
Optimizing Multi-level Magic State Factories
for Fault-Tolerant Quantum Architectures

Allyson Silva,1 Artur Scherer,1 Zak Webb,1 Abdullah Khalid,1 Bohdan Kulchytskyy,1

Mia Kramer,1 Kevin Nguyen,1 Xiangzhou Kong,1 Gebremedhin A. Dagnew,1

Yumeng Wang,1 Huy Anh Nguyen,1 Katiemarie Olfert,1 and Pooya Ronagh1, 2, 3, 4, ∗

11QB Information Technologies (1QBit), Vancouver, BC, Canada
2Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada

3Department of Physics & Astronomy, University of Waterloo, Waterloo, ON, Canada
4Perimeter Institute for Theoretical Physics, Waterloo, ON, Canada

(Dated: November 8, 2024)

We propose a novel technique for optimizing a modular fault-tolerant quantum computing
architecture, taking into account any desired space–time trade-offs between the number of
physical qubits and the fault-tolerant execution time of a quantum algorithm. We consider a
concept architecture comprising a dedicated zone as a multi-level magic state factory and a
core processor for efficient logical operations, forming a supply chain network for production
and consumption of magic states. Using a heuristic algorithm, we solve the multi-objective
optimization problem of minimizing space and time subject to a user-defined error budget for
the success of the computation, taking the performance of various fault-tolerant protocols
such as quantum memory, state preparation, magic state distillation, code growth, and
logical operations into account. As an application, we show that physical quantum resource
estimation reduces to a simple model involving a small number of key parameters, namely,
the circuit volume, the error prefactors (µ) and error suppression rates (Λ) of the fault-
tolerant protocols, and an allowed slowdown factor (β). We show that, in the proposed
architecture, 105–108 physical qubits are required for quantum algorithms with T -counts in
the range 106–1015 and logical qubit counts in the range 102–104, when run on quantum
computers with quantum memory Λ in the range 3–10, for all slowdown factors β ≥ 0.2.

I. INTRODUCTION

Fault-tolerant compilation of quantum algorithms is especially more complicated than that of
classical computer programs because the final physical circuit depends on the specific noise char-
acteristics of the quantum processing unit (QPU). It is commonly understood that the number of
non-Clifford logical operations (i.e., the T -count of the algorithm) is a good indicator of the ap-
proximate cost of running the quantum algorithm. However, assembling the quantum program to
run in hours, days, or even months of exact physical circuits on a quantum computer with millions
of qubits is much more complicated. Recently, several physical resource estimation platforms have
been developed [1, 2] to provide a finer analysis of fault-tolerant quantum computation (FTQC)
at utility scale. However, these resource estimators rely on involved bookkeeping of physical qubit
counts for various procedures, and therefore are not easily adaptable to alternative circuit decom-
positions (i.e., beyond Clifford+T , e.g., by including Toffoli gates), physical architectures (e.g., for
using different state distillation and injection protocols), or the various and possibly very compli-
cated descriptions of the noise of the hardware. This paper is intended to provide a systematic
and simple approach to FTQC architecture design, analysis, and optimization.

We present a framework for constructing flexible varieties of FTQC architectures in a modular
fashion by allocating dedicated zones across a 2D physical qubit layout for the execution of specific

∗
Corresponding author: pooya.ronagh@1qbit.com

ar
X

iv
:2

41
1.

04
27

0v
1

 [
qu

an
t-

ph
]

 6
 N

ov
 2

02
4

mailto:pooya.ronagh@1qbit.com

2

(a) Space-time costs for varying quantum circuits

1 min 1 h 1 d 1 mo 1 y 10 y 1000 y
Expected runtime

106

107

108

Ph
ys

ica
l q

ub
it

co
un

t

T = 106

Q = 102

T = 106

Q = 103

T = 106

Q = 104

T = 109

Q = 102

T = 109

Q = 103

T = 109

Q = 104

T = 1012

Q = 102

T = 1012

Q = 103

T = 1012

Q = 104

T = 1015

Q = 102

T = 1015

Q = 103

T = 1015

Q = 104

(b) Space-time costs for varying quantum hardware

3 mo 1 y 3 y 10 y 100 y
Expected runtime

106

107

108

Ph
ys

ica
l q

ub
it

co
un

t

 = 3, eprep = 10 2

 = 3, eprep = 10 5

 = 3, eprep = 10 8

 = 5, eprep = 10 2

 = 5, eprep = 10 5

 = 5, eprep = 10 8

 = 10, eprep = 10 2

 = 10, eprep = 10 5

 = 10, eprep = 10 8

= 1

FIG. 1: Space and time cost estimates of an efficient fault-tolerant quantum architecture. (a) Estimates for
combinations of T -count T = 106 to 1015 and logical data qubits Q = 102 to 104 in a quantum circuit, based on an FTQC
model with a quantum memory error prefactor of µmem = 3.8× 10−3 and an error suppression rate of Λmem = 10, and a
magic state preparation protocol with a linear form with µprep = 1.44× 10−4 and Λprep = 2.5× 10−5. (b) Estimates for
combinations of Λmem = 3 to 10 and a magic state preparation protocol with Λprep = 0 and µprep = eprep = 10−2 to 10−8 for
a circuit with T = 1012 and Q = 102. Each data point corresponds to a slowdown factor β, relative to a serial execution
(β = 1) of the quantum circuit. A value of β < 1 reflects a scenario where the magic state factory (MSF) is expanded to meet
the magic state consumption rate when parallelizing non-Clifford gates, resulting in faster execution. Conversely, β > 1
indicates a reduction in MSF size, leading to a longer runtime. While runtime is heavily influenced by the number of
non-Clifford gates in the circuit and the MSF size, our estimates demonstrate that quantum computers require between 105

and 108 physical qubits across all scenarios evaluated.

fault-tolerant protocols. To this end, we view FTQC as the continual production and consumption
of various types of expensive quantum resources, such as the production of lower-fidelity logical |T ⟩
or |CCZ⟩ states in one zone and their consumption in another zone for obtaining higher-fidelity
magic states via a distillation protocol [3]. We consider rotated surface codes as the typical choice
of quantum error correction (QEC) codes, and rely on lattice surgery for the execution of entangling
gates and seamless routing and teleportation of quantum information across a quantum bus [4, 5].

At utility scale, it is economical to dedicate small numbers of physical code patches as buffer
registers connecting the FTQC architecture zones to each other. Newly produced resources in one
zone are placed in a buffer, where they are fault-tolerantly maintained via continued stabilizer
measurements and decoding (quantum memory) for consumption in a subsequent zone. One or
many terminal core processors consume the final highest-fidelity resources to perform the logical
gates of the quantum program. We refer the reader to Section II and Figs. 2 and 3 for further
details.

The buffer registers provide several advantages. Practically speaking, they allow for scheduling
operations within each zone independently and asynchronously from the other zones. Moreover,
since fault-tolerant protocols typically fail with certain non-zero probability, keeping the buffers
fully stacked with their associated resource states guarantees that the operations of any dependent
zones do not halt since the probability of encountering a completely empty buffer is extremely small.
More generally, the oversupply and undersupply of resource states in a buffer can be intentionally
used to adjust the space–time trade-offs for FTQC. For example, a magic state factory (MSF)
may require many magic state distillation units to keep its buffer fully stacked, while it is possible
for a smaller number of distillation units to still be able to fault-tolerantly execute the quantum
algorithm if some slowdown caused by occasionally empty buffer registers can be tolerated.

