
The Recurrent Sticky Hierarchical Dirichlet Process Hidden Markov
Model
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Abstract

The Hierarchical Dirichlet Process Hidden
Markov Model (HDP-HMM) is a natural
Bayesian nonparametric extension of the
classical Hidden Markov Model for learn-
ing from (spatio-)temporal data. A sticky
HDP-HMM has been proposed to strengthen
the self-persistence probability in the HDP-
HMM. Then, disentangled sticky HDP-
HMM has been proposed to disentangle
the strength of the self-persistence prior
and transition prior. However, the sticky
HDP-HMM assumes that the self-persistence
probability is stationary, limiting its ex-
pressiveness. Here, we build on previous
work on sticky HDP-HMM and disentangled
sticky HDP-HMM, developing a more gen-
eral model: the recurrent sticky HDP-HMM
(RS-HDP-HMM). We develop a novel Gibbs
sampling strategy for efficient inference in
this model. We show that RS-HDP-HMM
outperforms disentangled sticky HDP-HMM,
sticky HDP-HMM, and HDP-HMM in both
synthetic and real data segmentation.

1 INTRODUCTION

Hidden Markov Models (HMMs) are more and more
popular techniques for modeling not only simple time
series but also more complex spatio-temporal data.
They have been successfully applied to natural lan-
guage processing (Suleiman et al., 2017), speech recog-
nition (Yuan, 2012), financial time series analysis
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(Maruotti et al., 2019), recognition of objects move-
ment (Arslan et al., 2019; Fielding and Ruck, 1995),
etc. HMMs posit that the time series values are closely

(a) Sticky HDP-HMM

(b) Disentangled sticky HDP-HMM

(c) Recurrent sticky HDP-HMM

Figure 1: Graphical models for sticky HDP-HMM (a)
and disentangled sticky HDP-HMM (b) and recurrent
sticky HDP-HMM (c)

linked to hidden, time-varying states, determining the
characteristics of these values. They treat the recorded
time series values as observations of a certain random
variable, with the current hidden state influencing its
probabilistic distribution. Hidden states themselves
are modeled as observations of a latent random vari-
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able, with its distribution defined by the process dy-
namics, typically via a transition probability matrix.
Learning HMM parameters from recorded data is chal-
lenging for complex datasets.

Contemporary methods like Bayesian nonparametric
framework (Müller and Quintana, 2004) bypass setting
the initial number of hidden states, assuming a poten-
tially infinite number. Hierarchical Dirichlet Process
Hidden Markov Model (HDP-HMM) (Teh, 2006), a
key technique, uses the hierarchical Dirichlet process
to model the transition matrix. Sticky HDP-HMM (S-
HDP-HMM) (Fox, 2009) adds a parameter to control
the self-persistence probability of hidden states. Dis-
entangled Sticky HDP-HMM (DS-HDP-HMM) (Zhou
et al., 2021) further refines this by managing the self-
persistence prior across hidden states.

All these methods share a common limitation: they
assume stationary state-switching probabilities, which
is invalid for spatio-temporal systems where move-
ments depend on position. For instance, whether a
car turns is influenced by its current location on the
road. Due to their flexibility and interoperability re-
current models are widely used for neural activity anal-
ysis (Zoltowski et al., 2020; Osuna-Orozco and San-
tacruz, 2023; Song and Shanechi, 2023; Jiang and Rao,
2024; Bush and Ramirez, 2024) and more recently for
vehicle trajectory prediction (Wei et al., 2024).

In this paper, our main contributions are: a novel
approach with recurrent nonparametric modeling, ex-
tending Sticky HDP-HMM and Disentangled Sticky
HDP-HMM, two efficient sampling schemes, and com-
parison of four Bayesian nonparametric models on a
sef of benchmarks.

2 BACKGROUND

2.1 Hierachical Dirichlet Prior Hidden
Markov Models

The HDP-HMM enables full Bayesian inference of
HMMs. The concept is to draw a prior global tran-
sition distribution from a Dirichlet process. Then, for
each hidden state, a transition distribution is taken
from the shared global prior. We start by introducing
some notation for the Dirichlet process (DP).

Given a base distribution H on a parameter space Θ
and a positive concentration parameter γ, we construct
a Dirichlet process G ∼ DP(γ,H) (sometimes also de-
noted by DP(γH)) by the following stick-breaking pro-
cedure: let

β ∼ GEM(γ), θi
iid∼ H, i = 1, 2, · · · , (1)

where β ∼ GEM(γ) is a random probability mass func-

tion (p.m.f.) defined on a countably infinite set as fol-
lows:

vi ∼ Beta(1, γ), βi = vi

i−1∏
l=1

(1 − vl) , i = 1, 2, · · · . (2)

The discrete random measureG =
∑
i βiδθi is a sample

from DP(γH), where δθi denotes the Dirac measure
centered on θi.

The HDP-HMM uses the DP to set a prior on the rows
of the HMM transition matrix in a situation where the
number of latent states may be potentially infinite.
HDP-HMM is defined as

DP shared global prior: β ∼ GEM(γ), (3)

θj
iid∼ H, j = 1, 2, · · · ,

(4)

Transition matrix prior : πj
iid∼ DP(αβ), j = 1, 2, · · · ,

(5)

Latent states : zt ∼ πzt−1 , t = 1, · · · , T,
(6)

Observations : yt ∼ f (y | θzt) , t = 1, · · · , T.
(7)

Here, β and {θj}∞j=1 are specified as in the DP previ-
ously described, and then each transition distribution
πj for the state j is taken as a random sample from
a second DP with the base measure β and the con-
centration parameter α. This parameter α determines
how close πj is to the global transition distribution
β. At time t, the state of a Markov chain is indi-
cated by zt, and the observation yt is independently
distributed given the latent state zt and the parame-
ters {θj}∞j=1, with the emission distribution f(·). The

sticky HDP-HMM from Fox (2009) modifies the tran-
sition matrix prior by introducing a point mass dis-
tribution with a stickiness parameter κ to encourage
state persistence. This is done by setting the transi-
tion matrix prior to πj ∼ DP (αβ + κδj) , j = 1, 2, · · · ,
where δj is the Dirac measure centered on j.

