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Abstract

We consider an optimal control problem inspired by neuroscience, where the dynamics is
driven by a Poisson process with a controlled stochastic intensity and an uncertain parameter.
Given a prior distribution for the unknown parameter, we describe its evolution according
to Bayes’ rule. We reformulate the optimization problem using Girsanov’s theorem and
establish a dynamic programming principle. Finally, we characterize the value function
as the unique viscosity solution to a finite-dimensional Hamilton-Jacobi-Bellman equation,
which can be solved numerically.
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1 Introduction
Let (Yt) represent the membrane potential of a spiking neuron. The neuron emits “spikes”
randomly at rate fΛ(Yt). When a spike occurs, the potential is reset to zero. Finally, between
the jumps, the dynamics is given by the ODE

Ẏt = b(Yt) + γt.

In this model, the functions (λ, y) ↦ fλ(y) ∈ R+ and y ↦ b(y) ∈ R are deterministic and
known. In addition, Λ is a random variable with known distribution µ, supported on R+,
but the realization of Λ is unknown. Our objective is to estimate as accurately as possible
the value of Λ. In addition, the input current (γt) is a control and can be chosen in order to
improve the estimation. Crucially, we only observe the jumping times of (Yt) and therefore
(γt) is only allowed to causally depend on the spiking times up to time t. The question we
answer in this article can be summarized as follows:

How to choose the stochastic control (γt) to optimally estimate the unknown parameter?

This leads us to consider an optimal control problem driven by a counting process with
unknown intensity. Our approach is applicable beyond neuroscience, where optimal control
over processes with unknown parameters is required, such as in online learning scenarios.
We present a mathematical framework to tackle this class of questions.

Such problems have been widely studied in the discrete-time stochastic optimal control
literature (see, e.g., [6, 7]). A key approach is to assign a prior distribution to the unknown
parameter, which is updated at each time step using Bayes’ rule. In the continuous-time
setting, particularly within the impulse control framework, these issues have been addressed
by [2] in a Brownian framework and extended by [1] in a Poisson framework. As in the
discrete-time setting, a Bayesian framework is used: the unknown parameter is sampled
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from a prior distribution and a stochastic process in the space of probability measures
is introduced, known as the posterior distribution. This approach leads to a dynamic
programming principle and a characterization of the value function via a quasi-variational
parabolic equation interpreted in the sense of viscosity solutions.

In [8] (lecture given at Collège de France) and [4] (with an application in asset manage-
ment), the authors consider instances of the following diffusive case:

dXt = Λb(Xt, γt)dt + σ(Xt)dWt.

In this model, one observes the process (Xt) and the parameter Λ is unknown. A key idea
introduced in these works is to reformulate the problem using Girsanov’s theorem. This
permits removing the drift and to make explicit the dependence of the problem on the
unknown parameter via the exponential martingale involved in Girsanov’s transformation.
In addition, in this linear case in Λ or for specific classes of prior distribution known as
conjugate families, they derive a finite dimensional HJB equation satisfied by the value
function.

In the setting we introduce, a new mathematical challenge arises because the conditional
distribution of the unknown parameters evolves continuously and also exhibits jumps: the
jumps of the conditional distribution occurs precisely at the jumping times of the underlying
point process; with intensity depending on the unknown parameter. Another new important
difficulty appear: when the control (γt) is modified, the jumps of the process are also
modified. As the controller is only allowed to observe the spiking times, it is not clear
to know at first sight what are the admissible controls. In particular, it is not possible
to use the same control (γt) for two different initial conditions y and y′ of (Yt) because
changing the initial condition might change the spiking times and therefore a control which
was valid for y is not valid anymore for y′. This feature makes particularly difficult to obtain
apriori regularity estimates on the value function. As in [8, 4], Girsanov’s theorem plays
an important role in our work in addressing these difficulties. Another difficulty is due
to the fact that the measure space is infinite-dimensional, and the posterior distribution
evolves continuously over time on this space. In the case where the intensity of the original
point process is linearly dependent on the unknown parameter, we show that the posterior
distribution is confined to a two-dimensional subspace of R2. We further show that the value
function associated with the optimal control problem is the unique solution to a specific
finite-dimensional Hamilton-Jacobi-Bellman (HJB) equation in the viscosity sense.

We now describe briefly our main contributions and the organization of this paper.
The control problem is introduced in Section 2.1, where we also characterize the admissible

controls and show that the optimization problem is independent of the probability space
we started with. In Section 2.2, we reformulate the problem using Girsanov’s theorem for
point processes with stochastic intensity and show the equivalence between the original and
the new formulation. In Section 2.3, the value function is introduced, and in Section 2.4,
we show how to obtain a finite-dimensional representation of the value function provided
that function fλ(y) is linear in λ, that is fλ(y) = λg(y). This is analogous to the finite-
dimensional reduction obtained in [8, 4] in the diffusive setting with a linear drift. Thereafter,
we concentrate our study on this finite-dimensional problem.

In Section 3.1, we prove that the value function is Lipschitz continuous with respect to
the space variables. To proceed, we study in detail the exponential martingale involved in the
Girsanov’s transformation. Using these apriori regularity estimates, we prove in Section 3.2
a first dynamic programming principle with deterministic stopping times. Leveraging this
result, we show in Section 3.3 that the value function is continuous with respect to time.
Finally, in Section 3.4 we provide a general dynamic programming principle that allows for
general stopping times.

In Section 4, we show that the value function is the unique viscosity solution of a certain
HJB equation, see equation (4.1). This first order HJB equation has zero order terms which
are inherent to the jumps in the underlying dynamics. We rely on the methodology of [9] to
handle these terms. A specific difficulty appears in the proof of our comparison result, due
to the fact that the controls are not bounded, neither are the space variables.
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Finally, in Section 5, we present several numerical illustrations and explain the behavior
of the optimal control.

2 The control problem
2.1 The optimization problem
Let µ ∈ P2(R+) be a probability measure supported on R+ with a finite second moment.
Consider functions b and f such that:

Assumption 2.1. The function b ∶ R → R is Lipschitz and f ∶ R+ ×R → R+ is continuous
and bounded for each λ ≥ 0:

sup
y∈R

fλ(y) < ∞.

Let (Ω,F , (Ft),P) be a filtered probability space satisfying the usual conditions. Fix a
time horizon T > 0. Consider (γt)t∈[0,T ] an (Ft)-progressively measurable process such that

P(dω)a.s, γ ∈ L2([0, T ]).

Definition 2.2. We consider a triple (Λ, (Nt), (Yt)) which is a solution of:
1. Λ is an F0-measurable random variable with probability distribution µ.
2. (Nt) is an (Ft) point process with stochastic intensity fΛ(Yt−).
3. (Yt) solves:

Yt = y + ∫
t

0
(b(Yu) + γu)du − ∫

t

0
Yu−dNu, t ∈ [0, T ].

We assume that the probability space is large enough so that for each γ as above, there
exists at least one triple (Λ, (Nt), (Yt)) defined on this probability space, satisfying the three
conditions above.

Let FN
t denote the canonical filtration of (Nt)t≥0:

FN
t = σ{Ns, s ≤ t}.

Let (τk)k≥1 denote the successive jump times of (Nt)t≥0. We set by convention that τ0 = 0.

Definition 2.3. A control γ is said to be admissible if it is predictable with respect to the
filtration (FN

t )t≥0.

We denote by A the set of admissible controls. Furthermore, we consider the posterior
distribution of Λ given the observed spiking times, denoted by:

Mγ
t ∶= L(Λ ∣ FN

t ).

Let κ > 0. Our optimization problem is formulated as follows:

inf
γ∈A

E [1
2 ∫

T

0
γ2

s ds + κVar(Mγ
T )] . (2.1)

In other words, our goal is to minimize the variance of the posterior distribution; the
quadratic cost in the control is a regularization to prevent for too large controls. We now
rewrite this optimization problem in a more explicit way, specifically to demonstrate that the
value defined by (2.1) is independent of the probability space (Ω,F , (Ft),P). The following
proposition characterizes the admissible controls.

Proposition 2.4. Let γ be a FN -predictable process such that P(dω) a.s., γ ∈ L2([0, T ]).
There exists a sequence of random variables:

Γk ∶ Ω→ L2([0, T ])

such that Γk is FN
τk

-measurable and

P(dω) × dt a.s., γt(ω) = ∑
k≥0

Γk(t)1(τk,τk+1](t).
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Proof. See [5, A2, Th. 34].

Consider D([0, T ]), the Skorokhod space of càdlàg functions on [0, T ]. Since each
random variable Γk is FN

τk
-measurable, there exists a deterministic and measurable function

Ψk ∶ D([0, T ]) → L2([0, T ]) such that:

Γk = Ψk(N⋅∧τk
).

