Long-range entanglement from spontaneous non-onsite symmetry breaking
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We explore the states of matter arising from the spontaneous symmetry breaking (SSB) of Z> non-
onsite symmetries. In one spatial dimension, we construct a frustration-free lattice model exhibiting
SSB of a non-onsite symmetry, which features the coexistence of two ground states with distinct
symmetry-protected topological (SPT) orders. We analytically prove the two-fold ground-state
degeneracy and the existence of a finite energy gap. Fixing the symmetry sector yields a long-range
entangled ground state that features long-range correlations among non-invertible charged operators.
We also present a constant-depth measurement-feedback protocol to prepare such a state with a
constant success probability in the thermodynamic limit, which may be of independent interest.
Under a symmetric deformation, the SSB persists up to a critical point, beyond which a gapless
phase characterized by a conformal field theory emerges. In two spatial dimensions, the SSB of
1-form non-onsite symmetries leads to a long-range entangled state (SPT soup) - a condensate of
1d SPT along any closed loops. On a torus, there are four such locally indistinguishable states
that exhibit algebraic correlations between local operators, which we derived via a mapping to the
critical O(2) loop model. This provides an intriguing example of ‘topological quantum criticality’.
Our work reveals the exotic features of SSB of non-onsite symmetries, which may lie beyond the
framework of topological holography (SymTFT).

Symmetry provides a guiding principle to character-
ize quantum phases of matter. A simple example is i
the Zy global symmetry, e.g. [[, X; in the d-space di- CZij = fﬁ?
mensional transverse-field Ising model *Z@ 27 —
9> _; Xi, which exhibits an ordered (disordered) phase
due to the presence (absence) of spontaneous symmetry
breaking. To date, there has been substantial progress
in generalizing the conventional global symmetry in var-
ious ways to describe various exotic quantum orders (see
Ref.[1] for a review).

In this work, we show that even the global Zs; sym-
metry, arguably the simplest symmetry, when realized
in an unconventional manner, can lead to novel quan-
tum states of matter. Specifically, we consider the non-
onsite realization of a Zs symmetry (non-onsite sym-
metry for short) such as U = [], U; 41, which is com-
posed by commuting two-qubit unitary operations and
U? = 1. This is in contrast to the conventional symmetry
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FIG. 1: We discuss the spontaneous breaking of two
types of non-onsite symmetry: (a) the global (0-form)
symmetry consisting of controlled-Z gates in 1d and (b)
the 1-form symmetry consisting of controlled-Z gates
along any closed loops C in a 2d honeycomb lattice.
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realization, which is onsite - symmetry generator com-
posed of products of single-site unitary operators such
as [[, Xi. One can also take a further step to define a
higher-form non-onsite symmetry by considering overlap-
ping multi-qubit unitary gates acting on deformable sub-
dimensional manifolds. The key question that we will be
exploring is: when these non-onsite symmetries are spon-
taneously broken, what states of matter may emerge? As
we will show below, the spontaneous non-onsite symme-
try breaking leads to several exotic features, e.g. includ-
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ing a gapped phase with the coexistence of trivial /non-
trivial SPT (symmetry-protected topological) order [2, 3]
in 1d, as well as four locally indistinguishable states with
power-law correlations in 2d.

Non-onsite symmetries: we begin by properly
defining a non-onsite symmetry. Given a lattice, we can
equip it with a tensor-product Hilbert space by putting
a qubit (or qudit) on each vertex (or link, plaquette, ...).
A site is a grouping of neighboring qubits, and different
sites do not overlap. Conventionally, symmetries are as-
sumed to be onsite, i.e. the symmetry transformation
can be implemented by a depth-1 circuit

U: ® Usa (1)
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and each local gate U, is supported only on site s !.
We call a symmetry non-onsite if its symmetry operator
cannot be written as above under arbitrary grouping of
neighboring qubits. Note that an onsite unitary U un-
der the conjugation of a finite-depth local unitary circuit
V generically leads to a non-onsite symmetry VUV, but
the classifications of quantum phases under both symme-
tries are identical. We therefore focus on the intrinsically
non-onsite symmetries, which cannot be brought onsite
by conjugation of any (finite-depth) unitary operator?.

Non-onsite symmetry breaking in 1d: as a simple
starting point, we consider a periodic 1d lattice consisting
of N qubits with even IV, and define a global non-onsite
Zo symmetry Ucyz = Hi CZi,i-l-lv where CZi,i—i—l is the
controlled-Z gate on two neighboring qubits on site ¢ and
i + 1. Ucyz is intrinsically non-onsite since there does
not exist a unitary operator that can transform Ucy to a
product of non-overlapping local unitary gates (see Ap-
pendix.IT A for proof). The key idea of the proof is to
compute the trace tr Ucz, and show that it possesses a
constant prefactor that distinguishes it from the the trace
of any global Z, onsite symmetries.

To explore the physics of spontaneous non-onsite sym-
metry breaking, we would like to construct two states
that can be transformed into each other by Ucyz and are
both the ground states of a local Hamiltonian symmet-
ric under Ugz. One choice ® we can adopt is |+>®N and
|cluster) = Ugy, |[+)®Y. The former is an X-basis product
state and the latter is the so-called cluster state [4]. They
correspond to a trivial and a non-trivial SPT respectively
under the Zy x Zo symmetry generated by [],., X; and
[I;c. Xi, with o/e denotes the set of odd/even sites [2, 3].
The spontaneous non-onsite symmetry breaking there-
fore suggests the coexistence of trivial/non-trivial SPT
orders in the ground subspace of a local Hamiltonian.

One question immediately arises: does there exist
a gapped, local, Ugz-symmetric Hamiltonian with the
trivial /non-trivial SPT coexistence to manifest the spon-
taneous Ugyz symmetric breaking? Notably, we con-
struct such a Hamiltonian * by drawing inspiration from
the O’Brien-Fendley Hamiltonian [6], which exhibits an
order-disorder coexistence and spontaneous breaking of
Kramer-Wannier duality symmetry [7]. Our Hamiltonian
reads

1 For instance, the unitary transformation II; U2i—1,2; on a 1d
lattice define an onsite symmetry since the two vertices 2¢ — 1, 2¢
can be grouped to define a site.

We note that (i) performing a duality transformation or (ii)
adding ancillae can bring an intrinsically non-onsite symmetry
into an onsite symmetry. See Appendix.I for details.

For instance, non-onsite symmetry breaking forbids the Pauli-Z
product state |0)®N as one ground state since Ucyz acts trivially
on such a state.

Using the framework of MPS (matrix product state), Ref.[5] de-
rived an alternative gapped parent non-onsite symmetric Hamil-
tonian with the two-fold degenerate ground states |+)®N and
|cluster). The Hamiltonian reads H = 3, h; + Uczh;Ucyz with
hi =(B=-X)(1-Z; 1 X Zip1)—(1+ X)) (X1 Xip1+Yi—1Yig1).

IS

H = Z(l — Xi)(1 = Zit1Xi42Zi43)
' (2)
+ Z(l — ZiXiy1Zit2)(1 — Xiy3)

3

This Hamiltonian is frustration-free, and every local term
annihilates both |+)®" and |cluster), so both of them are
the ground states of H. Using the technique of Ref.[8],
we analytically prove that these two states are the only
ground states and there exists a finite energy gap in the
thermodynamic limit (see Appendix.II B, II C). Later on,
we will discuss the stability of the non-onsite symmetry
breaking under symmetric perturbations, but for now, we
focus on the physics of this specific Hamiltonian and its
ground states.

The two-fold degeneracy allows us to define a long-
range entangled ground state |¢) o [+)®" + |cluster) °.
|t} cannot be connected to a product state using finite-
depth unitary circuits or constant-time adiabatic Hamil-
tonian evolution. To see this, one notices that there ex-
ists another state [_) o |+)®" — |cluster), which is
locally indistinguishable from |4} (see Appendix.IID for
proof). It follows that both of them cannot be connected
to a product state via local unitary circuits, based on the
Lieb-Robinson bound [10, 11].

Is there an intrinsic physical property to manifest
the long-range entanglement? For a long-range entan-
gled state arising from spontaneous symmetry break-
ing, one essential feature is the long-range correlation
among charged operators. A simple example is the GHZ
state (o [0)® + 1)) associated with the spontaneous
breaking of the global Z; symmetry Ux = [[, X;, in
which case the (Z;Z;) = 1 for arbitrarily distant 4, j. In
particular, since Z; is charged under the symmetry Ux
(meaning U;(Zl-UX = —Z,;), one has (Z;) = 0. Conse-
quently, (Z;Z;) is the same as the connected correlator
(Z;Z;) — (Z;) (Z;), whose non-zero value directly diag-
noses the long-range entanglement.