The key idea in this work is to determine the size of each FTQC architecture zone by choosing
the number of FTQC protocol units (e.g., 15:1 magic state distillation units, or the like) in that

3

zone in such a way that the supply and demand of the interconnected zones are balanced. This
balance, however, can be broken, for the assembly of the program using fewer physical qubits by
incurring a longer execution time. However, reducing the (logical) size of the MSF increases the
idle time in the core processor, which increases the overall accumulated error rates, potentially
requiring larger code distances. Our study provides a detailed analysis of such trade-offs. We
model the optimization of space and time as a bi-objective optimization problem in Section III.
By solving this optimization problem, we observe that the space and time costs of any FTQC
can be efficiently predicted from a small set of key attributes of the quantum program and the
quantum computer executing it, and the potential space–time trade-offs for the architecture can
be identified.

For clarity we distinguish FTQC compilation and assembly as follows. We assume that the
quantum program is given in an intermediate representation (IR) language, also called assembly,
after compilation from a higher-level programming environment. Examples of common quantum
IR languages are QASM [6] and QIR [7]. However, in this paper, we focus on translation at a
lower level from assembly to machine instructions (i.e., QEC rounds and decoder instructions)
performed by an assembler. Different IR programs may be transpiled into each other efficiently
[4, 5]. Therefore, we assume Pauli-based lattice surgery as our IR of choice. For the assembler,
the two relevant attributes of the FTQC program are denoted by the Greek small letters α and
β, representing the average size of lattice surgeries in the core processor relative to the number of
logical qubits and a user-defined slowdown factor within the buffers, respectively. Our empirical
studies showed that α is not a significant factor for the assembly process, so we may omit it to
obtain an even simpler model depending on only the slowdown factor β. The noise profile of
the QPU is also important for the assembler. We observe that this information can be reduced
to a small number of parameters for a predictive model of the logical error rates of each FTQC
protocol, namely µ and Λ, respectively representing the logical error prefactor and suppression rate
of the protocol. Prior literature has used Λ = Λmem to quantify the performance of the quantum
hardware in a fault-tolerant quantum memory experiment on a single surface code patch [8]. Λmem

describes the asymptotic multiple of improvement in the logical fidelity of the QEC code when
increasing its distance by 2. More comprehensively, a predictive model for the logical error rate of
every fault-tolerant protocol can be devised using additional model parameters. Figure 1 provides
a summary of the resource estimates for quantum circuits with varying T -counts, logical qubit
counts Q, and quantum computers with varying Λmem and first-stage preparation error rate eprep.

Overall, the main contributions of our paper are the following:

• A new modular architecture design procedure for FTQC with at least a multi-level MSF and
a core processor;

• An optimization framework that decides the size required for the MSF and the code distances
of all logical qubits while minimizing space and time costs; and

• A sensitivity analysis of space and time trade-offs for different quantum circuits and quantum
computers.

The paper is organized as follows. Section II introduces our proposed architecture. Section III in-
troduces the error models driven from numerical and experimental hardware noise data. Section IV
formalizes the bi-objective optimization problem to be solved and the optimization framework we
used to solve the problem. Section V presents our numerical results for trading resource estima-
tions on varying quantum circuits and quantum hardware noise profiles. Finally, Section VI offers
concluding remarks.

4

II. THE FAULT-TOLERANT ARCHITECTURE

We assume rotated surface codes as our QEC scheme of choice and assume that the program
to be run is transpiled to multi-qubit Pauli rotations of the angles π, π/2, and π/4 for Clifford
operations, and π/8 for non-Clifford operations [9, 10]. These Pauli rotations are in turn imple-
mented using fault-tolerant lattice surgery [4, 5, 11]. A core processor is designed to sequentially
perform multi-qubit, long-range entanglements for sets of π/8 Pauli rotation measurements using
auxiliary qubits to connect all the logical qubits required by a given logical operation. The core (see
Section IIA) is connected to an external multi-level MSF as detailed in Section II B that supplies
high-fidelity magic states required for the implementation of these logical operations.

For simplicity, we use an architecture with a single core processor and single MSF as our working
example, although our analysis can be directly applied to more-sophisticated architectures with
zones for creating other resource states such as the Toffoli [12] and doubly controlled Z (CCZ) [3]
magic state distillation units. Moreover, if a quantum algorithm uses a particular rotation angle
frequently, a dedicated zone for specific rotation angles can be allocated. It may also be favourable
to use distillation protocols that produce more magic states at the cost of a smaller increase in
fidelity. Lastly, it might be useful to use dedicated zones for quantum subroutines such as QROM
or arithmetic.

A. The Core Processor

The core processor is the central component of the architecture, where logical operations are
performed on the logical qubits. It comprises two key elements: the memory fabric and a buffer.
The memory fabric is responsible for storing the quantum information required by the computation
and performing its logical operations. We follow the fast block layout of Ref. [5], where logical
qubits are arranged in two-tile, two-qubit data patches connected to a quantum bus using a square
arrangement for performing lattice surgery. This is a time-efficient layout as all Pauli operators—
X, Z, and Y being the combination of both—are directly accessible by the quantum bus. In an
exact square arrangement, the Q logical qubits requested in the algorithm would require a space
of 2Q+

√
8Q+1 tiles plus the tiles required for the buffer space. To save on space, we shorten the

last column when
√

Q/2 is not an integer.

The buffer stores the resources prepared in the external MSF and holds them until they are
consumed by the π/8 rotations. The buffer is used to simplify access to magic states so that
the memory fabric does not have to directly interface with the MSF. It allows the execution of
auto-corrected π/8 rotations in a single time step, while receiving and preparing new magic states
in parallel following the protocol suggested in Ref. [5]. It includes spaces dedicated for magic
state growth and storage, which are used for expanding magic states to larger code distances and
preparing them for consumption, respectively.

An example layout of the core processor is shown in Fig. 2 for a circuit requiring 18 logical qubits
to store its data. The example shows multiple storage and growth units to provide robustness
against fluctuations in demand, resulting from parallelization of π/8 rotations, and production,
resulting from distillation failures. More connection points between the memory fabric and the
buffer can be added to allow greater parallelization of operations. We note that if the production
rate of magic states in the MSF is slower than the consumption rate of magic states in the memory
fabric, extra storage capacity is not required; therefore, the buffer space can be reduced in size.

5

Magic state factory

Data

X basis edge

Z basis edge

Bus

Ancillary

Magic state growth unit

Magic state storage

FIG. 2: Example layout of the core processor. The memory fabric is composed of Q = 18 logical qubits distributed in
nine two-tile, two-qubit data patches (shown in purple) surrounded by bus qubits (green), while the buffer is composed of
magic state storage patches (yellow) dedicated to storing magic states produced in the MSF. This storage space is designed to
allow auto-corrected π/8 rotations by connecting the storage qubits to an ancillary qubit (pink) using lattice surgery in
parallel to the lattice surgery used to connect the data patches to the magic state consumed. Magic state growth units are
also presented to allow magic state expansion if magic states produced are of a different size than is required.

B. Magic State Factory

The MSF is a module of the fault-tolerant architecture dedicated to the production of high-
fidelity magic states required to implement the π/8 rotation gates. Magic states are initially
prepared using physical operations in a magic state preparation unit. As these are highly error-
prone states that most likely have fidelities below those required for fault tolerance, rounds of
magic state distillation are performed using magic state distillation units, where the magic states
at one particular level are consumed to create higher-fidelity magic states. Once ready, the magic
states distilled are expanded to a larger code distance, if required, in magic state growth units, and
transferred to a distillation unit in the next level. When magic states reach the required fidelity, the
distillation process has been completed and the magic states created at the highest distillation level
are sent to the core processor to be consumed when performing the π/8 rotation gates. Figure 3
shows an example of the architecture described.