This establishes a one-to-one correspondence between an admissible control γ and a collection
of measurable functions (Ψk)k≥0. Write N = {0,1,⋯} for the set of natural integers. We
denote by Ã the set of all the measurable functions from D([0, T ]) to (L2([0, T ]))N.

In addition, there exists a deterministic function V ∶D([0, T ]) → R such that

P(dω) a.s., Var(Mγ
T ) = E[Λ

2 ∣ FN
T ] −E2[Λ ∣ FN

T ] = V (N).

Remark 2.5. We will see in Corollary 2.9 below that this function V is explicit.

Given Ψ ∈ Ã, consider (Λ,Nt, Vt) which satisfies the three properties outlined in Defini-
tion 2.2, with the control given by γ = ∑k≥0 Ψk(N⋅∧τk

)1(τk,τk+1]. These three conditions fully
determine the law of (Nt)t∈[0,T ]. We denote by QΨ,µ this probability law:

QΨ,µ = L((Nt)t∈[0,T ]).

Thus, our optimization problem (2.1) is equal to:

inf
Ψ∈Ã

E [∑
k≥0

1
2 ∫

T

0
Ψ2

k(N⋅∧τk
)1(τk,τk+1](s)ds + κV (N))]

= inf
Ψ∈Ã
∫ [∑

k≥0

1
2 ∫

T

0
Ψ2

k(ñ⋅∧τ̃k
)1(τ̃k,τ̃k+1](s)ds + κV (ñ))]QΨ,µ(dñ).

In the last expression, the τ̃k denotes the jumps of ñ. The key observation here is that this
expression is entirely independent of the original probability space from which we began.

2.2 Girsanov’s theorem and the posterior distribution
We observed that our optimization problem does not depend on the initial probability space.
We propose here a specific and convenient construction of these objects, using Girsanov’s
theorem.

We consider (Ω,F , (Ft),Q) a probability space such that (Nt) is a standard (Ft)-
Poisson process with rate 1. We denote by (τk) the successive jump times of (Nt). We write
FN

t = σ(Nr, r ≤ t) for the natural filtration of N .
Let A be the collection of all the FN -predictable processes γ such that

a.s., ∫
T

0
γ2

udu < ∞.

Given γ ∈ A and y ∈ R, we consider (Yt) the solution of the SDE

Yt = y + ∫
t

0
(b(Yu) + γu)du − ∫

t

0
Yu−dNu.

For all λ ∈ R+, we define:

Lt(λ) = ∏
0<τk≤t

fλ(Yτk−) exp(t − ∫
t

0
fλ(Yu)du) .

Lemma 2.6. Let Ñt = Nt − t. The equation

Lt = 1 + ∫
t

0
Lu−[fλ(Yu−) − 1]dÑu

has a unique locally bounded solution (supu∈[0,t] ∣Lu∣ < ∞ a.s.) and this solution is Lt(λ) as
defined above. In addition, t↦ Lt(λ) is a (Q, (FN

t ))-local martingale.
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Proof. This follows from [5][Th. A.T4]

Consider now Λ a F0-random variable, with probability law µ. As (Nt) is a (Ft) standard
Poisson process, it holds that Λ and (Nt)t≥0 are independent under Q.

Lemma 2.7. Under Assumption 2.1, EQLT (Λ) = 1 and so (Lt(Λ)) is a (Q, (Ft))-martingale.

Proof. By assumptions, for all λ ∈ R+,

C(λ) ∶= sup
x≥0

fλ(x) < ∞.

We first prove that EQLT (λ) = 1 for all λ ∈ R+. We have Lt ≤ C(λ)Ntet and ∣fλ(Yt−) − 1∣ ≤
C(λ) + 1. Therefore,

EQ ∫
T

0
Lu−(λ)∣fλ(Yu−)(λ) − 1∣du ≤ ∫

T

0
esC(λ)(1 +C(λ))du < ∞.

By [5, T8, p. 27], this implies that EQLT (λ) = 1. Finally note that there exists a measurable
function Φ such that

LT (λ) = Φ(N⋅∧T , λ).
On Q, (Nt)t≥0 and Λ are independent. Therefore,

EQ[Φ(N⋅∧T ,Λ) ∣ Λ] = Ψ(Λ),

where Ψ(λ) ∶= EQΦ(N⋅∧T , λ) = EQLT (λ) = 1. We deduce that EQLT (Λ) = EQΨ(Λ) = 1.

By Girsanov’s theorem, we deduce that

Proposition 2.8. On dP ∶= LT (Λ)dQ, it holds that (Nt) is a point process of stochastic
intensity fΛ(Yt−). For any measurable test function ϕ ∶ R→ R+, consider:

⟨ϕ,Mγ
t ⟩ ∶= EP[ϕ(Λ) ∣ FN

t ].

It holds that

⟨ϕ,Mγ
t ⟩ =

EQ[ϕ(Λ)Lt(Λ) ∣ FN
t ]

EQ[Lt(Λ) ∣ FN
t ]

= ∫ φ(λ)Lt(λ)µ(dλ)
∫ Lt(λ)µ(dλ)

= ⟨ϕLt, µ⟩
⟨Lt, µ⟩

.

Proof. This follows from [5, Th. 3] and [5, Lem. 5]. For completeness, we give the arguments
for the second part of the result. Take A ∈ FN

t . By definition of conditional expectation, we
have EP[1Aϕ(Λ)] = EP[1AEP[ϕ(Λ) ∣ FN

t ]]. Therefore,

EQ[1Aϕ(Λ)LT (Λ)] = EQ[1ALT (Λ)EP[ϕ(Λ) ∣ FN
t ]].

Taking the conditional expectation with respect to FN
t , we obtain:

EQ[1AEQ[ϕ(Λ)LT (Λ) ∣ FN
t ]] = EQ[1AEQ[LT (Λ) ∣ FN

t ]EP[ϕ(Λ) ∣ FN
t ]].

This is holds for all A ∈ FN
t , we find that:

EQ[ϕ(Λ)LT (Λ) ∣ FN
t ] = EQ[LT (Λ) ∣ FN

t ]EP[ϕ(Λ) ∣ FN
t ],

giving the first equality for ⟨ϕ,Mγ
t ⟩. For the second equality, note that on Q, (Nt) and Λ

are independent, therefore:

EQ[ϕ(Λ)LT (Λ) ∣ FN
t ] = ∫R+

ϕ(λ)Lt(λ)µ(dλ).

This implies the stated formula.
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Corollary 2.9. Therefore, it holds that a.s.,

Mγ
t ∶= LP(Λ ∣ FN

t ) ∝ ∏
τi≤t

fλ(Yτk−) exp(−∫
t

0
fλ(Ys)ds)µ(dλ).

Following the Bayesian terminology, Mγ
t is the posterior distribution. In addition, the

variance of the posterior distribution V (N) ∶= V ar(Mγ
T ) = EP[Λ2 ∣ FN

T ] − (EP(Λ ∣ FN
T ))

2 is
equal to:

V (N) = ⟨ϕ2Lt, µ⟩
⟨Lt, µ⟩

− ⟨ϕ1Lt, µ⟩
⟨Lt, µ⟩

, where ϕ1(λ) = λ and ϕ2(λ) = λ2.

Remark 2.10. Let ϕ ∶ R→ R+ be a non-negative measurable function. Then, t↦ ⟨ϕ,Mγ
t ⟩ =

EP[ϕ(Λ) ∣ FN
t ] is a martingale. In other words, Mγ

t is a measure-valued martingale. In
particular, it holds that EPEP[Λ2 ∣ FN

t ] = EΛ2 < ∞. Therefore, for any admissible control γ,
we find that

P(dω)a.s., EP[Λ2 ∣ FN
t ] < ∞.

In addition, by the law of the total variance, we have:

V ar(µ) = V ar(Mγ
0 ) = EPV ar(Mγ

t ) + V ar(EP[Λ ∣ FN
t ]).

This shows in particular that, in expectation, the variance of Mγ
t can only decay with time.

Altogether, we have proven that our optimization problem (2.1) is equal to:

inf
γ∈A

EQ [LT (Λ)(∫
T

0
γ2

udu + κV (N))]

= inf
γ∈A
∫ µ(dλ)EQ [LT (λ)(∫

T

0
γ2

udu + κV (N))] .

We again use the fact that under Q, the standard Poisson process N of rate 1 and Λ are
independent.

2.3 The value function
We now slightly generalize the formulation of the problem to define the value function.

Probability spaces.
We consider the canonical space (Ω,F , (FN

t ),Q) associated to a standard Poisson process
(Nt) with rate 1. We denote by (τk) the successive jump times of (Nt).

Controls.
Denote by A the set of all (FN

t )-predictable processes γ such that almost surely, ∫
T

0 γ2
udu < ∞.

