
Impact of white noise in artificial neural networks trained for classification:
performance and noise mitigation strategies

Nadezhda Semenova1, a) and Daniel Brunner2
1)Saratov State University, Astrakhanskaya str. 83, Saratov 410012, Russia
2)FEMTO-ST Institute/Optics Department, CNRS & University Franche-Comté,
15B avenue des Montboucons, Besançon Cedex, 25030, France

(Dated: 8 November 2024)

In recent years, the hardware implementation of neural networks, leveraging physical coupling and analog
neurons has substantially increased in relevance. Such nonlinear and complex physical networks provide
significant advantages in speed and energy efficiency, but are potentially susceptible to internal noise when
compared to digital emulations of such networks. In this work, we consider how additive and multiplicative
Gaussian white noise on the neuronal level can affect the accuracy of the network when applied for specific
tasks and including a softmax function in the readout layer. We adapt several noise reduction techniques to
the essential setting of classification tasks, which represent a large fraction of neural network computing. We
find that these adjusted concepts are highly effective in mitigating the detrimental impact of noise.

I. INTRODUCTION

Artificial neural networks (ANNs) play an important
role in various fields such as pattern recognition, data
analysis, industrial control and complex problem solving.
They can be trained on a large amount of data and take
reasonably balanced decision based on this information.
With these capabilities, they are successfully used in
medicine1–4, finance5,6, technology7–9, biology10–12, and
for predicting the behavior of complex, chaotic systems13.
The use of ANNs makes it possible to accelerate and im-
prove decision-making processes, which significantly in-
creases the efficiency and accuracy of systems.

However, substantial challenges with energy efficiency,
speed and scalability of ANNs are some of the main lim-
itations of their application in various fields14. For ex-
ample, complex tasks such as large-volume or real-time
data processing require significant computing resources
and hence energy. In addition, augmenting ANNs to find
complex patterns can lead to problems with scalability
and computing resource management15.
Motivated by these limitations, there is a growing

amount of research into developing more energy-efficient
ANN architectures, optimizing computation and de-
veloping specialized hardware to perform ANN opera-
tions, called hardware neural networks16–18. These ef-
forts aim at improving the efficiency and performance
of ANNs and open the prospect of their wider applica-
tion in various fields. In hardware ANNs, also called
in memory computing, the artificial neurons and con-
nections between them are based on physical princi-
ples such as optical19,20, memristive21–23, spin-torque24,
Mach–Zehnder interferometer25,26, photoelectronic27 or
coherent silicon photonics28 effects.
A major consequence of such networks in comparison

to digital network emulations is that analogue hardware

a)Electronic mail: semenovani@sgu.ru

is always prone to a certain level of noise. Noise in hard-
ware ANNs can arise from a variety of sources. Regard-
less of its origin, such noise can have a negative impact
on the accuracy of the ANN, as it can cause errors in the
transmission and transformation of information. There is
a substantial amount of literature on mitigation strate-
gies for noise in the input signal of ANNs29–32, but in
the case of hardware ANNs the general context changes
as here noise arises internally of the network. There are
several papers that describe the properties of various in-
ternal noise sources in hardware ANNs20,33–37.

In our previous papers38,39, we have studied the im-
pact of white Gaussian internal noise on simplified and
trained neural networks with linear38 and nonlinear39 ac-
tivation functions. Moreover, we developed an analytical
description for predicting the noise level in the output
of ANN with internal noise. Further, in Ref.40, we pro-
posed several techniques how to reduce different types
of internal noise on untrained networks. However, this
does not include the essential step of generalizing these
techniques towards application scenarios. This essential
development we report here, and focus on the hardware
ANN’s performance in the context of classifications tasks,
with the commonly applied softmax function in the final
layer. Again, we consider a wide range of different noise
types, yet the impact of thresholding for classification,
as well as the probabilistic transformation through the
softmax demand substantial innovation with regards to
analysis as well as noise mitigation techniques.

This paper starts explaining the considered trained
deep ANN (Sect. II A). We consider the impact of several
cases of white Gaussian noise in the deep hardware ANN
trained for digit recognition, and we evaluate the noise
impact in terms of accuracy degradation (Sect. III). Noise
types are additive and multiplicative, correlated and un-
correlated (they are explained in details in Sect. II B). We
then apply two noise mitigation techniques to different
cases of internal noise and explain how these techniques
can be realized schematically and in terms of connection
matrices for already trained network (Sect. IV, V). In

ar
X

iv
:2

41
1.

04
35

4v
1 

 [
cs

.L
G

] 
 7

 N
ov

 2
02

4

mailto:semenovani@sgu.ru


2

Supplementary materials we suggest how the connection
matrices can be modified according to these techniques
using Python code as an example.