Similarly, for diagnosing the long-range order of the
|¢) arising from the spontaneous breaking of the non-
onsite symmetry Ucy, we can first find a corresponding
local charged operator. Intriguingly, unlike the onsite
symmetry Ux, which has a unitary charged operator,
any valid charged operator of Ucz cannot be unitary
(it is not even invertible) since the trace trUcy # O.
To see this, imagine we have a charged operator O,

meaning UCZOU(TJZ = —0. Assuming O has an in-
verse, then one has O~ 'UgzO = —Ucgy. Taking trace
on both hand sides gives trUcyz = —trUcz = 0, lead-

ing to a contradiction since trUcz # 0. Therefore, O

5 This state has first appeared in Ref.[5, 9], but the physics was
not explored in details.



does not have an inverse 6. Indeed, we find a non-
invertible charged operator O; = X;(1 — Z;_1Z;41) =
Xi — Zi—lXiZi+1 with U(TjZOiUCZ = 701', which follows
from X; «— Z;_1X;Z;,1 under the conjugation of Ugyz.
Via a straightforward calculation (Appendix.ITE), one
finds (0;0;), = (0;0;5) — (0;) (0;) = 1 for any i # j
when N — o0, thereby diagnosing the long-range order.

The above analysis confirms the symmetry-breaking
order of [¢)) o |+)®" + |cluster) via the order parameters
(i.e. the non-zero correlations among charge operators).
On the other hand, another common feature of symme-
try breaking is the vanishing (or exponentially small)
disorder parameters, defined by the expectation value
of a truncated symmetry generator with respect to the
symmetry-broken long-range entangled state. Heuristi-
cally, the vanishing disorder parameter implies that the
domain wall does not proliferate (i.e. they are not con-
densed), thereby giving the ordered phase. Indeed, we
explicitly compute the disorder parameter by truncating
Ucz symmetry and find it decays exponentially with the
system size (Appendix.ITF).

So far we have mostly focused on a specific Hamil-
tonian H (Eq.2) to discuss the spontaneous non-onsite
symmetry breaking and the coexistence of two distinct
SPTs. Do these features persist under certain pertur-
bations without a gap closing? Here we show that the
spontaneous non-onsite symmetry breaking admits a sta-
ble gapped phase by considering certain non-onsite sym-
metric perturbations. Since the Hamiltonian H has a Z3
symmetry generated by [[;c, Xi,[[;c. Xi and the Ucz,
it is natural to consider a perturbation V that preserves
all these three symmetries: V = >, Z; X;11Z; 13 X4 +
Zi XiZi+1Xi+2 Zi+3' This leads to the deformed Hamil-
tonian H = H + gV with H = (1 — X;)(1 —
Zi+1Xi+QZ7;+3) + (]. — ZiXZ'+1Zi+2)(]. — Xi+3) defined in
Eq.2. Alternatively, H' may be expressed as (up to a
constant)

H =-2> (Xi+ Zi-1XiZis1)

(2

+(1+g9) Z(ZiXi+1Zi+2Xi+3 + X Ziv1Xi42Zi13)

3)
We also note that H’' cannot have a trivially-gapped
phase due to the type-III mixed anomaly of the Z3 sym-
metry [12, 13].

Combining analytical arguments and the numerics
with Density Matrix Renormalization Group (DMRG)
[14, 15], carried out using the ITensor library[16], we es-
tablish the phase diagram in Fig.2(a). Below we dis-
cuss the essential features of the phase diagram with

6 Having a non-invertible charge operator is not a unique feature
of non-onsite symmetries. Certain onsite symmetries can also
have a non-zero trace, thereby having a non-invertible charge
operator. See Appendix.I C for details.
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FIG. 2: (a) The phase diagram of H'(Eq.3) and the cor-
relations of non-invertible charged operators (OgO,;) as a
function of perturbation strength g at a fixed x = 60 and
N = 120. Right inset: in the Ucz SSB phase, (0y0,) sat-
urates to a constant with the separation x. Left inset: in
the CFT phase, (OgO,) ~ ™% with v(g = —1) = 2.108,
v(g = —0.8) = 1.858, v(g = —0.6) = 1.517, and v(g =
—0.4) = 0.903. (b) Entanglement entropy Syn in the

CFT phase. a = £ ~ 1 with ¢ being the central charge.

selected numerical results in Fig.2. The remaining nu-
merical results supporting the main text can be found in
Appendix.II G.

We find a critical point ¢ ~ —0.4 that separates the
gapped phase with Ucyz spontaneous symmetry breaking
(SSB) and the gapless phase described by a conformal
field theory (CFT) with a central charge ¢ = 1. A rep-
resentative of the former is at ¢ = 0, which gives the
frustration-free gapped Hamiltonian (Eq.2) with two de-
generate ground states |+)®" and |cluster). A repre-
sentative of the latter is at ¢ = —1, which gives the
model (3, —X; — Z;_1X;Z;41), ie. the critical point
of a second-order transition between a trivial /non-trivial
SPT under Zy X Zs symmetry [17-19].

In the Ugz SSB phase, we numerically find that the
energy difference between the two lowest eigenstates de-
cays with the system size N (presumably vanishes as
N — o00) while the energy difference between the third
eigenstate and the second eigenstate remains finite as



increasing IN. The order parameter 0;0; with O; =
X, —Z;_1X;Z;y1 saturates to a non-zero constant at long
distances (Fig.2(a)), providing a direct diagnosis of the
Ucz SSB phase.

In the CFT phase, we numerically compute the bipar-
tite entanglement entropy and find ¢ ~ 1 by fitting the
data into the scaling form Syx = £log [g sin(%)] +
const [20, 21], where ¢ is the central charge, and x is
the size of a subregion (Fig.2(b)). We also find power-
law correlations among two distant local operators, which
serves as another signal for the critical phase. In partic-
ular, this phase includes the point ¢ = —1, described by
the model >, —Z; X;11Z;42 — Xi41. It can be mapped
to two decoupled critical transverse-field Ising chains via
a KT transformation [22], implying its ¢ = 1 CFT na-
ture. Furthermore, by a bosonization technique [23], one
finds the term ZiXi+1Zi+2Xi+3 + XiZi+1Xi+ZZi+3 is a
marginal perturbation, which provides an analytical ar-
gument for the stability the CFT phase as well as the
continuously varying critical exponents in the correlation
functions (see Appendix.ITH).

Finally, sending g — oo gives the model
Y i ZiXi1Ziy o Xiy3+ XiZi11Xi422;43), whose frustra-
tion graph [24, 25] is the same as that of the model
i ZiZis1Ziv2Ziy3+y; Xi. Thelatter is known to be at
a first-order critical point separating a disordered phase
and a ‘modulated’ phase [26, 27]. As a result, our model
at g — oo is at a first-order quantum critical point.

2d 1-form non-onsite symmetry breaking - SPT
soup: now we extend the discussion to 2d and ex-
plore the physics of the spontaneous breaking of a 1-
form non-onsite symmetry. We consider a honeycomb
lattice with periodic boundary conditions and define
qubits on vertices. We define the 1-form symmetry as
U= H@j)eloop CZ;j, i.e. the product of CZ gates acting
along any closed loops, including both the contractible
ones and the non-contractible ones. All the contractible
1-form symmetries can be obtained by taking the prod—
uct of local plaquette symmetry: U, = H (ijYep CZyj, ie
the product of six CZ gates acting along the plaquette p
(see Fig.3(a)).

To explore the 1-form non-onsite symmetry breaking,
we first consider the following state:

V) o [T +0) 1) (4)

By expanding the product, |¢) can be further expressed
as

Z H CZi; |4+) =

C (ijyeC

Z [SPT)e [+)e- (5)

|SPT), denotes a Zo x Zjy cluster-state SPT along the
contractible loop C, and |[+)z denotes the Pauli-X +1
product state for the qubits not on the loop C. In other
words, |¢) is a superposition of loops of 1d SPT orders
(see Fig.3(b)), and hence we name it SPT soup. Also,
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FIG. 3: (a) 1-form non-onsite symmetry generators on
a honeycomb lattice. (b) The SPT soup [¢) is a con-
densate of Zs X Zs SPT cluster states on 1d loops

since the expectation value of 1d SPT entangler for any
contractible loop C, i.e. (¢|[];;;yec CZij[¥), is equal to
one, |¢) can be understood as an 1d SPT condensate in
the 2d lattice.

Our proposed SPT soup |¢) also connects to the liter-
ature on SPT phases subject to measurements. Specif-
ically, Ref.[28, 29] show that measuring a Zj type-III
fixed-point SPT [12, 30] on a triangular lattice and post-
selecting the measurement outcomes leads to a long-
range entangled state, while the entanglement structure
and the lattice wave function are not explored in detail.
It turns out the measurement-induced state is exactly the
SPT soup |¢) that we propose above (see the derivation
in Appendix.ITT A and Ref.[31]). With a similar calcula-
tion (Appendix.IIIB), we also derive an SPT-soup-like
wavefunction obtained by measuring one sublattice of
the Levin-Gu SPT [32], and argue the long-range entan-
glement based on its mixed anomaly between a 0O-form
(global) onsite symmetry and a 1-form non-onsite sym-
metry.