Zhou et al. (2021) proposed a new model - Disen-
tangled Sticky HDP-HMM, separating the strength of
self-persistence from the similarity of the transition
probabilities. The authors modified the transition ma-
trix prior as

κj
iid∼ beta (ρ1, ρ2) , (8)

π̄j
iid∼ DP(αβ), (9)

πj = κjδj + (1 − κj) π̄j , j = 1, 2, · · · , (10)

where the transition distribution πj is a mixture dis-
tribution. A sample from πj has the probability of
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self-persistence of κj coming from a point mass distri-
bution at j, and has the probability 1−κj coming from
π̄j , a sample from DP with a base measure β. We call
this new model the disentangled sticky HDP-HMM.

2.2 Hierachical Dirichlet Prior Hidden
Markov Models

The HDP-HMM enables full Bayesian inference of
HMMs. The concept is to draw a prior global tran-
sition distribution from a Dirichlet process. Then, for
each hidden state, a transition distribution is taken
from the shared global prior. We start by introducing
some notation for the Dirichlet process (DP).

Given a base distribution H on a parameter space Θ
and a positive concentration parameter γ, we construct
a Dirichlet process G ∼ DP(γ,H) (sometimes also de-
noted by DP(γH)) by the following stick-breaking pro-
cedure: let

β ∼ GEM(γ), θi
iid∼ H, i = 1, 2, · · · , (11)

where β ∼ GEM(γ) is a random probability mass func-
tion (p.m.f.) defined on a countably infinite set as fol-
lows:

vi ∼ Beta(1, γ), βi = vi

i−1∏
l=1

(1 − vl) , i = 1, 2, · · · .

(12)
The discrete random measureG =

∑
i βiδθi is a sample

from DP(γH), where δθi denotes the Dirac measure
centered on θi.

The HDP-HMM uses the DP to set a prior on the rows
of the HMM transition matrix in a situation where the
number of latent states may be potentially infinite.
HDP-HMM is defined as

DP shared global prior: β ∼ GEM(γ), (13)

θj
iid∼ H, j = 1, 2, · · · ,

(14)

Transition matrix prior : πj
iid∼ DP(αβ), j = 1, 2, · · · ,

(15)

Latent states : zt ∼ πzt−1 , t = 1, · · · , T,
(16)

Observations : yt ∼ f (y | θzt) , t = 1, · · · , T.
(17)

Here, β and {θj}∞j=1 are specified as in the DP pre-
viously described, and then each transition distribu-
tion πj for the state j is taken as a random sample
from a second DP with the base measure β and the
concentration parameter α. This parameter α deter-
mines how close πj is to the global transition distri-
bution β. At time t, the state of a Markov chain is

denoted by zt, and the observation yt is independently
distributed given the latent state zt and parameters
{θj}∞j=1, with emission distribution f(·). The sticky

HDP-HMM from Fox (2009) modifies the transition
matrix prior by introducing a point mass distribution
with a stickiness parameter κ to encourage state per-
sistence. This is done by setting the transition matrix
prior to πj ∼ DP (αβ + κδj) , j = 1, 2, · · · , where δj is
the Dirac measure centered on j.

Zhou et al. (2021) proposed a new model - Disen-
tangled Sticky HDP-HMM, separating the strength of
self-persistence from the similarity of the transition
probabilities. The authors modified the transition ma-
trix prior as

κj
iid∼ beta (ρ1, ρ2) , (18)

π̄j
iid∼ DP(αβ), (19)

πj = κjδj + (1 − κj) π̄j , j = 1, 2, · · · , (20)

where the transition distribution πj is a mixture dis-
tribution. A sample from πj has the probability of
self-persistence of κj coming from a point mass distri-
bution at j, and has the probability 1−κj coming from
π̄j , a sample from DP with a base measure β. We call
this new model the disentangled sticky HDP-HMM.

2.3 Limitations of HDP-HMM, sticky
HDP-HMM and disentangled sticky
HDP-HMM

The HDP-HMM uses the concentration parameter α
to modify the prior strength of the transition matrix or
the similarity of the rows of the transition matrix. A
high value α implies that the transition probability for
each state is close to the global transition distribution
β.

The sticky HDP-HMM introduces a parameter κ in
comparison to the HDP-HMM. The ratio κ/(α + κ)
determines the average probability of self-persistence
or the mean of the diagonal of the transition matrix.
Both the similarity of the rows of the transition ma-
trix and the strength of prior self-persistence are reg-
ulated by α+κ. The beta prior of disentangled sticky
HDP-HMM (ρ1, ρ2) has the ability to control both the
expectation of self-persistence and the variability of
self-persistence. At the same time, α is free to control
the variability of the transition probability around the
mean transition β.

All of the models based on HDP-HMM assume that
the state transition is stationary. This is especially
problematic for spatio-temporal systems, where the
states may be dependent on the position. To clarify,
our objective is to introduce a dependency of our self-
persistence parameter κ on the observation yt. This
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can be achieved by employing logistic regression.

2.4 Pólya-Gamma augmentation

One strategy that has been employed in other recur-
rent models for enabling efficient and quick inference
(Linderman et al., 2017; Nassar et al., 2019) involves
the utilization of Pólya-Gamma augmentation.