The main difference from our previous work is that
here we consider different noise intensities rather than
one set, which allows us to increase the range of applica-
tion of the results to different types of hardware ANNs.
In addition, we previously considered the effect of noise
from the point of view of only the signal-to-noise ratio
(SNR) of the output signal. In the case of classifying
ANNs, this is not entirely correct, since the last layer of
such networks often uses the softmax function, for which
it is not the output signal itself that is important, but
the sequence number of the neuron with the maximum
output signal. In this article, we consider the impact
of various noises of different intensities on the accuracy
of the classification network. Therefore, the conclusions
proposed in this article are fundamentally new comparing
to all our previous works.

II. SYSTEM UNDER STUDY

A. Trained ANN

We study the impact of internal noise on a trained
hardware ANN and show how our noise mitigation tech-
niques can be applied there. For this purpose, we trained
a deep ANN with feedforward signal propagation. For
training, we took the frequently used handwritten digit
recognition task using the MNIST database as an repre-
sentative example41. This database contains the images
of size 28 × 28 pixels in a gray scale. Thus, the input
layer of our network contains 784 neurons with real input
value in range from 0 to 1, and our ANNs has 10 output
neurons in the final layer to identify the digit’s number.
Finally, the output neurons exhibit the softmax normal-
ization, for which it is not the output signal itself that is
important, but the sequence number of the neuron with
the maximum output signal. As we will show, this non-
linear transformation substantially influences the impact
of noise onto the system’s output and the final hardware
ANN’s computational result.

In this article, we develop and adjust noise mitigation
techniques for hardware ANNs trained for classification,
which is among the most relevant application scenarios.
Therefore, for this proof of concept demonstration, we
consider a simple deep network with a single hidden layer
comprising 20 neurons with a sigmoid activation func-
tion. However, our approaches can be extended to more
complex and deeper systems, or to a layer-wise archi-
tecture where hybrid ANN concepts are employed. This
network is schematically shown in Fig. 1(a). The net-
work was trained using Tensorflow/Keras library employ-
ing an “adam” optimizer and “categorial-crossentropy”
as the loss function. The convergence of training during
20 epoches with a 5% validation split is given in Fig. 1(b).
The final accuracy tends to 97.01% on training dataset

(60,000 images) and 95.17% on testing dataset (10,000
images).

784
linear

20
sigmoid

10
softmax

0 5 10 15 20
84

88

92

96

A
cc
ur
ac
y

epoch

(b)

(c)

f(x) yN̂

(a)

W1 W2

FIG. 1. Schematic representation of considered ANN (a) and
process of its training (b). Panel (c) shows how the internal
noise is included into one neuron.

B. Internal noise

The method describing a neuron’s internal noise is
identical to our previous works38–40. The types of noise,
their intensities and methods of introduction were ob-
tained from a hardware implementation of an ANN in
an optical experiment, proposed in Ref.42. We consider
different noise intensities in order to make results more
general and applicable to other hardware networks.
Figure 1(c) schematically illustrates the effect of noise

on one neuron and at what stage noise is introduced. A
neuron receives the summed input signal from neurons of
the previous layer to create its internal state x. Then the
activation function is applied, and here we use sigmoid
function of the type f(x) = 1/(1 + e−x). Usually this is
the output signal of the neuron, but in order to include
the effect of noisy, analog neurons, noise operator N̂ is
applied to this signal, leading to a final noisy signal of the
form y = N̂f(x). In matrix form this can be described
as

Yn = N̂f(Xn), Xn = Yn−1 ·Wn−1, (1)

where n is the layer’s number. For example, for hidden
layer n = 2, Xn is the vector of internal states of neurons
on layer n, obtained from the values Yn−1 from the pre-
vious layer (n− 1). The number neurons in hidden layer
is equal to k = 20 for the network suggested in Fig. 1(a)
and the length of vector Xn is therefore equal to k = 20.
The input signal of the ith neuron from the nth layer Xn

i

is determined in accordance with the outer matrix prod-
uct illustrated by · between the output signal vector from
the previous layer Yn−1 and the coupling matrix Wn−1

connecting layers (n− 1) and n. In Eq. (1), we describe

the effect of noise using noise operator N̂ at the stage
where we introduce noise. Next we will look at what this
operator is depending on different types of noise.



3

In a photonic experimental implementation of a neu-
ral network, it was discovered that there are two types
of noise in affecting a single neuron: additive noise and
multiplicative noise, mathematically described by

Y n
i = f(Xn

i ) +
√
2DAξA(t, i),

Y n
i = f(Xn

i ) ·
(
1 +

√
2DMξM (t, i)

)
.