Now we discuss the signatures of long-range entangle-
ment of the SPT soup from a few distinct perspectives.
First, |¢) cannot be prepared from a product state us-
ing finite-depth local unitary circuits. This is because
one can construct three other orthogonal states (in ther-
modynamic limit) that are locally indistinguishable on
a torus, which indicates the long-range entanglement of
these states via Lieb—Robinson bounds [11]. Specifically,
starting from the state |¢)) in Eq.4, we can apply a prod-
uct of CZ gates along a non-contractable loop winding in
Z direction, denoted by Wr_. This leads to

We, () o< > [T €%y 1+) (6)
C

z (ij)ECy

where C, is any closed loop winding along Z direc-
tion. |¢) and Wr_|y) are expected to be orthogonal
from each other in the thermodynamic limit (see Ap-
pendix.ITI C), but nevertheless, are locally indistinguish-
able: (Y| Wr OWr_|¥) = (| Oy) with O being any
local operator with a finite support. This is because one
can always deform Wr_ so that it does not overlap with
O. Similarly, given [¢), one can apply Wr, i.e. a prod-
uct of CZ gates along a non-contractable loop winding
in ¢ direction. Therefore, Wr_ and Wr, give rise to four
locally indistinguishable ground states. ThlS also implies



that if their local parent Hamiltonian H respects the 1-
form non-onsite symmetries, these symmetries must be
spontaneously broken at zero temperature.

While the local indistinguishability is a feature shared
with the Z toric-code topological order [33], which ex-
hibits a spontaneous 1-form onsite Zy symmetry breaking
[1, 34-37], the 1-form non-onsite symmetry broken states,
i.e. SPT soup |¢), do not admit a local, gapped parent
Hamiltonian since there exist local operators whose two-
point function decays algebraically [38, 39]. Specifically,
by dividing the honeycomb lattice into two interlacing
sublattices A and B colored in green and blue in Fig.3,
we find Z;, Z;, on the A sublattice (see Appendix.IIID
for derivation):

S ()l l2mer
Se( 512N

Here C is the configuration of contractible loops, and C’ is
the configuration of contractible loops where there always
exists a loop v connecting 74 and j4. The expression
above is exactly the 2-leg watermelon correlator in the
O(2) loop model with the loop tension K = %, which

is at a critical point that separates a dilute phase and a
dense phase [40, 41]. At this critical point, the 2-leg wa-
termelon correlator is known to decay algebraically [42]:

! (8)

lia — jal’
Since the SPT soup is symmetric under the Z, symme-
try [[;c4 Xi, namely [],c 4 Xi[¥) = |[¢), (Zi,) vanishes
identically. This implies the algebraic decay of two-point
connected correlation functions (Z;,Z;,) — (Z; ) (Z;,),
providing an alternative signature of long-range entan-
glement.

Summary and discussion: In this work, we have
discussed the physics of spontaneous non-onsite symme-
try breaking through lattice models in 1d and 2d. There
remain many interesting questions to be explored.

As we discussed in our 1d example, the SSB of non-
onsite symmetry can lead to the coexistence of distinct
SPT phases. A natural extension is to consider more
general types of non-onsite symmetry and explore the
physics of SPT phase coexistence in various space dimen-
sions. In particular, if a trivial/non-trivial SPT coexis-
tence can be realized in a lattice model beyond one space
dimension, by a duality approach, one can further realize
the coexistence of distinct topological orders, which may
lie beyond the framework of topological quantum field
theory.

Recently there has been a surge of interest in using
mid-circuit measurement and feedback unitary to effi-
ciently prepare long-range entangled states [4, 5, 28, 43—
64]. Can we design a constant-depth measurement-
feedback protocol to prepare the non-onsite symmetry
breaking states, e.g. |+)®" +|cluster) in 1d and the SPT
soup in 2d? In Appendix.ITI, we present one such proto-
col that can prepare |1h+) o |+)®" & |cluster) where the

W1 ZisZjs [¥) = (7)

(W1 ZinZja |t0) ~

+,— sign (determined by the measurement outcomes)
is obtained with probability %, é when N — oco. Such a
protocol can also be generalized to (probabilistically) pre-
pare the superposition of any constant number of short-
range entangled states, which may be of independent in-
terest. Whether [¢1) can be deterministically prepared
in constant depth remains an open question 7.

On the other hand, it remains elusive how to prepare
the 2d SPT soup [[,(1+ Up) )Y in constant depth,
even probabilistically. One naive attempt is to start from
|+>®N and measure U, on every plaquette. The state
trajectory with the measurement outcomes U, = 1 on all
plaquettes corresponds to the SPT soup. However, the
measurement outcomes are generically random and need
to be corrected. Since [[, U, = 1, the outcomes U, = —1
will come in pairs, which nevertheless cannot paired up
with depth-1 unitary circuits due to the non-zero trace of
U,. This is in contrast to the measurement-based prepa-
ration for the Z, toric code, where the pairs of defects
(plaquette stabilizers with the —1 measurement outcome)
can be annihilated with a depth-1 unitary string opera-
tor. Our 2d SPT soup therefore presents an intriguing
example where ‘abelian Z; defects’ 8 cannot be efficiently
annihilated.

The physics of the 2d SPT soup also deserves further
exploration. Can one diagnose its long-range entangle-
ment via entanglement entropy? Can one construct a
1-form non-onsite symmetric, local parent Hamiltonian
with the SPT soups being the only four ground states®?
Relatedly, such a Hamiltonian must be gapless due to
the algebraic correlations of the SPT soups. Is this a
generic feature of non-onsite symmetry breaking in 2d
and higher dimensions? Those questions remain to be
better understood.

Finally, recently there has been fruitful progress in us-
ing the framework of Topological Holography / Symme-
try Topological Field Theory (SymTFT) to classify quan-
tum phases in d space dimensions from a topological or-
der in one higher space dimension [65-75]. Within this
picture, for a given global Zs symmetry U that is bro-
ken spontaneously in 1d, there exists an emergent (dual)
symmetry - a point-like operator, which is charged un-
der U and preserves the ground-state subspace. How-
ever, we are not able to find such a dual symmetry in
our lattice model, which also relates to the difficulty
of finding a local operator that connects the two states
-+ & |cluster). We leave a detailed discussion from
the aspect of SymTFT in Appendix.IV.

7 Ref.[5] presented an alternative constant-depth adaptive protocol
based on MPS (matrix product state) fusion, which can prepare
the state |+)®% + |cluster) with (i) success probability 1 in 1d
with open boundary condition and (ii) success probability ¢ =
O(1) < 1 in 1d with periodic boundary condition.

8 U, = —1 is regarded as an abelian Zy defect since Ug =1

9 Ref.[29] proposed a parent Hamiltonian of the SPT soup, but
that Hamiltonian also possesses other classical product states as
ground states.



Note added: During the completion of this
manuscript, we became aware of an independent, forth-
coming work [31], which studies the gapless correlations
that can arise in SPT states after measurements, and
also investigates the wavefunction (Eq.4) and its alge-
braic correlations in this context.
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I. GENERAL REMARK ON NON-ONSITE SYMMETRY
A. Non-onsite to onsite symmetries via duality

Here we show that the intrinsically non-onsite symmetry Ucz =[], CZ; i1 can become an onsite symmetry under
a Kramer-Wannier duality. To start, we consider a 1d lattice of even number of vertices, and write Ucyz as

1 Zi, Zi*Zi_ZzéZifZi
Ucz = [[CZ2i-22i-1CZ2i—12: = [ | T 221+ 22 222 2i-2Z2i-122i )

i
A Kramers-Wannier duality on the even sublattice gives the following mapping for local operators symmetric under
[1; Xai:
Xoi = ZoiZoive, Z2il2iv2 — Xoita. (10)

As a result,

Ucz = U = HCX%—L% (11)
i

and U’ is onsite by grouping the adjacent qubits on vertex 2i — 1 and vertex 2i.

There could also exist non-onsite symmetries that cannot be brought onsite even under a duality transformation.
We expect the anomalous Zy symmetry [76] generated by Uczx = [[, CZ; 41 ]]; Xi in 1d is one such example, as
we argue below based on SymTFT description (see Appendix.IV for more discussion). Within this description, this
anomalous symmetry corresponds to a semionic anyon line in the 2d bulk topological order. A duality transformation
in a 1d system corresponds to a change of reference gapped boundary. No matter what duality transformation we
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apply, the dual symmetry of Usz x is always given by the same semionic anyon line from the bulk, hence also being
anomalous. This suggests no duality can bring the anomalous Uczx operator onsite.