The entire process of magic state distillation is a logical protocol that enables the consumption
of lower-fidelity magic states to produce a smaller number of higher-fidelity magic states with some
probability of success. There are several such protocols with varying trade-offs between them, such
as length, the amount of increase in fidelity, the number of required input magic states, and the
number of output magic states [13–15]. However, most known protocols are created using specific
error correction or detection protocols in order to reduce the probability of specific types of errors.

Since magic state distillation protocols are performed on logical qubits, each protocol must be
performed at a specific code distance. Furthermore, since operations on the logical qubits are
faulty, there will be a term in the output fidelity of the magic states dependent on this code
distance. In general, this term can be decreased by increasing the code distance at which the
magic state distillation operates, but there is generally a trade-off between decreased Clifford

6

Core zone

Data

X basis edge

Z basis edge

Bus

Ancillary

Distilling port

Magic state growth unit

Magic state distillation unit

Magic state preparation unit

Magic state storage

FIG. 3: Architecture of the MSF and its interface with the core processor buffer. Magic states are first prepared
using dedicated preparation units following a preparation protocol. They are then dispatched to a buffer where they remain
until being requested by its corresponding distillation unit. The higher-fidelity magic states are prepared in the distilling
ports of these units. Once ready, they proceed to growth units dedicated to a next-level distillation unit. The process repeats
until the highest level sends a magic state to the core processor. In this example, two distillation levels are used, composed of
four and two distillation units each from lowest to highest.

errors and increasing numbers of physical qubits operating in a given magic state distillation unit.
While it is difficult to theoretically determine the additional error these faulty operations cause,
numerical studies can be used to determine how the error rates in the Clifford operations affect
the outputs [11].

As a good example that is used as a testbed throughout this paper, the 15:1 distillation pro-
tocol [13] uses 15 lower-fidelity magic states and produces a single higher-fidelity magic state. An
analysis of this distillation protocol shows that if the input error rates of the magic states are ein
and the logical error rates of the individual logical gates are emem, then the output error is bounded
by O(e3in+emem) from the distillation protocol. From this, one can determine the output fidelity of
a single magic state distillation unit given the input fidelities and code distances. Additionally, it is
possible to approximate the probability of a successful distillation for this protocol using numerical
simulations [11]. Figure 3 shows an architecture for the 15:1 protocol customized to run in 13
logical operations, accounting for 11 gates, one cycle for correction, and one cycle for emptying the
distillation port, at a given code distance. This architecture requires at least 28 surface code tiles,
much more than the five logical qubits required for the protocol itself.

The very first level of the multi-level MSF consumes logical magic states prepared from physical
non-Clifford states that are fault-tolerantly grown to the logical state of a full surface code patch.
These protocols generally involve the creation of a physically relevant state (such as a physical
magic state), and then the injection of this magic state into a larger quantum error-correcting
code [16, 17]. The result is a magic state of fidelity eprep at a specified code distance. Different
protocols require different physical operations, and have different time scales, but most require

7

∼1–2 logical cycles, where a logical cycle requires d rounds of QEC at the final code distance d.
The physical execution of the protocols on a 2D layout causes additional error to be accumulated
which can also be numerically estimated. At the end of the process, we obtain the error rate ein
for the initial level of magic state distillation.

Although distillation levels can be encoded using the same code distances, it is more space
efficient to use different encodings for the logical qubits at different levels, usually in increasing
order. Therefore, a growth protocol must be used between the MSF levels to increase the code
distance of the magic states to match the distance of the next distillation level or that of the core
processor. These growth protocols operate similarly to the preparation protocols, in which a state
encoded in a smaller state is surrounded by additional qubits in specific states, followed by QEC
rounds in the grown patch. These growth protocols generally have a small probability of failure,
and these probabilities can nevertheless be numerically estimated.

As magic state distillation is a probabilistic procedure, and thus each distillation unit has some
chance of not outputting a state, our proposed architecture also includes a buffer register where
magic states can remain idle while waiting to be consumed. In this manner, we can reduce the
probability of no magic state existing when one is needed. These zones essentially need only to
be a single logical tile where the magic state can sit, but having access to the tiles to both load
and unload the magic states means they should generally be lined up. Additionally, when magic
states interact with the memory fabric, we typically also need access to specific ancillary tiles to
facilitate the logical operations that utilize magic states, so these additional ancillary regions are
located near the buffer registers to decrease the required logical runtimes of operations involving
magic states (see Fig. 3).

III. HARDWARE ERROR MODELLING

Designing the fault-tolerant quantum architecture described requires solving a bi-objective op-
timization problem that balances minimizing the allocated space (i.e., the physical qubits required)
and time (i.e., the runtime for circuit execution) under a given error budget. The decisions to be
made are related to sizing the components of the architecture—specifically, the core processor and
the MSF—in such a way that both objectives are optimized while ensuring fault tolerance.

The assembler receives an overall error budget for the execution of a given quantum circuit
composed of multi-qubit π/8 rotation gates. This error budget is then distributed between errors
that arise in the execution of quantum operations in the core processor, Ecore, and in the production
of magic states in the MSF, Emsf. Therefore,

Ecore + Emsf ≤ E. (1)

In this section we show how the errors of the code processor and the MSF are modelled and
predicted. Although generalizing our models and methods for more-complex architectures is a
straightforward task, we present them considering that similar distillation units (e.g., layout and
protocol) are used across all levels of the MSF for simplicity. A table summarizing the definition
of all variables and parameters used by our error models is given as Appendix A.

A. Core Processor Errors

In the core processor, the quantum algorithm operates on Q logical qubits to execute T non-
Clifford gates (i.e., π/8 Pauli rotations) over a makespan of K logical cycles. The cycles are
divided into active cycles, where at least one non-Clifford gate is performed in the memory fabric

8

as determined by a compilation procedure, and idling cycles, where the data qubits in the memory
fabric must be preserved through error correction while waiting for resources (e.g., magic states).

During active cycles, lattice surgeries connect magic states from the buffer to the data qubits
to perform the auto-corrected non-Clifford gates scheduled for that cycle. Lattice surgeries used
to send magic states from the growth units to the buffers are also considered, although they are
performed in previous cycles, either active or idling ones. Each of these lattice surgeries require
performing a logical operation involving faulty logical qubits. The error probability for all lattice
surgeries required to perform an operation with index i ∈ {1, . . . , T} is denoted as esurg,i, and
depends on the size and structure of the lattice surgeries performed [18].

Logical data qubits containing valuable quantum information in the core that are not engaged
in active operations must always be protected using rounds of parity checks either during active or
idling cycles, which also contribute to the error accumulation. The idling volume is defined as

Vidle = KQ−
T∑
i=1

qi, (2)

where KQ represents all locations where a logical error can occur when protecting idling qubits,
and qi is the number of logical data qubits involved in each non-Clifford gate, which is subtracted
from the total to avoid double-counting of the data qubits that are actively involved in a lattice
surgery.