(2)

Thus, additive noise (with indices ‘A’) is added to the
noise-free output signal, while the multiplicative noise
(with indices ‘M’) is multiplied on it. The notation ξ
corresponds to white Gaussian noise with zero mean and
variance equal to unity. Its multiplier

√
2D determines

the overall variance equal to 2D, andD is usually refereed
to as the intensity of the noise source. The subscripts
‘A’ and ‘M’ for variables ξ and D correspond to additive
and multiplicative noise, respectively. Since ξ has a zero
mean, simply multiplying it by the desired signal can lead
to losing the entire signal, hence multiplicative noise is
introduced by multiplication with (1 + ξ).
The previous provides a classification of noise depend-

ing on the effect on one isolated neuron. Now let us con-
sider at the types that describe the effect on a group of
neurons. As in our previous works38,39, we focus on the
classification according to uncorrelated and correlated
noise within a population of neurons. For both types,
the noise values will be different over time t. Here, we
are not really referring to time, but to different values
of input information. The separation of noise types oc-
curs depending on how the noise affects the layer with
neurons. If all neurons within one layer receive the same
noise value, then we will call such noise correlated and
denote it using the superscript ‘C’: ξC(t). If all neurons
i within one layer receive different noise values, then this
is uncorrelated noise ξU (t, i). Thus, we consider in total
four types of noise: correlated additive ξCA (t) and multi-
plicative ξCM (t) noise, and uncorrelated additive ξUA(t, i)
and multiplicative ξUM (t, i) noise controlling by the noise
intensities DC

A , D
C
M , DU

A , D
U
M , respectively.

III. NETWORK PERFORMANCE DEPENDING ON THE
IMPACT OF NOISE

Figure 2 contains training and testing accuracies of the
same trained noisy hardware ANN. Here, we consider the
impact of noise isolated either to the hidden layer only
(top panels) or the in output layer only (bottom panels),
while left panels contain the results for additive noise and
right panels show the impact of multiplicative noise. All
four plots show the impact of different noise intensities
on the accuracy of ANN in almost the same scale.

Figure 2 shows that networks trained for multiclass
classification are quite robust against the impact of weak
noise, which was also our finding in39. There is almost
no change in accuracy for any type of noise with noise
intensity

√
2D < 0.2 or D < 0.02. In this context, it

is noteworthy that the largest noise intensity in a non-

train. set, uncorr. noise
train. set, corr. noise
test. set, uncorr. noise
test. set, corr. noise

0.0 0.2 0.4 0.6 0.8 1.0
40

60

80

100
Additive noise

(a) (b)

(d)(c)

A
cc
ur
ac
y

Multiplicative noise

H
id
de
n
la
ye
r

O
ut
pu
tl
ay
er

0.0 0.2 0.4 0.6 0.8 1.0
40

60

80

100

0.0 0.2 0.4 0.6 0.8 1.0

70

80

90

100

0.0 0.2 0.4 0.6 0.8 1.0

70

80

90

100

A
cc
ur
ac
y

2D or 2DA
C

A
U 2D or 2DM

C
M
U

train. set, uncorr. noise
train. set, corr. noise
test. set, uncorr. noise
test. set, corr. noise

train. set, uncorr. noise
train. set, corr. noise
test. set, uncorr. noise
test. set, corr. noise

train. set, uncorr. noise
train. set, corr. noise
test. set, uncorr. noise
test. set, corr. noise

FIG. 2. Changes in accuracy of trained ANN depending on
noise intensities of four separate noise sources additive un-
correlated noise DU

A (green in (a,c)), additive correlated noise
DC

A (orange in (a,c)), multiplicative uncorrelated noise DU
M

(blue in (b,d)) and multiplicative correlated noise DC
M (pink

in (b,d)). The noise is introduced into hidden layer in the top
panels, and into the last layer in the bottom panels. Solid
curves correspond to training dataset, while dashed curves
were prepared for testing dataset.

noise optimized hardware implementation in Ref.42 was
around 10−3.

As for relatively high noise intensities, the results are
as follows. Additive noise (both correlated and uncorre-
lated) in the output layer has almost no impact on the
network performance (see Fig. 2(c)). However, additive
noise in hidden layer leads to quite a pronounced decrease
in accuracy (Fig. 2(a)). In both, Fig. 2 (a) and (c), the
dependencies for correlated noise are shown in orange,
while green color corresponds to uncorrelated noise. The
more pronounced impact in the hidden layer is poten-
tially caused by the particularities of classification tasks
in combination with the widely employed softmax func-
tion in the output layer. This is a new and highly relevant
finding. In the case of noise in the output layer, all out-
puts are shifted by the same noise value, and the neuron
with maximal output remains the same as without noise.
Therefore, noise in hidden layer is the most critical aspect
for hardware ANNs applied to classification tasks.

In this classification context, multiplicative noise, how-
ever, affects the hidden and the output layer similarly, see
Fig. 2(b) and (d), respectively. In both panels, pink data
correspond to correlated multiplicative noise, while blue
data corresponds to uncorrelated multiplicative noise. At
the same time, it should be noted that the accuracy is
changed only when

√
2D > 0.4 hence for rather strong

noise compared to the one usually obtained in hardware
ANNs. Again, the exponential normalization by softmax
serves as a strongly noise-suppressing function.