To conclude, we expect that there exist three hierarchies for non-onsite symmetries. The first hierarchy includes the
symmetry operators that can be made onsite by a conjugation, i.e. there exists a unitary operator V, such that the
symmetry operator U = V([[, Us)VT. The second and the third hierarchies are intrinsically non-onsite symmetries,
where the former includes the operators that can be brought onsite by some duality transformations, and the latter
cannot be brought onsite even under dualities. The non-onsite Ucyz symmetry studied here is a representative of the
second hierarchy.

B. Equivalence between onsite and non-onsite symmetries with ancillae

Let us consider introducing an ancilla qubit at state |+)_ on each even site of the spin chain. There is a global
symmetry [], 75; on the ancilla state. With this Zy symmetry and the non-onsite symmetry Ucyz, one can define a
diagonal non-onsite symmetry Z$: Uy = [LCZi i 11 T2 After the conjugation of the finite-depth local unitary
circuit

1
V= H 3 (1 + 75+ CZ2i-12iCZ2i 2i41 — TQZiCZ2i71,2iCZ2i,2i+1)7 (12)

Uq is mapped to the onsite symmetry U}, = [], 73;. Therefore, we see that non-onsite-ness is not stable, in that a
non-onsite Ugoyz symmetry in the second hierarchy becomes intrinsically onsite, after including ancillae and taking the
diagonal symmetry.

We also note that if considering the two additional symmetries Z$ and Z9 generated by omnsite unitaries U, =
[1; X2i, U, = ], X2i4+1, which together with Ucz forms a type-IIT mixed anomaly [12, 13], under the conjugation of
V, U, and Uy become

1
Ul = HXQi "3 (1 + 75 + Zoj—1 22141 — TQZiZQi—IZZH-l);
’ (13)
U, = HX21‘+1,

where the Z§ symmetry becomes non-onsite. In fact, due to the anomaly, there is always at least one non-onsite
symmetry operator no matter how we make conjugation.

C. Onsite symmetry can also have non-invertible charge operators

In the main text, we show that any unitary symmetry with a non-zero trace cannot have invertible charged operators.
The charged operator X; — Z;_1X;Z; 1 of the non-onsite symmetry Ucy = HZ CZ; ;41 is one such example. However,
some onsite symmetries can also have a non-zero trace, hence having a non-invertible charged operator. For instance,
consider a 1d lattice of qutrit, with a local Hilbert space spanned by 3 computational bases |0),|1),]2), one defines a
global Zy onsite symmetry U = [],(|0) (1| +|1) (0| 4 |2) (2|)i, which exchanges between |0) and |1) on every site while
acting trivially on |2). U is onsite but due to its non-zero trace, the charged operator (i.e. O; = |0) (0] —|1) (1| ) must
be non-invertible.

II. DETAILS ON 1D NON-ONSITE SYMMETRY BREAKING
A. Proof for intrinsically non-onsite [[, CZ; ;11 symmetry

Here we show that Ucz =[], CZ; 41 is intrinsically non-onsite by a proof of contradiction. To start, we calculate
the trace of Ucyz on a length-IV chain:

trUcz = 2V (+1®Y Uz [+)Y = 2V - (41" [eluster) = 227, (14)

where we have used (+|®" |cluster) = 2!=%. We assume there is a unitary conjugation that can bring Ucyz to

a translational invariant onsite operator &) =/ 1" u, where u is a local unitary acting on each site that contains m
neighboring qubits. Since a matrix trace is invariant under unitary conjugation, one should have
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N/m
trUcy = tr ®u . (15)

s=1

To proceed, we notice that for any two unitary operators U4 and Up acting on the Hilbert space H 4, H g, the trace
of their tensor product over the Hilbert space Hap = Ha ® Hp satisfies

tI“AB(UA®UB) = (tI‘A UA)(tI'B UB). (16)
This implies
trUcz = (trgu)V/™ = gN/m (17)

where k = trs u is the trace of u on the 2™-dim local Hilbert space. In particular, since Ucz generates a Zo symmetry,
the eigenvalues of u; are +1, which implies that the trace k must be an integer. On the other hand, comparing Eq.14,
Eq.17, one finds

&

k=2%FwN, (18)

which is an integer only when m = N. This contradicts the assumption that Ucz can be brought onsite by a unitary
conjugation and a regrouping of constant m neighboring qubits into a single site. Therefore, we conclude that Ucz is
intrinsically non-onsite.

B. Proof of the two-fold ground-state degeneracy

Here we prove that the frustration-free Hamiltonian (Eq.2) H = Y .(1 — X;)(1 — Z; 41 Xi40Ziq3) + > ,;(1 —
ZiXi11Zi12)(1 — X;,3) only has two ground states, i.e. |+)®" and |cluster). Our proof strategy is inspired by the
proof technique presented in Ref.[8], which proves (i) the ground state degeneracy of O’Brien-Fendley Hamiltonian
[6] with order-disorder coexistence in one space dimension and (ii) the ground state degeneracy of a frustration-free
Hamiltonian with the coexistence between a product state and toric-code ground states in three space dimensions.

First, our Hamiltonian respects the two Z» onsite global symmetries given by U, = [[;coqq Xi» Ue = [Liceven Xi-
This indicates H and these two symmetry generators share the same eigenstates, so the ground states of H can be
divided into four subspaces labeled by the eigenvalues of U,, U,: (1,1),(1,-1),(—=1,1),(=1,—1). We will first focus
on the sector (U,,U,) = (1,1). Later we will see that the other three sectors contain no ground states.

In the subspace with (U,,U.) = (1,1), we first perform a KT duality transformation U [22, 77], which gives the
following operator mapping:

U'Zi 1 XiZiaU = Zi 1 Ziga

19
U'X,U = X; 19)

This operator mapping leads to a dual Hamiltonian:
H=Y (1-X)(1=Zi1Ziy3) + Y (1 = ZiZis2)(1 — Xiys) (20)

It’s simple to see that H has at least five ground states, i.e. a disordered X-basis product state, and four other Z-basis
states with ferromagnetic orders on odd, even sites:

I+ &N,
000...), [000...), , [111...), |111...), (21)
000...), |111...),, [111...),]000...),

In the subspace with U, = U, = 1, these 5 states will be reduced to only two states: |[+)®" and |GHZ)  |GHZ),, with
|GHZ),,, = % [|000...)0/e +|111...), |, i-e. the GHZ state on odd (even) sites.

o/e —
Below we show that these two states are the only two ground states of H. In particular, since KT duality transfor-
mation is a unitary evolution in the symmetric subspace of U, = U, = 1, this implies the |+>® and |cluster) are the
only two ground states of H in this subspace as well.
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To begin with, since H is a sum of local projectors, any ground states |1)) must be annihilated by each local term:
PiQiy2 [Y) = QiPiy2 1Y) =0 (22)
with
Pi =1- Xi;
Qi=1—-2Z;i 171

In the subspace with U, = U, = 1, any states can be expanded in the X basis as

(23)

/
=Y ¥l (24)
ae{""v_}N
where Z;E{Jr N denotes a restricted sum over o with [[;c 400 = [Licepen @i = 1.
Eq.22 provides a relation among amplitudes (o) of various basis |o). To see this, we first consider the action of
P;Q;12 on a product state |o)

P,Qii2|...0i0i410420;43...) = {O . . for o; =+ (25)
21|...0i0i410i+20i4+3...) — |...0:0i410i+2043...)] for oy = —
with ; = —o;. Therefore the constraint P;Q;12 |¢)) = 0 implies
U(...0i0;410i4+20;+3...) = U(...0;0;110;+20+3...) for o; = —. (26)
Similarly, the constraint Q; P2 |¢) = 0 implies
U(...0i-10;0110;42...) = U(..T;-10;041042...) for ;40 = —. (27)

The above two relations can be summarized as follows:
Rule 1: Given a configuration |o) # H—>®N, if 0; = —, one can flip 041,043 or flip g;_1,0;_3 to arrive at the
configuration ¢’ and the amplitude must be equal, i.e. ¥ (o) = (c’).

Rule 1 further implies the following;:
Rule 2: if 0; # 0,42, then we can exchange o; and 0,15 without affecting other signs. Namely,

e — O+ e — 40— ... (28)

To see this, without loss of generality, let’s consider the consecutive five spin configurations: o7 — o3 + 05, and
there are four choices of (o1,075):

(1) (01705):(—,—) — 4+ 03— — &; — —0o3+ —.
(2) (01,05) =(—+): —4o3—+ 24 — o34+
3) (01,05) = (+,—): ++o5—— 28 4+ oot
(4) )

1,3 —
4) (01,05) = (+,+): ++o3—+ O

M — —03+ +

3,5

M *4’0'377
03 4 gy
M + —03+ —
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ﬂ + —o3 + +

where the numbers (e.g. 2,4) right above the left-right arrows denote the indices for the flipped spins. Combining the
results of the above four cases proves Rule 2.

One application of Rule 2 is that for any ¢ # + + +..., one can move all the — signs on odd (even) sites into
contiguous subregions on the odd (even) sublattice, e.g.

