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1 Introduction

Finding a minimizer of a nonconvex function is fundamentally hard. The challenge is exacerbated

when the function is nonsmooth because the traditional approach of computing a point with vanishing

gradient is no longer available. In parallel, the shift from problems with equality constraints defined by

smooth functions to those with more general constraints implicitly introduces nonsmoothness that inval-

idates the classical approach of Lagrange. Variational analysis grew from convex analysis and calculus

of variation to address nonconvex and nonsmooth problems. It provides the fundamental mathematical

tools for analyzing such problems, characterizing the solutions, and justifying their algorithms. Varia-

tional analysis is undeterred by nonsmoothness and nonconvexity, but can leveraging these properties

when present in some part of a problem.

We survey the main tools of variational analysis in the context of a specific class of optimization

problems with many applications. For X ⊂ Rn and G : Rn → Rm, we consider the problem

minimize
x∈X

h
(
G(x)

)
, (1.1)
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where h : Rm → R = [−∞,∞] is an extended real-valued function. The fact that functions can

take the values −∞ and ∞ is a feature that distinguishes variational analysis from most other areas

of mathematics. It provides a convenient way of encoding constraints using infinite penalties and

thus unifies the treatment of constrained optimization problems with those lacking such restrictions.

Specifically, we can reformulate (1.1) as the problem of minimizing a function φ defined as φ(x) =

h(G(x)) when x ∈ X and φ(x) = ∞ otherwise.

Regardless of the formulation, we bring forth the three components X, h, and G to stress the

importance of problem structure in nonconvex and nonsmooth optimization. If nothing is known about

a function to be minimized, then there is little room for variational analysis and it becomes difficult

to beat the naive solution strategy of randomly trying different points. However, in the presence of

problem structure powerful techniques and rules from variational analysis emerge. Throughout the

paper, we assume that

X is a nonempty, closed, and convex set and G is a smooth (i.e., C1) mapping.

While many of the facts stated below hold more generally, there are specific advantages to these as-

sumptions that allow us to develop simpler expressions. Moreover, for some nonempty polyhedral set

Y ⊂ Rm and a symmetric positive semidefinite m×m-matrix Q, we universally assume that

h(z) = sup
y∈Y

⟨y, z⟩ − 1
2⟨y,Qy⟩ ∀z ∈ Rm. (1.2)

At first, the specific form of h may appear limiting but many examples in [2, 11, 10, 17] and below

illustrate its versatility. Applications include nonlinear optimization, phase retrieval, robust estimation,

Kalman smoothing, sensing, risk management, and most significantly, stochastic optimization where the

function class appeared originally [55]. The function h is convex and in fact piecewise linear-quadratic

[56, Section 10.E, Example 11.18]; see also [49, 64]. While an introductory course on optimization may

refer to convex functions as “easy,” the situation is more nuanced and h represents a class of compu-

tationally attractive convex functions. Under the stated assumptions, (1.1) may lack both convexity

and smoothness overall as seen from the example X = R, G(x) = x2 − 1, h(z) = |z| = supy∈[−1,1] yz.

Nevertheless, the components have such properties.

After illustrating the breadth of the problem class (1.1) in Section 2 using four examples, we start

the survey with basic concepts in Section 3. These include the extension from gradients to subgradients,

and from normal subspaces to normal cones. Section 4 puts the extensions to use for the purpose of

generalizing the classical necessary condition for a minimizer of a smooth function: vanishing gradient.

Section 5 examines the effect of approximations and shows that the usual notions of pointwise and uni-

form convergence need to be supplemented when examining optimization problems. Section 6 discusses

briefly algorithms for (1.1). Section 7 introduces parametrization and the resulting relaxations and dual

problems. The paper ends in Section 8 with a glimpse at second-order theory, which extends Hessian

matrices to the nonsmooth setting.

Throughout, we focus on concepts and terminology, but give many references to sources containing

proofs and further reading. Additional examples and motivation appear in the tutorial [57]. We only
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briefly touch on the history of variational analysis and refer to the commentaries in [56, 34]. Essentially

all the concepts discussed in this introductory survey have generalizations beyond finite dimensions;

see, for example, [33, 32].

2 Examples

The problem class (1.1) arises naturally in applications as seen from four examples.

2.1 Example (goal optimization). In multi-objective optimization, we might hope to minimize the

smooth functions gi : Rn → R, i = 1, . . . ,m. This is rarely possible, however, because no single

x minimizes all the functions. An approach to explore the trade-off between these functions is goal

optimization, where one aims to determine a solution x ∈ X such that each gi(x) is not higher than a

target value τi. If the target value is not reached, the solution receives a per-unit penalty of αi ∈ [0,∞).

For nonempty, closed, and convex X ⊂ Rn, this leads to the formulation

minimize
x∈X

m∑
i=1

αimax
{
0, gi(x)− τi

}
,

which is of the form (1.1) with G(x) = (g1(x)− τ1, . . . , gm(x)− τm) and

h(z) = sup
y∈Y

⟨y, z⟩, where Y = [0, α1]× · · · × [0, αm].

Here, h is real-valued because Y is bounded.

2.2 Example (nonlinear optimization). The smooth functions gi : Rn → R, i = 0, 1, . . . ,m+q produce

the nonlinear optimization problem

minimize
x∈Rn

g0(x) subject to gi(x) = 0, i = 1, . . . ,m; gi(x) ≤ 0, i = m+ 1, . . . ,m+ q.

It fits the form (1.1) with X = Rn, G(x) = (g0(x), g1(x), . . . , gm+q(x)), Y = {1} × Rm × [0,∞)q, and

for z = (z0, z1, . . . , zm+q),

h(z) = sup
y∈Y

⟨y, z⟩ =

{
z0 if zi = 0 for i = 1, . . . ,m; zi ≤ 0 for i = m+ 1, . . . ,m+ q

∞ otherwise.

Thus, h assigns an infinite penalty to any x that violates the stated equality and inequality constraints.

2.3 Example (risk minimization). We may seek a decision x ∈ X that is good acrossm different future

scenarios. If the cost of a decision in the ith scenario is described by the smooth function gi : Rn → R
and pi is the probability of that scenario, then one could consider the average cost:

∑m
i=1 pigi(x).

However, a risk-averse decision maker might prefer to consider a worst-case cost in some sense. For
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α ∈ [0, 1), this could result in a formulation that minimizes the α-superquantile (a.k.a. CVaR, AVaR,

expected shortfall) across the scenarios; see, e.g., [59]. Specifically, one obtains the formulation

minimize
x∈X

sup
y∈Y

m∑
i=1

yigi(x), where Y =
{
y ∈ [0,∞)m

∣∣∣ m∑
i=1

yi = 1, (1− α)yi ≤ pi ∀i
}
.

If X is a nonempty, closed, and convex set, then the formulation fits the mold of (1.1) with G(x) =

(g1(x), . . . , gm(x)), and h(z) = supy∈Y ⟨y, z⟩. In this case, h is real-valued because Y is bounded.

The form (1.1) reaches beyond optimization to more general problems such as variational inequalities

and their wide range of applications; see, e.g., [18, 16] and [60, Chapter 7].

2.4 Example (variational inequality). For a smooth mapping F : Rn → Rn and a nonempty, closed,

and convex set C ⊂ Rn, the variational inequality of finding

x ∈ C such that
〈
F (x), y − x

〉
≥ 0 ∀y ∈ C

can be solved via (1.1) because of the following fact (see, e.g., [60, Example 7.13]): A point x⋆ solves

the variational inequality if and only if x⋆ minimizes g over C and g(x⋆) = 0, where

g(x) = sup
y∈C

〈
F (x), x− y

〉
= sup

(α,y)∈{1}×C

〈
(α, y),

(
⟨F (x), x⟩,−F (x)

)〉
.

Thus, one can take X = C, Y = {1} × C, and G(x) = (⟨F (x), x⟩,−F (x)) in (1.1).

3 Variational Analysis: Basic Concepts

We start by introducing the fundamental concepts. For a function f : Rn → R, dom f = {x ∈
Rn | f(x) <∞} is its domain and epi f = {(x, α) ∈ Rn×R | f(x) ≤ α} is its epigraph. While “domain”

might in other areas pertain to the allowable arguments for a function, we stress that f is defined on

the whole of Rn and dom f simply indicates where the function values are not infinity. The function

is lower semicontinuous (lsc) if epi f is a closed subset of Rn × R. It is convex if epi f is a convex set

and it is proper if epi f ̸= ∅ and f(x) > −∞ for all x ∈ Rn. In particular, h in (1.2) is proper, lsc, and

convex.