The main result of Polson et al. (2013) is that bino-
mial probabilities can be expressed as a combination
of Gaussians in terms of a Pólya-Gamma distribution.
The fundamental integral identity that lies at the heart
of their discovery is that, for b > 0,(

eψ
)a

(1 + eψ)
b

= 2−beλψ
∫ ∞

0

e−ωψ
2/2p(ω)dω. (21)

The value of λ is calculated as the difference between a
and b divided by two. The conditional distribution of
ω given ψ is a Pólya-Gamma one, which makes it pos-
sible to use a Gibbs sampling approach for a variety of
binomial models. This requires drawing from a Gaus-
sian distribution for the main parameters and from a
Pólya-Gamma distribution for the latent variables.

Suppose the observation of the system at time t follows

p (wt+1 | xt) = Bern (σ (vt)) =
(evt)

wt+1

1 + evt
,

vt = RTxt + r,

(22)

where R ∈ Rdx , r ∈ R, σ is logistic function, and Bern
denotes Bernoulli distribution. Then if we introduce
the PG auxiliary variables ηn,t, conditioning on η1:T ,
(22) becomes

p (wt | xt, ηt) = e−
1
2 (ηtvt−2ωtvt)

∝ N
(
RTxt + r | ωt/ηt, 1/ηt

)
,

where ωt = wt − 1
2 .

3 Related work

In recent years, significant work has focused on recur-
rent modeling. Linderman et al. (2017) introduced a
method for modeling recurrence in recurrent switch-
ing linear dynamical systems (rSLDS, also known as
augmented SLDS (Barber, 2005)), reducing it to a re-
current autoregressive HMM (rARHMM) via PG aug-
mentation, similar to our approach.

Other approaches use neural networks for recurrent
connections, including recurrent Hidden Semi Markov
Models (Dai et al., 2016), Switching Nonlinear Dynam-
ical Systems (Dong et al., 2020), and Recurrent Ex-
plicit Durations Switching Dynamical Systems (Ansari

et al., 2021). Recently, Geadah et al. (2023) proposed
the infinite recurrent switching linear dynamic system
(irSLDS). Both methods address recurrence in switch-
ing dynamics but differ substantially. Our model in-
corporates recurrence to influence self-persistence, un-
like irSLDS, which integrates it into the state switch
probability (see Eq.4).

We use Pólya-Gamma augmentation for efficient in-
ference, whereas in irSLDS this results in intractable
inference (see the Appendix of (Geadah et al., 2023)).
Additionally, irSLDS uses the variational Laplace-EM
algorithm for approximate posterior fitting, while we
offer two MCMC sampling algorithms.

4 Recurrent sticky HDP-HMM

One of the problems of models based on HDP-HMM
is that they assume stationarity of state-transition. It
is especially problematic in a setting where we try to
model motion.

Let us imagine that we want to model the car’s behav-
ior. We want to make the vehicle more likely to be in
the ”turn” state, when it is closer to the obstacle.

To achieve position dependence we condition self-
persistence on the previous observation. We can do
that by performing logistic regression (given by Eq.
(22)) in computing the parameter κ. To do that we
use Pólya-Gamma augmentation (see Eq. (21)), which
allows us for efficient Gibbs sampling. Therefore, we
propose following model using notation that is in line
with the conventions outlined in Section 2.2(presented
in the Figure 1(c)):

Transition prior: κj,1
iid∼ beta (ρ1, ρ2) , (23)

vj,t = RTj yt + rj , (24)

κj,t+1 =
(evj,t)

1 + evj,t
, (25)

π̄j
iid∼ DP(αβ), (26)

πj,t = κj,tδj + (1 − κj,t) π̄j , (27)

j = 1, 2, . . . and t = 1, . . . , T.

An equivalent formulation of zt ∼ πzt−1
in the disen-

tangled sticky HDP-HMM is as follows:

Latent states : wt ∼ Bern
(
κzt−1,t

)
,

zt ∼ wtδzt−1
+ (1 − wt) π̄zt−1

,
t = 1, · · · , T,

In this way, our self-persistance probability becomes
position- and state-dependent. When considering mo-
tion, the likelihood of transitioning to a different state
is contingent upon one’s location.
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5 Inference and Learning

Algorithm 1 Direct assignment sampler for RS-HDP-
HMM
1: Sequentially sample {zt, wt, wt+1} for t = 1, . . . , T .

2: Sample {κj,1} for j = 1, . . . ,K + 1, and compute
{κj,t+1} for t = 1, . . . , T − 1, j = 1, . . . ,K + 1 K is

defined as number of unique states in {zt}Tt=1.
3: Sequentially sample auxiliary variables {ηj,t} for
t = 1, . . . , T − 1, j = 1, . . . ,K + 1.

4: Sample β. (Same as HDP-HMM).

5: Sample hyperparameter α, γ, ρ1, ρ2, R.

5.1 Direct Assignment Sampler

The direct assignment sampler marginalizes transition
distributions πj and parameters θj and sequentially
samples zt given all the other states z\t, observations

{yt}Tt=1, and the global transition distribution β.

Our direct assignment sampler is based on the direct
assignment sampler for DS-HDP-HMM, which means
that instead of only sampling zt (as in the sampler for
HDP-HMM), we sample {zt, wt, wt+1} in blocks. We
sample α, β, γ only using zt that switch to other states
by π̄zt−1

(wt = 0), and sample {κj,t}K+1
j=1 , ρ1, ρ2 only

using zt that stick to state zt−1 (wt = 1). The main
difference between the samplers presented by Fox et al.
(2011); Zhou et al. (2021) comes from the fact that κj
is now a vector and we have to additionally sample the
auxiliary variables.