+ = = = =+ 4
+-0-0-0-C-0-"-0-"-0-C-0--
- -+ + o+ o+, (29)

where the spins not shown in the figures are all in the + sign. We note that the number of — signs on the odd
(even)sublattice must be even due to the constraint [];c 440 = [[;ccpen @i = 1. Combining Rule 1 and Rule 2, all
the — signs on the odd sublattice can be annihilated, and the number of — signs on the even sublattice will be reduced
to two, i.e.

o+t
- -+ + o+ T+ (30)

The analysis above shows that all the X-basis states |0) with [, 400 = [liceven @i = 1 that are not equal to
|+)®N can all be connected, so the corresponding amplitudes are the same. Consequently, any ground states of H in
the subspace U, = U, = 1 can be written as

W =alh)™N +e S o), (31)
oF+++...
&1licoaa oi=1
iceven Ti=1
Alternatively, it can be written as
W)y =di [ +dy D o). (32)
HiEndor;, ;=1
o;=1

i€even

This shows that H only has two ground states in the symmetric subspace

|+)®Y  and > o) o |GHZ), |GHZ), (33)

o
[Ticoqq oi=1

i€even ;=1

By a KT transformation (Eq.19, a unitary transformation in the subspace U, = U, = 1), one has the mapping
H+— H
14N |4)®N (34)
|GHZ) , |GHZ), <— |cluster)

QN

This implies that in this symmetric subspace, H only has two ground state |[+)°" and |cluster)

Proving the ground states of H must only exist in the symmetric subspace U, = U, = 1:

Here we prove that the ground states of H must only exist within the subspace with U, = U, = 1, thereby
establishing the two-fold ground-state degeneracy of H. To prove this, it is sufficient to show that when expanding
the ground states in X basis |o), the wave amplitude ¢(o) can be non-zero only when [[;c,q4 i = [Liceven i = 1-

To see this, one can write a general ground state on the X basis

6) = ¢(0)]o). (35)

Following the same strategy as above, one can derive the relations among wave amplitudes based on the local projectors
in the Hamiltonian H = ZZ(l - Xz)(l - Zi+1Xi+2Zi+3) + Zl(l - ZiXi+1Zi+2)(1 — Xi+3):

¢(~~0—i0—i+10i+20i+3-~) = 042 ¢(~~~0iﬁi+1o—i+26i+3~') for g; = —.

36
¢(-~~O—i—10—io—i+10i+2~~) = 0; ¢(...Ei_10iﬁi+10i+2...) fOI‘ 42 = —. ( )
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Alternatively, the relations can be summarized with the following rules:
Rule 1: given a configuration |o) # |-+)®", if 0; = —, one can flip 0,41,0443 to obtain the configuration ¢’ with
d(0) = gip0¢(c’), or flip 0;,_1,0;_3 to obtain the configuration ¢’ with ¢(c) = g;_2¢(c”).

Following the analysis before, Rule 1 implies the following:

Rule 2: ¢(...+0;—...) = 0;¢(... —0; + ...), i.e. exchanging o;_1 and o;11 (with the codition o;_1 # ¢;41) introduces
a sign o; in the amplitudes. There are four classes of X basis product states:
(1) (Hieodd Ois Hieeven o—i) = (]‘7 1)

When o # + + +..., the wave amplitudes ¢ (o) for all o in this class are all the same, up to a + sign depending on
o. Therefore the ground state in this subspace must be written as

D =alt)™ e Y o)), (37)
oF+++...
&Ilicoqaoi=1
o;=1

i€even

®N and |cluster).

meaning there are only two ground states, i.e. |+)
(2) (ITicoqa @i> Iiceven @i) = (1, —1): all the o configurations can be connected using the spin-flip rule above, meaning
the corresponding amplitudes o (o) are all the same up to a + sign. In particular, one finds ¢(c) = 0 by considering
the following: starting with o with a single — on an odd sublattice with ¢(... + — 4+ 4+ + ...), one has

Pt —F++) B gl ——+— ) Z g+ ———.)

R (38)
2 = =+ —+++.)

=

Lo —F—— 4. ) B g — )

where the plotted signs are for o; with ¢ = 1,2,3,4,5, and R;,Rs above the equal signs indicates the use
of Rule 1 or Rule 2. Also, note that the third equal sign is accomplished by sequentially moving the — sign on
o5 towards the right until stopping at o1. The above shows that the amplitude ¢ = 0 for the X basis states in this class.

(3) (ILicoda @i> I Liceven @i) = (—1,1): using the same analysis as above, ¢ = 0 for any o configurations in this subspace.

(4) (I;coqq @is Iiceven @i) = (=1, —1): using the Rules above, all the configurations in this class can be connected to
...+ ——++... with only two neighboring — signs on o9, 03. Keep applying Rule 2, one can move the minus signs from
09 t0 04, 0, all the way back to o3, with a minus sign in the amplitude: ¢(... + — — 4+ 4+ ..) = —d(... + — — + + ..),
which implying ¢ = 0.

To conclude, the ground states of H only exist in the subspace with U, = U, = 1, so |[+)® and |cluster) are the
only two ground states of H.

C. Proof of a finite energy gap

In this section, we prove there is a finite energy gap above the ground state subspace of the frustration-free
Hamiltonian in (2). Our strategy is largely inspired by the one used in [8].

We assume that the system size L is a multiple of an integer n > 2. We coarse-grain the lattice by a factor of n so
that each new site, labelled by L =1, ..., %, contains the n sites i = n(I —1)+1,...,nI. Consider the local Hamiltonian
restricted to I and 1 + 1

n(I+1)—2

hrgs = Y. (PQiy1+QiPiys), (39)
i=n(l—1)+1

where P, = 12X and Q; = 122Xz
Following the same proof in [8], one can lower bound H by another Hamiltonian H := Zfi " HI{ 141, Where Il7 11
is the projector onto the (nontrivial) kernel of hy j4+1. More precisely, one can prove that

H>eH (40)
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where € > 0 is the smallest positive eigenvalue of h; ;11 and € is independent of I due to translation invariance but
can depend on the size of new site n. Due to frustration-freeness, H has the same groundstates as H, so proving the
finite energy gap of H implies H also has a finite energy gap. Let’s denote the finite energy gap of H as A and that
of H as A.

We use the Knabe’s argument[78] to prove the finite energy gap of H. We want to prove that H? > AgH. Since
H is positive semi-definite, the above inequality implies that A > Aq. Following [8], one can arrive at the following
expression of Ag

Ag=1—25,, (41)

where §,, is defined as 6,, == ||II; 7411741742 — 7 741 A g1 142]], where || - || is the operator norm and A is the
orthogonal projection.
Thus, the gap A of Hamiltonian H in (2) satisfies

A>1-26,. (42)
We shall derive an upper bound of §,, below, where many calculation details differ from those in [8].

Upper bound on §(4, B):
We consider restricting the Hamiltonian to a local connected region A,

ha= Y. (PQit1+QiPia), (43)

i€A+3EA
where P; = % and Q; = % are projectors. hp is the sum of terms that are entirely supported in region
A. Using the argument presented in IIB, we can show that for |A| > 4 and, for simplicity, |A| is even, hp has five

ground states,

Ha =4+t (D)= I CZuml+++-t, (L= J[ CZinl—++.4)
i€EN+1EA i€EN+1EA
(L=1)y= JI CZinl+—+-H, [L=-Dr= ] CZinl-—+-4
i€EA+1EA 1€EAF1EA
(44)

where |(m,n)), (m,n = +£1) are nothing but cluster state defined on an open interval A in symmetry sector (m,n).
The five ground states have the following inner product relations:

A<+|(m= n)>A = olAl/2° A<(mlvnl)‘(ma n)>A = 6m”m5n',n' (45)

Consider two overlapping and connected intervals A and B such that |A] > 8, |[B| > 8, and |[ANB| > 4. Let
A’ == A\ B and B’ := B\ A. Note that A, AN B, and B’ are also connected intervals. Without loss of generality,
we can assume the following geometry for A and B

A B

m labels the symmetry charge on the red sublattice and n labels the symmetry charge on the blue sublattice. The
labeling of the boundary qubits will be used later in the proof.