Moreover, inf f = infx∈Rn f(x) is the minimum value of f , and ε-argmin f = {x ∈ dom f | f(x) ≤
inf f + ε} is its set of ε-minimizers, with ε ∈ [0,∞). If ε = 0, then we simply write argmin f and

refer to its points as minimizers. In particular, the function having f(x) = ∞ for all x ∈ Rn has no

ε-minimizers because dom f = ∅. A point x⋆ ∈ dom f is a local minimizer of f if there exists ρ > 0

such that f(x⋆) ≤ f(x) for all x satisfying ∥x− x⋆∥2 ≤ ρ.

The indicator function of a set C has ιC(x) = 0 if x ∈ C and ιC(x) = ∞ otherwise. Thus, (1.1) can

simply be written in terms of an extended real-valued function φ : Rn → R:

minimize
x∈Rn

φ(x) = ιX(x) + h
(
G(x)

)
. (3.1)
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Figure 1: Regular normal vectors and normal vectors (solid arrows) at a point of smoothness (left), at
a kink (middle), and at a cusp (right).

We refer to this problem as the actual problem and retain the definition of φ throughout.

The trivial reformulation from (1.1) to (3.1) is especially useful as we develop extensions of the

classical optimality condition of vanishing gradients at local minimizers. Optimality conditions for (1.1)

arise by considering gradients of φ. However, any such development requires extension of gradients to

the nonsmoothness case and this leads to subgradients.

Subgradients of an arbitrary function f : Rn → R is intimately connected to normal vectors and,

following the path taken by the pioneered work in [29], we use the latter to defined the former. A

normal vector to a smooth manifold at a point on the manifold is well understood and defines a normal

subspace. Variational analysis extends this concept to arbitrary sets which may have kinks, cusps, and

other irregularities. For a set C ⊂ Rn and a point x̄ ∈ C, a vector v is a regular normal vector to C at

x̄ if

limsup
x∈C→x̄
x ̸=x̄

⟨v, x− x̄⟩
∥x− x̄∥2

≤ 0.

The set of all regular normal vectors to C at x̄ is denoted by N̂C(x̄). Since ⟨v, x − x̄⟩ is nonpositive

when the angle between the vectors v and x− x̄ is in the range 90 to 270 degrees, the definition indeed

reflects the expected relation between regular normal vectors and vectors “pointing inwards” from x̄

see Figure 1(left).

A vector v is normal to C at x̄ if there are sequences xν ∈ C → x̄ and vν ∈ N̂C(x
ν) → v. The set

of all normal vectors to C at x̄ is the normal cone to C at x̄ and is denoted by NC(x̄). By convention,

we define N̂C(x̄) = NC(x̄) = ∅ if x̄ ̸∈ C. A normal cone in this sense is sometimes referred to as the

Mordukhovich, general, basic, or limiting normal cone. Figure 1 illustrates regular normal vectors and

normal vectors for sets in R2 and how there might be more of the latter than the former; see the right

portion of the figure where the limits of regular normal vectors at points near x̄ contribute to NC(x̄).

There is an extensive calculus for computing normal cones in various settings; see, e.g., [56, Theorem

6.14] and [60, Theorem 4.46]. We recall a formula in the case of polyhedral sets as it is recorded in [60,

Proposition 2.44].

3.1 Proposition (normal cone to polyhedral sets). Suppose that

C = {x ∈ Rn | Ax = b, Dx ≤ d},
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epi 𝑓𝑓

Figure 2: Normal vectors of epi f defining the two subgradients ∂f(x′) = {−4,−1/2} and the interval
of subgradients ∂f(x̄) = [1/2, 2].

where A and D are m× n and q × n matrices, respectively. For any x̄ ∈ C,

NC(x̄) =
{
A⊤y +D⊤z

∣∣ y ∈ Rm; zi ≥ 0 if i ∈ A(x̄), zi = 0 otherwise
}
,

where A(x̄) = {i | ⟨Di, x̄⟩ = di}, Di is the ith row of D, and di is the ith component of d.

Subgradients now emerge from normal vectors of epigraphs. For a function f : Rn → R and a point

x̄ where f(x̄) is finite, the set of subgradients of f at x̄ is

∂f(x̄) =
{
v ∈ Rn

∣∣∣ (v,−1) ∈ Nepi f

(
x̄, f(x̄)

)}
.

By convention, we set ∂f(x̄) = ∅ when f(x̄) is not finite. A subgradient v ∈ ∂f(x̄) is also called a

Mordukhovich, general, basic, or limiting subgradient. Figure 2 shows the construction of subgradients

of a nonsmooth nonconvex function. If f is smooth in a neighborhood of x̄, then ∂f(x̄) is a singleton

with the gradient ∇f(x̄) as its only element. If f is convex and finite at x̄, then v ∈ ∂f(x̄) if and only

if f(x) ≥ f(x̄) + ⟨v, x− x̄⟩ for all x ∈ Rn. Thus, the definition of subgradients extends classical notions

from differential calculus and convex analysis. In the particular case of h, we find that (cf., for example,

[60, Section 5.I])

∂h(z) = argminy∈Y
1
2⟨y,Qy⟩ − ⟨y, z⟩ for z ∈ domh. (3.2)

A subgradient of h is therefore computable using convex quadratic optimization, and it is unique if Q

is positive definite. An ability to easily compute subgradients is a motivation for the construction of h

in (1.2). We can also circle back to normal vectors and conclude that ∂ιC(x̄) = NC(x̄) for any C ⊂ Rn

and x̄ ∈ Rn.

We introduce the concept of a set-valued mapping. While every argument of a function produces

a scalar value (possibly −∞ or ∞), a set-valued mapping S : Rn →→ Rm yields at x ∈ Rn the set

S(x) ⊂ Rm. This multi-valuedness is indicated by the double arrows →→ . Figure 3 illustrates the graph

of S, which is defined by gphS = {(x, y) ∈ Rn×Rm | y ∈ S(x)}, and also highlights the possibility that
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dom S

�𝑦𝑦

S−1(�𝑦𝑦)

Figure 3: The graph of a set-valued mapping S : Rn →→ Rm, its domain domS, and the solution set
S−1(ȳ) to the generalized equation ȳ ∈ S(x).

S(x) = ∅ or S(x) is a singleton at some x. The domain of S is domS = {x ∈ Rn |S(x) ̸= ∅}. Examples

of set-valued mappings include those defined by S(x) = ∂f(x) and S(x) = NC(x).

The set-valued mapping S and a given point ȳ ∈ Rm define a generalized equation ȳ ∈ S(x). Its

solution set

S−1(ȳ) =
{
x ∈ Rn

∣∣ ȳ ∈ S(x)
}

is illustrated in Figure 3. The variational inequality in Example 2.4 can be written as the generalized

equation 0 ∈ S(x) = F (x) + NC(x) because C is convex and then NC(x) = {v ∈ Rn | ⟨v, y − x⟩ ≤
0 ∀y ∈ C}; see, e.g., [60, Proposition 4.42].

We let N = {1, 2, . . . } and typically index sequences by ν ∈ N. We write xν →N x when a sequence

{xν , ν ∈ N} converges along a subsequence indexed by ν ∈ N ⊂ N.
The point-to-set distance from x̄ ∈ Rn to C ⊂ Rn is given by dist(x̄, C) = infx∈C ∥x− x̄∥2, with the

convention that dist(x̄, ∅) = ∞.

4 First-Order Optimality Conditions

A fundamental fact attributed to Pierre de Fermat [22] is that the derivative vanishes at every local

minimizer of a smooth function. With the introduction of subgradients, an analogous property holds

for arbitrary functions; see, e.g., [60, Theorem 4.73] for an elementary proof.

4.1 Theorem (Fermat rule). For f : Rn → R and x⋆ with f(x⋆) ∈ R, one has

x⋆ is a local minimizer of f =⇒ 0 ∈ ∂f(x⋆).