The probability of having at least one error when performing all logical operations for idling
in the core processor is 1− (1− emem,core)

Vidle ≈ Vidleemem,core, where emem,core is the error rate of
the logical qubits in the core processor. Consequently, the approximate total accumulated errors
in the core processor from active and idling operations is

Ecore = Vidleemem,core +
T∑
i=1

esurg,i. (3)

The above formula can be approximated as

Ecore = Vidleemem,core + Tecliff,core. (4)

where α is the average number of patches in all lattice surgeries in the compiled program and
ecliff,core represents the average error rates of all the multi-qubit lattice surgeries in the core. This
approximation disregards the varying shapes of different lattice surgeries.

An alternative further simplification is to only use quantum memory error rates. To this end
we define the active volume of a compiled program as

Vact = (2Q+
√

8Q+ 26)αT, (5)

where (2Q+
√
8Q+26) refers to the number of logical qubits in the core, and α is the average size

(i.e., number of surface code patches) of the lattice surgeries in the program. This results in the
approximation

Ecore ≈ (Vidle + Vact)emem,core. (6)

We assume that the assembler has access to the logical error rates of the QEC codes (at high
distances). This information may be provided directly by experiments on the quantum hardware.
Alternatively, a predictive (parameterized) model fmem can be regressed from numerical simulations

9

(a) Most probable quantum memory errors

d
d

r

(b) Most probable X-type errors in surgery

d
d

b

r

(c) Most probable Z-type errors in surgery

d
d

b

r

(d) Most probable time-like errors in surgery

d
d

b

r

FIG. 4: Shortest-length undetectable errors in FTQC protocols determine the leading factors of the
predictive error models. (a) For quantum memory experiments both X and Z type errors land on boundaries of area rd
for r rounds of stabilizer measurements. (b-d) For mult-qubit surgeries, no extra rounds of QEC is assumed at the split and
the pre-merge phases. (b) Shortest-length error strings of the X-type have a cross section of area O((2d+ b)r). (c) Since no
distinct pre-merge rounds are assumed, the area of the boundaries of the shortest-length Z-type errors grows as O(d). (d)
The degeneracy of the shortest-length undetectable time-like errors scales with the area of the measured bus, db.

at low distances using efficient stabilizer circuit simulators [19, 20]. To summarize, for a core
processor of distance dcore we have

emem,core = fmem(dcore). (7)

For a quantum memory experiment of distance d involving r QEC rounds, we use

fmem(d, r) = µmemdrΛ
− d+1

2
mem (8)

as our model, where the error prefactor µmem and the error suppression rate Λmem are fitting
parameters. The error suppression rate Λmem represents the reduction in the logical error rate
when increasing the code distance by two. We expect Λmem > 1 for the surface code below
threshold [8, 18, 21]. The exponential suppression with base Λ represents the length (d + 1)/2 of
the most probable error strings, and the coefficient d2 accounts for the multiplicity of these error
strings, governed by the area of the cross section of the code bulk with error strings of either X or
Z type as shown in Fig. 4a.

Similarly, the Clifford error rates ecliff can be approximated using stabilizer circuit simulations
at low distances and extrapolated to higher distances. A model for the multi-qubit surgery errors
can be extracted from a similar argument involving the shortest length errors in the bulk as shown
in Fig. 4. Note that an area law does not apply to all error string types [22]. For example, in an
XX surgery between two logical qubits involving r QEC rounds and a bus patch of length b, the
error model is

fcliff(d, b, r) = µX(2d+ b)rΛ
−(d+1)/2
X + µZdΛ

−(d+1)/2
Z + µTdbΛ

−(r+1)/2
T , (9)

since the X-type errors have boundary surfaces of areas r(2d+ b) (see Fig. 4b), the Z-type errors
grow with the length of the boundary edges shown in Fig. 4c and therefore contribute to a linear

10

d

d

b

r

τb

τd

FIG. 5: The effect of buffer and decoder delays on surgery fidelities. In core processor surgeries, a teleportation is
implemented involving a magic state (the left code patch) and data qubits (represented by the right code patch). The magic
state incurs a delay τb in the buffer, which in the space-efficient steady flow scenario is one logical cycle on average (i.e., d
QEC rounds) before the surgery starts. The data qubit QEC rounds must continue until decoder decisions are available after
decoder delay time τd.

factor of d in the second term, and the time-like errors of the shortest distance land in a boundary
of area bd (Fig. 4d).

For teleporations in our core processor, the teleported state is a magic state that has resided
in the buffer for some average expected buffer delay time, τb (which is 1 clock cycle for balanced
production and consumption rates; see Section IVA for further details). The targets of teleporation
are logical data qubit patches in the core processor for which further QEC rounds are executed
until the decoder outcome is available. We denote this delay by τd. Inclusion of the buffer and
decoder delays and assuming an average rate for all types of surgeries changes the above model to

fsurg(d, b, r) = µ
[
d(2r + τb + τd + 1) + br

]
Λ−(d+1)/2 + µTdbΛ

−(r+1)/2
T , (10)

which still distinguishes time-like and space-like errors but ignores the type of surgery; e.g., XX
merge or otherwise (Fig. 5).

B. Magic State Factory Errors

The multi-level MSF described in Section II B produces the high-fidelity magic states required
for the π/8 rotation gates. The probability of errors in the production of magic states affects the
overall error rate of execution according to

Emsf = Temsf, (11)

where emsf is the error rate of the magic state consumed by each operation in the core.

In the MSF, an iterative process is followed that involves multiple levels of distillation to improve
fidelity linked with each other using growth zones. Consider an MSF with L levels: a 0-th level
referring to the magic state preparation area, the subset {1, . . . , L} referring to the consecutive
distillation levels, and the L + 1-st level being to the core processor. The number of distillation
levels L ∈ Z≥0 is to be determined such that the magic state error rate emsf meets the condition in
Eq. (1) while satisfying Eq. (11). And the number of qubits used for building the MSF (the space
cost) is optimized by choosing an increasing sequence d0, d1, . . . , dL+1 = dcore of code distances
for each of the levels assuming a fault-tolerant code growth protocol is applied within the growth
zones to promote code patches of distance dℓ to those of distance dℓ+1.

11

The logical error rate of the magic states provided to the ℓ-th MSF level is denoted by ein,ℓ
and the error rate of the resulting distilled magic state is eout,ℓ. Therefore the contribution of the
growth zones to the error rates of the magic states between levels is calculated via

ein,ℓ = ggrow(eout,ℓ−1, egrow,ℓ−1) = 1− (1− eout,ℓ−1)(1− egrow,ℓ−1), ∀ℓ ∈ {1, . . . , L+ 1}, (12)

from simple probabilistic arguments where egrow,ℓ−1 is the error rate accumulated from the growth
procedure performed after level ℓ− 1.

Similar to Section IIIA a predictive model (again, to be determined theoretically and regressed
numerically or alternatively experimentally) simulating the specific growth protocol is used to infer

egrow,ℓ = fgrow(dℓ, dℓ+1) (13)

as a function of initial and final code distances, dℓ and dℓ+1, in the growth zone. The output magic
state error rates eout,ℓ are given by a function of the form

eout,ℓ = gdist(ein,ℓ, ecliff,ℓ) (14)

which for example for the 15:1 distillation protocol is

eout,ℓ = 35e3in,ℓ + 7.1ecliff,ℓ (15)

as per Refs. [5, 11, 23]. The coefficient 35 is driven theoretically [23] however the contribution of
surgeries within the ℓ-th distillation circuit is approximated as a numerically driven multiple (7.1
in [24]) of the Clifford error rate ecliff,ℓ obtained from the model Eq. (10).