Value function.
Given γ ∈ A, y ∈ R and µ ∈ P2(R+), we let:

Jγ(t, y, µ) ∶= EQ [∫
R+
(∫

T

t

γ2
s

2
ds +Var(M t,y,µ,γ

T ))Ly,γ
t,T (λ)µ(dλ)] ,

where for all s ∈ [t, T ]:

Ly,γ
t,s (λ) = ∏

τi∈(t,s]

fλ(Y t,y,γ
τi−
) exp((s − t) − ∫

s

t
fλ(Y t,y,γ

u )du) , (2.2)

Y t,y,γ
s = y + ∫

s

t
γudu − ∫

s

t
Y t,y,γ

u− dNu, (2.3)
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and the posterior measure M t,y,µ,γ
s is defined by:

⟨ϕ,M t,y,µ,γ
s ⟩ ∶=

⟨ϕLy,γ
t,s , µ⟩

⟨Ly,γ
t,s , µ⟩

, (2.4)

this equality being true for any non-negative measurable function ϕ ∶ R+ → R+. Moreover,
the variance of M t,y,µ,γ

T is:

Var(M t,y,µ,γ
T ) = ⟨ϕ2,M

t,y,µ,γ
T ⟩ − (⟨ϕ1,M

t,y,µ,γ
T ⟩)2, with ϕ1(λ) = λ,ϕ2(λ) = λ2.

Finally, the value function is
v(t, y, µ) ∶= inf

γ∈A
Jγ(t, x, µ).

We have proven in the previous sections that:
Theorem 2.11. The value define by the optimization problem (2.1) is equal to v(0, y, µ).

2.4 Reduction to finite dimension
In what follows, we assume that:
Assumption 2.12. There is a globally Lipschitz and bounded function g ∶ R→ R+ such that:

∀y ∈ R, λ ∈ R+, fλ(y) = λg(y).
Surprisingly, with this assumption, the optimization problem over the space of probability

measures can be reduced to a finite dimension problem. To proceed, given µ ∈ P2(R+), we
set for all z ≥ 0 and n ∈ N:

ṽ(t, x, z, n) ∶= v(t, x,mµ(n, z)), where mµ(n, z)(dλ) ∶=
λne−λzµ(dλ)
∫R+ θne−θzµ(dθ) .

Note that mµ(0,0) = µ. We also set

Φµ(n, z) ∶= ∫
R+
λne−λzµ(dλ),

and note that
∀k ∈ N, ∫

R+
λkmµ(n, z)(dλ) =

Φµ(n + k, z)
Φµ(n, z)

.

Finally, we let:

Ψµ(n, z) ∶= Var(mµ(n, z)) =
Φµ(n + 2, z)

Φµ(n, z)
− (Φµ(n + 1, z)

Φµ(n, z)
)

2

. (2.5)

Recall the definition of M t,y,µ,γ
s and Y t,y,γ

s given by equations (2.4) and (2.3). We define:

Zt,y,z,γ
s ∶= z + ∫

s

t
g(Y t,y,γ

u )du. (2.6)

Lemma 2.13. Let γ ∈ A. It holds that, almost surely:
M t,y,mµ(n,z),γ

s =mµ(n +Ns −Nt, Z
t,y,z,γ
s ),

Proof. This follows from the fact that for every measurable non-negative function ϕ, we have

⟨ϕ,mµ(n +Ns −Nt, Z
t,y,z,γ
s )⟩ =

⟨ϕLy,γ
t,s ,mµ(n, z)⟩

⟨Ly,γ
t,s ,mµ(n, z)⟩

. (2.7)

As a corollary, we obtain:
Proposition 2.14. It holds that

ṽ(t, y, z, n) = inf
γ∈A

EQ [∫
R+
(∫

T

t

γ2
s

2
ds +Ψµ(n +NT −Nt, Z

t,y,z,γ
T ))Lt,y,γ

T (λ)mµ(n, z)(dλ)] .

The key point is that this optimization problem is now a classical stochastic optimization
in finite dimension. For now on, we will concentrate our study on this finite-dimensional
problem. Therefore, we write to simplify the notations v(t, y, z, n) = ṽ(t, y, z, n).
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Some properties of the posterior distribution
Finally, we close this section with some properties satisfied by mµ(n, z).
Lemma 2.15. Let Ξµ(n, z) ∶= Φµ(n + 1, z)/Φµ(n, z) be the expected value of the posterior
distribution. We have for all n ∈ N and z ≥ 0:

1. ∂zΦµ(n, z) = −Φµ(n + 1, z).
2. ∂zΞµ(n, z) = −Ψµ(n, z).
3. Ξµ(n + 1, z) −Ξµ(n, z) = Ψµ(n,z)

Ξµ(n,z)
.

4. ∂zΨ(n, z) = Ξµ(n, z) [Ψµ(n, z) −Ψµ(n + 1, z) − (Ψµ(n,z)

Ξµ(n,z)
)

2
].

Remark 2.16. The points 2 and 3 above show that the mean of posterior distribution decays
between the jumps, while it always increase just after a jump. However, a similar behavior
does not hold for the variance of the posterior distribution. Consider for instance the case
where µ(dλ) = 1

2δ0 + 1
2δλmax . After one jump, the posterior distribution is equal to δλmax ,

with variance zero: n ≥ 1 Ô⇒ Ψµ(n, z) = 0. In that case, the variance decays to zero just
after the first jump.

Lemma 2.17. Assume that Supp(µ) ⊂ [0, λmax]. Then Ψµ(n, z) ≤ λ2
max
4 and

∣∂zΨµ(n, z)∣ ≤
1
2
λ3

max.

3 Dynamic programming principle and regularity
3.1 Space regularity
We now study the regularity of the value function with respect to y and z. Recall that

v(t, y, z, n) = inf
γ∈A

Jγ
1 (t, y, z, n) + J

γ
2 (t, y, z, n),

with

Jγ
1 (t, y, z, n) ∶= EQ [Lγ,y

t,T (Λ)∫
T

t
γ2

s ds] ,

Jγ
2 (t, y, z, n) ∶= EQ [Lγ,y

t,T (Λ)Ψµ(n +NT −Nt, z + ∫
T

t
g(Y t,y,γ

s )ds)] ,

where under Q, Λ is a random variable with law P(Λ ∈ dλ) = λne−λzµ(dλ)/Φµ(n, z) and
(Nt) is a standard Poisson process with rate 1 independent of Λ.

Assumption 3.1. We assume that
1. The prior distribution is compactly supported: ∃λmax > 0:

Supp(µ) ⊂ [0, λmax].

2. The function g ∈ C1(R;R+) with ∥g∥∞ + ∥ g′

g
∥∞ < ∞.

3. The function b ∈ C1(R) with ∥b′∥∞ < ∞.

The main result of this section is the following.

Proposition 3.2. Under Assumption 3.1, it holds that there exists a constant CT such that
for all n ≥ 0 and for all x,x′ ∈ R and all z, z′ ≥ 0:

∣v(t, y, z, n) − v(t, y′, z′, n)∣ ≤ CT (∣y − y′∣ + ∣z − z′∣).

We now give the proof of this result. To simplify the notations, we assume that t = 0 and
write:

Ly,γ
T (λ) = L

y,γ
t,T (λ).

8



3.1.1 Regularity with respect to y

Lemma 3.3. There exists a constant CT such that for all γ ∈ A, it holds that:

∀y ∈ R, ∣∂yL
y,γ
T (λ)∣ ≤ CTL

y,γ
T (λ).

Proof. We prove the result with CT ∶= (∥ g′

g
∥∞ + λmaxT ∥g′∥∞) eT ∥b′∥∞ . Observe that just

after a jump, Y is reset to zero and so the initial condition y is forgotten. We write φs(y) for
the solution of the ODE d

ds
φs(y) = b(φs(y)) + γu with initial condition φ0(y) = y. Assume

first that NT = 0. Then

∂yL
y,γ
T (λ) = −λL

y,γ
T (λ)∫

T

0
g′(φs(y))∂yφs(y)ds.

As ∂yφs(y) = exp (∫
s

0 b
′(φu(y))du) ≤ exp(T ∥b′∥∞), the result holds.

Assume now that NT > 0. Then, provided that τ1 is the time of the first jump of N , we
have:

∂yL
y,γ
T (λ) = [

g′(φτ1−(y))∂yφτ1−(y)
g(φτ1−(y))

− λ∫
τ1

0
g′(φs(y))∂yφs(y)ds]Ly,γ

T (λ).

We deduce the result using our assumptions on g and b.

Lemma 3.4. There exists a constant CT such that for all γ ∈ A,

∀y, y′ ∈ R, Ly′,γ
T (λ) ≤ eCT ∣y−y′∣Ly,γ

T (λ).