Algorithm 1 presents direct assignment sam-
pler steps. For Step 1, we compute the
probability of each possible posterior case of

p
(
zt, wt, wt+1 | z\t, w\{t,t+1}, {yt}

T
t=1 , α, β, {κj,1:T }

K+1
j=1

)
in sequence and sample the corresponding categorical
distribution for {zt, wt, wt+1}, where all states except
zt are denoted by z\t, and all wt except for wt and
wt+1 are represented by w\{t,t+1}. If zt = K + 1, that
is, a new state appears, we increment K, sample the
regression parameters RK+1 for the new state from
the prior state, and update β using stick breaking.
This requires O(TK) operations.

For Step 2, given wt+1 whose corresponding zt is j, we
sample κj,1 using beta-binomial conjugacy and com-
pute κj,t using Equation (22), performing the O(TK)
steps.

Step 3 involves sampling T (K+ 1) auxiliary variables,
requiring O(TK) steps.

Step 4 involves introducing auxiliary variables
{mjk}Kj,k=1 and sampling β using Dirichlet categori-

cal conjugacy, which requires O(K) draws.

Step 5 computes the empirical transition matrix
{njk}Kj,k=1, where njk is the number of transitions from

state j to k with wt = 0 in {zt}Tt=1, and introduces ad-
ditional auxiliary variables. Then the posteriors of α
and γ are conjugated with Gamma, given the auxiliary
variables. We approximate the posterior of ρ1, ρ2 by
finite grids. This last step has a computational com-
plexity of O(K). The total complexity per iteration is
O(TK).

As mentioned in the study by Fox et al. (2011),

when the entire latent sequence {zt, wt}Tt=1 is sampled
jointly, it significantly improves the mixing rate. This
is particularly crucial for models with dynamics, such
as ARHMM and SLDS, where the correlated obser-
vations can further slow down the mixing rate of the
direct assignment sampler. For this reason, we did not
utilize this sampler in our experiments. However, we
have included its description for the sake of compre-
hensiveness in this study.

5.2 Weak-Limit Sampler

The weak-limit sampler for the sticky HDP-HMM
takes advantage of the fact that the Dirichlet process
is a discrete measure to produce a finite approxima-
tion of the HDP prior. This approximation converges
to the HDP prior when the number of components, L,
goes to infinity(Ishwaran and Zarepour, 2000, 2002).
The standard HMM forward-backward procedure can
be used to sample latent variables {zt}Tt=1 with the
help of this approximation, which increases the mix-
ing rate of the Gibbs sampler. Our weak-limit Gibbs
sampler is based on the sampler for DS-HDP-HMM,
so it samples pairs {zt, wt}Tt=1.

Algorithm 2 Weak-limit sampler for RS-HDP-HMM

1: Jointly sample {zt, wt}Tt=1.
2: Sample {κj,1} for j = 1, . . . , L, and compute

{κj,t+1} for t = 1, · · · , T − 1, j = 1, . . . , L.
3: Sequentially sample auxiliary variables {ηj,t} for
t = 1, . . . , T − 1, j = 1, . . . , L.

4: Sample {βj}Lj=1 , {π̄j}
L
j=1. (Same as HDP-HMM).

5: Sample {θj}Lj=1.
6: Sample hyperparameter α, γ, ρ1, ρ2, R.

Algorithm 2 presents weak-limit sampler steps. In
Step 1, we use the forward-backward procedure to
jointly sample the two-dimensional latent variables

5
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{zt, wt}Tt=1.

Step 2 is the same as in the direct assignment sampler.

Step 3 is the same as in the direct assignment sampler.

For Step 4, we sample β and π̄ based on Dirichlet-
categorical conjugacy, given the auxiliary vari-
ables {mjk}Lj,k=1, the empirical transition matrix

{njk}Lj,k=1, and the approximate prior.

Step 5 involves placing a conjugate prior in θj and us-
ing conjugacy to sample the posterior. Step 5 is the
same as in the direct assignment sampler. The com-
plexity of each step is O

(
TL2

)
,O(L), O(L),O(L),

and O(L), respectively, with a total complexity of
O
(
TL2

)
.

The beam sampling technique (Van Gael et al., 2008;
Dewar et al., 2012; S lupiński and Lipiński, 2024) is a
useful method for sampling the approximation param-
eter L, eliminating the need to pre-set it while still
allowing the transition matrix to be instantiated and
the state sequence to be block sampled. This is espe-
cially beneficial when the number of states is too large
to be accurately estimated beforehand. In this paper,
we will not examine beam sampling.

6 Experiments

5.0 2.5 0.0 2.5 5.0
4

2

0

2

4

Figure 2: Trajectory of NASCAR ® used to test the
models.

To evaluate our motion segmentation model’s effec-
tiveness, we compared it against HDP-HMM, sticky
HDP-HMM, and disentangled sticky HDP-HMM on
three benchmarks. The HDP-HMM benchmarks used
the implementation from Zhou et al. (2021).1

We employed the Matrix Normal inverse-Wishart
(MNIW(M,V, S, n)) prior for autoregressive emission
in all experiments, detailed in Fox et al. (2011). Specif-
ically, M0 = 0 and V0 = I were selected to cen-
ter the prior’s mass around stable matrices. The
inverse-Wishart component had n0 = m + 2 degrees

1https://github.com/zhd96/ds-hdp-hmm

of freedom, with the scale matrix S0 set to 0.4Σ̄,
where Σ̄ is defined as 1

T−1

∑
(xt − x) (xt − x)

T
and

xt = yt+1 − yt.

All models used a Gamma (1, 0.01) prior for concen-
tration parameters α, and α+κ for sticky HDP-HMM.
To avoid numerical instability in sampling β by pre-
venting extreme γ values, a Gamma (2,1) prior was
used for γ.