While the Fermat rule only specifies a necessary condition for a local minimizer, it defines a gener-

alized equation 0 ∈ ∂f(x) that can be solved as a substitute for the much more difficult task of finding

a minimizer. It comes with the additional assurance that if f is convex, then satisfying 0 ∈ ∂f(x) is

also sufficient for x to be a minimizer.
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Practical use of Theorem 4.1 requires calculus rules for computing subgradients. These are available

in various forms; see, e.g., [56, Chapter 10], [34, Chapter 4], and [60, Section 4.I]. In the context of (1.1)

and the stated assumptions, we obtain the following fact.

4.2 Theorem (chain rule for composite function). For the function f : Rn → R given by

f(x) = h
(
G(x)

)
,

with h and G as defined in Section 1, and a point x̄ ∈ dom f , suppose that the following qualification

holds:

y ∈ Ndomh

(
G(x̄)

)
and ∇G(x̄)⊤y = 0 =⇒ y = 0. (4.1)

Then, the set of subgradients of f at x̄ is given by

∂f(x̄) = ∇G(x̄)⊤ argminy∈Y
1
2⟨y,Qy⟩ −

〈
y,G(x̄)

〉
.

Proof. Since h is proper, lsc, and convex, one can invoke [60, Theorem 4.64, Proposition 4.65] in

conjunction with (3.2) to reach the conclusion.

The qualification in (4.1) simplifies in many situations. If Y is bounded as in Examples 2.1 and 2.3,

then domh = Rm so that Ndomh(G(x̄)) = {0}. A positive definite Q produces also a real-valued h.

Thus, in either case, (4.1) holds automatically. If the m× n Jacobian matrix ∇G(x̄) has rank m, then

(4.1) also holds. Generally,

Ndomh

(
G(x̄)

)
=

{
y ∈ Y∞ ∣∣ Qy = 0,

〈
y,G(x̄)

〉
= 0

}
,

where for an arbitrary ȳ ∈ Y , one has Y∞ = {y ∈ Rm | ȳ + λy ∈ Y ∀λ ∈ [0,∞)}. Consequently, there
are many avenues for verifying the qualification (4.1). We refer to [27] for a recent discussion of (4.1),

its generalization to broader classes of compositions, and connections to metric regularity of epigraphs.

The formula in Theorem 4.2 shows that ∂f(x̄) is a singleton if and only if a convex quadratic

optimization problem has a unique solution, which would be the case ifQ is positive definite. Regardless,

all subgradients of f at x̄ are of the form ∇G(x̄)⊤y for some y ∈ Y determined by the convex quadratic

optimization problem.

It is possible to combine Theorem 4.2 with a sum rule and thus incorporate ιX for the purpose

of addressing φ and developing a necessary optimality condition for (3.1); see, e.g., [60, Theorem

4.75]. However, we proceed with a computationally motivated adjustment. When minimizing a smooth

function f using some algorithm, one might stop the algorithm if a current point x satisfies ∥∇f(x)∥2 ≤
ε, where ε is a positive tolerance. The same strategy is problematic when f is nonsmooth. For example,

if f(x) = |x|, then ∂f(x) = {−1} when x < 0, ∂f(x) = [−1, 1] when x = 0, and ∂f(x) = {1} otherwise.

In this case, ∂f(x) is bounded away from the origin unless x = 0. Thus, the condition dist(0, ∂f(x)) ≤ ε

will not be suitable as a stopping criterion. The following optimality condition addresses such concerns.
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4.3 Theorem (optimality condition for actual problem). Suppose that x̄ is a local minimizer of (1.1),

with X, Y , Q, h, and G as defined in Section 1, and that the following qualification holds:

y ∈ Ndomh

(
G(x̄)

)
and −∇G(x̄)⊤y ∈ NX(x̄) =⇒ y = 0. (4.2)

Then, there are ȳ ∈ Rm and z̄ ∈ Rm such that

0 ∈ Φ(x̄, ȳ, z̄),

where the set-valued mapping Φ : Rn+2m →→ R2m+n is given by

Φ(x, y, z) =
{
G(x)− z

}
×
(
Qy − z +NY (y)

)
×
(
∇G(x)⊤y +NX(x)

)
. (4.3)

Proof. By [60, Theorem 4.75], there exists ȳ ∈ ∂h(G(x̄)) such that −∇G(x̄)⊤ȳ ∈ NX(x̄). Using (3.2),

we conclude that ȳ ∈ ∂h(G(x̄)) if and only if G(x̄) − Qȳ ∈ NY (ȳ). With z̄ = G(x̄), the conclusion

follows.

The auxiliary vectors y and z in the optimality condition introduce additional flexibility that is

algorithmically important. The problematic case of | · | discussed prior to the theorem is now handled

naturally. Let X = R, h(z) = |z| = supy∈[−1,1] yz, and G(x) = x. Then, φ(x) = ιX(x) + h(G(x)) = |x|
and the optimality condition of Theorem 4.3 becomes

0 ∈ Φ(x, y, z) = {x− z} ×
(
− z +N[−1,1](y)

)
× {y} for some y and z.

Now, the stopping criterion dist(0,Φ(x, y, z)) ≤ ε is meaningful. It would be satisfied for x near 0 and

not only at x = 0. Additional motivation for the optimality condition of Theorem 4.3 emerges in the

discussion of data inaccuracies in Section 5.

There are numerous algorithms that can solve the generalized equation 0 ∈ Φ(x, y, z); see, e.g., [60,

Chapter 7]. If not only Y but also X is a polyhedral set, then Proposition 3.1 furnishes convenient

expressions for both NX(x) and NY (y) and solvers such as PATH [13] become available when G is twice

smooth (i.e., of class C2).

The discussion after Theorem 4.2 provides guidance about when the qualification (4.2) holds. In the

setting of Example 2.2, the qualification (4.2) is equivalent to the Mangasarian-Fromovitz constraint

qualification. We refer to [27] for an up-to-date treatment of qualifications in the setting of composite

optimization and to [14] for a discussion about criticality of multiplier vectors.

5 Approximations and Consistency

Most real-world instances of the actual problem (3.1) are subject to data ambiguity. The target values

τ1, . . . , τm in Example 2.1 or the risk-averseness parameter α in Example 2.3 might not be fully known.

In other situations, we introduce approximations to facilitate computations. Examples 2.1-2.4 have Q

in (1.2) as a zero matrix, but it could be approximated by positive definite matrices {Qν = I/ν, ν ∈ N},
where I is the m ×m identity matrix. This change has the benefit that the resulting approximations

hν(z) = supy∈Y ⟨y, z⟩ − 1/2⟨y,Qνy⟩ are smooth as can be seen from (3.2).
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Regardless of the cause, what is the effect of approximating data on problem solutions? In the

setting of Example 2.2 with g0(x) = −x, a single inequality constraint g1(x) = x3 − x2 − x + 1 ≤ 0,

and no equality constraints, the unique minimizer becomes x⋆ = 1. This shifts to −1 after the change

from g1 to gν1 (x) = x3 − x2 − x + 1 + 1/ν. While gν1 converges uniformly to g1 as ν → ∞, the

corresponding minimizers do not converge. One might turn to a representation of constraints using an

indicator function as in (3.1) and consider uniform convergence or pointwise convergence but this is

also problematic; see [60, Section 4.C] for details. In summary, these classical notions of convergence

are nether suitable for analysis of optimization problems nor generalized equations. Variational analysis

brings in another concept.

A sequence of sets {Cν ⊂ Rn, ν ∈ N} converges to C ⊂ Rn in the sense of Painlevé-Kuratowski

when C is closed and dist(x,Cν) → dist(x,C) for all x ∈ Rn. It is denoted by Cν →s C and referred to

as set-convergence.

More specifically, we say that a sequence of functions {fν : Rn → R, ν ∈ N} epi-converges to

f : Rn → R if epi fν →s epi f . It turns out that epi-convergence is the more natural concept to consider

when analyzing approximations of minimization problems. The following facts are compiled from [60,

Theorem 5.5] and [56, Proposition 7.7]; see the commentary in [56, Chapter 7] for their historical

development.

5.1 Theorem (consequences of epi-convergence). For f, fν : Rn → R, ν ∈ N, if epi fν →s epi f , then

the following hold:

(a) Suppose that inf f <∞, εν → 0, and xν ∈ εν- argmin fν for ν ∈ N. If there is a subsequence N ⊂ N
such that xν →N x, then x ∈ argmin f and fν(xν)→N inf f .