Proof. Assume first that y′ > y. Then the result follows by Grönwall’s lemma. If now y′ < y,
we set ϕ(s) = Ly−s,γ

T (λ). We have ϕ′(s) = −∂yL
y−s,γ
T (λ) ≤ CTϕ(s). Therefore, by Grönwall’s

lemma, ϕ(s) ≤ eCT sϕ(0). Choosing s = y − y′ ends the proof.

Lemma 3.5. There is another constant CT such that for any γ ∈ A, for all y, y′ with
∣y − y′∣ ≤ 1:

∣Ly,γ
T (λ) −L

y′,γ
T (λ)∣ ≤ CT ∣y − y′∣(Ly,γ

T (λ) +L
y′,γ
T (λ)).

Proof. Without loss of generality, assume that y + 1 > y′ > y. Then we have Ly′,γ
T (λ) −

Ly,γ
T (λ) ≤ (eCT (y

′
−y) − 1)Ly,γ

T (λ) ≤ CT e
CT ∣y − y′∣Ly,γ

T (λ). Similarly, Ly,γ
T (λ) − L

y′,γ
T (λ) ≤

CT e
CT ∣y − y′∣Ly′,γ

T (λ). Altogether, the result holds.

Corollary 3.6. As Ly′,γ
T (λ) ≤ eCTLy,γ

T (λ), we deduce that there exists another constant CT

such that for all y, y′ with ∣y − y′∣ ≤ 1,

∣Ly,γ
T (λ) −L

y′,γ
T (λ)∣ ≤ CT ∣y − y′∣Ly,γ

T (λ).

Lemma 3.7. There exists a constant CT such that for any γ ∈ A, it holds that for all y, y′
with ∣y − y′∣ ≤ 1:

∣Jγ
1 (t, y′, z, n) − J

γ
1 (t, y, z, n)∣ ≤ CT ∣y − y′∣Jγ

1 (t, y, z, n),
∣Jγ

2 (t, y′, z, n) − J
γ
2 (t, y, z, n)∣ ≤ CT ∣y − y′∣(1 + Jγ

2 (t, y, z, n)).

Proof. We have

∣Jγ
1 (t, y′, z, n) − J

γ
1 (t, y, z, n)∣ ≤ EQ [∣Ly′,γ

t,T (Λ) −L
y,γ
t,T (Λ)∣ ∫

T

t

γ2
s

2
ds]

≤ CT ∣y − y′∣EQ [Ly,γ
t,T (Λ)∫

T

t

γ2
s

2
ds] = CT ∣y − y′∣Jγ

1 (t, y, z, n).
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Similarly,

∣Jγ
2 (t, y, z, n) − J

γ
2 (t, y′, z, n)∣ ≤

EQ∣Lγ,y
T (Λ) −L

γ,y′

T (Λ)∣Ψµ(n +NT −Nt, Z
t,y,z,γ
T )

+EQ [Lγ,y′

T (Λ) (Ψµ(n +NT −Nt, Z
t,y,z,γ
T ) −Ψµ(n +NT −Nt, Z

t,y′,z,γ
T ))] =∶ A +B.

We have A ≤ CT ∣y − y′∣EQL
γ,y
t,T (Λ)Ψµ(n +NT −Nt, Z

t,y,z,γ
T ) = CT ∣y − y′∣Jγ

2 (t, y, z, n) and:

B ≤ EQL
y′,γ
t,T (Λ)∥∂zΨµ(n +NT −Nt, ⋅)∥∞ ∫

T

t
∥g′∥∞e∥b

′
∥∞T ∣y − y′∣ds

≤ CTEQL
y,γ
t,T (Λ)∣y − y

′∣ = CT ∣y − y′∣.

We used that supn∈N∥∂zΨµ(n, ⋅)∥ < ∞. We deduce the result.

Altogether, we deduce that

∣Jγ(t, y, z, n) − Jγ(t, y′, z, n)∣ ≤ CT (1 + Jγ(t, y, z, n))∣y − y′∣.

Let y, y′ ∈ R be fixed. Consider ϵ > 0 and γ an ϵ-optimal control in the sense that

v(t, y, z, n) ≥ Jγ(t, y, z, n) − ϵ.

We have

v(t, y′, z, n) − v(t, y, z, n) ≤ Jγ(t, y′, z, n) − Jγ(t, y, z, n) + ϵ
≤ CT ∣y − y′∣(1 + Jγ(t, t, z, n)) + ϵ
≤ CT ∣y − y′∣(1 + ϵ + v(t, y, z, n)) + ϵ.

Sending ϵ ↓ 0, we deduce that

v(t, y′, z, n) − v(t, y, z, n) ≤ CT ∣y′ − y∣(1 + v(t, y, z, n)).

In addition, note that

v(t, y, z, n) ≤ J0(t, y, z, n) ≤ λ
2
max
4
< ∞.

Exchanging the role of y and y′ we deduce that

∣v(t, y, z, n) − v(t, y′, z, n)∣ ≤ CT ∣y − y′∣.

3.1.2 Regularity with respect to z

The regularity with respect to z is proven by similar arguments. Recall that

Φµ(n, z) = ∫
R+
λne−λzµ(dλ), mµ(n, z) =

λne−λz

Φµ(n, z)
µ(dλ).

We have

Lemma 3.8. There exists constants C,η > 0 such that for all n ∈ N:
1. ∀z, z′ ≥ 0, ∣Φµ(n, z) −Φµ(n, z′)∣ ≤ C ∣z − z′∣Φµ(n, z).
2. ∀z, z′ ≥ 0, ∣mµ(n, z) −mµ(n, z′)∣ ≤ C ∣z − z′∣[mµ(n, z) +mµ(n, z′)].
3. ∀z, z′ ≥ 0 with ∣z − z′∣ < η, ∣mµ(n, z) −mµ(n, z′)∣ ≤ C ∣z − z′∣mµ(n, z).
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Proof. We start with the first point. We have

∣Φµ(n, z) −Φµ(n, z′)∣ ≤ ∫
R+
λne−λz ∣1 − e−λ(z′−z)∣µ(dλ).

As Supp(µ) ⊂ [0, λmax], the result holds. For the second point, we have

∣mµ(n, z) −mµ(n, z′)∣ ≤ [
∣Φµ(n, z′) −Φµ(n, z)∣e−λz

Φµ(n, z)Φµ(n, z′)
+ e
−λz′(e−λ(z−z′) − 1)

Φ(n, z′) ]λnµ(dλ).

Using the first point, we deduce that the second inequality holds. Finally, we verify that
provided ∣z − z′∣ ≤ η, η small enough, it holds that

mµ(n, z′) ≤ Cmµ(n, z).

Indeed, we have

mµ(n, z′) =
λne−λze−λ(z′−z)µ(dλ)

Φµ(n, z′) −Φµ(n, z) +Φµ(n, z)
.

As ∣Φµ(n, z′) −Φµ(n, z)∣ ≤ 1
2Φµ(n, z) provided that ∣z − z′∣ is small enough, we deduce the

last statement.

As on Q, the Poisson process N is independent of Λ, we have

Jγ
1 (t, y, z, n) = ∫R+

[EQL
y,γ
t,T (λ)∫

T

t

γ2
s

2
ds]mµ(n, z)(dλ).

We deduce from the last point of the previous Lemma that for all z, z′ ≥ 0, ∣z − z′∣ ≤ η,

∣Jγ
1 (t, y, z, n) − J

γ
1 (t, y, z′, n)∣ ≤ CT ∣z − z′∣Jγ

1 (t, y, z, n).

Similarly, we have

∣Jγ
2 (t, y, z, n) − J

γ
2 (t, y, z′, n)∣ ≤ CT ∣z − z′∣(1 + Jγ

2 (t, y, z, n)).

We deduce as previously that

∣v(t, y, z, n) − v(t, y, z′, n)∣ ≤ CT ∣z − z′∣.

This ends the proof of Proposition 3.2.

3.2 A first dynamic programming principle
Recall that the value function is defined by

v(t, y, z, n) ∶= inf
γ∈A

EQ⟨Ly,γ
t,T ,mµ(n, z)⟩ [∫

T

t

γ2
u

2
du + κΨµ(n +NT −Nt, Z

t,y,z,γ
T )]

= inf
γ∈A

Jγ(t, y, z, n).

where Ψµ is defined in (2.5). In this section, we prove the following first version of the
dynamical programming principle. Later on, we will generalize it to allow for (FN) stopping
times.
Proposition 3.9. It holds that for all s ∈ [t, T ],

v(t, y, z, n) = inf
γ∈A

EQ⟨Ly,γ
t,s ,mµ(n, z)⟩ [∫

s

t

γ2
u

2
du + v(s, Y t,y,γ

s , Zt,y,z,γ
s , n +Ns −Nt)] .