4

IV. NOISE MITIGATION: NEURON POOLING

In our previous work40 we have suggested several ways
how noise can be suppressed in hardware ANNs. The
first technique was pooling populations of neurons, an
efficient approach to suppress uncorrelated noise. This
method consists of combining several neurons into a dis-
tinct subgroups called pools. Each unit inside a pool of
m neurons receives the same input. The impact of such
pooling for trained hardware ANNs is shown in Fig. 3(a)
for pooling with m = 3.
If the number of noisy neurons in hidden layer is k (here

k = 20), then a corresponding pooled layer comprises af-
ter m · k noisy neurons. In order to implement this pool-
ing operations numerically, we repeat the trained con-
nection matrix m and rescale its entries by 1/m. After
this operation and for our here leveraged topology, the
new sizes of matrices W1 and W2 become (784 × 20m)
and (20m× 10), respectively. The description of the way
how this can be realized in terms of Python code is given
in Supplementary materials. It is also important to un-
derline, that the network is not retrained after this tech-
nique. Here we use the connection matrices W1 and W2

obtained after training the network and repeat them m
times in order to realize pooling.

Figure 3 shows the results of application of pooling
technique for four different values of m for uncorrelated
additive (b) and multiplicative (c) noise in the hidden
layer. Here, we show the accuracy only on the training
dataset, but for testing dataset the results are similar.
In Fig. 3(b,c), the solid lines correspond to the original
case without pooling. As can be seen, larger m lead to a
significantly reduced sensitivity of the hardware ANN’s
accuracy for different noise intensities, where pooling 10
neurons makes the system robust even for noise ampli-
tudes reaching

√
2D = 0.5. This conclusion is valid for

multiplicative as well as additive uncorrelated noise in
the context of classification with softmax normalization.

The dependencies of accuracy on noise intensity are
nonlinear, and in order to show the improvement of ac-
curacy using the pooling technique, we plotted the de-
pendencies of minimal accuracy on m in Fig. 3(d). As
follows from Fig. 3(b,c), these minimal accuracies can
be obtained for the largest considered noise intensity√
2DU

A = 1 or
√
2DU

M = 1. It can be clearly seen from

this panel, that for largem even the worst accuracy tends
to the initial accuracy level of the noise-free ANN.

The variants of applying the pooling technique in terms
of Python code are given in Supplementary materials.

V. NOISE MITIGATION. GHOST NEURON

The other noise mitigation technique in Ref.40 was re-
ferred to as ghost neurons, and the concept is schemati-
cally illustrated in Fig. 4. Here, we describe how it can
be adapted in the context of trained network and its ac-

pr
ev
io
us

la
ye
r;

W
1

ne
xt

la
ye
r;

W
2

+ /m

+ /m

+ /m

+ /m

40

60

80

100

0.0 0.2 0.4 0.6 0.8 1.0

Multiplicative uncorrelated noise

A
cc
ur
ac
y

no mitigation
pooling, m=3
pooling, m=5
pooling, m=10
pooling, m=20 (c)

2DM
U

no mitigation
pooling, m=3
pooling, m=5
pooling, m=10
pooling, m=20

train. set, add. noise
train. set, mult. noise
test. set, add. noise
test. set, mult. noise

0.0 0.2 0.4 0.6 0.8 1.0

40

60

80

100

40

60

80

100

0 10 20 30 40 50

A
cc
ur
ac
y

m

Additive uncorrelated noise

m
in
im

al
ac
cu
ra
cy

(a)

(b)

(d)

2DA
U

FIG. 3. Application of pooling technique to ANN with
noisy neurons in hidden layer. Panel (a) shows the scheme
of pooling technique with m = 3. Panels (b) and (c) shows
how the dependency of final accuracy on intensity of uncorre-
lated additive (b) and multiplicative (c) noise. In both panels,
solid dark curves correspond to original case without pooling,
while the remaining curves correspond to the results of us-
ing pooling technique with m = 3, 5, 10 and 20 (larger m –
lighter color). Panel (d) shows how does the minimum accu-
racy change depending on m for uncorrelated additive (green)
and multiplicative (blue) noise.

curacy. The motivation of this technique is to suppress
correlated additive noise by adding one additional neu-
ron into the noisy layer, and to have this neuron not
connected with the previous layer. This means that
this neuron does not receive any input signal, which led
to the nomenclature “ghost neuron”. Importantly, the
ghost neuron is connected with all neurons in the next
layer with some weights Wg, and depending on these val-
ues it can successfully reduce additive correlated noise.
In Ref.40 this technique was applied to a simplified un-
trained ANN without softmax normalization, and final
performance was analysed in terms of SNR and not as a
change in classification accuracy.