(b) Suppose that αν → α ∈ R and xν satisfies fν(xν) ≤ αν for ν ∈ N. If there is a subsequence N ⊂ N
such that xν →N x, then f(x) ≤ α.

(c) For any x ∈ Rn and α ∈ R satisfying f(x) ≤ α, there exist xν → x and αν → α such that

fν(xν) ≤ αν for all ν.

A minimization problem represented by a function f is suitably approximated by other problems

expressed in terms of fν when epi fν →s epi f . Not only are minimizers well-behaved as in Theorem

5.1(a), but level-sets of fν are close to those of f as seen from parts (b,c). Thus, epi-convergence

entails a notion of “global” approximation that goes much beyond the often cited fact in part (a). It is

unencumbered by extended real-valuedness, nonconvexity, or nonsmooth of the functions involved.

A set-valued mapping S : Rn →→ Rm, for example given by subgradient and/or normal cone mappings,

may also be approximated due to data ambiguity and computational considerations. What is the effect

on the solutions of the resulting generalized equations? Again, set-convergence enters as a key concept

but now applied to the graphs of set-valued mappings, which we referred to as graphical convergence.

The following consequences of graphical convergence can be found, e.g, in [60, Theorem 7.34].

5.2 Theorem (consequences of graphical convergence). For S, Sν : Rn →→ Rm, ν ∈ N, suppose that

gphSν →s gphS. Then, the following hold:
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(a) If xν →N x for some subsequence N ⊂ N and dist(0, Sν(xν)) ≤ εν , then 0 ∈ S(x) whenever εν → 0.

(b) If x satisfies 0 ∈ S(x), then there exist εν → 0 and xν → x with dist(0, Sν(xν)) ≤ εν for all ν.

The theorem establishes that any approximations that might be introduced to a generalized equation

0 ∈ S(x) have vanishing effect on the solutions when they can be represented by set-valued mappings

Sν graphically converging to S.

In the context of the actual problem (3.1), epi-convergence and graphical convergence provide a

comprehensive framework for studying approximations regardless of their origin. For each ν ∈ N,
suppose that Xν ⊂ Rn is a nonempty, closed, and convex set approximating X, Gν : Rn →→ Rm is a

smooth mapping approximating G, Qν is an m ×m symmetric positive semidefinite matrix replacing

Q, and Y ν ⊂ Rm is a nonempty polyhedral set replacing Y . Then, the approximating problem

minimize
x∈Rn

φν(x) = ιXν (x) + hν
(
Gν(x)

)
, where hν(z) = sup

y∈Y ν
⟨y, z⟩ − 1

2⟨y,Q
νy⟩, (5.1)

is of the same for as (3.1) but with approximating data. Just as 0 ∈ Φ(x, y, z) furnishes a necessary

optimality condition for (3.1) under a qualification (cf. Theorem 4.3), we define

Φν(x, y, z) =
{
Gν(x)− z

}
×
(
Qνy − z +NY ν (y)

)
×
(
∇Gν(x)⊤y +NXν (x)

)
(5.2)

so that 0 ∈ Φν(x, y, z) is a parallel necessary condition for the approximating problem (5.1).

Following [58] and [60, Section 7.I], we say that the pairs {(φν ,Φν), ν ∈ N} from (5.1) and (5.2) are

consistent approximations of (φ,Φ) from (3.1) and (4.3) when

epiφν →s epiφ and gphΦν →s gphΦ.

It is apparent that under consistency the approximating problems (5.1) are “good” approximations

of the actual problem (3.1). Minimizers, minimum values, level-sets, and points satisfying optimality

conditions are all well-behaved under approximations in the sense of Theorems 5.1 and 5.2. Algorith-

mically, one might leverage consistency by solving a sequence of approximating problems instead of

tackling the actual problem directly.

Consistent Approximation Algorithm.

Data. εν ≥ 0, with εν → 0.

Step 0. Set ν = 1.

Step 1. Apply an algorithm to (5.1) until it obtains xν , with corresponding (yν , zν), satisfying

dist
(
0,Φν(xν , yν , zν)

)
≤ εν .

Step 2. Replace ν by ν + 1 and go to Step 1.

11



With a judicious choice of approximating problems, Step 1 might be accomplished efficiently using

existing algorithms. Any cluster point (x, y, z) of the resulting sequence {(xν , yν , zν), ν ∈ N} would

then satisfy 0 ∈ Φ(x, y, z) provided that gphΦν →s gphΦ; see Theorem 5.2. Consistency strengthens

this conclusion further by guaranteeing properties for minimizers, minimum values, and level-sets via

Theorem 5.1.

The objective functions φν of the approximating problems (5.1) and their optimality conditions

expressed by Φν in (5.2) are consistent under natural assumptions.

5.3 Theorem (consistency). In the setting of (3.1) and (5.1), suppose that Xν →s X, Y ν →s Y , Qν →
Q, and Gν(xν) → G(x) as well as ∇Gν(xν) → ∇G(x) whenever xν → x. Then, gphSν →s gphS.

Additionally, epiφν →s epiφ provided that one of the following conditions also holds:

(a) Y is bounded.

(b) Q is positive definite.

(c) Y ν ⊂ Y , Xν = X, and Gν = G for all ν ∈ N.

Consequently, {(φν ,Φν), ν ∈ N} are consistent approximations of (φ,Φ) if (a), (b), or (c) holds.

Proof. The conclusion about gphSν →s gphS follows from [60, Theorem 7.45(c)] after realizing that

epihν →s epih under the stated assumptions; see [60, Exercise 7.47]. Under (a) and (b), epiφν →s epiφ

follows by [60, Theorem 7.45(a)]. Under (c), Y ν ⊂ Y implies that hν(z) ≤ h(z) for all z. This fact

together with the general consequence liminf hν(z) ≥ h(z) from epi-convergence (see, e.g., [60, Theorem

4.15(a)]) imply that hν converges pointwise to h. We can then bring in [60, Theorem 7.45(b)] to reach

the conclusion.

Consistency for various approximations follows immediately in Examples 2.1 and 2.3 using Theorem

5.3(a) because Y is bounded. In the context of Example 2.2, an approximation that falls under Theorem

5.3(c) is to replace

Y = {1} × Rm × [0,∞)q by Y ν = {1} × [−θν , θν ]m × [0, θν ]q

for some θν ∈ [0,∞), Then, with y = (y0, y1, . . . , ym+q) and z = (z0, z1, . . . , zm+q),

hν(z) = sup
y∈Y ν

⟨y, z⟩ = z0 + θν
m∑
i=1

|zi|+ θν
m+q∑

i=m+1

max{0, zi},

which results in the classical exact penalization of equality and inequality constraints. If θν → ∞,

then Y ν →s Y and consistency follows by Theorem 5.3(c). We refer to [58] for additional examples and

refinements.

Approximations of the matrix Q by the positive definite matrices {Qν = Q + I/ν, ν ∈ N} hinted

to in the introductory paragraph of this section satisfy Qν → Q and produce hν(z) = supy∈Y ⟨y, z⟩ −
1/2⟨y,Qνy⟩. At least when Y is bounded or Q is positive definite, the function hν turns out to be
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a Moreau envelope of h, a general functional approximation tool frequently appearing in variational

analysis; see, e.g, [56, Section 1.G] and [3, 8, 26]. For details about the specific relationship between h

and hν viewed through the lens of Moreau envelopes, we refer to [8, Proposition 4.11].

6 Algorithms

With the vast number of applications covered by the actual problem (3.1), one cannot expect a single

algorithm to address all its instances effectively. For specific Y and Q, with G being an affine map-

ping, there are reformulations that take us back to linear, quadratic, or convex optimization via the

epigraphical reformulation:

h(z) ≤ α ⇐⇒ ⟨y, z⟩ − 1
2⟨y,Qy⟩ ≤ α ∀y ∈ Y. (6.1)

This approach is viable if the infinite collection of constraints indexed by y ∈ Y can be expressed

using a moderate number of constraints, at least in an approximate sense. The approach might also be

possible when G is not affine, but then the potentially large number of nonlinear inequality constraints

produced by the reformulation could cause difficulty for any solvers employed.

We focus on an another approach motivated by the classical gradient descent method of Cauchy.