We now detail the proof of this result. Recall that for γ ∈ A,

Jγ
1 (t, y, z, n) = EQ [⟨Lγ,y

t,T ,mµ(n, z)⟩∫
T

t

γ2
u

2
du] ,

Jγ
2 (t, y, z, n) = EQ [⟨Lγ,y

t,T ,mµ(n, z)⟩Ψµ(n +NT −Nt, Z
t,y,z,γ
T )] .

We start with the following key lemma.
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Lemma 3.10. Let S be a (FN
t )-stopping time such that a.s., S ∈ [t, T ]. It holds that a.s,

EQ [⟨Ly,γ
t,T ,mµ(n, z)⟩∫

T

S

γ2
u

2
du ∣ FN

S ]

= ⟨Ly,γ
t,S ,mµ(n, z)⟩Jγ

1 (S,Y
t,y,γ

S , Zt,y,z,γ
S , n +NS −Nt),

and

EQ[⟨Ly,γ
t,T ,mµ(n, z)⟩Ψµ(n +NT −Nt, Z

t,y,z,γ
T ) ∣ FN

S ]
= ⟨Ly,γ

t,S ,mµ(n, z)⟩Jγ
2 (S,Y

t,y,γ
S , Zt,y,z,γ

S , n +NS −Nt).

Proof. First, we note that for all λ ≥ 0:

a.s, Ly,γ
t,T (λ) = L

y,γ
t,S (λ)L

γ,Y t,y,γ
S

S,T (λ).

We deduce from (2.7) that

⟨Ly,γ
t,S ,mµ(n, z)⟩⟨L

Y t,y,γ
S

,γ

S,T ,mµ(n +NS −Nt, Z
t,y,z,γ
S ⟩ = ⟨Ly,γ

t,T ,mµ(n, z)⟩.

We now give the proof of the second equality. Take A ∈ FN
S . To simplify the notations, write:

yS ∶= Y t,y,γ
S , zS ∶= Zt,y,z,γ

S , nS ∶= n +NS −Nt.

We also set:
∆ZS,T ∶= ZS,yS ,zS ,γ

T − zS = ∫
T

S
g(Y t,y,γ

u )du.

We have

EQ⟨Ly,γ
t,T ,mµ(n, z)⟩1AΨµ(n +NT −Nt, Z

t,y,z,γ
T )

= EQ⟨Ly,γ
t,S ,mµ(n, z)⟩⟨LyS ,γ

S,T ,mµ(nS , zS)⟩1AΨµ(nS +NT −NS , zS +∆ZS,T )
= EQ⟨Ly,γ

t,S ,mµ(n, z)⟩1A

EQ [⟨LyS ,γ
S,T ,mµ(nS , zS)⟩Ψµ(nS +NT −NS , zS +∆ZS,T ) ∣ FN

S ]
= EQ⟨Ly,γ

t,S ,mµ(n, z)⟩1AJ
γ
2 (S, yS , zS , nS).

The obtain the last identity, we used the strong Markov property satisfied by (Y t,y,γ
s , n +

Ns −Nt, Z
t,y,z,γ
s ). As the equality is valid for any A ∈ FN

S , the result is proved.

We now detail the proof of Proposition 3.9, which follow from standard arguments. Recall
that Jγ(t, y, z, n) = Jγ

1 (t, y, z, n) + κJ
γ
2 (t, y, z, n). Using Lemma 3.10 with a deterministic

S = s ∈ [t, T ], we have

v(t, y, z, n) = inf
γ∈A

EQ [⟨Ly,γ
t,s ,mµ(n, z)⟩{∫

s

t

γ2
u

2
du + Jγ(s, Y t,y,γ

s , Zt,y,z,γ
s , n +Ns −Nt)}] .

We deduce that

v(t, y, z, n) ≥ inf
γ∈A

EQ [⟨Lx,γ
t,s ,mµ(n, z)⟩{∫

s

t

γ2
u

2
du + v(s, Y t,y,γ

s , Zt,y,z,γ
s , n +Ns −Nt)}] .

For the other inequality, fix ϵ > 0 and s ∈ (0, T ). Using the regularity of Jγ and v proven in
Section 3.1, there exists α > 0 such that for all n ∈ N, there is a partition (Bn

i )i∈N of R ×R+
with centers (yn

i , z
n
i ) ∈ Bn

i such that: for all (n, i) ∈ N2, for all (y, z) ∈ Bn
i ,

∣y − yn
i ∣ + ∣z − zn

i ∣ < α and ∣v(s, y, z, n) − v(s, yn
i , z

n
i , n)∣ < ϵ.

For each (yn
i , z

n
i , n), there exists an ϵ-optimal control α(yn

i , z
n
i , n) ∈ A:

Jα(yn
i ,zn

i ,n)(s, yn
i , z

n
i , n) ≤ v(s, yn

i , z
n
i , n) + ϵ.
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Finally, we set for all γ ∈ A:

γ∗u =
⎧⎪⎪⎨⎪⎪⎩

γu if u < s
∑i≥0 α

i,ns
u 1Bns

i
(Y t,y,γ

s , Zt,y,z,γ
s ) if u ∈ [s, T ].

where αi,n ∶= α(yn
i , z

n
i , n) for i, n ≥ 0 and ns ∶= n +Ns −Nt. To simplify the notations, we

also write ys = Y t,y,γ
s and zs = Zt,y,z,γ

s . We have:

Jγ∗(s, ys, zs, ns) = ∑
i

[Jγ∗(s, ys, zs, ns) − Jγ∗(s, yns

i , zns

i , ns)]1Bns
i
(ys, zs)

+∑
i

[Jγ∗(s, yns

i , zns

i , ns) − v(s, yns

i , zns

i , ns)]1Bns
i
(ys, zs)

+∑
i

[v(s, yns

i , zns

i , ns) − v(s, ys, zs, ns)]1Bns
i
(ys, zs)

+ v(s, ys, zs, ns)
≤ 3ϵ + v(s, ys, zs, ns).

Therefore, we find that

v(t, y, z, n) ≤ 3ϵ +EQ [⟨Ly,γ
t,s ,mµ(n, z)⟩{∫

s

t

γ2
u

2
du + v(s, ys, zs, ns)}] .

We send ϵ to zero. Using moreover that the control γ is arbitrary between t and s, we deduce
that

v(t, y, z, n) ≤ inf
γ∈A

EQ [⟨Ly,γ
t,s ,mµ(n, z)⟩{∫

s

t

γ2
u

2
du + v(s, ys, zs, ns)}] .

This completes the proof of Proposition 3.9.

3.3 Time regularity
We now prove:
Proposition 3.11. Under Assumption 3.1, the value function is continuous.

In view of Proposition 3.2, all we have to prove is that the value function is continuous
with respect to time. As it is assumed that the prior distribution is compactly supported in
[0, λmax], we recall that

v(t, y, z, n) ≤ λ
2
max
4

.

We start with a lemma. Let γ ∈ A. We denote by φγ
t,s(y) the solution of the ODE

d
ds
φγ

t,s(y) = b(φ
γ
t,s(y)) + γs with φγ

t,t(y) = y.

Lemma 3.12. There exists a constant CT > 0 such that for all t ≤ s ≤ T , it holds that

∀y ∈ R, ∣φγ
t,s(y) − y∣ ≤ CT ∫

s

t
∣γu∣du.

Proof. This follows from the Grönwall’s lemma applied to s ↦ φγ
t,s(y) − y, using that b is

Lipschitz.

Assume without loss of generalities that s > t and that s− t ≤ 1. To simplify the notations,
we write Ys = Y t,y,γ

s , ns = n +Ns −Nt, zs = z + ∫
s

t g(Y t,y,γ
u du). Using Proposition 3.9,

v(t, y, z, n) − v(s, y, z, n) = inf
γ∈A

EQ⟨Ly,γ
t,s ,mµ(n, z)⟩ (∫

s

t

γ2
u

2
du

+ [v(s, Ys, zs, ns) − v(s, y, z, n)]1{Ns=Nt}

+[v(s, Ys, zs, ns) − v(s, y, z, n)]1{Ns>Nt})

=∶ inf
γ∈A
[Aγ

1 +A
γ
2 +A

γ
3] . (3.1)
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Because v is bounded by λ2
max
4 , and because EQ⟨Ly,γ

t,s ,mµ(n, z)⟩1{Ns>Nt} ≤ P(Ns > Nt) ≤
C(s − t), where under P, (Nt) is a Poisson process of rate λmax∥g∥∞, we deduce that
∣Aγ

3 ∣ ≤ C(s − t) for any control γ ∈ A. For the second term, we have using the results of
Section 3.1:

∣v(s, Ys, zs, ns) − v(s, y, z, n)∣1{Ns=Nt} ≤ CT [∣φγ
t,s(y) − y∣ + ∣zs − z∣]

≤ CT (∫
s

t
∣γu∣du + (s − t)∥g∥∞).