Self-persistence parameters employed non-informative
priors: a uniform distribution in [0, 1] for ϕ = ρ1

ρ1+ρ2
,

and for DS-HDP-HMM, a uniform distribution in [0,

2] for η = (ρ1 + ρ2)
−1/3

. The support of ϕ and η was
partitioned into a 100 × 100 grid for simulated data.
The prior for (R, r) was N (0, 0.0001 · I).

Log-likelihood was our primary metric to compare
models, with higher values indicating a better fit. This
metric provides a straightforward probabilistic com-
parison, as employed in Zhou et al. (2021); Fox (2009).
We also used accuracy and F1 scores for assessing seg-
mentation quality.

For quantitative evaluation, we used the dancing bee
and NASCAR® benchmarks, widely used in Bayesian
motion segmentation studies (Oh et al., 2008; Fox
et al., 2011; Linderman et al., 2017; Nassar et al.,
2019). For qualitative evaluation, we chose the mouse
behavior dataset, a key dataset in self-supervised seg-
mentation research (Zhou et al., 2021; Batty et al.,
2019; Costacurta et al., 2022). All of the sampler runs
were performed on Intel Xeon Platinum 8268 using two
cores.

6.1 NASCAR ®

We begin with a straightforward illustration where the
dynamics take the form of oval shapes, resembling a
stock car on a NASCAR® track. The dynamics is de-
termined by four distinct states, zt ∈ {1, . . . , 4}, which
regulate a continuous latent state in two dimensions,
yt ∈ R2.

For this experiment, we performed ten runs with dif-
ferent random seeds. The results are averaged.

We can distinguish four states here, which are pre-
sented in Figure 2. To make the states more distin-
guishable, the car uses four different velocities (which
can be observed in Figure 5, as the segments differ
significantly in length).

It is evident that the state of the system is influenced
by its position. As the car completes each lap, it
spends a greater amount of time in the ”straight-on”
states. This poses a challenge for models that have a
constant transition matrix, as the probability of self-
persistence follows a Geometric distribution.

6
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(d) RS-HDP-HMM

Figure 3: Log-likelihood during models’ fitting on
NASCAR ® dataset. Our model obtains the high-
est likelihood scores. It presents a diverse range of
likelihood scores within a single run. Additionally, we
observe that the other models often converge to lo-
cal optima. Furthermore, the RS-HDP-HMM model
exhibits a considerably shorter burn-in time.

Table 1: Results of NASCAR ® data segmentation.

Weighted F1 Accuracy

HDP-HMM 0.86 0.82
S-HDP-HMM 0.91 0.88
DS-HDP-HMM 0.94 0.95
RS-HDP-HMM 0.97 0.97

The segmentation outcomes are demonstrated in Ta-
ble 1. It is evident that our model exhibits superior
performance. Figure 5 illustrates that the remaining
models occasionally struggle to differentiate the fourth
state.

The results obtained from Figures 4 and 3 demonstrate
that our model achieves the highest likelihood scores
and produces the most coherent outcomes. Neverthe-
less, it is important to mention that it also exhibits
the largest variance in likelihood in a single run.

6.2 Dancing Bee

We employed the publicly available dancing bees
dataset (Oh et al., 2008), which is renowned for its
intricate characteristics and has previously been stud-
ied in the field of time series segmentation.

The dataset consists of the trajectories followed by six
honey bees while performing the waggle dance, includ-
ing their 2D coordinates and heading angle at each

7000 8000 9000 10000 11000 12000 13000 14000
loglikelihood

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

De
ns

ity

model
ds-hdp-hmm
hdp-hmm
recurrent-ds-hdp-hmm
s-hdp-hmm

Figure 4: Distribution of NASCAR® log-likelihoods
taken after 200 burn-in iterations. Our model attains
the highest likelihood scores and generates the most
coherent results. However, it is worth noting that it
also demonstrates the greatest variability in likelihood
within a single execution.

time step. The bees demonstrate three types of mo-
tion: waggle, turn right, and turn left.

Table 2: Results of dancing bee data segmentation.

Weighted F1 Accuracy

HDP-HMM 0.73 0.77
S-HDP-HMM 0.85 0.87
DS-HDP-HMM 0.83 0.84
RS-HDP-HMM 0.85 0.87
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Figure 5: Sample results of NASCAR ® segmentation.
The color represents an assigned segment. Methods
other than RS-HDP-HMM often fail to differentiate
two ”straight” states.

Honey bees communicate the whereabouts of food
sources by performing a series of dances within the
hive. These dances consist of waggle, turn right,
and turn left movements. The waggle dance of a
bee consists of it walking in a straight line while
shaking its body from side to side quickly. The
turning dances are simply the bee rotating clock-
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Figure 6: Distribution of models’ log-likelihoods taken
after 2000 burn-in iterations on dancing bee dataset.
Our model achieves the highest likelihood scores,
demonstrating a clear unimodal distribution of like-
lihood scores. Furthermore, we observe that the other
models often become trapped in local optima.
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Figure 7: Results of dancing bee dataset. The color
represents an assigned segment. The segmentation ob-
tained from our model is the smoothest.

wise or counterclockwise. The data consist of yt =[
cos (θt) , sin (θt) , xt, yt

]T
, where (xt, yt) de-

notes the 2D coordinates of the body of the bee and
θt its head angle.

For this experiment, we performed ten runs with dif-
ferent random seeds. The results are averaged.

We can see in Table 2 that our model performed on
a par with S-HDP-HMM in terms of accuracy and
weighted F1. However, in Figure 7 we can observe
that the segmentation obtained from our model is the
smoothest.

In the same graph, it is evident that the values ob-
served during the ”waggle” phase are significantly
smaller in magnitude compared to those obtained dur-
ing turning. We hypothesize that this characteristic
enables our model to achieve a more seamless segmen-

tation.