To minimize a smooth function f : Rn → R, one might start with x0 ∈ Rn and then iterate using

xν+1 = xν − λν∇fν(xν) ⇐⇒ xν+1 ∈ argminx f(x
ν) +

〈
∇f(xν), x− xν

〉
+ 1

2λν ∥x− xν∥22,

where λν is a positive step size. The right-most interpretation of the gradient descent step highlights

two characteristics: the function f is linearized at the current point and a quadratic penalty prevents

any step to be too long, which might jeopardize the accuracy of the linear approximation of the function.

We can leverage these ideas when addressing (3.1): An algorithm emerges from linearizing G and adding

a quadratic penalty term.

Proximal Composite Method.

Data. x0 ∈ X, τ ∈ (1,∞), σ ∈ (0, 1), λ̄ ∈ (0,∞), λ0 ∈ (0, λ̄].

Step 0. Set ν = 0.

Step 1. Compute

x̄ν ∈ argminx∈X h
(
G(xν) +∇G(xν)(x− xν)

)
+ 1

2λν ∥x− xν∥22.

If x̄ν = xν , then Stop.

Step 2. If

h
(
G(xν)

)
− h

(
G(x̄ν)

)
≥ σ

(
h
(
G(xν)

)
− h

(
G(xν) +∇G(xν)(x̄ν − xν)

))
,

then set λν+1 = min{τλν , λ̄} and go to Step 3.

Else, replace λν by λν/τ and go to Step 1.

13



Step 3. Set xν+1 = x̄ν , replace ν by ν + 1 and go to Step 1.

Every cluster point produced by the proximal composite method satisfies the optimality condition

of Theorem 4.3 under two additional assumptions: The mapping G is actually twice smooth and h is

real-valued. This fact is summarized next.

6.1 Theorem (proximal composite method). In the setting of the actual problem (3.1) and its op-

timality condition given by Φ from (4.3), suppose that G is twice smooth, h is real-valued, and the

proximal composite method has generated a sequence {xν , ν ∈ N} with a cluster point x⋆. Then, there

are y⋆ ∈ Rm and z⋆ ∈ Rm such that 0 ∈ Φ(x⋆, y⋆, z⋆).

Proof. By convergence statement 6.35 in [60], which in turn specializes [25], there is y⋆ ∈ ∂h(G(x⋆))

such that −∇G(x⋆)⊤y⋆ ∈ NX(x⋆). The conclusion follows by arguing as in the proof of Theorem 4.3.

Since the approximating problems (5.1) are of the same form as the actual problem (3.1), the

proximal composite method could also be applied to (5.1). This makes the additional requirements

of twice smoothness and real-valuedness less restrictive as such properties might be constructed in the

approximating problems by smoothing ∇G and bounding h. One can then combine the consistent

approximation algorithm of Section 5 with the proximal composite method. Step 1 of the consistent

approximation algorithm would amount to several iterations of the proximal composite method applied

to a specific approximating problem; see [58] for further details.

Regardless of the context, the subproblem in Step 1 of the proximal composite method is convex.

The best way of solving it depends on further details about h. If the reformulation (6.1) is viable,

then it furnishes an approach to accomplish Step 1 using standard convex optimization algorithms or

QP-solvers if X is polyhedral.

Alternatively, one might leverage the following alternative expression for h developed in [51] (see

also [60, Section 5.I]). Suppose that

Y = {y ∈ Rm | A⊤y ≤ b} and Q = DJ−1D⊤

for some m × q-matrix A, vector b ∈ Rq, m × m-matrix D, and symmetric positive definite m × m-

matrix J . Since every polyhedral set can be written in terms of a finite collection of linear inequality

constraints, the requirement on Y is not restrictive. The requirement on Q is also reasonable. If Q = 0,

we can select D = 0 and J = I, the m × m identity matrix. If Q is positive definite, then spectral

decomposition gives D and J . Specifically, there are an m ×m-matrix D (consisting of orthonormal

eigenvectors) and an m×m-matrix Λ, with the eigenvalues of Q along its diagonal and zero elsewhere,

such that Q = DΛD⊤. Since Q is symmetric and positive definite, its eigenvalues are positive and we

can set J = Λ−1.

With these formulas for Y and Q, we obtain that

h(z) = inf
v∈Rq ,w∈Rm

{
⟨b, v⟩+ 1

2⟨w, Jw⟩
∣∣∣ Av +Dw = z, v ≥ 0

}
. (6.2)
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Thus, Step 1 in the proximal composite method amounts to solving

minimize
x∈X,v∈Rq ,w∈Rm

⟨b, v⟩+ 1
2⟨w, Jw⟩+

1
2λν ∥x− xν∥22

subject to Av +Dw = G(xν) +∇G(xν)(x− xν), v ≥ 0,

which then involves auxiliary vectors v and w to be discarded after optimization. Again, one can

leverage convex optimization algorithms or QP-solvers if X is polyhedral.

Even beyond the proximal composite method, the reformulation (6.2) furnishes an approach to

solving the actual problem (3.1) directly. However, the resulting m nonlinear equality constraints

Av+Dw = G(x) may be numerically challenging to handle by standard nonlinear optimization solvers.

6.2 Example (risk minimization (cont.)). Returning to Example 2.3, we find that Y = {y ∈ Rm |A⊤y ≤
b} with b = (1,−1, 0, . . . , 0, p1/(1− α), . . . , pm/(1− α)) ∈ R2+2m and

A =


1 −1 −1 0 · · · 0 1 0 · · · 0
1 −1 0 −1 · · · 0 0 1 · · · 0
...

...
...

. . .
...

...
. . .

...
1 −1 0 · · · 0 −1 0 · · · 0 1

 .
Since Q = 0 in this example, one can set D = 0 and J equal to the identity matrix in the reformulation

(6.2). Thus, the optimal w in (6.2) is necessarily the zero vector. This simplification and some other

ones afforded by the particular A-matrix and b-vector yield that

h(z) = inf
γ∈R,u∈Rm

{
γ +

1

1− α

m∑
i=1

piui

∣∣∣ zi − γ ≤ ui, ui ≥ 0, i = 1, . . . ,m
}
.

Thus, the minimization of h(G(x)) over x ∈ X in this example can be accomplished by solving

minimize
x∈X,γ∈R,u∈Rm

γ +
1

1− α

m∑
i=1

piui subject to gi(x)− γ ≤ ui, ui ≥ 0, i = 1, . . . ,m.

This formulation is identical to a common one emerging from the Rockafellar-Uryasev formula for

α-superquantiles in [54].

Proximal composite methods can be traced back to [19, 44, 5], with trust-region versions appearing

in [45, 65, 7]. More recent refinements include [61] for positively homogeneous real-valued h (as in

Examples 2.1 and 2.3), [25] to handle extended real-valued h, and [15] to address rate of convergence

and inexact solution of subproblems.

Additional algorithmic possibilities emerge from the next two sections.

7 Problem Relaxation and Duality

An optimization problem can be associated with many subsitute problems that offer new insights and

computational opportunities. Among these the dual problems of linear and conic optimization are
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utilized theoretically and in algorithms. We adopt a much broader point of view that includes these

possibilities as special cases but extends further to nonconvex problems.

The key concept (pioneered in [46, Chapter 29] and [47, 48]) is that of problem parametrization

as encoded by a Rockafellian function. Following the terminology in [60, Section 5.A], we say that

f : Rq × Rn → R is a Rockafellian for a given function g : Rn → R when f(0, x) = g(x) for all x ∈ Rn.

A Rockafellian f allows us to supplement the minimization of g by alternative problems constructed

from f , with minimizing f(0, ·) bringing us back to the original problem. We summarize the main

possibilities:

(original problem) minimize
x∈Rn

g(x) ⇐⇒ minimize
x∈Rn

f(0, x)

(Rockafellian relaxation) minimize
u∈Rq ,x∈Rn

f(u, x)− ⟨y, u⟩

(Lagrangian relaxation) minimize
x∈Rn

l(x, y) = inf
u∈Rq

f(u, x)− ⟨y, u⟩

(dual problem) maximize
y∈Rq

ψ(y) = inf
x∈Rn

l(x, y).