Using that ∣γu∣ ≤ 1 + γ2
u, we finally deduce that for any control γ ∈ A,

∣Aγ
1 ∣ + ∣A

γ
2 ∣ + ∣A

γ
3 ∣ ≤ CT (s − t) +CTEQ⟨Ly,γ

t,s ,mµ(n, z)⟩∫
s

t

γ2
u

2
du.

Define the following sub-class of admissible control:

A0(t, y, z, n) ∶= {γ ∈ A ∶ Jγ(t, y, z, n) ≤ J0(t, y, z, n)}.

Clearly, we can restrict to this class of control as:

v(t, y, z, n) = inf
γ∈A0(t,y,z,n)

Jγ(t, y, z, n).

Fix ϵ > 0. Let γ ∈ A0(t, y, z, n) be an ϵ-optimal for (3.1). We have:

∣v(t, y, z, n) − v(s, y, z, n)∣ ≤ ϵ +CT (s − t) +CTEQ⟨Ly,γ
t,s ,mµ(n, z)⟩∫

s

t

γ2
u

2
du.

Using the dominated convergence theorem, the left-hand-side is smaller that 3ϵ when s is
sufficiently closes to t. Altogether, this proves the time continuity of the value function.

3.4 The dynamic programming principle
We now state the general dynamical programming principle which allows from stopping
times.

Proposition 3.13. Grant Assumptions 3.1. Let τ be a (FN
t ) stopping time such that, a.s.,

τ ∈ [t, T ]. Then

v(t, y, z, n) = inf
γ∈A

EQ⟨Ly,γ
t,τ ,mµ(n, z)⟩ [∫

τ

t

γ2
u

2
du + v(τ, Y t,y,γ

τ , Zt,y,z,γ
τ , n +Nτ −Nt)] .

Proof. As the value function is continuous (Proposition 3.11), the proof is similar to the
proof of Proposition 3.9, with a minor difference: the partition we consider is now a partition
of [0, T ] ×R ×R+, to take into account the stopping times. Using Lemma 3.10, the proof is
completed as before.

4 Viscosity solution properties and characterization
In this section, to simplify the notations, we write x = (y, z) ∈ R ×R+. With this convention,
the value function is v(t, x, n), t ∈ [0, T ] and n ∈ N. By the previous section, we expect that
the value function solves formally:

−∂tv +H(x,∇xv) + θn(x)[v − v(t, ψn(x))] = 0, (4.1)

with terminal condition
v(T,x,n) = κΨµ(n, z). (4.2)

Here:
H(x, p) ∶= 1

2
p2

1 −B(x) ⋅ p, B(x) ∶= (b(y)
g(y)) ψn(x) ∶= (0, z, n + 1)
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and
θn(x) ∶=

Φµ(n + 1, z)
Φµ(n, z)

g(y).

We denote by D ∶= [0, T ] × R × R+ and write BUC(D) for the space of all bounded and
uniformly continuous functions on D. Following [9], we consider the following notion of
viscosity solutions.

Definition 4.1. We say that a function u ∶D×N→ R is a viscosity sub-solution of (4.1) if for
all n ∈ N, (t, x) ↦ u(t, x, n) ∈ BUC(D) and if for all (t○, x○, n○) ∈D×N, for all φ ∈ C(D×N)
such that φ is C1 in a open neighborhood of (t○, x○, n○) with max(u−φ) = (u−φ)(t○, x○, n○) = 0,
it holds that if t○ < T :

−∂tφ(t○, x○, n○) +H(x○, ∂xφ(t○, x○, n○)) + θn○(x○) [u(t○, x○, n○) − u(t○, ψn○(x○))] ≤ 0.

We say a function w ∶ D × N → R is a viscosity super-solution of (4.1) if for all n ∈ N,
(t, x) ↦ w(t, x, n) ∈ BUC(D) and if for all (t○, x○, n○) ∈ D ×N, for all φ ∈ C(D ×N) such
that φ is C1 in a open neighborhood of (t○, x○, n○) with min(w − φ) = (w − φ)(t○, x○, n○) = 0,
it holds that if t○ < T :

−∂tφ(t○, x○, n○) +H(x○, ∂xφ(t○, x○, n○)) + θn○(x○) [w(t○, x○, n○) −w(t○, ψn○(x○))] ≥ 0,

Finally, we say that u ∶ D × R → N is a viscosity solution of (4.1) if it is both a viscosity
sub-solution and a viscosity super-solution of this equation.

The main result of this section is

Theorem 4.2. Under Assumptions 3.1, the value function v is the unique viscosity solution
of (4.1) which satisfies the terminal condition (4.2).

We show successively that v is a sub-solution, a super-solution of (4.1) and that a
comparison theorem holds. We first need this crucial lemma:

Lemma 4.3. The process

Ñt ∶= Nt − ∫
t

0
EP [Λ ∣ FN

u ] g(Y t,y,γ
u )du, t ≥ 0

is an FN−martingale under P.

Proof. The process is integrable (since Λ ∈ L1(P)) and FN− adapted. Moreover, since

E [Nt −Ns ∣ FN
s ] = E [E [Nt −Ns ∣ σ(Λ,FN

s )] ∣ FN
s ] = E [∫

t

s
Λg(Y t,y,γ

u )du ∣ FN
s ]

= ∫
t

s
E [Λg(Y t,y,γ

u ) ∣ FN
s ]du = ∫

t

s
E [E (Λg(Y t,y,γ

u ) ∣ FN
u ) ∣ FN

s ]du

= E [∫
t

s
E (Λ ∣ FN

u ) g(Y t,y,γ
u )du ∣ FN

s ] ,

we obtain the result.

4.1 Sub-solution property
In this section, we prove that the value function is a viscosity sub-solution of (4.1). To
proceed, we use an equivalent reformulation of the viscosity solutions. We have, following [9]:

Lemma 4.4. A function u ∈ BUC(D) for all n ∈ N is a viscosity sub-solution of (4.1) if
and only if for all (t○, x○, n○) ∈ D ×N, for all φ ∈ C(D ×N) such that φ is C1 in an open
neighborhood of (t○, x○, n○) and max(u − φ) = (u − φ)(t○, x○, n○) = 0, it holds that if t0 < T :

−∂tφ(t○, x○, n○) +H(x○, ∂xφ(t○, x○, n○)) + θn○(x○) [φ(t○, x○, n○) − φ(t○, ψn○(x○))] ≤ 0.

A similar statement holds for viscosity super-solution.
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The only difference with the definition is in the zero order terms, where we have replaced
the sub-solution u by the test function φ. For the proof, see [9, Lem. 2.1]. We now prove
that:

Lemma 4.5. The value function is a viscosity sub-solution of (4.1).

Proof. With x○ ∶= (y○, z○), let (t○, x○, n○) ∈D ×N and let φ ∶D ×N→ R a test function as in
Lemma 4.4. Let γ ∈ R be a constant and deterministic control. Let ns ∶= n○ +Ns −Nt○ and
Xt○,x○,γ

s = (Y t○,y○,γ
s , Zt○,y○,z○,γ

s ), t○ ≤ s ≤ T . Consider T1 the time of the first jump:

T1 = inf{s ≥ t○,Ns ≠ Ns−}.

As γ is a valid control and s ∧ T1 a stopping time we have by the dynamical programming
principle 3.13:

EP [v(t○, x○, n○) − ∫
s∧T1

t○

γ2

2
du − v(s ∧ T1,X

s○,x○,γ
s∧T1

, ns∧T1)] ≤ 0.

Because φ ≥ v, we deduce that

EP [φ(t○, x○, n○) − ∫
s∧T1

t○

γ2

2
du − φ(s ∧ T1,X

t○,x○,γ
s∧T1

, ns∧T1)] ≤ 0.

In addition, by Ito’s formula, it holds that:

φ(s ∧ T1,X
t○,x○,γ
s∧T1

, ns∧T1)) = φ(t○, x○, n○)

+ ∫
s∧T1

t○
[∂tφ + (∂yφ)(b + γ) + (∂zφ)g](u,Xt○,x○,γ

u , nu)du

+ ∫
s∧T1

t○
[φ(u,ψnu(Xt○,x○,γ

u )) − φ(u,Xt○,x○,γ
u− , nu)] θnu(Xt○,x○,γ

u )du

+ ∫
s∧T1

t○
[φ(u,ψnu(Xt○,x○,γ

u )) − φ(u,Xt○,x○,γ
u− , nu)]dÑu,

where dÑu = dNu−θnu(Xt○,x○,γ
u )du = dNu−E[Λ ∣ FN

u ]g(Y t○,y○,γ
u )du. Taking the expectation

with respect to EP and using Lemma 4.3, we deduce that

1
s − t○

EP [−∫
s∧T1

t○

γ2

2
du − ∫

s∧T1

t○
(Lγφ)(u,Xt○,x○,γ

u , nu)du] ≤ 0,

where the generator Lγ acting on φ is:

(Lγφ)(t, x, n) ∶= [∂tφ+(∂yφ)(b+γ)+(∂zφ)g](t, x, n)+[φ(t, ψn(x))−φ(t, x, n)]θn(x). (4.3)

Note that because u < T1, it holds that nu = n○, and similarly, Xt○,x○,γ
u is a deterministic

function. We choose s = t○ + 1
k
, k ∈ N∗ large enough such that (u,Xt○,x○,γ

u ) belongs to the
open neighborhood for which the test function φ is C1, for all u ≤ s ∧ T1. By applying first
the dominated convergence theorem and finally applying the mean value theorem, we deduce
that:

−γ
2

2
− Lγφ(t○, x○, n○) ≤ 0.