Overall, the magic state error rates of the entire MSF can be calculated recursively as follows:

eout,0 = ein,1 = eprep, (16)

eout,ℓ = gdist(eprep, ecliff,ℓ), ∀ℓ ∈ {1, . . . , L}, (17)

ein,ℓ+1 = ggrow(eout,ℓ, egrow,ℓ), ∀ℓ ∈ {1, . . . , L− 1}, (18)

ein,L+1 = emsf = ggrow(eout,L, egrow,L). (19)

Here the preparation error rate eprep is estimated from numerical simulation of the fault-tolerant
magic state preparation protocol in use at the zeroeth MSF level (i.e., at distance d0). The
numerical behaviour of these protocols as a function of d in the error regimes in which we are
interested can be quite distinct. For instance, for some protocols [17, 25], the error rate

eprep = fprep(d0) = µprep − Λprepd0, (20)

with a negative error suppression rate Λprep, which leads to the error rate increasing linearly with
respect to distance. However, more recent protocols [26] exhibit an exponential suppression in
their error rates as far as numerical simulations in the regime of practically relevant distances and
physical error rates are concerned:

eprep = µprepΛ
− d+1

2
prep . (21)

In both cases, the starting factor µprep and the error suppression rate Λprep are fitting parameters.
Other protocols might have different behaviour altogether.

Combining Eqs. (2), (3) and (11) we can rewrite the error budget constraint Eq. (1) as

emsfT + emem,L+1

(
KQ−

T∑
i=1

qi

)
+

T∑
i=1

esurg,i ≤ E. (22)

12

Therefore, given a compiled quantum circuit with T non-Clifford gates involve Q logical qubits,
run (potentially with some parallelization) in K logical cycles, involving qi qubits in the i-th non-
Clifford operation, and the hardware error models described above, we can determine the number
of distillation levels L, the code distances at each level, and the code distance in the core processor
such that Eq. (22) is satisfied.

IV. THE ASSEMBLY PROCESS

In this section we show how the predicted error rates from the previous section are used to
decide the sizing of the MSF and all code distances involved.

A. Space and Time Costs

The space and time costs with respect to the architecture depend on the sizes of the core
processor and the MSF. Each logical cycle in the makespan K, either active or idling, requires
performing dL+1 parity checks, each taking a time W determined by hardware characterization for
the QEC scheme considered. Therefore, ignoring the warm-up time (i.e., the time needed to start
filling the core buffer with high quality magic states), which is negligible for utility-scale quantum
circuits, we can calculate the runtime R of the quantum circuit as:

R = KWdL+1. (23)

Therefore, for a given QPU, R is minimized by reducing the product of the code distance of the
core processor dL+1 and the makespan K, which is determined based on the production rate of
magic states in the MSF and the demand profile for magic state consumption in the core.

A compilation process, such as those described in Refs. [4] and [24], can determine sets of π/8
rotation gates that can be performed in parallel. The compilation in these studies assumes that
magic states are always available to be consumed by all gates scheduled for the same logical cycle.

Let a quantum algorithm composed of T non-Clifford gates be represented by T =
∑Tdepth

i=1 ti, where
Tdepth determines the minimum number of logical cycles required to execute the algorithm (the
shortest possible makespan, K ≤ Tdepth), and ti denotes the maximum number of π/8 rotations that
can be performed in the time step i as determined by a compilation process. Ignoring fluctuations
in the demand for magic states, we can define the maximum consumption rate of the core processor
as

CL+1 =
WdL+1Tdepth

T
, (24)

since logical cycles would be expected to consume, on average, T/Tdepth magic states every logical
cycle that takes a time WdL+1.

The production rate of magic states in a factory is determined by the production rate of all
distillation units in its uppermost level, that is, DL. A time-optimal architecture requires

DL ≥ CL+1. (25)

Different scenarios are observed:

• If DL > CL+1, then the MSF is oversized, which increases the space cost but with no
reduction in the time cost, except when the magic state demand is too volatile, since they
can be stocked during periods of low demand to avoid a shortage during periods of high
demand;

13

• If DL = CL+1, then the MSF is space efficient to minimize the time cost; and

• If DL < CL+1, then the MSF is undersized, so the circuit takes longer to execute. The
added idling time to the makespan K inflates the idling volume Vidle, as defined in Eq. (2).
Thus, although the number of distillation units in the MSF decreases, the core processor size
may increase due to there being a lower error budget availability for the errors accumulated
during lattice surgery, as shown in Eq. (3).

To achieve the production rate DL required for a time-optimal solution, we must ensure that
production and consumption rates are balanced over all distillation levels. The production rate
of any distillation level ℓ ∈ {1, . . . , L} composed of uℓ parallel distillation units for this level is
bounded by

Dℓ ≤
uℓNP

Wdℓ(O +N)
, (26)

where N is the number of magic states produced in a distillation round, P is the acceptance
probability, Wdℓ is the execution time of each logical operation in the unit, and O is the number
of logical cycles required for the distillation round. The parameters N and O are given based
on the distillation protocol, the acceptance probability is a function P = facc(ein,ℓ, emem,ℓ), and
W is based on the hardware characterization. Equality in Eq. (26) is obtained when a steady
execution of logical operations is possible due to a sufficient supply of magic states. Given that
the consumption rate of magic states by all units in this level is

Cℓ ≤
uℓM

Wdℓ(O +N)
, (27)

a steady flow is possible when Dℓ−1 ≥ Cℓ, where M is the number of input magic states for the
distillation unit. For example in the 15:1 distillation protocol M = 15, N = 1, O = 13, and

P = 1− 15ein − 356ecliff. (28)

To achieve a space-efficient steady flow, we need to ensure that

Dℓ−1 = Cℓ, ∀ℓ ∈ {1, . . . , L+ 1}. (29)

Combining the previous equations, we obtain the following relations between the number of distil-
lation units and code distances between levels, which are given for the uppermost, intermediate,
and lowermost levels, respectively, as

uLNP

dL(O +N)
=

dL+1Tdepth

T
, (30)

uℓ−1NP

dℓ−1
=

uℓM

dℓ
, ∀ℓ ∈ {2, . . . , L− 1}, (31)

D0 =
u1M

d1
. (32)

In the lowermost level, the magic state preparation rate D0 is determined based on the preparation
unit cycle time according to the magic state preparation protocol implemented.

Solving Eqs. (30) to (32) considering the error budget in Eq. (22) leads to an architecture that
approximates the space required to minimize time costs. Space costs are measured by the number
of physical qubits required to encode all logical qubits in the layout. The exact number of logical
qubits in the core processor is determined as described in Section IIA for the memory fabric, while

14

we consider a buffer with a fixed size of 25 logical qubits (represented in Fig. 2) that guarantees
a steady flow of magic states for a circuit with T = Tdepth. And, each logical qubit in the surface
code requires 2d2 − 1 physical qubits.

For example, in the 15:1 distillation unit layout used in Fig. 3:

• each distillation unit requires 23 logical qubits regardless of its level;

• each distillation unit in all levels but the lowermost still requires 5 dedicated growth units
supplying magic states to it, each requiring a space equivalent to a logical qubit with code
distance dℓ;

• each distillation unit in the lowermost level requires 10 logical qubits for handling the pre-
pared magic states, 3 of which are for preparation units as determined by preliminary ex-
periments using common hardware characterizations; and

• each distillation level ℓ still requires at least 5uℓ + 4 qubits to connect the distillation units
to the upper-level growth units.