Like the previous experiment, the findings shown in
Figures 6 and 8 demonstrate that our model achieves
the highest likelihood scores and produces the most co-
herent outcomes. Additionally, it exhibits the greatest
range of likelihood scores in a single execution.
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(d) RS-HDP-HMM

Figure 8: Log-likelihood during models’ fitting on
honey bee movements. Our model achieves the high-
est likelihood scores and generates the most coherent
results. However, it demonstrates the widest range of
likelihood scores within a single execution. We can
also see that it has signficantly smaller burn-in time.

6.3 Mouse Behavior

Our model was also tested on a publicly accessible
mouse behavior dataset. In the described experiment,
the mouse was immobilized by fixing its head posi-
tion during a visual decision-making task. During this
task, neural activities in the dorsal cortex were mon-
itored through wide-field calcium imaging. The be-
havioral video data comprised grayscale frames with a
resolution of 128x128 pixels. This video was recorded
from two different angles using two cameras, one for
the side view and another for the bottom view. To
manage the high-dimensional nature of the video data,
we adopted dimension reduction techniques previously
established. These involved 9-dimensional continuous
variables derived through a convolutional autoencoder
(Batty et al., 2019).

In real-world scenarios, ARHMM models often suffer
from a problem called over-segmentation. This refers
to the situation where behaviors that seem similar
to a human expert are divided into separate clusters.
According to the hypothesis proposed by Costacurta
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Figure 9: Distribution of log-likelihoods on mouse be-
havior dataset taken after 9000 burn-in iterations. In
line with previous findings, our model attains the high-
est likelihood scores, indicating a distinct unimodal
distribution of likelihood scores with the greatest vari-
ation within each run. Additionally, we note that the
other models do not converge to a shared optimal so-
lution.
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Figure 10: Results of mouse behavior dataset. The
color represents an assigned segment. One issue fre-
quently encountered in ARHMM models is known as
over-segmentation. However, RS-HDP-HMM segmen-
tation, despite utilizing a similar number of states as
DS-HDP-HMM, offers a smoother and more stable al-
ternative.

et al. (2022), over-segmentation occurs because the
ARHMM model confuses discrete factors of behavioral
variability, such as the expression of different behav-
ioral syllables, with continuous factors of variability
that cannot be adequately represented using linear au-
toregressive dynamics with Gaussian noise.

We performed five independent MCMC runs for all
model types. On average, RS-HDP-HMM converged
to 33 states, DS-HDP-HMM to 34, S-HDP-HMM to
21 and HDP-HMM to 23 states. On average there
were 6143 state switches for RS-HDP-HMM, 7713 for
DS-HDP-HMM, 6412 for S-HDP-HMM and 7801 for
HDP-HMM.

Despite using nearly as many states as DS-HDP-
HMM, RS-HDP-HMM segmentation remains much
smoother and more stable. A sample segmentation
is presented in Figure 10. For example, in the pink
state, our model demonstrates a greater tolerance for
minor noise. This is because it considers not only the
direction of position change but also the actual posi-
tion. Therefore, even if the direction changes, as long
as the position change is small enough, there will be
no transition to a different state.

7 Conclusions and Future Work

The paper presents a new modeling technique that
combines latent states with position- and state-
dependent self-persistence probability. This technique
is particularly suitable for motion data, where the like-
lihood of transitioning to a different state depends on
the subject’s location.

A central contribution of this paper is introducing de-
pendence of stickiness factor on the previous observa-
tions.

The RS-HDP-HMM addresses a significant limitation
in conventional HMMs: their inability to effectively
model non-Markovian temporal dependencies. Many
real-world processes exhibit behaviors where the cur-
rent state depends not just on the immediate past state
(as in hidden Markov models), but on a more complex
history of previous states. Similar level of contribution
was introduced by RSLDS or iRSLDS bringing similar
dependece to SLDS.

The recurrent model consistently demonstrates better
performance metrics, showcasing its strength in cap-
turing data nuances, and the obtained states are more
robust to small noise, as it is shown by mouse behavior
dataset.

Similarly to Zhou et al. (2021) who modified the al-
gorithms introduced by Fox (2009), we introduce two
sampling schemes for our model.
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A Sampling Scheme

Step 1 is analogous to Fox et al. (2011) and Zhou et al. (2021). We describe it here for completeness.

Step 1: Sequentially Sample zt,wt,wt+1 : The posterior distribution of zt, wt, and wt+1 is expressed as
follows:

p (zt = k,wt, wt+1 | z\t, w\{t,t+1}, y1:T , α, β, {κj,1:T }
K+1
j=1

)
∝p

(
zt = k,wt, wt+1 | z\t, w\{t,t+1}, α, β, {κj,1:T }

K+1
j=1

)
· p

(
yt | y\t, zt = k, z\t

)
.

(28)

where all observations except yt are denoted by y\t, and all wt except for wt and wt+1 are represented by
w\{t,t+1}.

The predictive observation likelihood p
(
yt | y\t, zt = k, z\t

)
can be quickly calculated if we use a conjugate prior

on the parameter in the observation likelihood.

p
(
zt = k,wt, wt+1 | z\t, w\{t,t+1}, α, β, {κj,1:T }

K+1
j=1

)
∝p

(
zt = k,wt, wt+1, zt+1 | z\{t,t+1}, w\{t,t+1}, α, β, {κj,1:T }

K+1
j=1

)
∝
∫
π̄

p
(
wt | κzt−1,t

)
p
(
zt | wt, π̄zt−1

)
p (wt+1 | κzt,t+1) p (zt+1 | wt+1, π̄zt)

∏
i

 ∏
τ |zτ−1=i,wτ=0,τ ̸=t,t+1

p (π̄i | α, β) p (zτ | π̄i)

 dπ̄

∝
∫
π̄

p
(
wt | κzt−1,t

)
p
(
zt | wt, π̄zt−1

)
p (wt+1 | κzt,t+1) p (zt+1 | wt+1, π̄zt)∏

i

p (π̄i | {τ | zτ−1 = i, wτ = 0, τ ̸= t, t+ 1} , α, β) dπ̄.