As this is true for all γ, we choose the optimal value γ = −∂yφ(t○, x○, n○) and obtain exactly
the required inequality of Lemma 4.4.

4.2 Super-solution property
In this section we prove:

Lemma 4.6. The value function is a viscosity super-solution of (4.1).
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Proof. We rely similarly on Lemma 4.4. In addition, we note that we can restrict to the
class of test functions φ for which the minimum is strict, namely (v − φ)(t○, x○, n○) = 0 and:

(t, x, n) ≠ (t○, x○, n○) Ô⇒ (v − φ)(t, x, n) > 0. (4.4)

We consider φ such a test function. We work towards a contradiction and assume that

−∂tφ(t○, x○, n○) +H(x○, ∂xφ(t○, x○, n○)) + θn○(x○) [φ(t○, x○, n○) − φ(t○, ψn○(x○))] < 0.

1. There exists r > 0 small enough such that

−∂tφ +H(x, ∂xφ) + θn(x) [φ − φ(t, ψn(x))] < 0. (4.5)

holds on B(t○, x○, n○; r) which is the ball of center (t○, x○, n○) and of radius r. We
introduce

B̃(t○, x○, n○; r) ∶= {(t, ψn(x)) for (t, x, n) ∈ B(t○, x○, n○; r)} /B(t○, x○, n○; r),

which is bounded. By (4.4), there exists η > 0 such that

η ∶= min
(B̃∪∂B)(t○,x○,n○;r)

(v − φ). (4.6)

2. Let γ be an arbitrary control and θγ be the first exit time of B(t○, x○, n○; r). By Itô’s
formula, we obtain:

v(t○, x○, n○) = φ(t○, x○, n○)

= φ(θγ ,X
t○,x○,γ
θγ

, nθγ ) − ∫
θγ

t○
Lγuφ(u,Xt○,x○,γ

u , nu)du

− ∫
θγ

t○
[φ(u,ψnu(Xt○,x○,γ

u )) − φ(u,Xt○,x○,γ
u , nu)] Ñ(du),

where Ñ is the martingale process introduced in Lemma 4.3. Note that (4.5) can be
rewritten as

sup
γ∈R
[−Lγφ − 1

2
γ2] < 0.

Therefore:

v(t○, x○, n○) ≤ E [φ (θγ ,X
t○,x○,γ
θγ

, nθγ) + ∫
θγ

t○

γ2
u

2
du] .

Using (4.6), this gives:

v(t○, x○, n○) ≤ −η +E [v (θγ ,X
t○,x○,γ
θγ

, nθγ) + ∫
θγ

t○

γ2
u

2
du] .

Since this inequality holds for any control γ, the latter inequality is in contradiction with
Proposition 3.13.

4.3 Comparison theorem
Finally, we provide a comparison principle for the viscosity solutions of (4.1). The main
result of this section is:

Proposition 4.7. Let u be a viscosity sub-solution and let w be a viscosity super-solution
of the PDE (4.1), in the sense of Definition 4.1. Assume that u(T,x, n) ≤ w(T,x,n) for all
(x,n) ∈ (R ×R+) ×N. Then

u(t, x, n) ≤ w(t, x, n), ∀t, x, n ∈D ×N.

In particular, there is at most a bounded and uniformly continuous viscosity solution of
(4.1) which satisfies the boundary condition v(T,x, n) = κΨn(x).
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Proof. We proceed towards a contradiction and assume that θ ∶= supD×N u −w > 0.
1. Let ϵ, δ, β,α > 0. We consider the auxiliary function

Φn(t, x, t′, x′) = u(t, x, n) −w(t′, x′, n) −
1
2ϵ
∥x − x′∥2 − 1

2ϵ
∣t − t′∣2 + β(t′ − T )

− δF (∥x∥) − δF (∥x′∥) − αn,

where ∥x∥ ∶=
√
y2 + z2 with x = (y, z) and:

F (r) ∶= log(1 + r2), r ≥ 0.

For all ϵ, δ, β,α small enough, it holds that

sup
n∈N

sup
D2

Φn > θ/2. (4.7)

In addition, as u,w are bounded and δ > 0, α > 0, the sup is reached for some point
t̄, x̄, t̄′, x̄′, n̄.

2. From Φn̄(t̄, x̄, t̄′, x̄′) ≥ 0 and u,w bounded, we deduce that for C = ∥u∥∞ + ∥w∥∞:

1
2ϵ
∥x̄ − x̄′∥2 + 1

2ϵ
∣t̄ − t̄′∣2 + δF (∥x̄∥) + δF (∥x̄′∥) + αn̄ ≤ C.

In addition, from Φn̄(t̄, x̄, t̄′, x̄′) ≥ Φn̄(t̄′, x̄′, t̄′, x̄′), we obtain:

u(t̄, x̄, n̄) − u(t̄′, x̄′, n̄) ≥ 1
2ϵ
∥x̄ − x̄′∥2 + 1

2ϵ
∣t̄ − t̄′∣2 + δF (∥x̄∥2) − δF (∥x̄′∥2).

For ρ ≥ 0, let Dρ = {(t, x), (t′, x′) ∈D2 ∶ ∣t − t′∣2 + ∥x − x′∥22 ≤ ρ}, and

mα
u(ρ) = 2 sup{∣u(t, x, n) − u(t′, x′, n)∣, (t, x), (t′, x′) ∈Dρ, n ∈ N, n ≤ C/α}.

We deduce from ∥x̄ − x̄′∥2 + ∣t̄ − t̄′∣2 ≤ 2Cϵ and from ∣∥x̄∥ − ∥x̄′∥∣ ≤ ∥x̄ − x̄′∥ that:

1
ϵ
∥x̄ − x̄′∥2 + 1

ϵ
∣t̄ − t̄′∣2 ≤mα

u(4Cϵ) + δ∥F ′∥∞
√

8Cϵ.

As (t, x) ↦ u(t, x, n) is uniformly continuous and bounded, the function mα
u ∶ R+ → R+

is bounded, continuous and mα
u(0+) =mα

u(0) = 0. A similar statement holds for mα
w.

3. Assume that t̄ = T . We have

Φn̄(t̄, x̄, t̄′, x̄′) ≤ u(t̄, x̄, n̄) −w(t̄′, x̄′, n̄)
≤ w(t̄, x̄, n̄) −w(t̄′, x̄′, n̄)

≤ 1
2
mα

w(2Cϵ).

4. Similarly, if t̄′ = T , we have:

Φn̄(t̄, x̄, t̄′, x̄′) ≤
1
2
mα

u(2Cϵ).

5. Assume that both t̄ < T and t̄′ < T . Consider φu(t, x) ∶= 1
2ϵ
∥x−x̄′∥2+ 1

2ϵ
∣t− t̄′∣2+δF (∥x∥).

It holds that (t̄, x̄) ∈ argmax(u −φu). So, by the property of viscosity subsolution of u,
we have:

− t̄ − t̄
′

ϵ
+H (x̄, x̄ − x̄

′

ϵ
+ δF ′(∥x̄∥) x̄∥x̄∥) + θn̄(x̄)[u(t̄, x̄, n̄) − u(t̄, ψn̄(x̄))] ≤ 0.

Similarly, consider φv(t′, x′) = − 1
2ϵ
∥x̄ − x′∥2 − 1

2ϵ
∣t̄ − t′∣2 − δF (∥x′∥) + β(t′ − T ). As

(t̄′, x̄′) ∈ argmin(w − φv), we have

−β − t̄ − t̄
′

ϵ
+H (x̄′, x̄ − x̄

′

ϵ
− δF ′(∥x̄′∥) x̄

′

∥x̄′∥
) + θn̄(x̄′)[w(t̄′, x̄′, n̄) −w(t̄′, ψn̄(x̄′))] ≥ 0.
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Altogether, combining the two inequalities, we obtain β ≤∆1 +∆2 +∆3 where:

∆1 ∶=H (x̄′,
x̄ − x̄′
ϵ
− δF ′(∥x̄′∥) x̄

′

∥x̄′∥
) −H (x̄, x̄ − x̄

′

ϵ
+ δF ′(∥x̄∥) x̄∥x̄∥)

∆2 ∶= [θn̄(x̄′) − θn̄(x̄)][w(t̄′, x̄′, n̄) −w(t̄′, ψn̄(x̄′))]
∆3 ∶= θn̄(x̄)[w(t̄′, x̄′, n̄) −w(t̄′, ψn̄(x̄′)) − u(t̄, x̄, n̄) + u(t̄, ψn̄(x̄))].