Based on these considerations, the total space cost for a time-optimal architecture is approximated
as

S ≈ (2d2L+1 − 1)(2Q+
√

8Q+ 29) + (2d21 − 1)(41u1 + 4) +

L∑
ℓ=2

(2d2ℓ − 1)(33uℓ + 4). (33)

While solving Eqs. (30) to (32) leads to a time-optimal solution, if a distillation unit can meet the
requirements to produce higher-fidelity magic states from lower-fidelity ones, only one distillation
unit per level is necessary for an MSF to be able to produce magic states at the error rates meeting
the condition in Eq. (22). As previously mentioned, an MSF with uℓ = 1,∀ℓ ∈ {1, . . . , L}, may
significantly reduce the last two terms in Eq. (33) at the cost of increasing the first one through
an increase in dL+1. This trade-off is analyzed in detail in Section V.

B. Our Assembly Method

Although the problem presented in Section III can be solved analytically, the complexity of
representing the nested function for the accumulated MSF errors in Eq. (22) and the relations
between the decision variables in Eqs. (30) to (32) demand the development of a fast heuristic
algorithm to solve the problem. This algorithm generates layouts for the considered architecture
under both time-optimal and -suboptimal scenarios.

Since the objective is to balance space and time costs, the slowdown factor β we introduce
acts as a target value for the runtime slowdown by choosing an undersized MSF. The number of
logical cycles required to run the quantum algorithm is approximated by K = βT . A time-optimal
solution corresponds to the expression β = Tdepth/T , while the value β = 1 leads to a space-optimal
solution that leads to approximately no excess idling time for the serial scheduling case. For β > 1,
the MSF must be sized accordingly to estimate the resulting idling time. While the slowdown may
not match the value of β precisely due to the discrete nature of distillation units, we adjust K
accordingly to match the actual slowdown resulting from the MSF size chosen to approximate β.

We now detail the decision-making process for solving the optimization problem described. Note
that the parameters α and β are present in Eq. (6) as factors of Vact and Vidle, respectively. As
such, they are set prior to solving the problem to approximate the error rates in the core processor.

15

1. Set the Core Area’s Code Distance

The first decision to be made is to determine the code distance dL+1 for the core processor,
assuming Emsf = 0 (i.e., there are no magic state factory errors). The minimum code distance that
satisfies Eq. (22) is found by solving the following problem:

min dL+1 (34)

s.t. (Vidle + Vact)emem,L+1 ≤ E, (35)

dL+1 ∈ {2k + 1|k ∈ Z+}, (36)

where Vidle, Vact, and emem,L+1 are represented by the Eqs. (2), (5), and (8), respectively. Since all
the parameters except dL+1 are known a priori, this problem is easily solved by gradually increasing
dL+1 within its feasible space until a feasible solution for the problem is found.

2. Set the First-Level’s Code Distance

Once dL+1 has been determined, we calculate Ecore using Eq. (6) and, following Eqs. (1) and (11),
we set the magic state error budget according to

emsf ≤
E − Ecore

T
. (37)

If this error threshold can be achieved without distillation, that is, eprep is below the right-hand
side threshold above, the problem has been solved since no distillation is required. Otherwise, we
proceed by defining a first distillation level and selecting the code distance d1 that minimizes the
magic state error rate:

min eout,1 (38)

s.t. P > 0, (39)

d1 ∈ {2k + 1|k ∈ Z+}. (40)

Here, the objective function (38) is a function for the magic state output error rate as in Eqs. (14)
and (15), and the constraint (39), determined for example by Eq. (28), ensures that the acceptance
probability is positive in order to validate the choice. While this problem can be solved using
gradient-based methods, the limited solution space affords a quick way of verifying optimality by
iterating through code distances while verifying feasibility until the turning point is reached in
both functions eout,1 and P .

3. Determine the Number of Distillation Levels

Minimizing the number of distillation levels L generally leads to space-efficient solutions by
avoiding the overhead of added levels even if they have small code distances. We decide on the
number of distillation levels by incrementally adding levels with a code distance of dℓ = ∞, which
results from the output error bound from the distillation protocol, until the magic state error rate
eout,L ≤ emsf, considering the accumulated errors described in Section III B.

4. Update the Code Distances for All Levels

Once the number of distillation levels has been set, we update the code distances dℓ for all levels,
including the first one. This is because we are not looking to improve the error rate at each level as

16

much as possible, but instead only to improve it so as to meet the error budget E. Beginning with
the first level, we search for the smallest value of d that leads to the error budget being met when
updating the error rates in Eq. (19) throughout the distillation process. This iterative process
continues until all levels meet the error budget.

5. Determine the Number of Distillation Units

Finally, we determine the number of distillation units, uℓ, at each level. We first calculate the
consumption rate in the core CL+1 using Eq. (27) and the maximum production rate DL of a single
distillation unit uL = 1 at the level L based on Eq. (26). Then, the number of distillation units is
set to

uL =

⌈
βDL

CL+1

⌉
. (41)

This process is repeated for each level, with β adjusted based on the production rate of the
selected number of units. Thus, when the chosen number of distillation units uℓ leads to a produc-
tion rate above the target β, uℓ−1 takes into consideration this gap and selects only enough units
to approximate the target slowdown rate.

6. Local Search

To further improve the solution, a local search is conducted. The algorithm increases the code
distance one level at a time, rebalancing production and consumption rates while recalculating
space costs. If an improvement is found, the solution is updated, and the process continues. The
search stops when no further local improvements can be found.

V. EXPERIMENTS

We conducted a set of experiments to analyze optimal solutions for the studied problem and to
perform a sensitivity analysis on the parameters that were input, including the number of logical
qubits (Q), the circuit depth (T), and hardware noise parameters. For simplicity we assumed
ecliff = emem and that the quantum memory protocol had r = d rounds everywhere, therefore,
the hardware noise parameters were merely the quantum memory error suppression rate (Λmem),
and the preparation error rate (eprep). The experiments did not require much computational
power; they should be easily reproducible even on a personal computer. We also assumed the 15:1
distillation protocol with the layout of Fig. 3 were used for all ∀ℓ ∈ {1, . . . , L}; therefore, M = 15,
N = 1, P = 1− 15ein − 356emem, Q = 13, and eout = 35e3in + 7.1emem.

As part of the default settings, we considered the error budget E = 1%. A Λmem = 10 model
was simulated using 1QBit’s TopQAD software [27], resulting in µmem = 3.8× 10−3 for the logical
error rate model, and µprep = 1.44× 10−4 and Λprep = −2.5× 10−5 for the magic state preparation
model Eq. (20). Finally, the parity-check time was set to W = 450 nanoseconds. All experiments
were conducted with α = 0.1, as preliminary results showed that variations in α had minimal
impact on the solution to the problem.

17

1 s 6 s 34 s 3 min 17 min
Expected runtime

2.75

3.00

3.25

3.50

3.75

4.00

4.25

4.50

Ph
ys

ica
l q

ub
it

co
un

t

1e6

Estimate
Pareto front

= 1

FIG. 6: Space and time cost estimates for a circuit with T = 106 and Q = 103 and computers with Λmem = 10. The Pareto
front points are highlighted, indicating the optimal solutions for the architecture design problem. The point where β = 1
represents the serial scheduling case. The points to the left of β = 1 assume different degrees of circuit parallelization, while
those to the right reflect increasing β values until all distillation levels have only one unit.