We will consider three variants how the ghost neuron
can be introduced into the noisy hidden layer depending
on its weights Wg. The first way is to simply set the
weights to -1, i.e. Wg,i = −1. The results of this ad-hoc
technique corresponds to black dashed lines marked as
“ghost neuron I” in Fig. 4(b,c). It is clear that includ-
ing ghost neurons with such an un-optimized connection
strength does not result in any noise mitigation. This can
be explained by the fact that the impact of noise in layer
n − 1 onto any neuron j in layer n depends on its par-
ticular connections to the previous layer obtained during



5

no mitigation
ghost neuron I
ghost neuron II
ghost neuron III

0.0 0.2 0.4 0.6 0.8 1.0
60

70

80

90

100

0.0 0.2 0.4 0.6 0.8 1.0
60

70

80

90

100
Training dataset Testing dataset

ne
xt

la
ye

r;
W

2

pr
ev

io
us

la
ye

r;
W

1

Wg

A
cc
ur
ac
y

(a) (b) (c)

2DA
C 2DA

C

no mitigation
ghost neuron I
ghost neuron II
ghost neuron III

FIG. 4. Application of ghost neuron technique to ANN with
noisy neurons in hidden layer. Panel (a) shows the scheme
of ghost neuron technique. Panels (b) and (c) shows how the
impact of additive correlated noise can be changed using ghost
neurons of all three types. Panel (b) and (c) were prepared
for training and testing datasets, respectively.

training, and therefore subtracting the noise with a con-
stant weighting of −1 does not result in any particular
noise reduction.

Let us now consider the signal coming from layer n to
the next layer. Each jth neuron of layer (n+ 1) receives

the incoming signal
k∑

i=1

Wn
i,j ·Y n

i from layer n. In the case

of a ghost neuron, its signal is added according to

Xn+1
j =

k∑
i=1

Wn
i,j · Y n

i +Wg,j · Yg. (3)

This can be rewritten for additive correlated noise as fol-
lows:

Xn+1
j =

k∑
i=1

Wn
i,j · f(Xn

i ) +
√
2DC

Aξ
C
A (t) ·

k∑
i=1

Wn
i,j+

Wg,jf(0) +Wg,j ·
√
2DC

Aξ
C
A (t).

(4)
Thus, setting

Wg,j = −
k∑

i=1

Wn
i,j (5)

will allow the complete suppression of additive additive
correlated noise. This case corresponds to gray lines
marked as “ghost neuron II” in Fig. 4(b,c). In both,
training and testing data, this method leads to signifi-
cant increase in accuracy for large noise intensity, while
for small or even diminishing noise intensities the network
performance becomes worse. Such an analytical rule pro-
vides an excellent tool for circuit designers of hardware
ANNs. It allows to include the ghost neuron concept ad-
hoc and design internal. It simply requires a circuit that
sets the ghost neuron’s weight in a separate stage, where
all neurons in the preceding layer are clamped to one, as
Eq. (5) is the overall input strength experienced by the
neuron.

Taking a close look at the data for concept ghost neu-
ron II (Fig. 4(b,c)), one can see that now the accuracy
does not depend on the noise intensity, i.e. noise has
been completely suppressed, but there is some constant
offset that affects the accuracy. This is an interesting
feature previously not identified. When we introduced
the ghost neuron, we used a neuron with the same noise
and activation function as the rest of the neurons in the
hidden layer, but deprived it of an input signal. The ac-
tivation function in hidden layer is the sigmoid function
f(x) = 1

1+e−x , which for zero input leads to f(0) = 0.5
as a noise-free output of the ghost neuron. In the case
of considered here sigmoid activation function, any large
negative bias value can lead to f(x) ≈ 0, and the result
of clamping the ghost neuron to a constant and large
negative input is shown by the orange dashed line in
Fig. 4(b,c) and labelled as “ghost neuron III”. It is clear
that for this correction the ghost neuron perfectly fulfils
its intended duty, and the accuracy remains the same as
for a noise-free ANN for any intensity of correlated addi-
tive noise. Of course, if the particular activation function
of neurons in the hardware ANN is such that for f(0) ≈ 0
(i.e. tanh(x) or ReLu), then the application of ghost neu-
ron II will lead to the same effect as the ghost neuron III.
The way how all three ghost neurons can be imple-

mented in Python code is described in details in Supple-
mentary materials.

VI. CONCLUSIONS

In our previous work on noisy hardware ANNs and
concepts of noise mitigation, we focused on the im-
pact of noise onto the hardware ANN’s output signal to
noise ration. However, the thresholded objective of an
ANN when addressing classification tasks substantially
changes what it is relevant. The same can be said for
the here studied softmax normalization in the final ANN
layer. Most importantly, we found that the common per-
turbation of output classifiers by correlated noise is less
relevant than for ANNs addressing analog output func-
tion approximation.
We considered several types of noise in hidden and

the output layer, separately, and found that a hardware
ANN’s accuracy is less susceptible to noise introduced
into the output layer, especially if this noise is additive.
This can be explained by the fact that for classification
tasks usually the softmax function is applied in the last
layer. In this, and in the context of other winner-takes-
all encoding in the output layer, it is not so much the
particular noisy value but which neuron has the largest
activity. Typically, for well-trained networks, the out-
put of the correct neuron is much larger than the output
of the remaining neurons. This generally reduces the
impact of noise perturbations, as noise now first needs
to overcome the separation between the largest and the
other neurons, which introduces a strong thresholding on
noise.