Before deriving the overlap between ground states in A and B, we want to emphasize a trick that is going to be
extensively used in the rest of the proof. We notice that|(m,n)) 4, can be decomposed as

[(myn)) 4 = CZa,argr [(m, 1)) 4 (1, 1) g = CZaata [(1,1) 40 [(m:0)) g s (46)

where intuitively it means that the information of the symmetry charge sectors (m,n) can be put into either region
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A’ or region AN B. Then, we have
Al = 1H)p
Allm,n)[+) g = 4 {(m; )| 4np (1L DICZa.at1 [4) anp [+) 5
1
= SlAnBl/2 [4+) g 4 {(m, )] (47)
Allm,n)|(m'.n"))) g = 4 ((m,n)] 4n5{(1, 1)ICZa,0a+1CZp-1,51(1,1)) g [(m', 7)) .
= 1)) o)+ ) ()

Note that IIoI14up = Hauplla = ll4uB, and similarly for Iz, because of frustration-freeness. Frustration-freeness
also implies that I14 Allg = IT4ypB.
Now, let’s consider the quantity of interest

6(A, B) = lLallp — 4 Allg| = [[Hallp — Haug| = [[(I1a — Haus) (g — Maug)]. (48)

In order to prove this bound, we consider an equivalent characterization of §(A, B) in terms of states instead of
projections:

6(A, B) = sup{|(¢[x) | : [¥) , Ix) € Haus, (Y|P) < 1, (x|x) <1,
(ITa = Iaug) [¥) = [¥) , (s — aus) [x) = [x)}-

Note that the condition (IT4 — ITayug) [¢)) = |¢) means that |¢)) is a ground state in A and it is orthogonal to the
ground states in AU B, and similarly for |y). So we can write them as

) = 1) a e p + D 10mm)) 4 [t »

(49)

m,n==21 (50)
|X> = |X+>A’ ‘+>B + Z ’X(m,n)>A/ |(m7n)>B7
m,n==%1
for some states |14, ) € Hp and |x4), )€ Har
Restricting [¢) and |x) to be orthogonal to the ground states in A U B gives the following relations
1
0= AUB<+|w> = B’<+|¢+>B/ + olA[/2 Z B/<+‘7/)(m,n)>31
m,n==21
0= aup((mn)le) = 4 p{mn) )4l g+ D auplmn)(m',n)) 4 [Yim ) g
m’/ ,n'=+1
1
= sz s s+ S LD 4l )ICZs 1,0 10m ) g [ g
m’/,n'=+1
_ 15 ) 1 ) 1) 15 ) 1 ) 1)
- WB’<(mvn)|w+>B/ + Z B’<(1’ 1)|(§ m,m/n,n’/ + 52,8 m,m’In,n’ + 5 m,m/n.n’ — 52,8 m,m/’ n.ﬁ’) Y >B’
m/,n'==+1
1 1 1 1 1
= a7 5 )5+ 5 (D )+ 3 (1D B g + 5 (G Domm) 5 = 3 (L D)
(51)
Similarly, we have
1
0= 4up{tlx) = o (+s) 0 + SIB1/2 Z A X mam) ) 4
m,n==21
0= 4up(+IX)
1 1 1 1 1
2|B|/2 A’<(m n)|X+>A'+2A<(1 1 ||X(mn)>A/+2A/< |X(mn)>A/ 2A'< 1 1 |X(mn)>Az_2A/< 1 _1 |X mn)>

(52)
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The constraints on the norms give

1> (@ly)
1
- B <7/}+W}+>B’ + Z B/<¢(m,n) |1/}(m,n)>B/ + W Z (B/<w+|’l/}(m,n)>B/ + B/<¢(m,n) |1/}+>B’)

4 1
> (1- W) p{4) g + (1 — W) ZB/<¢(m,n)|‘/’(m,n)>B/

m,n

1> (xIx)

1
= A <X+|X+>A/ + Z A/<X(m,n) ’X(m,n)>A/ + W Z (A/<X+’X(m,n)>A/ + A/<X(m,n) ’X+>A’)

m,n m,n
4 1
> (1- W) A XX 4+ (1= W) ZA’<X(’”7”)‘X(’"*”)>A"

m,n

The overlap between [¢) and |x) is

Wx) = A’<+|X+>A’ B'<¢+|+>B/ + ZA<(m7”)|+>AmB |X+>A/ B/<w(m7n)}+>3/

m,n

+ ZA’<+‘X(W%“)>A/ B (V] AmB<+|(m’n)>B + Z B (Pms | A((m',n')|(m,n)>B |X(m,n)>A/
1
= STAHBN/2 Yo X)) a5 (B )

m,n,m’ n’

1 (54)
+ 9lANB[/2 Z A/<(ma n)|X+>A' B’ <¢(m,n)|+>3,

N

1
+ gm0 a(HXm) e g (U (mym))

N

+ Z B’<wm’,n/| A<(m/7 n/)|(m7 n)>B ’X(m,n)>A/ s

’ ’
m,n,m’,n

where we used (51) and (52) to obtain the first line of the second equation. Now our goal is to pull out an exponentially
small factor from the fourth line of the second equation, then we can bound |{1|x)| by a sum of exponentially small
numbers.

We first compute ,((m’,n’)|(m,n))z in the fourth line and it can be written as

Al n)[(m,n)) g = 4 (1, D] gr 5 (M) C 20 041CZp 1,8 [(my 1)) 4n 5 |(1,1)) .

1 1
= AL DI GO O (L+ Za+ Zs + ZaZs) + 0 murn(l = Za+ Z = ZaZs) (55

1
Ot it n (1 + Za = Zs = ZaZg) + J0mr mOn(1 = Za = Zs + ZaZﬁ)) 1(1,1))
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Then the fourth line becomes

Yo w0 () g X)) 4

m,n,m’,n’

1
- Z ZA’<(1> 1)|X(m,n)>A/ B’ </l/}(m7n)’(17 1)>B' + Al (L 71){X(7ra,n)>A/ B/<¢(m,n)|(17 1)>B’

+ o (LD Xmm) 4 P (1 1)) 5+ 4 AL =D X)) ar g (Pmm [(1,=1))
+ LD X)) 40 (Peman [(11) g = A =D Xmm)) 47 o Wemamy (1, 1) g,
+ AL D X)) 40 g (Dmmy [ (=1, l>>p;/ A =D X)) 4 g (P [ (=1,1)) )
+ 4 AL D X)) 4 5 B [(11) o+ (L =D[Xnm)) 4 e Wommy [(1:1) s
= 2@ D Xmm) 4r g (P [(1, = >Bf = A =D X)) 4 g (P |(=1,1))
+ \<<1~U\\ o)) ar g (Wmmy [(1:1) >L,/ - ,< L=D)|X(mm) 47 g Pmm|(1,1)
ALY X nm) 4 (W (-1 D[X(man)) a2 pr{¥mm [(=1,1) ,

= § Sl )y (il 1>>B, - B/<w<m,n>\<—1, D)+ g (B (D) g = g ] (1 =1) )

+ A/<<1’ _1)|X(7n,n)>A/<B/<’(/}(m,n }(17 1)>B’ + B/<w(m,n)‘(17 _1)>B’ + B/<w(m.ﬁ)’(1a 1)>B/ - B/<’(/](m,ﬁ)|(_17 1)>B/)
+‘4/<(1-1)‘X(,,1./7)>A/< 3/ < (m, 11)‘ >//+]))/<(-"(/7mz)‘(71-1>>“/+];f<1 (m,n) ‘(l l)> ”/<(~'(m‘u\]|<7l'l)>/;/>
- A/<(17_1)|X(m,n)>A/(B/<¢(m,n)’(171)>3/ + B/<¢(ﬁl7n)|(_171)>31 + Bl<w(ﬁz,ﬁ)|(1a 1)>B/ - <w(m n)‘ 1 1 >B’)’

we colored the terms that will be grouped together and the summation inside each parenthesis can be simplified using
(51). Then, we get

S Wl (0|1, 1)) g [ X)) 4

’ ’
m,n,m’n

1 1
T 22042 Z - A’<(1a 1)‘X(m,n)>A’ g (U4l(m,n)) g — A’<(1’ _1)’X(m,n)> 5 (Y+lm,m)
- A'< 1 1)|X(m n)>A/ B/<w+|(m7n)>B’ +A/<(17_1)|X(m,n)>A/ B’<'I/}+|(m7n)>3/

22|A|/2 Z( A’ 1 1 |X(mn >A/ A'<(17_1)‘X(m7n)> _A/<(171)|X(ﬁb,n)>A/ +A’ (1’_1)}X(7h,n)>A/> B’<w+|(m7n)>B’

1
= STAHBD 2 > almn)xa) ar gy l(mn)) .