Rockafellian relaxation and Lagrangian relaxation are indeed relaxations of the original problem in the

sense that their minimum values are no greater than that of the original problem. Moreover, they rely

on a multiplier vector y ∈ Rq, which in turn is optimized in the dual problem. A dual problem therefore

defines the best lower bound of inf g under the adopted Rockafellian. In this section, we apply these

general principles in the context of the actual problem from Section 1.

As for any optimization problem, the actual problem (3.1) can be associated with many Rockafel-

lians. We consider two possibilities.

The first possibility is the function f : Rm × Rn → R given by

f(u, x) = ιX(x) + h
(
G(x) + u

)
, (7.1)

which indeed is a Rockafellian for φ in (3.1) because f(0, x) = φ(x) for all x ∈ Rn. An advantage of

this Rockafellian is that the corresponding Lagrangian l : Rn × Rm → R has the specific form

l(x, y) = ιX(x) +
〈
G(x), y

〉
− 1

2⟨y,Qy⟩ − ιY (y) (7.2)

because the minimization of f(u, x)−⟨y, u⟩ over u can be carried out explicitly; see, e.g., [60, Proposition

5.28, Section 5.I]. The formula for l(x, y) may involve the unorthodox arithmetic operation “∞−∞”

and this requires clarification. In the context of minimization (as in minimizing a Lagrangian with

respect to x), variational analysis adopts the convention ∞ − ∞ = ∞. Thus, l(x, y) = ∞ for every

x ̸∈ X regardless of y. We refer to [60, p.13] for further details.

By definition, a simplified formula for the dual objective function ψ stems from an explicit calculation

of the minimum value of the Lagrangian with respect to x. Naturally, this is rarely available. If

G(x) = b−Ax, however, then we obtain

ψ(y) = −ιY (y) + ⟨b, y⟩ − 1
2⟨y,Qy⟩ − h̃(A⊤y), where h̃(v) = sup

x∈X
⟨v, x⟩.
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Interestingly, h̃ is nearly of the same form as h in (1.2). A more complete symmetrical relationship

between minimizing φ and maximizing ψ is in fact available; see, e.g., [60, Example 5.57].

While Rockafellian relaxations, Lagrangian relaxations, and dual problems always furnish lower

bounds on the minimum value of the actual problem, these bounds are tight under additional assump-

tions.

7.1 Theorem (strong duality). Under the Rockafellian in (7.1) for φ in (3.1), the corresponding dual

function ψ : Rm → R satisfies

sup
y∈Rm

ψ(y) = inf
x∈Rn

φ(x)

provided that any one of the following conditions holds:

(a) ⟨G(·), y⟩ is convex for all y ∈ Y and, in addition, either X or Y is compact.

(b) X is polyhedral, G(x) = b−Ax, and, in addition, either infx∈Rn φ(x) or supy∈Rm ψ(y) is finite.

Proof. Part (a) follows by Sion’s theorem [63, Corollary 3.3]; (b) holds by [56, Theorem 11.42].

We observe that the convexity requirement in part (a) amounts in Examples 2.1 and 2.3 to G having

convex component functions because y ≥ 0 when y ∈ Y . In these examples, Y is also compact and thus

(a) applies.

If the condition in Theorem 7.1(b) holds with infx∈Rn φ(x) finite, then supy∈Rm ψ(y) is also finite

and there exist x ∈ Rn and y ∈ Rm that attain the minimum value of φ and maximum value of ψ,

respectively. Likewise, if supy∈Rm ψ(y) is finite, then infx∈Rn φ(x) is also finite and the minimum value

and the maximum value are again attained; see [56, Theorem 11.42]. We observe that this is not the

case under Theorem 7.1(a). As a counterexample, suppose that X = [−1, 1], G(x) = (x, x2), and

h(z) = supy∈{1}×[0,∞)⟨y, z⟩ = z1+ ι(−∞,0](z2), which then fits Theorem 7.1(a). Elementary calculations

lead to

inf
x∈R

φ(x) = 0 = sup
y∈R2

ψ(y) because ψ(y) =


−∞ if y ̸∈ {1} × [0,∞)

−1 + y2 if y1 = 1, y2 ∈ [0, 1/2)

− 1
4y2

if y1 = 1, y2 ∈ [1/2,∞).

However, the maximum value of ψ is not attained.

Without convexity or linearity in G, we effectively need to move beyond Theorem 7.1 and the

Rockafellian defined in (7.1) to close the likely gap between the maximum value of ψ and the minimum

value of φ. The following general condition provides a geometric interpretation of what is at stake.

7.2 Theorem (exactness). For a function g : Rn → R and a Rockafellian f : Rq × Rn → R for g, if

there exists ȳ ∈ Rq such that

inf
x∈Rn

f(u, x) ≥ inf
x∈Rn

g(x) + ⟨ȳ, u⟩ ∀u ∈ Rq, (7.3)

then the resulting dual function given by ψ(y) = infu,x f(u, x)− ⟨y, u⟩ satisfies

inf
x∈Rn

g(x) = ψ(ȳ) = sup
y∈Rq

ψ(y).
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Proof. Trivially, ψ(y) ≤ inf g for all y ∈ Rq because infu∈Rq f(u, x)−⟨y, u⟩ ≤ f(0, x) = g(x) regardless

of x by virtue of f being a Rockafellian for g. The assumption (7.3) amounts to having ψ(ȳ) =

infu,x f(u, x)− ⟨ȳ, u⟩ ≥ inf g.

The theorem states that when inf g is finite, then the ability to construct a supporting hyperplane

at the point (0, inf g) to the epigraph of the min-value function u 7→ infx∈Rn f(u, x) is the key property.

It can be satisfied by constructing Rockafellians that penalize nonzero u-values “sufficiently.”

Returning to the setting of Section 1, the insight from Theorem 7.2 brings us to a second Rockafellian

for φ in the actual problem (3.1):

fθ(u, x) = ιX(x) + h
(
G(x) + u

)
+ 1

2θ∥u∥
2
2, (7.4)

where θ ∈ (0,∞) is a parameter in a quadratic term not present in the first Rockafellian f ; see (7.1).

Certainly fθ(u, x) ≥ f(u, x) for all u, x and the difference between the Rockafellians might be sufficiently

large to ensure exactness in the sense of Theorem 7.2. Regardless, the Lagrangian resulting from fθ
takes the form (see, e.g., [60, Example 6.7])

lθ(x, y) = ιX(x)− inf
w∈Y

{
1
2⟨w,Qw⟩ −

〈
G(x), w

〉
+ 1

2θ

∥∥w − y
∥∥2
2

}
, (7.5)

which in turn defines a new dual problem:

maximize
y∈Rm

ψθ(y) = inf
x∈Rn

lθ(x, y).

In view of its construction from the first Rockafellian f by adding a term 1
2θ∥u∥

2
2, the second Lagrangian

lθ is commonly called an augmented Lagrangian.

The verification of Theorem 7.2 for fθ is supported by the following fact. Suppose that X is compact

and ȳ ∈ Rm. If there are θ̄ ∈ [0,∞) and a neighborhood U of 0 ∈ Rm such that

inf
x∈Rn

f(u, x) ≥ inf
x∈Rn

φ(x) + ⟨ȳ, u⟩ − 1
2 θ̄∥u∥

2
2 ∀u ∈ U, (7.6)

then, for sufficiently large θ,

inf
x∈Rn

fθ(u, x) ≥ inf
x∈Rn

φ(x) + ⟨ȳ, u⟩ ∀u ∈ Rm.

The key benefit from this fact, which follows directly because u 7→ infx∈Rn f(u, x) is bounded from

below by an affine function, is that we only need to consider a neighborhood U in (7.6) as compared to

every u in Theorem 7.2.

7.3 Example (nonlinear optimization (cont.)). In the setting of Example 2.2 but with no inequality

constraints, the Rockafellian in (7.1) produces the Lagrangian

l(x, y) = g0(x) +
m∑
i=1

yigi(x) when y = (1, y1, . . . , ym).
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The Rockafellian in (7.4) defines the Lagrangian

lθ(x, y) = g0(x) +

m∑
i=1

yigi(x) +
1
2θ

m∑
i=1

(
gi(x)

)2
when y = (1, y1, . . . , ym).

The simple instance with g0(x) = −x2 and g1(x) = x reveals the difference between these Lagrangians.

The first Rockafellian produces infx f(u, x) = u0 − u21 so the requirement of Theorem 7.2 cannot hold.