6

This is especially evident for additive noise in the out-
put layer, which practically does not change the accu-
racy. Multiplicative noise in the output layer, however,
has a stronger effect, since its effect is larger for the usu-
ally larger activity neurons. The largest impact on ac-
curacy is demonstrated by the noise in the hidden layer,
especially if it is additive noise. This is quite different
from our previous results38,39, where we did not consider
performance accuracy, and the resulting conclusions sub-
stantially different in that noise in the hidden layer can
be suppressed due to connectivity, and does not affect
the noisiness of the output signal as much as noise in the
output layer. Here we consider the influence of noise on
the accuracy of the network, and the conclusion actually
is inverted.

Finally, we propose several noise reduction techniques
and describe how they can be implemented in a hardware
ANN. We propose pooling to reduce uncorrelated noise,
and show that it works very well for, both, additive and
multiplicative noise. To reduce the additive correlated
noise, we propose the ghost neuron technique. Initially,
this technique was proposed by us in the work40, but here
we show that this technique must take into account the
peculiarities of the activation function in the noisy layer.
The importance of the classification context is also rele-
vant for the ghost neuron technique. Here we show that
by adding some ghost neurons we can not only suppress
the level of noise but also degrade the accuracy of the net-
work. We therefore extended our analysis and were able
to derive an analytical design rule allowing ghost neuron
topology adjustment on a circuit design level. This is of
substantial relevance for future hardware ANN design.

In this paper, we were focused on a simple network ar-
chitecture for clarity and apply pooling and ghost neuron
techniques to this simple network with only one hidden
layer. For this network we suggested how to suppress
the noise level in hidden layer 2 changing the connection
matrices W1 and W2 connecting layers 1-2 and 2-3, re-
spectively. At the same time, this can be applied to any
deep neural network with any number of layers. If it is
necessary to apply the noise reduction technique in layer
n, then one need to do all the same operations with the
connection matrix before this layer Wn−1 as described
for W1, and transform the following matrix Wn in the
same way as W2 matrix.

SUPPLEMENTARY MATERIAL

Our supplementary material contains a pdf-file with
additional description of noise reduction methods and
how they can be implemented using Python code. It
starts with pooling technique and then we consider all
three ghost neurons.

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foun-
dation (project No. 23-72-01094)

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are
available from the corresponding author upon reasonable
request.

REFERENCES

1F. Amato, A. López, E. M. Peña-Méndez, P. Vaňhara, A. Hampl,
and J. Havel, Journal of Applied Biomedicine 11, 47 (2013).

2Z. Salahuddin, H. C. Woodruff, A. Chatterjee, and P. Lambin,
Computers in Biology and Medicine 140, 105111 (2022).

3D. R. Sarvamangala and R. V. Kulkarni, Evolutionary Intelli-
gence 15, 1 (2022).

4P. Celard, E. L. Iglesias, J. M. Sorribes-Fdez, R. Romero, A. S.
Vieira, and L. Borrajo, Neural Computing and Applications 35,
2291 (2023).

5A. Lazcano, P. J. Herrera, and M. Monge, Mathematics 11
(2023), 10.3390/math11010224.

6X. Li, J. Wang, and C. Yang, Neural Computing and Applica-
tions 35, 2045 (2023).

7S. H. Mortaza Aghbashlo and A. S. Mu-
jumdar, Drying Technology 33, 1397 (2015),
https://doi.org/10.1080/07373937.2015.1036288.

8F. Almonacid, E. F. Fernandez, A. Mellit, and S. Kalogirou,
Renewable and Sustainable Energy Reviews 75, 938 (2017).

9S. Yang, Z. Cui, and X. Gu, IEEE Transactions on Instrumen-
tation and Measurement 72, 1 (2023).

10R. Marabini and J. Carazo, Biophysical Journal 66, 1804 (1994).
11K. Suzuki, Artificial neural networks: methodological advances
and biomedical applications (BoD–Books on Demand, 2011).

12I. Samborska, V. Aleksandrov, L. Sieczko, B. Kornatowska,
V. Goltsev, M. Kusaka, and H. Kalaji, NanoPhotoBioSciences
02, 2347 (2014).

13X. Wang, J. Feng, Y. Xu, and J. Kurths, Chaos:
An Interdisciplinary Journal of Nonlinear Science 34,
033108 (2024), https://pubs.aip.org/aip/cha/article-
pdf/doi/10.1063/5.0187866/19709505/033108 1 5.0187866.pdf.

14D. Marković, A. Mizrahi, D. Querlioz, and J. Grollier, Nature
Reviews Physics 2, 499 (2020).