(57)
Finally the overlap between |¢) and |x) is given by
1
Wlx) = STATBN2 Z X)) 4 e (D iy |+) o
m,n,m’,n’
1
+ 2lANBI/2 Z A’ <(m7 n)|X+>A’ B/<w(m,n) |+>B’

r (58)

1
+ 9lANB[/2 ZA’ (Hxm) ar g (Y] (m, 1)) .
m,n

1
+ sarEngs Do ar (M) a g lm, ) g



19

The absolute value of (¢|x) can thus be bounded by

1
(W)l < SUAHIBN/2 Z A/<+|X(m,n)>A/ B,<1/)(mgn') +)p
2|AOB|/2 Z A/ m n)|X+ A’ <¢(mn |+>
(59)
+ WZ T Xm) ar || g ([ (M m)) s
1
+ SATTIBD 2 A’<(m7n>|x+>A’| g (1 l(m,n)) 5|
We then try to bound each line separately. For the first line, we have
S |t xemm)a|| s B |4 )
m,n,m’,n’
2
2 Z A’<+|X(man)>A” \/QZ B’<
60
<2 Z Al X(m )| X(m/ ') A/ Z B/<’L/)(m’ n’) 1p(m n’ > ( )

m’,n’

2

- 1
\/ - 2|B|/2 - 2\4\/2)

where we used the norm constraints (53) to get the third inequality, and assumed that A and B are large enough to
get the last inequality. The second line can be bounded as

D allmn) ) ar e (Pmm |[+)
=\
W > (o Vom0 o

m,n

\/ - 2IBI/2 - Q\A\/2)

A’ m n |X+ A’ <w(m n)|+

Similarly, we have

>

m,n

g (Yrl(m,n))

a (Fxm) a4 <2 (62)
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Finally, the last line reads

>

m,n

S

g (@ l(m,n)) g,

A ((mym) X +) 40

| g (W (m,0")) g,

m,n,m’,n’
2 3 | W ()

Z m’ (63)

< 2 b a o 0
2

- 4
\/ 2\13\/2 Q\A\T?)

Combining those inequalities, we have

Al ((m, n)|X+>A’

() x4 4

8 4
Whal < sramanzz + ganere (64)
for all sufficiently large A and B. Given the definition of §(A, B) in (49), it follows that
8 4
A B) < samEnsz + gianEE (65)

D. Proof of local indistinguishability

Here we prove that the two states ﬁi (|[+) £ |cluster)) are locally indistinguishable in the thermodynamic limit.

First, we fix the normalization constant Z.:

Z1 = ({+| £ {(cluster|) (|+) £ |cluster))

66
= 2 + (+|cluster) & (cluster|+) (66)

With (+|cluster) = (cluster|+) = 272+, we find Z. = 2 +2-2+2 which becomes Z4 = 2 in the thermodynamic
limit N — oo. -
We proceed to compute the reduced density matrix on an interval A by tracing out its complement A:

1 1 1 1
pa+ = — |+) (+|4 + = trg (|cluster) (cluster|) £ — tr (|+) (cluster|) £ —— (try |cluster) (+]) (67)
’ Zy Z+ Zt Z+
For the third term:
trz (14) (cluster]) = trg (|+) (+1, ® [4) (+1xUcz.aU0zaUcz.0) (68)

where Ucz 4,Usy, 7, Ucz,s denotes the product of controlled-Z acting only in A, A, and the bipartition boundary. To
proceed:

tr (|4+) (cluster|) = |[+) (+]| 4 Ucz,a trg (|—|—) <HZUCZ,ZUCZ,6>

(69)
= +) (+l4 Ucza {(+1zUczzaUcz0|+)7,

and we will show that this quantity decays exponentially with the size of A.
_To start, we label the qubits in the interval A by the index ¢ = 1,--- ,n, where n is the total number of qubits in
A. Then (+|zUqy, zUcz,0 |+)7 can be computed in the computational basis (o; = 0,1):

(HxUpzalUczo )z =2"" > (=1)70otoroztfonona, (70)

01, 0N
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where 0¢,0x 11 denotes the two qubits (in the computational basis) in A on the two end-points of A. There are two
cases corresponding to even n or odd n.

(1) Even n: in this case, when summing over the odd spins in A4, i.e. 01,03, ,0,_1, we have
(HlxUozaUczo )z =27 Y. dloo=0a=04="-=0n)(—1)7V7" =273 (=1)707%+  (71)

02,04 ,ON

In terms of operators, one finds

N
(HlzUczaUczol+)z=2"2CZynt1 (72)
which decays exponentially in the size of the A. -
(2) Odd n: in this case, when summing over the odd spins in A4, i.e. 01,03, - ,0,_1, we have
_n#1 _nf1
(+[zUczalUczol+)z=2" 7 Y dloo=0r=04="=0n11) =22 6(00 = 0ps1). (73)

02,04 ,0n—1
In terms of operators, one finds

,nTJrl 1 + ZOZn+1

(HaUozalczol+)x =2 5

which decays exponentially in the size of the A.
In either case 1 or 2, the quantity decays exponentially, and therefore, one finds the local indistinguishability when
the subregion A is of constant size.

lpa+ —pa—ll, <O(e*N) (75)

with a being a O(1) constant.

E. Calculation of order parameters

Define the local operator O; = X;(1 — Z;_1Z;1+1) charged under Ucy, we compute the two-point function w.r.t.
) = Z5 (1) + [cluster)):

1
(0,0;) :§[<+|®N 0,0; 1+)2N ¢ (cluster| 0,0 |cluster) (76)
+ (+®Y 0;0; |cluster) + (cluster| 0;0; RS

We have (+|*V 0,0, |9 = (trivial| (1 — Zi_1Zis1)(1 — Z;1Z;1) |[9)®Y = 1 for i # j. Similarly,
(cluster| O;Oj |cluster) = 1 for ¢ # j. In the thermodynamic limit, the last two terms vanish, and thus (O,;0;) =1 for
any i # j.

F. Calculation of disorder parameters

Here we consider the disorder operator H?;ll CZ; ;41 and calculate its expectation value w.r.t. [|¢) =
L (|+>®N v \cluster)):

n—1 n—1 n—1
1
<H CZi,i+1> :E[<+|®N H CZ,’7¢+1 ‘+>®N + (cluster| H CZi,i-ﬁ-l |cluster>
i=1 i=1

=1
n—1 n—1
+ (Y ][ CZiisa Ieluster) + (cluster| [ [ CZ; i1 [+)®7] (77)
=1 =1
2 n—1 n—1
= (—i—\@N H CZ; i+1 |+>®N + <—|—|®N H CZi i41 |cluster)
i=1 i=1




Calculation of (+]®V [Tr2)! CZioa |[H)EV:
This quantity can be calculated as

n—1
<+‘®TL H CZi’i+1 |+>®TL — 2777‘ Z (71)2:::—11 0i0it1

i=1 {oili=1,2,3,--- ,n}
with each o; =0, 1.
e Even n:
Summing over o; with i =1,3,5,--- ,n — 1 gives
n—1
(" T CZiisa [+)°" =27 727 > §0=0y=04=--=0,)=2"%
i=1 {0i]i=2,4,6,-- ,n}
e Odd n:
Summing over o; with ¢ =1,3,5,--- ,n gives
n—1 il —n41
<+|®nHCZi,i+1|+>®n:2in2”2 Z 5(0:0—2:04:...:(7”_1):2%
=1 {cili=2,4,6,-- ,n—1}
Calculation of (+|*V ]_[:»:11 CZ; ;41 |cluster):
Since |cluster) = Hf\il CZ; i+1 --)®Y | one has
n—1 N
(+HN TT €2 letuster) = (+1%V T CZii1 |4)°Y
i=1 i=n
N
i=n
2 *7"-1 for even n
T 127"F""% foroddn

Combining the results above, one finds

n—1
<H Czi,i+1> =
=1

Therefore, if we first take the thermodynamic limit (N — o00), the expectation value of the disorder becomes

n—1 n
272 for even n
CZZ'L - —n+1
<H1 ’“> {2 5" for odd n

which decays exponentially in the size of the disorder operator.

27% 4 2° Ngnfl} for even n

2

N—n

S ID b *%} for odd n

NTERNT

G. Numerics on the parent Hamiltonian

Here we provide additional numerical results for the Hamiltonian in Eq.3.
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FIG. 4: (a) Exact Diagonalization results for the energy gap AF1, the energy difference of the two lowest eigenstates,
versus total system size N in the non-onsite symmetry breaking phase. AF; decreases with IV, presumably will
decay to zero and give two-fold ground state degeneracy in the thermodynamic limit. (b) Log-log plot of AFE;
versus N at various g in the CFT phase. By fitting the data with the function %, we find 0 very close to 1,
consistent with the gap scaling of the CFT phase. (c) AEs, the energy difference between the second lowest and
the third lowest eigenstates, versus N for various g in the non-onsite symmetry breaking phase. The data suggest
a constant energy gap when increasing N. (d) Correlation function (OyO,.) of the non-invertible charged operators
versus distance x at a fixed N = 240 for various g. In the non-onsite symmetry-breaking phase (¢ £ —0.4), the
correlation approaches a constant as increasing NN, which implies a long-range order. In the CFT phase (¢ < —0.4),
the correlation decays to zero. (e) In the log-log plot of (OyO,) in the CFT phase, one finds the algebraic correlation
(0gOy) ~ xz77. () Log-log plot of (ZyZ,) versus distance x at N = 240 for various g. In the CFT phase, (ZyZ,)
exhibits an algebraic decay ~ x~"7. In the non-onsite symmetry breaking phase, (ZpZ,) decays exponentially to 0.

