg−q = 1 and
therefore h = 1.

Now let h ∈ G0 be another element. We denote by s the translation of
A such that for all p ∈ A ∩ hA, h−1(p) = s(p) as before. For p sufficiently
deep in any Weyl chamber S representing C, we obtain that ghg−1h−1(p) =
tst−1s−1(p) = p (in fact, this holds for any p ∈ A ∩ hA ∩ hgA ∩ hgh−1A ∩
hgh−1g−1A, which is non-empty because all elements in G0 fix C). As
there are no non-trivial elliptic elements, we have that [g, h] = 1. Then
G0 is abelian, and is Z or Z

2 by the flat torus theorem [BH99, Theorem
II.7.1]. �
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