(29)

Let zt−1 = j, zt+1 = l, then Equation (29) simplifies to
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κj,tκj,t+1, if wt = wt+1 = 1, k = j = l

(1 − κj,t)κl,t+1

∫
π̄j
p (zt = l | wt, π̄j) p (π̄j | {τ | zτ−1 = j, wτ = 0, τ ̸= t} , α, β) dπ̄j , if wt = 0, wt+1 = 1, k = l

(1 − κj,t)κj,t
∫
π̄j
p (zt+1 = l | wt+1, π̄j) p (π̄j | {τ | zτ−1 = j, wτ = 0, τ ̸= t+ 1} , α, β) dπ̄j , if wt = 1, wt+1 = 0, k = j

(1 − κj,t) (1 − κk,t+1)
∫
π̄j
p (zt = k | wt, π̄j) p (π̄j | {τ | zτ−1 = j, wτ = 0, τ ̸= t} , α, β) dπ̄j .∫

π̄k
p (zt+1 = l | wt+1, π̄k) p (πk,t+1 | {τ | zτ−1 = k,wτ = 0, τ ̸= t+ 1} , α, β) dπ̄k, if wt = 0, wt+1 = 0, k ̸= j

(1 − κj,t) (1 − κk,t+1)∫
π̄j
p (zt = j | wt, π̄j,t) p (zt+1 = l | wt+1, π̄j) p (πj | {τ | zτ−1 = j, wτ = 0, τ ̸= t, t+ 1} , α, β) dπ̄j , if wt = 0, wt+1 = 0, k = j

0, otherwise

The result is the following equations:∫
π̄j

p (zt = k | wt, π̄j) p (π̄j | {τ | zτ−1 = j, wτ = 0, τ ̸= t} , α, β) dπ̄j =
αβk + n−tjk

α+ n−tj·
,∫

π̄k

p (zt+1 = l | wt+1, π̄k) p (π̄k | {τ | zτ−1 = k,wτ = 0, τ ̸= t+ 1} , α, β) dπ̄k =
αβl + n−tkl
α+ n−tk.∫

π̄j

p (zt = j | wt, π̄j) p (zt+1 = l | wt+1, π̄j) p (π̄j | {τ | zτ−1 = j, wτ = 0, τ ̸= t, t+ 1} , α, β) dπ̄j

=

(
αβj + n−tjj

) (
αβl + n−tjl + δ(j, l)

)
(
α+ n−tj.

) (
α+ n−tj· + 1

) ,∫
π̄j

p (zt = k | wt, π̄j) p (π̄j | {τ | zτ−1 = j, wτ = 0, τ ̸= t} , α, β) dπ̄j .∫
π̄k

p (zt+1 = l | wt+1, π̄k) p (π̄k | {τ | zτ−1 = k,wτ = 0, τ ̸= t+ 1} , α, β) dπ̄k

=
αβk + n−tjk

α+ n−tj.

αβl + n−tkl
α+ n−tk.

(30)

where the quantity nzt−1zt is the number of times that the transition from state zt−1 to state zt occurred with
wt = 0 in the sequence z1:T . Furthermore, n−tzt−1zt is the number of times the transition from state zt−1 to zt
occurred with wt = 0, not including the transitions from zt−1 to zt or from zt to zt+1. Lastly, nj is the total
number of transitions from state j to any other state.

If zt is equal to K+1, that is, a new state has appeared, we will increase K, draw a probability of self-persistence
κK+1 for the new state from the prior, and update β using the stick-breaking method. We will sample b from a
beta(1, γ) distribution, and assign βK = bβknew , βknew = (1 − b)βknew , where βknew =

∑∞
i=K+1 βi.

Step 2: Sample {κj,1} for j = 1, · · · ,K + 1, and compute {κj,t+1} The posterior distribution of κj,1 is
obtained by applying the beta-binomial conjugate property. The expression for the posterior distribution is given
by:

κj,1 ∼ beta

ρ1 +
∑

τ,zτ−1=j

wτ , ρ2 +
∑

τ,zτ−1=j

1 − wτ

 , j = 1, · · · ,K + 1 (31)

Here, κK+1 represents the self-persistence probability of a new state.

For t+ 1 {κj,t+1} can be computed:

κj,t+1 =
(evj,t)

1 + evj,t

vj,t = RTj xt + rj

(32)

Step 3: Sequentially sample the auxiliary variables {ηj,t} for t = 1, · · · , T − 1, j = 1, · · · , L. 7. The
conditional posteriors of the Pólya-Gamma random variables are also Pólya-Gamma: ηj,t | zt, (Rj , rj) , xt−1 ∼
PG (1, νj,t).

We used samplers implemented in https://github.com/zoj613/polyagamma.
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Step 4: Sample β We introduce auxiliary variables mjk to sample the global transition distribution β. This
is done using the Chinese restaurant franchise (CRF) formulation of HDP prior Teh (2006). These variables can
be thought of as the number of tables in restaurant j serving dishes k. We first update mjk and then sample β.

For each (j, k) ∈ {1, · · · ,K}2, set mjk and s to zero. Then, for i = 1, · · · , njk, draw a sample from a Bernoulli

distribution with probability αβk

n+αβk
. Increase s and if the sample is equal to one, increment mjk. We can then

sample β as

(β1, β2, · · · , βK , βknew ) ∼ Dir (m·1, · · · ,m·K , γ) , (33)

where βknew
=

∑∞
i=K+1 βi is for transitioning to a new state, and m·k is

∑K
j=1mjk. A more thorough explanation

of the sampling of β can be found in Fox et al. (2011); Zhou et al. (2021).