In fact, the dual function has ψ(y) = −∞ for all y ∈ R2 while inf φ = 0. The second Rockafellian has

infx fθ(u, x) = u0 − u21 + (1/2)θ(u20 + u21). Thus, for θ ∈ [2,∞) one can employ ȳ = (1, 0) to satisfy the

requirement of Theorem 7.2 and ψθ(ȳ) = inf φ for such θ.

An additional advantage of the augmented Lagrangian in (7.5) is that lθ(x, ·) is smooth for x ∈ X,

while l(x, ·) in (7.2) may not have that property. We can see this by examining the inf-term in (7.5),

which amounts to a Moreau envelope of the convex function

y 7→ ιY (y) +
1
2⟨y,Qy⟩ −

〈
G(x), y

〉
.

Its smoothness follows by [56, Theorem 2.26].

Dual problems and the corresponding Rockafellian and Lagrangian relaxations turn out to often

be better behaved than the original problem. They absorb more easily inaccuracies in problem data

resulting in convergence properties of the kind seen in Section 5 but under milder conditions [12].

Regardless of the Rockafellian, the resulting dual function ψ is concave (i.e., −ψ is convex), which

certainly is beneficial.

A Lagrangian sets up a game between an x-player that seeks to minimize l(·, y) and a y-player that

aims to maximize l(x, ·). This is fertile ground for algorithms that alternate between these two players

in an effort to identify a saddle point and thus simultaneously solve the original problem and its dual.

The optimality condition in Theorem 4.3 can be viewed from this angle. Adopting the Rockafellian in

(7.1) and the resulting Lagrangian from (7.2), the optimality condition is equivalently stated as

0 ∈ ∂xl(x, y) and 0 ∈ ∂y(−l)(x, y)

because the first inclusion simplifies to 0 ∈ NX(x) + ∇G(x)⊤y and the second inclusion amounts to

0 ∈ −G(x) + Qy + NY (y). When G is affine, then the actual problem is convex and these inclusions

are equivalent to a saddle point condition for l; see, e.g., [60, Proposition 5.36] and [60, Section 5.E] for

details.

A shift to the Rockafellian in (7.4) can be viewed as a means to elicit a saddle point in a local

sense and thus bypass the need for convexity globally. This results in augmented Lagrangian methods

that essentially alternate between minimizing lθν (·, yν), at least locally near a current point xν , for a

multiplier vector yν to produce xν+1 and updating

yν+1 = yν + λν∇ylθν (x
ν+1, yν) = yν +

λν

θν
(ŵ − y),

where λν is a positive step size coordinated with the penalty parameter θν . Both quantities may change

across the iterations. The y-update leverages the fact that lθ(x, ·) is smooth as noted earlier, and this

19



produces the stated formula with ŵ being the minimizer in (7.5) under x = xν+1. Recent developments

in this direction appear in [53, 20], which also include historical remarks about such methods. The

analysis of augmented Lagrangian methods requires second-order variational analysis, which we briefly

summarize next.

8 Second-Order Theory

We know from classical analysis of twice smooth functions that second-order differentiability is central

when refining a first-order optimality condition: ∇f(x̄) = 0 together with a positive definite Hessian

∇2f(x̄) ensure that x̄ is a “stable” local minimizer of f in a specific sense. Concretely, suppose that

f(x) = 1
2⟨x,Bx⟩+ ⟨c, x⟩, (8.1)

where B is a symmetric positive definite matrix. The first-order condition ∇f(x) = 0 has the unique

solution x̄ = −B−1c, with the solution remaining unique and changing proportionally when the right-

hand side is modified from 0 to some vector y. In detail, if s(y) = {x | ∇f(x) = y}, then∥∥s(y)− s(ȳ)
∥∥
2
≤ ∥B−1∥∥y − ȳ∥2 (8.2)

for any matrix norm ∥ · ∥ consistent with the Euclidean norm. Consequently, the solution of ∇f(x) = y

is unique and Lipschitz continuous as a function of y. A nonzero residual y for a candidate solution

x′ of the equation ∇f(x) = 0, which is unavoidable in numerical computations, would therefore be of

minor concern because the distance from x′ to the actual solution s(0) is at most ∥B−1∥∥y∥2. The

equation ∇f(x) = 0 is well posed. The same holds for the problem of minimizing f due to the Fermat

rule, which is both sufficient and necessary in this convex case.

The situation is different if f(x) = 0 when x < 0 and f(x) = x4 otherwise. Then, x = (y/4)1/3 solves

∇f(x) = y if y ≥ 0 but there are no solutions if y < 0. The problem of minimizing f is then ill-posed

in some sense. A difference between the two cases is revealed by the Hessian matrices. In the first case,

∇2f(x̄) is positive definite. In the second case, the Hessian matrices are merely positive semidefinite

at the minimizers. These elementary examples recall how the properties of a Hessian matrix can help

characterize the stability of local minimizers of twice smooth functions. Variational analysis furnishes

far reaching extensions for nonsmooth functions.

With Hessian matrices playing such a central role in stability analysis as well as in algorithms such

as Newton’s method, a goal is to define an analogous concept in the absence of smoothness and we follow

the pioneering work in [30]. For a set-valued mapping S : Rn →→ Rm, its coderivative at (x̄, ȳ) ∈ gphS

is the set-valued mapping D∗S(x̄, ȳ) : Rm →→ Rn given by

D∗S(x̄, ȳ)(v) =
{
u ∈ Rn

∣∣ (u,−v) ∈ NgphS(x̄, ȳ)
}

for v ∈ Rm.

Figure 4 illustrates the definition using the set-valued mapping S : R →→ R with S(x) = {−1} if

x < 0, S(0) = [−1, 2], and S(x) = {2} if x > 0. Near (x̄, ȳ) = (0, 0), gphS is a vertical line and thus

D∗S(0, 0)(v) =

{
R if v = 0

∅ otherwise.
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𝑁𝑁gph 𝑆𝑆 0, −1

−𝑣𝑣

𝑁𝑁gph 𝑆𝑆 0, 0

𝑁𝑁gph 𝑆𝑆 0, 2

−𝑣𝑣

gph 𝑆𝑆

Figure 4: Normal cones of gphS at the points (0,−1), (0, 0), and (0, 2) define coderivatives.

At (x̄, ȳ) = (0,−1), there are normal vectors fanning out across the fourth quadrant and also in the

other axis directions. In fact, NgphS(0,−1) is a nonconvex cone producing the coderivative:

D∗S(0,−1)(v) =


R if v = 0

[0,∞) if v ∈ (0,∞)

{0} otherwise.

At (x̄, ȳ) = (0, 2), the normal cone is also nonconvex and coincides with the second quadrant augmented

with the axis directions. Consequently, we obtain

D∗S(0, 2)(v) =


R if v = 0

(−∞, 0] if v ∈ (−∞, 0)

{0} otherwise.

We are especially interested in the case when S(x) = ∂f(x) for some function f : Rn → R. This

leads to the key definition from [31]: For f : Rn → R and a point x̄ where f(x̄) is finite, the second-order

subdifferential of f at x̄ relative to ȳ ∈ ∂f(x̄) is defined as

∂2f(x̄, ȳ)(v) = D∗(∂f)(x̄, ȳ)(v) for v ∈ Rn.

The elementary example f(x) = x2 produces ∂2f(x̄, ȳ)(v) = 2v at a point (x̄, f(x̄)) because normal

vectors at any point of the graph of x 7→ 2x are of the form λ(2,−1). More generally, if f : Rn → R is

twice smooth in a neighborhood of x̄, then

∂2f
(
x̄,∇f(x̄)

)
(v) = ∇2f(x̄)v for v ∈ Rn. (8.3)

If f is merely smooth with locally Lipschitz continuous gradients in a neighborhood of x̄, then

∂2f
(
x̄,∇f(x̄)

)
(v) = ∂gv(x̄) for v ∈ Rn, where gv(x) =

〈
v,∇f(x)

〉
.
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An example of the latter situation is furnished by f(x) = x2 if x > 0 and f(x) = 0 otherwise. Here,

gv(x) = 2vx if x > 0 and gv(x) = 0 otherwise. Thus,

∂2f
(
x̄,∇f(x̄)

)
(v) =


{2v} if x > 0

[0, 2v] if v ≥ 0, x = 0

{0, 2v} if v < 0, x = 0

{0} if x < 0.