15D. V. Christensen, R. Dittmann, B. Linares-Barranco, A. Se-
bastian, M. L. Gallo, A. Redaelli, S. Slesazeck, T. Mikolajick,
S. Spiga, S. Menzel, I. Valov, G. Milano, C. Ricciardi, S.-J. Liang,
F. Miao, M. Lanza, T. J. Quill, S. T. Keene, A. Salleo, J. Grol-
lier, D. Marković, A. Mizrahi, P. Yao, J. J. Yang, G. Indiveri,
J. P. Strachan, S. Datta, E. Vianello, A. Valentian, J. Feldmann,
X. Li, W. H. P. Pernice, H. Bhaskaran, S. Furber, E. Neftci,
F. Scherr, W. Maass, S. Ramaswamy, J. Tapson, P. Panda,
Y. Kim, G. Tanaka, S. Thorpe, C. Bartolozzi, T. A. Cleland,
C. Posch, S. Liu, G. Panuccio, M. Mahmud, A. N. Mazumder,
M. Hosseini, T. Mohsenin, E. Donati, S. Tolu, R. Galeazzi, M. E.
Christensen, S. Holm, D. Ielmini, and N. Pryds, Neuromorphic
Computing and Engineering 2, 022501 (2022).

16U. Seiffert, Neurocomputing 57, 135 (2004), new Aspects in Neu-
rocomputing: 10th European Symposium on Artificial Neural
Networks 2002.

17J. Misra and I. Saha, Neurocomputing 74, 239 (2010), artificial
Brains.

http://dx.doi.org/https://doi.org/10.2478/v10136-012-0031-x
http://dx.doi.org/ https://doi.org/10.1016/j.compbiomed.2021.105111
http://dx.doi.org/10.1007/s12065-020-00540-3
http://dx.doi.org/10.1007/s12065-020-00540-3
http://dx.doi.org/10.1007/s00521-022-07953-4
http://dx.doi.org/10.1007/s00521-022-07953-4
http://dx.doi.org/10.3390/math11010224
http://dx.doi.org/10.3390/math11010224
http://dx.doi.org/ 10.1007/s00521-022-07377-0
http://dx.doi.org/ 10.1007/s00521-022-07377-0
http://dx.doi.org/10.1080/07373937.2015.1036288
http://arxiv.org/abs/https://doi.org/10.1080/07373937.2015.1036288
http://dx.doi.org/https://doi.org/10.1016/j.rser.2016.11.075
http://dx.doi.org/ 10.1109/TIM.2023.3315423
http://dx.doi.org/ 10.1109/TIM.2023.3315423
http://dx.doi.org/https://doi.org/10.1016/S0006-3495(94)80974-9
http://dx.doi.org/ 10.1063/5.0187866
http://dx.doi.org/ 10.1063/5.0187866
http://dx.doi.org/ 10.1063/5.0187866
http://arxiv.org/abs/https://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/5.0187866/19709505/033108_1_5.0187866.pdf
http://arxiv.org/abs/https://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/5.0187866/19709505/033108_1_5.0187866.pdf
http://dx.doi.org/10.1038/s42254-020-0208-2
http://dx.doi.org/10.1038/s42254-020-0208-2
http://dx.doi.org/10.1088/2634-4386/ac4a83
http://dx.doi.org/10.1088/2634-4386/ac4a83
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2004.01.011
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2010.03.021


7

18M. Bouvier, A. Valentian, T. Mesquida, F. Rummens, M. Rey-
boz, E. Vianello, and E. Beigne, J. Emerg. Technol. Comput.
Syst. 15 (2019), 10.1145/3304103.

19T. Wang, S.-Y. Ma, L. G. Wright, T. Onodera, B. C. Richard,
and P. L. McMahon, Nature Communications 13, 123 (2022).

20S.-Y. Ma, T. Wang, J. Laydevant, L. G. Wright, and P. L.
McMahon, Research Square (2023).

21T. Tuma, A. Pantazi, M. Le Gallo, A. Sebastian, and E. Eleft-
heriou, Nature Nanotechnology 11, 693 (2016).

22X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, M. Jarrahi, and
A. Ozcan, Science 26, 1 (2018).

23Q. Xia and J. J. Yang, Nature Materials 18, 309 (2019).
24Nature 547, 428 (2017).
25Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones,
M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and
M. Soljacic, Nature Photonics 11, 441 (2017).

26A. Cem, S. Yan, Y. Ding, D. Zibar, and F. Da Ros, Journal of
Lightwave Technology (2023).

27Y. Chen, M. Nazhamaiti, H. Xu, Y. Meng, T. Zhou, G. Li, J. Fan,
Q. Wei, J. Wu, F. Qiao, L. Fang, and Q. Dai, Nature 623, 48
(2023).

28G. Mourgias-Alexandris, M. Moralis-Pegios, A. Tsakyridis,
S. Simos, G. Dabos, A. Totovic, N. Passalis, M. Kirtas, T. Ruti-
rawut, F. Y. Gardes, A. Tefas, and N. Pleros, Nature Commu-
nications 13, 5572 (2022).