A. Space and Time Cost Estimates

Figure 6 presents the space and time cost estimates for a quantum circuit with one billion non-
Clifford gates and 1000 logical data qubits. Each point in the figure represents a solution to the
architecture design problem for a predefined value of β, ranging from β = 0.2 to the case where
each distillation level has only one unit. The Pareto frontier is highlighted, showing the optimal
trade-offs between space and time costs. The solutions on this frontier range from 1.9 seconds and
4.5 million physical qubits (for β = 0.2) to 1.7 minutes and 2.7 million physical qubits (for β ≈ 10).

In the best-case time scenario, assuming a highly parallelizable circuit (for Tdepth = 0.2T), a 5×
speedup could be achieved with 50% more qubits compared to serial execution (for β = 1). The
trend in the plot demonstrates that physical qubit counts increase rapidly as runtime is further
reduced, indicating how costly it is to implement the extra resources needed in an MSF to produce
magic states sufficiently quickly to allow performing operations in the core processor in parallel
whenever possible.

Looking in the other direction, the space-optimal solution reduces the number of physical qubits
by 11% compared to serial scheduling, and it slows down execution by a factor of 10×. Both
solutions require two distillation levels (i.e., L = 2), but, for β = 1, the number of distillation
units is u ∈ {56, 9}, whereas for β = 10, it is reduced to u ∈ {6, 1}. This represents a significant
reduction in MSF size—from around 386,000 to 39,000 physical qubits—given the code distances
d ∈ {7, 17}. The two spikes observed for the physical qubit estimates in the plot of Fig. 6 reflect
increases of dL+1 from 23 to 25 and then to 27.

B. Circuit Parameter Sensitivity

To illustrate how different circuits’ characteristics affect resource estimates, Fig. 1a presents
space and time cost estimates for varying circuit sizes in the ranges T ∈ {106, 109, 1012, 1015} and
Q ∈ {102, 103, 104}. These magnitudes are applicable to a broad spectrum of quantum applications.
Only the Pareto frontier points are shown for each circuit size.

For every 1000-fold increase in the value of T , the runtime for the case where β = 1 increases
by a factor of approximately 1000. One important observation is that few space-optimal solutions
exist below the serial scheduling case when Q = 104. This is because, in large core processors,

18

increasing the core processor’s code distance makes the overall space costs worse than does saving
space by having a smaller MSF. However, in smaller core processors (for Q = 102), there are
opportunities to reduce space costs by downsizing the MSF. In such cases, space can be saved by
up to an order of magnitude, while larger core sizes barely affect space costs.

Interestingly, when analyzing circuits of different sizes, we observe that the space requirements
for running relatively smaller or larger circuits are comparable. For example, for Q = 102, the
space cost for T = 106 ranges between 105 and 106 physical qubits, while for T = 1015, the space
requirements increase by less than an order of magnitude. In the cases where serial scheduling is
employed, physical space requirements increase from approximately 7× 105 to 2× 106 qubits.

C. Hardware Noise Parameter Sensitivity

Next, we performed experiments to analyze the sensitivity of space and time estimates to changes
in the hardware noise profile, particularly, by varying the error suppression factor Λmem and magic
state preparation error rate eprep. Figure 1b shows the results for a circuit with T = 1012 and
Q = 100, considering the combinations of Λmem ∈ {3, 5, 10} and preset values of the magic state
preparation error rates eprep ∈ {10−2, 10−5, 10−8}.

The figure shows that, under a scenario where the circuit has a parallelization potential leading
to a 5× speedup compared to the serial case, the circuit could be run in 1–2 months depending
on the quality of the physical qubits and the prepared magic states. The primary bottleneck in
terms of time is the increased code distance in the core processor due to lower-quality qubits. For
example, the worst-case scenario requires a 2.5 times higher encoding for the core processor than
the best-case scenario. This difference also affects space requirements—5–10 times fewer physical
qubits are needed in the case where the error suppression factor and magic state preparation error
rate are of their best values as compared to the worst.

This analysis also shows the trade-offs between improving magic state preparation error rates
and enhancing the error suppression factor. For instance, with a one-year runtime budget, improv-
ing magic state preparation reduces the physical qubit requirement from 2× 107 to 1× 107, while
improving the suppression factor yields a greater reduction, that is, to 1 × 106 for the scenarios
tested.

VI. CONCLUSION

In this paper, we have presented a method for designing a fault-tolerant quantum architec-
ture that optimizes the trade-offs between the space and time costs needed to execute large-scale
quantum circuits. Our approach integrates a core processor designed for efficient logical qubit
operations with a multi-level magic state factory that supplies high-fidelity magic states, enabling
an effective implementation of non-Clifford gates, which is required for universal quantum com-
putation. We developed a fast heuristic algorithm to optimize the architecture under different
FTQC protocols and circuit and hardware parameter settings, providing a flexible framework for
estimating quantum resource requirements.

The main takeaway from our experiments is that quantum resource estimates can be quickly
generated when a few key parameters are known, such as the circuit volume (in terms of π/8 rota-
tion gates and logical qubits requested), the error suppression rates of the quantum error correction
scheme, and the specific protocols used for magic state preparation, growth, and distillation. Al-
though certain simplifying assumptions were made to facilitate model development, such as using
the same distillation protocols across all distillation levels, the proposed framework is adaptable to
other quantum architectures, including alternative MSF designs and other resource state factories.

19

We observed that, depending on the circuit and hardware characteristics, the quantum error
correction scheme in the proposed architecture requires between 100,000 and 100 million physical
qubits. Lower qubit counts (as low as 10,000) are achievable in scenarios with near-perfect magic
state preparation or very high quality QPUs. However, decade-long execution times are still pro-
hibitive for utility-era quantum computers. To mitigate this issue, future research should focus on
discovering novel quantum algorithms, improving circuit synthesis and compilation, and drastically
improving hardware quality.

Several avenues for future work have arisen from this study. First, improved FTQC protocols can
change the resulting resource estimates, which may affect some of the conclusions we have drawn.
Additionally, our concept architecture in this paper has a free-space layout, but constraints such
as the size of individual QPUs and quantum interconnects between multiple QPUs for distributed
quantum computing can be incorporated. Finally, our approach can be applied to design other
resource factory modules beyond the |T ⟩ states, such as Toffoli states, QROMs, and resource
states for specific rotation angles, further broadening the applicability of our approach to quantum
architecture design.

ACKNOWLEDGEMENT

The authors thank our editor, Marko Bucyk, for his careful review and editing of the manuscript.
The authors are grateful to Craig Gidney, Christopher Chamberland, John Martinis, Masoud
Mohseni, and Alan Ho for useful discussions. The authors acknowledge the financial support of
Pacific Economic Development Canada (PacifiCan) under project number PC0008525. G. A. M. is
grateful for the support of Mitacs. P. R. acknowledges the financial support of Mike and Ophelia
Lazaridis, Innovation, Science and Economic Development Canada (ISED), and the Perimeter
Institute for Theoretical Physics. Research at the Perimeter Institute is supported in part by the
Government of Canada through ISED and by the Province of Ontario through the Ministry of
Colleges and Universities.

[1] W. van Dam, M. Mykhailova, and M. Soeken, Using azure quantum resource estimator for assessing
performance of fault tolerant quantum computation, in Proceedings of the SC’23 Workshops of The
International Conference on High Performance Computing, Network, Storage, and Analysis (2023) pp.
1414–1419.

[2] M. Otten, B. Kang, D. Fedorov, J.-H. Lee, A. Benali, S. Habib, S. K. Gray, and Y. Alexeev, Qrechem:
quantum resource estimation software for chemistry applications, Frontiers in Quantum Science and
Technology 2, 1232624 (2023).