With the second-order subdifferential for arbitrary functions now well defined, we return to the

question of solution stability, which first needs to be formalized. We follow [43] and say that a point x̄

is a tilt-stable local minimizer of f : Rn → R when f(x̄) is finite and there exists δ > 0 such that the

set-valued mapping M : Rn →→ Rn given by

M(y) = argminx
{
f(x)− f(x̄)− ⟨y, x⟩

∣∣ ∥x− x̄∥2 ≤ δ
}

(8.4)

is single-valued and Lipschitz on some neighborhood of y = 0, and has M(0) = x̄. Here, the Lipschitz

property amounts to having a finite κ such that ∥M(y′′) −M(y′)∥2 ≤ κ∥y′′ − y′∥2 for all y′′ and y′

sufficiently close to the origin.

For a tilt-stable local minimizer x̄ of f , it is immediately clear from the Fermat rule that M(y) ⊂
{x | y ∈ ∂f(x)} when y is sufficiently close to the origin. The gradual change of a solution to an

optimality condition under different tolerances—the motivation behind the initial discussion around

(8.1)—is therefore closely related to tilt-stability with the Lipschitz property emerging concretely in

(8.2). We clarify this point using two facts.

First, in the case of a twice smooth function, a tilt-stable local minimizer at x̄ is equivalent to having

a positive definite Hessian matrix at x̄ and thus the discussion around (8.1) could as well have used the

terminology of tilt-stability. Formally, [43, Proposition 1.2] states:

8.1 Proposition (tilt-stability under twice smoothness). For a twice smooth function f : Rn → R and

a point x̄ with ∇f(x̄) = 0 one has:

x̄ is a tilt-stable local minimizer of f ⇐⇒ ∇2f(x̄) is positive definite.

Second, in the case of a general function, we need two additional concepts. A function f : Rn → R
is prox-regular at x̄ for ȳ if epi f is closed relative to a neighborhood of (x̄, f(x̄)), ȳ ∈ ∂f(x̄), and there

exist θ, ε > 0 such that

f(x′) > f(x) + ⟨y, x′ − x⟩ − 1
2θ∥x

′ − x∥22 for x′ ̸= x when

∥x′ − x̄∥2 < ε, ∥x− x̄∥2 < ε,
∣∣f(x)− f(x̄)

∣∣ < ε, ∥y − ȳ∥2 < ε, y ∈ ∂f(x).

The function is subdifferentially continuous at x̄ for ȳ if ȳ ∈ ∂f(x̄) and, whenever (xν , yν) → (x̄, ȳ) with

yν ∈ ∂f(xν), one has f(xν) → f(x̄).

Every proper, lsc, and convex function is prox-regular and subdifferentially continuous at any point

of its domain for any subgradient at that point [56, Example 13.30]. In the setting of Section 1 with
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G being twice smooth, the function given by f(x) = h(G(x)) is prox-regular and and subdifferentially

continuous at x̄ for ȳ ∈ ∂f(x̄) if the qualification (4.1) holds [56, Proposition 13.32]. However, x 7→
min{0, x} is subdifferentially continuous but not prox-regular at zero; see [56, Section 13.F] for further

details.

We are then ready to state the second fact about tilt-stability [43, Theorem 1.3]:

8.2 Theorem (tilt-stability). For a function f : Rn → R and a point x̄ with 0 ∈ ∂f(x̄), suppose that

f is prox-regular and subdifferentially continuous at x̄ for ȳ = 0. Then, one has

x̄ is a tilt-stable local minimizer of f ⇐⇒ ⟨u, v⟩ > 0 whenever v ̸= 0, u ∈ ∂2f(x̄, 0)(v).

These properties imply the existence of δ > 0 such that M from (8.4) has M(y) = {x | y ∈ ∂f(x)} for

all y in a neighborhood of 0.

If f is twice smooth, then it follows via (8.3) that the condition involving ⟨u, v⟩ > 0 in the theorem

simplifies to 〈
∇2f(x̄)v, v

〉
> 0 whenever v ̸= 0,

which, as expected from Theorem 8.1, is equivalent to ∇2f(x̄) being positive definite.

The example f(x) = max{−x, 2x} has ∂f(x) = S(x) from Figure 4. We can use Theorem 8.2 to

check whether x̄ = 0 is a tilt-stable local minimizer of f . Since f is proper, lsc, and convex, it is

prox-regular and subdifferentially continuous at x̄ for ȳ = 0. Figure 4 shows that ∂2f(0, 0)(v) = ∅ for

v ̸= 0. Thus, x̄ = 0 is a tilt-stable local minimizer of f .

The situation is different for f(x) = max{0, x} at x̄ = 0. While certainly a (local) minimizer, x̄ is

not tilt-stable because ∂2f(0, 0)(v) = [0,∞) when v > 0 and ∂2f(0, 0)(v) = {0} when v < 0. Thus, in

either case, one can select u = 0 in Theorem 8.2.

Returning to the setting of Section 1, we convey a characterization of tilt-stability from [37, Theorem

5.4]:

8.3 Theorem (tilt-stability for actual problem). For the function f : Rn → R given by

f(x) = h
(
G(x)

)
,

with h and G as defined in Section 1, and a point x̄ ∈ dom f , suppose that G is twice smooth, Q

defining h is either positive definite or the zero matrix, the qualification (4.1) holds at x̄, and ȳ is a

unique vector satisfying

ȳ ∈ argminy∈Y
1
2⟨y,Qy⟩ −

〈
y,G(x̄)

〉
and ∇G(x̄)⊤ȳ = 0.

Moreover, suppose that the following second-order qualification holds:

u ∈ ∂2h
(
G(x̄), ȳ

)
(0) and ∇G(x̄)⊤u = 0 =⇒ u = 0.

Then, with the notation g(x) = ⟨ȳ, G(x)⟩, one has

x̄ is a tilt-stable local minimizer of f ⇐⇒ ⟨u, v⟩ > 0 whenever v ̸= 0,

u ∈ ∇2g(x̄)v +∇G(x̄)⊤∂2h
(
G(x̄), ȳ

)(
∇G(x̄)v

)
.
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The proof of [37, Theorem 5.4] leverages the extensive calculus for second-order subdifferentials. It

allows us to focus on the second-order subdifferential of h, which presumably is somewhat simpler than

that of f . Specifically, [37, Lemma 4.4] and its proof reveal that

u ∈ ∂2h(z, y)(v) ⇐⇒ Qu− v ∈ ∂2ιY (y, z −Qy)(−u).

Since Y is a polyhedral set, the second-order subdifferential of ιY is precisely characterized in terms

of its faces; see [37, Lemma 4.4 ] for details. As an example, Y = [0,∞) results in gphNY = ({0} ×
(−∞, 0]) ∪ ([0,∞)× {0}). Thus, with C = gphNY , we obtain

∂2ιY (y, w)(v) = D∗(NY )(y, w)(v) =
{
u
∣∣ (u,−v) ∈ NC(y, w)

}
=



{0} if y > 0, w = 0, v ∈ R
(−∞, 0] if y = 0, w = 0, v < 0

R if y = 0, w ≤ 0, v = 0

{0} if y = 0, w = 0, v > 0

∅ otherwise.

Additional formulas for second-order subdifferentials of indicator functions of polyhedral sets as well as

of h when Q is the zero matrix appear in [40, 39].

Second-order subdifferentials stand out with their versatile calculus as demonstrated, for example,

in [38, 40, 41, 27]. In particular, they enter as means to characterize Lipschitz-like properties of set-

valued mappings representing optimality conditions in composite optimization [14]. However, second-

order theory is much richer as can be seen from the monographs [56, Chapter 13] and, especially,

[35]. Developments include those leveraging twice epi-differentiability [28, 21]. Second-order optimality

conditions emerge as well; see [28, 27] for recent advances extending the classical work in [50, 9]. Current

trends center on variational convexity as the key concept [52, 23].

Perturbations beyond “tilting” are of major concerns as seen from the discussion in Section 5. They

lead to the question of full stability of parametric optimization and generalized equations [24], which

often can be address using second-order subdifferentials and related concepts [38, 36, 41, 4]. Second-

order theory also gives rise to numerous algorithms. Some recent efforts include extensions of sequential

quadratic programming [62] and Newton-type methods [42, 6, 1].
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