29A. Maas, Q. V. Le, T. M. O’Neil, O. Vinyals, P. Nguyen, and
A. Y. Ng, in INTERSPEECH (2012).

30H. Burger, C. Schuler, and S. Harmeling (2012) pp. 2392 – 2399.
31M. L. Seltzer, D. Yu, and Y. Wang, in IEEE International Con-
ference on Acoustics, Speech and Signal Processing, ICASSP

2013, Vancouver, BC, Canada, May 26-31, 2013 (IEEE, 2013)
pp. 7398–7402.

32X. Yue, S. Cui, B. Pei, and Y. Xu, International Journal of
Non-Linear Mechanics 147, 104190 (2022).

33B. Dolenko and H. Card, Electronics letters 29, 693 (1993).
34A. A. Dibazar, A. Bangalore, Hyungook Park, S. George, W. Ya-
mada, and T. W. Berger, in The 2006 IEEE International Joint
Conference on Neural Network Proceedings (2006) pp. 2015–
2022.

35M. C. Soriano, S. Ort́ın, L. Keuninckx, L. Appeltant, J. Danck-
aert, L. Pesquera, and G. van der Sande, IEEE transactions on
neural networks and learning systems 26, 388 (2015).

36D. Janke and D. V. Anderson, in 2020 IEEE 63rd Interna-
tional Midwest Symposium on Circuits and Systems (MWSCAS)
(2020) pp. 150–153.

37K. Nurlybayeva, D. A. Ron, M. Kamalian-Kopae, E. Turitsyna,
and S. Turitsyn, in 2022 Asia Communications and Photonics
Conference (ACP) (IEEE, 2022) pp. 753–756.

38N. Semenova, X. Porte, L. Andreoli, M. Jacquot, L. Larger, and
D. Brunner, Chaos: An Interdisciplinary Journal of Nonlinear
Science 29, 103128 (2019), https://doi.org/10.1063/1.5120824.

39N. Semenova, L. Larger, and D. Brunner, Neural Networks 146,
151 (2022).

40N. Semenova and D. Brunner, Chaos: An In-
terdisciplinary Journal of Nonlinear Science 32,
061106 (2022), https://pubs.aip.org/aip/cha/article-
pdf/doi/10.1063/5.0096637/16496762/061106 1 online.pdf.

41Y. LeCun, http://yann.lecun.com/exdb/mnist/index.html

(2021).
42J. Bueno, S. Maktoobi, L. Froehly, I. Fischer, M. Jacquot,
L. Larger, and D. Brunner, Optica 5, 756 (2018).

http://dx.doi.org/10.1145/3304103
http://dx.doi.org/10.1145/3304103
http://dx.doi.org/ 10.1038/s41467-021-27774-8
http://dx.doi.org/ 10.1126/science.aat8084
http://dx.doi.org/10.1038/s41563-019-0291-x
http://dx.doi.org/10.1038/s41586-023-06558-8
http://dx.doi.org/10.1038/s41586-023-06558-8
http://dx.doi.org/10.1038/s41467-022-33259-z
http://dx.doi.org/10.1038/s41467-022-33259-z
http://dx.doi.org/10.1109/ICASSP.2013.6639100
http://dx.doi.org/10.1109/ICASSP.2013.6639100
http://dx.doi.org/10.1109/ICASSP.2013.6639100
http://dx.doi.org/ https://doi.org/10.1016/j.ijnonlinmec.2022.104190
http://dx.doi.org/ https://doi.org/10.1016/j.ijnonlinmec.2022.104190
http://dx.doi.org/ 10.1109/IJCNN.2006.246949
http://dx.doi.org/ 10.1109/IJCNN.2006.246949
http://dx.doi.org/ https://doi.org/10.1109/TNNLS.2014.2311855
http://dx.doi.org/ https://doi.org/10.1109/TNNLS.2014.2311855
http://dx.doi.org/10.1109/MWSCAS48704.2020.9184644
http://dx.doi.org/10.1109/MWSCAS48704.2020.9184644
http://dx.doi.org/ 10.1063/1.5120824
http://dx.doi.org/ 10.1063/1.5120824
http://arxiv.org/abs/https://doi.org/10.1063/1.5120824
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2021.11.008
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2021.11.008
http://dx.doi.org/10.1063/5.0096637
http://dx.doi.org/10.1063/5.0096637
http://dx.doi.org/10.1063/5.0096637
http://arxiv.org/abs/https://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/5.0096637/16496762/061106_1_online.pdf
http://arxiv.org/abs/https://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/5.0096637/16496762/061106_1_online.pdf
http://yann.lecun.com/exdb/mnist/index.html

	Impact of white noise in artificial neural networks trained for classification: performance and noise mitigation strategies
	Abstract
	Introduction
	system under study
	Trained ANN
	Internal noise

	Network performance depending on the impact of noise
	Noise mitigation: Neuron pooling
	Noise mitigation. Ghost neuron
	Conclusions
	Supplementary Material
	Acknowledgments
	Data Availability Statement
	References