Step 5: Sample Hyperparameters α, γ, ρ1, ρ2, R, r We use the same values of α and γ as in Teh (2006);
Escobar and West (1995). By introducing some extra variables, we can make the posterior of α and γ follow
a gamma distribution if we assign a gamma prior to them. To handle ρ1, ρ2, we use the reparametrization

technique discussed in Chapter 5 of ?. This involves transforming ϕ = ρ1
ρ1+ρ2

, η = (ρ1 + ρ2)
−1/3

, and assigning a

Uniform ([0, 1] × [0, 2]) prior on (ϕ, η). Then, we can discretize the support of (ϕ, η) and calculate the posterior
numerically.

Let ηj,t be the auxiliary Pólya-gamma random variable introduced at time t. We can sample values of Rj , rj
from the following posterior:

p ((Rj , rj) | x1:T , z1:T , ηj,1:T ) ∝ p ((Rj , rj))

T∏
t=1

N (vj,t | λj,t/ηj,t, 1/ηj,t)1(zt=j) , (34)

where λj,t = wt+1 − 1
2 .

B Weak limit-sampler

Step 1: Sample {zt, wt}Tt=1 The combined conditional distribution of z1:T , w1:T is determined by

p
(
z1:T , w1:T | y1:T , π̄, {κj}Lj=1 , θ

)
=p

(
zT , wT | zT−1, y1:T , π̄, {κj,1:T }Lj=1 , θ

)
p
(
zT−1, wT−1 | zT−2, y1:T , π̄, {κj,1:T }Lj=1 , θ

)
· · · p

(
z1 | y1:T , π̄, {κj,1:T }Lj=1 , θ

)
.

(35)

The conditional probability distribution of z1 is given by:

p
(
z1 | y1:T , π̄, {κj,1:T }Lj=1 , θ

)
∝ p (z1) p (y1 | θz1) p

(
y2:T | z1, π̄, {κj,2:T }Lj=1 , θ

)
(36)

The conditional distribution of zt, t > 1 is given by:

p
(
zt, wt | zt−1, y1:T , π̄, {κj,1:T }Lj=1 , θ

)
∝p

(
zt, wt, y1:T | zt−1, π̄, {κj,1:T }Lj=1 , θ

)
=p

(
zt | π̄zt−1 , wt

)
p
(
wt | zt−1, {κj,t}Lj=1

)
p
(
yt:T | zt, π̄, {κj,t:T }Lj=1 , θ

)
p
(
y1:t−1 | zt−1, π̄, {κj,1:t−1}Lj=1 , θ

)
∝p

(
zt | π̄zt−1 , wt

)
p
(
wt | zt−1, {κj,t}Lj=1

)
p
(
yt:T | zt, π̄, {κj,t:T }Lj=1 , θ

)
=p

(
zt | π̄zt−1 , wt

)
p
(
wt | zt−1, {κj,t}Lj=1

)
p (yt | θzt)mt+1,t (zt) ,

(37)

The backward message passed from zt to zt−1, denoted by mt+1,t (zt), is the probability of observing yt+1:T given

14
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zt, π̄, {κj,t}Lj=1, and θ. This is recursively defined as follows:

mt+1,t (zt) =
∑

zt+1,wt+1

p (zt+1 | π̄zt , wt+1) p
(
wt+1 | zt, {κj,t+1}Lj=1

)
p
(
yt+1 | θzt+1

)
mt+2,t+1 (zt+1) , t ≤ T

mT+1,T (zT ) = 1

(38)

Step 2: Sample {κj,1} for j = 1, · · · ,K + 1, and compute {κj,t+1} Same as in direct assignment sampler
step 2, but for j = 1, · · · , L.

Step 3: Sample {βj}Lj=1 , {π̄j}
L
j=1

β | m, γ ∼ Dir (γ/L+m·1, · · · , γ/L+m·L) ,

π̄j | z1:T , w1:T , α, β ∼ Dir (αβ1 + nj1, · · · , αβL + njL) , j = 1, · · · , L.
(39)

Step 4: Sample {θj}Lj=1 We draw θ from the posterior distribution based on the emission function and the

base measure H of the parameter space Θ, i.e. θj | z1:T , y1:T ∼ p (θj | {yt | zt = j}). For all the emissions in the
main paper, we can conveniently sample θj from its posterior due to the conjugacy properties.

Step 5: Sample Hyperparameters α, γ, ρ1, ρ2 Same as step 4 in direct assignment sampler.

C MNIW Prior

In the autoregressive emission, the MNIW prior is established by assigning a matrix-normal prior MN (M,Σj , V )
to Aj conditioned on Σj :

p (Aj | Σj) =
1

(2π)d2/2|V |d/2 |Σj |d/2
exp

(
−1

2
tr
[
(Aj −M)

⊤
Σ−1
j (Aj −M)V −1

])
, (40)

where M is d× d matrix, Σj , V are d× d positive-definite matrix, d is the dimension of observation yt; and an
inverse-Wishart prior IW (S0, n0) on Σj :

p (Σj) =
|S0|n0/2

2n0d/2Γd (n0/2)
|Σj |−(n0+d+1)/2

exp

(
−1

2
tr

(
Σ−1
j S0

))
, (41)

where Γd(·) denotes the multivariate gamma function. We define M = 0, V = Id×d, n0 = d+ 2, and S0 = 0.4Σ̄,

with Σ̄ being 1
T

∑T−1
t=1 (xt − x̄)(xt − x̄)⊤, and xt = yt+1 − yt.
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