We start with ∆1. We use the explicit shape of H(x, p) = 1
2p

2
1 −B(x) ⋅ p. We have

∆1 = −
δ

2
[F ′(∥x̄′∥) x̄

′

∥x̄′∥ + F
′(∥x̄∥) x̄∥x̄∥]1

[2 x̄ − x̄
′

ϵ
+ δF ′(∥x̄∥) x̄∥x̄∥ − δF

′(∥x̄′∥) x̄
′

∥x̄′∥]1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A1

+ [B(x̄) −B(x̄′)] ⋅ x̄ − x̄
′

ϵ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A2

+ δF ′(∥x̄∥) ⋅ B(x̄) ⋅ x̄∥x̄∥ + δF ′(∥x̄′∥)B(x̄
′) ⋅ x̄′
∥x̄′∥

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A3

.

We used here the notation [(y, z)]1 = y. We have:

∣A1∣ ≤ 2δ (
√

2C√
ϵ
+ δ) , ∣A2∣ ≤ ∥∇B∥∞ [mα

u(4Cϵ) + δ
√

8Cϵ] .

In addition, there is a constant C̃ such that ∣B(x) ⋅ x∣ ≤ C̃(∥x∥2 + ∥x∥). Using that
supr∈R+ ∣(1 + r)F

′(r)∣ = 1 +
√

2, we deduce that:

∣A3∣ ≤ (1 +
√

2)C̃δ.

Denote by

k(α, ϵ, δ) ∶= 2δ (
√

2C√
ϵ
+ δ) + ∥∇B∥∞ [mα

u(4Cϵ) + δ
√

8Cϵ] + (1 +
√

2)C̃δ,

we retain that ∆1 ≤ k(α, ϵ, δ). For ∆2, from Lemma 2.15 and since g ∈ C1, we have:

L ∶= sup
n∈N
∥∇θn∥∞ < +∞.

We deduce that:
∣∆2∣ ≤ 2∥w∥∞L

√
2Cϵ.

Finally, we treat ∆3. Let x̄∗ = (0, x̄2) and x̄′∗ = (0, x̄′2). Using that

Φn̄(t̄, x̄, t̄′, x̄′) ≥ Φn̄+1(t̄, x̄∗, t̄′, x̄′∗),

we deduce that:

w(t̄′, x̄′, n̄) −w(t̄′, ψn̄(x̄′)) − u(t̄, x̄, n̄) + u(t̄, ψn̄(x̄)) ≤ −
1
2ϵ
∥x̄ − x̄′∥2 + 1

2ϵ
∣x̄2 − x̄′2∣2

+ δ[F (∣x̄2∣) − F (∥x̄∥)]
+ δ[F (∣x̄′2∣) − F (∥x̄′∥)]
+ α((n + 1) − n).
≤ α.

We used crucially that F is non-decreasing and that ∣x̄2∣ = ∥x̄∗∥ ≤ ∥x̄∥, as just after a
jump, the potential is reset to zero.

6. For k̃(α, ϵ, δ) ∶= k(α, ϵ, δ) + 2∥w∥∞L
√

2Cϵ + α, we have β ≤ k̃(α, ϵ, δ). As

lim sup
α↓0

lim sup
ϵ↓0

lim sup
δ↓0

k̃(ϵ, δ) = 0,
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there exists α(β) > 0, ϵ(β,α) > 0 and δ(β,α, ϵ) such that

∀α ∈ (0, α(β)),∀ϵ ∈ (0, ϵ(β,α)),∀δ ∈ (0, δ(β,α, ϵ)), k̃(α, ϵ, δ) < β.

This choice is a contraction with β ≤ k̃(α, ϵ, δ). Therefore, for those values we necessarily
have t̄ = T or t̄′ = T . We conclude that

Φn̄(t̄, x̄, t̄′, x̄′) ≤
1
2
(mα

w +mα
u)(2Cϵ).

However, when ϵ is small enough, this contradicts (4.7). This ends the proof.

5 Examples
To illustrate numerically the results, we consider the drift b(y) = −y. The controlled process
is:

Yt = y + ∫
t

0
(−Yu + γu)du − ∫

t

0
Yu−dNu, t ∈ [0, T ], y ∈ R.

We present two examples using different prior distributions and intensity functions. We first
consider an intensity function of the form

fλ(y) ∶= λ exp(2(y − 1)),

and a prior distribution

µ ∶=
k

∑
i=1
piδλi ,

where ∑k
i=1 pi = 1 and k ≥ 2. In order to satisfy the assumptions, the function fλ can be

artificially bounded by a constant C > 0 so that it does not play an essential role. It is
noteworthy that this family of priors is conjugate: the posterior distribution retains the same
form, with updated weights (p1, . . . , pk). However, within our framework, the dimensionality
of the problem is reduced to 2, as opposed to the original k − 1.

We solve numerically the PDE, using a standard explicit scheme. The analysis of the
convergence of this explicit scheme towards the unique viscosity solution of (4.1) can be
done using the methodology of [3, Th. 2.1.].

In Figure 1, we present a simulated path of the optimal strategy, where the initial measure
is given by m0 ∶= 1

10 (δ0 + 2δ0.25 + 4δ0.5 + 2δ0.75 + δ1) and the true parameter value is Λ = 1.
The top graphic illustrates the evolution of the potential over time. The second graphic
depicts the optimal control, while the third and fourth graphics show the mean and variance
of the posterior distribution, respectively. Finally, the bottom-left graphic displays m0 as a
histogram, and the bottom-right graphic presents mT .

Throughout the trajectory, the controller applies a control t↦ γt that stays close to one.
Near the terminal date, after the final jump, the control becomes small, as increasing the
potential further is not worth the cost.

Although the prior is centered at λ = 0.5 with a low probability assigned to λ = 1, the
mean of the posterior distribution increases on average. By the end, the posterior distribution
assigns the highest probabilities to λ = 0.75 and λ = 1, while excluding λ = 0 and almost
completely ruling out λ = 0.25. It is important to note that the posterior probability of λ = 0
immediately becomes zero as soon as a jump is observed.

For the second example, we modify the intensity function as follows:

fλ(y) ∶= λ [
1

1 + e−100(y−1) ] .

This function provides a continuous approximation to the discontinuous function (λ, y) ↦
λ1{x≥1}. In the case of the discontinuous function, for x < 1, the controller must decide
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Figure 1: An optimal trajectory with intensity λ exp(2(y − 1)) and with the prior
distribution 1

10 (δ0 + 2δ0.25 + 4δ0.5 + 2δ0.75 + δ1). True value is λ = 1.

whether to increase the potential to 1 or not. Once the potential reaches 1, it remains fixed
thereafter. The continuous version introduced here should exhibit similar overall behavior.
For the prior distribution, we choose the uniform probability measure on [0,2]:

µ ∶= U ([0,2]) .

In Figure 2, we present a simulated path of the optimal strategy, where the true parameter
value is Λ = 1. The graphics illustrate the same functions as in Figure 1, with the distinction
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Figure 2: An optimal trajectory with intensity close to λ1{y≥1} and the prior U ([0,2]).
True value is λ = 1.

that the bottom-left and bottom-right panels display m0 and mT as density functions,
respectively.

Throughout the trajectory, the controller applies a control t↦ γt that increases until the
potential reaches a value slightly larger than Yt = 1. At this point, the control makes a jump
to a value close to γt = 1. Since the drift of the potential is given by −Yt + γt, setting γt = 1
once the potential reaches 1 is optimal, as there is no incentive to exceed this value. As
the terminal date approaches, following the final jump, the control value decreases; further
increases in potential become unfeasible due to the associated costs.

22



The prior begins centered on the true value. While the potential remains below one, it
remains almost unchanged since we cannot obtain information about Λ. Once it reaches one,
both the mean and variance decrease linearly. When a jump is observed, the mean increases,
while the behavior of the variance depends on the specifics of the observation. However,
the variance generally decreases over time. Although the prior is symmetric at λ = 1, the
observation of a jump excludes the value λ = 0, leading to a density of zero at that point. In
contrast, the density at the upper boundary, λ = 2, remains positive, nonetheless close to
zero.
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