[3] C. Gidney and A. G. Fowler, Efficient magic state factories with a catalyzed |ccz > to 2|t > transfor-
mation, Quantum 3, 135 (2019).

[4] A. Silva, X. Zhang, Z. Webb, M. Kramer, C.-W. Yang, X. Liu, J. Lemieux, K.-W. Chen, A. Scherer,
and P. Ronagh, Multi-qubit lattice surgery scheduling, in 19th Conference on the Theory of Quantum
Computation, Communication and Cryptography (TQC 2024), Vol. 310 (Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2024) pp. 1–22.

[5] D. Litinski, A game of surface codes: Large-scale quantum computing with lattice surgery, Quantum
3, 128 (2019).

[6] A. Cross, A. Javadi-Abhari, T. Alexander, N. De Beaudrap, L. S. Bishop, S. Heidel, C. A. Ryan,
P. Sivarajah, J. Smolin, J. M. Gambetta, et al., Openqasm 3: A broader and deeper quantum assembly
language, ACM Transactions on Quantum Computing 3, 1 (2022).

[7] QIR Alliance, QIR Alliance (2024), gitHub repository.

https://github.com/qir-alliance

20

[8] R. Acharya, L. Aghababaie-Beni, I. Aleiner, T. I. Andersen, M. Ansmann, F. Arute, K. Arya, A. Asfaw,
N. Astrakhantsev, and J. e. a. Atalaya, Quantum error correction below the surface code threshold,
arXiv preprint arXiv:2408.13687 (2024).

[9] S. Bravyi, G. Smith, and J. A. Smolin, Trading classical and quantum computational resources, Phys.
Rev. X 6, 021043 (2016).

[10] D. Litinski, Magic state distillation: Not as costly as you think, Quantum 3, 205 (2019).
[11] M. E. Beverland, P. Murali, M. Troyer, K. M. Svore, T. Hoefler, V. Kliuchnikov, G. H. Low, M. Soeken,

A. Sundaram, and A. Vaschillo, Assessing requirements to scale to practical quantum advantage, arXiv
preprint arXiv:2211.07629 (2022).

[12] B. Eastin, Distilling one-qubit magic states into toffoli states, Physical Review A 87 (2013).
[13] S. Bravyi and J. Haah, Magic-state distillation with low overhead, Physical Review A 86, 052329

(2012).
[14] A. M. Meier, B. Eastin, and E. Knill, Magic-state distillation with the four-qubit code, arXiv preprint

arXiv:1204.4221 (2012).
[15] A. G. Fowler and C. Gidney, Low overhead quantum computation using lattice surgery, arXiv preprint

arXiv:1808.06709 (2019).
[16] Y. Li, A magic state’s fidelity can be superior to the operations that created it, New Journal of Physics

17, 023037 (2015).
[17] C. Gidney, Cleaner magic states with hook injection, arXiv preprint arXiv:2302.12292 (2023).
[18] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, Surface codes: Towards practical

large-scale quantum computation, Physical Review A 86, 032324 (2012).
[19] S. Aaronson and D. Gottesman, Improved simulation of stabilizer circuits, Physical Review A—Atomic,

Molecular, and Optical Physics 70, 052328 (2004).
[20] C. Gidney, Stim: a fast stabilizer circuit simulator, Quantum 5, 497 (2021).
[21] J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jeffrey, T. C. White, D. Sank, J. Y. Mutus,

B. Campbell, Y. Chen, et al., State preservation by repetitive error detection in a superconducting
quantum circuit, Nature 519, 66 (2015).

[22] C. Chamberland and E. T. Campbell, Universal quantum computing with twist-free and temporally
encoded lattice surgery, PRX Quantum 3, 010331 (2022).

[23] S. Bravyi and A. Kitaev, Universal quantum computation with ideal clifford gates and noisy ancillas,
Physical Review A 71, 022316 (2005).

[24] M. Beverland, V. Kliuchnikov, and E. Schoute, Surface code compilation via edge-disjoint paths, PRX
Quantum 3 (2022).

[25] S. Singh, A. S. Darmawan, B. J. Brown, and S. Puri, High-fidelity magic-state preparation with a
biased-noise architecture, Phys. Rev. A 105, 052410 (2022).

[26] C. Gidney, N. Shutty, and C. Jones, Magic state cultivation: growing t states as cheap as cnot gates,
arXiv preprint arxiv:2409.17595 (2024).

[27] 1QB Information Technologies (1QBit), TopQAD: Topological Quantum Architecture Design [Software
Documentation] (2024), doi.org/10.70781/YPWW8761.

doi.org/10.70781/YPWW8761

21

APPENDIX A: Overview of Variables and Parameters

Variable/Parameter Description

Quantum Circuit

T Number of π/8 rotations in the circuit
Tdepth Circuit depth
ti Number of π/8 rotations at each depth i ∈ {1, . . . , Tdepth}
Q Number of logical qubits in the circuit
qi Number of logical qubits requested by each π/8 rotation i ∈ {1, . . . , T}

Compilation

Vidle Idling volume
Vact Active volume
CL+1 Magic state consumption rate in the core processor
Cℓ Magic state consumption rate at the level ℓ of the MSF
Dℓ Magic state production rate at the level ℓ of the MSF
D0 Magic state production rate at the preparation area

FTQC Emulation

W Parity-check time
µmem,Λmem Quantum memory error prefactor and error suppression rate
µprep,Λprep Magic state preparation error prefactor and error suppression rate

Magic State Distillation

M Number of magic states required per distillation cycle
N Number of magic states distilled per distillation cycle
O Number of logical cycles in a distillation cycle
P Acceptance probability of the protocol

Error Rates

E Error budget
Emsf Magic state factory errors
Ecore Core processor errors
esurg Lattice surgery error rate
ecliff Average logical Clifford operation error rate
emem,ℓ Logical quantum memory error rate for qubits at the level ℓ (MSF + core)
emsf Magic state error rate output from the MSF

ein,ℓ, eout,ℓ Magic state error rate input to the level ℓ (MSF + core) and output from the level ℓ (MSF)
egrow,ℓ Magic state error rate after growth at the level ℓ (MSF)
eprep Magic state error rate after preparation

Costs

R Total expected runtime (time cost)
S Total number of physical qubits (space cost)

Decision Variables

α Average lattice surgery size relative to the number of logical qubits in the core processor
β Target slowdown factor
L Number of distillation levels
K Total number of logical cycles required to execute the algorithm (makespan)
dℓ Code distance for all logical qubits at the level ℓ (MSF + core)
uℓ Number of distillation units used at the level ℓ (MSF)

	Optimizing Multi-level Magic State Factoriesfor Fault-Tolerant Quantum Architectures
	Abstract
	Introduction
	The Fault-Tolerant Architecture
	The Core Processor
	Magic State Factory

	Hardware Error Modelling
	Core Processor Errors
	Magic State Factory Errors

	The Assembly Process
	Space and Time Costs
	Our Assembly Method
	Set the Core Area's Code Distance
	Set the First-Level's Code Distance
	Determine the Number of Distillation Levels
	Update the Code Distances for All Levels
	Determine the Number of Distillation Units
	Local Search

	Experiments
	Space and Time Cost Estimates
	Circuit Parameter Sensitivity
	Hardware Noise Parameter Sensitivity

	Conclusion
	Acknowledgement
	References
	Overview of Variables and Parameters