H. Stability of ¢c =1 CFT from bosonization

Here we present a field-theoretic argument about the stability of the ¢ = 1 CFT phase around g = —1. First, when
the model is slightly perturbed away from g = —1, the Hamiltonian takes the form:

Z —ZiXig1 g2 — Xip1 = M X122 X3 — AXi Zi1 X223, (84)
where \ controls the perturbation strength. Using a KT transformation [22, 77|, defined by the following mapping of
local operators:

Zi 1 Xilijp1 = Li1Ziq
Xi — X,‘

The above Hamiltonian can be mapped to

H(\) = Z —Z2i 2242 — Xoi — Zaiv122i+3 — Xoiy1 + A2iZipoXoiys + AX0i 22112243
i (86)

+ Aoi4122i43X2i14 + AXoit1 224229444,
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which is described by two decoupled critical Ising chains (living on even and odd sublattices) perturbed by three-body
interactions. The two decoupled Ising CFT can be bosonized into a compact boson [23], where we can identify the
following mapping from Ising local operators to compact boson operators (to the leading order)

Z9iZai41 ~ oz, 7)o (x,T) ~ cos(p(x, T))

N (87)
XQ»L‘XQ»L‘J'_l ~ ZQiZQH_lZQi_;,_QZQi_._g ~ 5(3’], T) + S(Z, T) ~ COS(Qd)(Sﬂ, T)),

1

5 and the energy density operator £ has scaling dimension 1

where the spin operator o(x,7) has scaling dimension
in Ising CFT.

If we further apply a Krammers-Wannier transformation to the odd sublattice, we obtain the following Hamiltonian

H(\) = Z —Z2iZ2iv2 — Xoi — Zaiv1Z2i+3 — Xoiv1 + AoiZoiroZ2i1322i45 + AX2i X213
i (88)
+ AX2i43X0i1a + A2iy122i4222i+322i44

The perturbations Xo;45X0i+4 + Z2i+1Z2i+222i+3%2i+4 generates a marginal perturbation cos(2¢(x, 7)) that varies
the boson compactification radius continuously [79]. The perturbations Xo; Xo;13 + Z2; Z2i4+222i+3Z2i+5, which differ
the formers by only a lattice translation on some operators, would at most generate the marginal perturbations
cos(2¢(x, 7)) and the rest would be of higher-order irrelevant terms. By this perturbative argument on the scaling
dimensions of the perturbation, we therefore expect a finite range of the ¢ = 1 CFT phase around g = —1, which is
also consistent with our numerical calculation of the central charge.

Remarks on the critical exponents: here we present some additional remarks on the critical exponents of the
correlation: (ZyZ,) and (OyO;) (for even x). At g = —1, using the KT transformation, these two correlations can
be mapped to (ZoX1X3.. X, 17,) and ((Xo — Zn-171) (Xz — Zyx—1Z2+1)) with respect to the ground state of two
decoupled critical Ising chains on the two sublattices. We then apply the following lattice to continuum correspondence
for the primary fields

Za: ~ 0'(33), ZIZerQ ~ 1+ 5(.’13), Xg: ~1-— g(]}), X0X2X4-~-Xm ~ /L(.’E), (89)

where the same mapping also applies to lattice operators on the odd sites and we use 7, p, and & to denote their
corresponding Ising primary fields. Then, the two correlation functions can be simplified to correlation functions of
Ising primary fields

1

<Z(JX1X3...X$_1Z$> = <Z0ZI> <X1X3...Xa;_1> ~ <O’(O)O’($)> </7(0)/7(.I‘)> ~ m

(90)
~ 1

(Xo = Zy120) (Xo = ZomrZos)) ~ EOE(@)) + (EO)E(@)) ~ =
The above two critical exponents %, 2 are close to the exponents 0.481 and 2.108 obtained from our numerics, see
Fig.4(e)(f). As we turn on the perturbation A, numerically we see the critical components are continuously varying.
This agrees with our previous argument that the perturbation is exactly marginal and would modify the compactifi-
cation radius of the ¢ =1 CFT.

I. State preparation via measurement and feedback

Here we provide a measurement-feedback protocol (i.e. adaptive circuit) to prepare the state |—|—>®N + |cluster) with
probability % in the thermodynamic limit.

To start, we initialize the N physical qubits in the |4) state. On each bond connecting two physical qubits, we
place an ancilla qubit in |+) and transform these N ancilla qubits into a GHZ state via a constant-depth adaptive
circuit (the generation of the GHZ state can achieved by measuring a cluster state followed by unitary feedback [4],
or just measuring all the neighboring two-qubit ZZ Pauli operators followed by unitary feedback). It follows that the
physical and ancilla qubits are in the state [000...), |+>®N +111...), |—|—>®N. Now we apply a layer of unitary gates,
each of which is a CCZ gate acting on the two neighboring physical qubits and one ancilla qubit in between. This
gives state [000...), [+)EY +111..), TIY, CZiaa [H)EY =1000...), [+)® + [111...),, |cluster).

Now we perform the single-qubit X measurement on all the ancilla qubits. Denoting the measurement outcome
by {zi+%}, a corresponding pure-state trajectory is H)@N + Hf\;l Tip1 |cluster). As such, the sign is solely given
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IGHZ) 4 o [000...)q + |111...), CCzZ 1000...)o|+)®Y + [111...)4|cluster)

H(Cj'

FIG. 5: Measurement-based state-preparation protocol: (a) We first add a chain of ancilla qubits
in the GHZ state, which can be prepared in constant depth with measurement and feedback. (b)
A single CCZ gate (]0)a(0lc + [1)a(1/aCZ12) acts on two physical qubits and one ancilla qubit

in between. (¢c) After extensively applying CCZ gates, performing single-site X measurements
N
>®

on all ancilla qubits produces |+ + |cluster) with probability % in the thermodynamic limit.

by global parity of the measurement outcome Hf\]:l Titis and in the thermodynamic limit, the probability having
Hij\;l Ty =1-1is 1. As a result, the state (|+)®Y + |cluster)) can be prepared in constant depth with a constant

probability % in the thermodynamic limit. Below we make two remarks:

(1) While the above protocol produces [¢)1) o< |+) £ |cluster) where the sign + determined from the measurement
outcome is probabilistic, the reduced matrix on a local region is, in fact, deterministically prepared since |i)
is locally indistinguishable in thermodynamic limit. Therefore, post-selection is not needed for experimentally
measuring the local order operators.

(2) The protocol can be generalized to prepare the superposition of any O(1) number of short-range entangled pure
states (i.e. the states that can be prepared by constant-depth local unitary circuits) with O(1) success probability. For

instance, we can prepare the superposition of a Zs symmetric product state (i.e. |—|—>®N) and the Zo Levin-Gu SPT
state [32]. Such a state can further be deterministically converted to a superposition of the (Zs topologically ordered)
toric code state and the (twisted Zs topologically ordered) double semion state by a Kramer-Wannier duality, which
can be implemented by measurement and feedback in constant depth [28].

III. 2D SPT SOUP
A. Derivation of the SPT soup wavefunction

Here we show that implementing measurements (with post-selecting the measurement outcomes) on a Z3 SPT gives
rise to the SPT soup wavefunction defined in Eq.4.
Following Ref.[30], we consider a triangular lattice, with each vertex accommodating a qubit. The fixed-point Z3

SPT is given by ‘wzg> = [[A CCZA |+), where CCZ denotes the controlled-controlled-Z gate and the product is
taking over all small triangles on the lattice. Since the triangular lattice is 3-colorable, one can define the sublattices
A, B,C so that all neighboring qubits belong to different sublattices. It follows that ‘¢Z§> respects the following

three global (0-form) Zy symmetries acting on the three sublattices:

Us=[]X: Us=]][X: Uc=]]Xc (91)

1€A i€B i€C

The structure of the Z3 SPT wavefunction can be understood from the decorated domain wall picture[80], which
we review below. Consider a small patch on the triangular lattice involving four sites:

b

c (92)

where the sites a and a’ belong to the A sublattice; b and ¢ belong to B and C sublattices respectively. All four sites
are initiated in the |+) state and there are CCZ gates applied to (a,b,c) and (a’, b, ¢). The effect of the CCZ gates on
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b and ¢ can be seen by expanding a and @’ in the Z basis
CCZ(abc)CCZ(a/bc) |Za = S> |Za/ = S/> = [5375’ + (1 - 65,8’)Cz(bc)] |Za = S> |Za’ = sl> . (93)

This shows that if there is a domain wall between a and a’ (i.e. s # §), then one applies a CZ gate on that domain
wall, which is the edge connecting b and c. With this four-qubit example, one can now understand the structure of
the Z3 SPT wavefunction and write it as

‘¢zg> <> ) I C%Zijl+)se, (94)

(ieB,jeC)eC

where C denotes the loops (on the BC edges) that correspond to the domain-wall configurations of s. Namely, the
Z3 SPT can be understood as a condensate of A domain walls, where each domain wall is decorated by a 1d cluster
states living on the sublattice B and C.

Based on this structure, one can immediately see that by measuring the Pauli Z on all qubits on the A sublattice
with an outcome s, which also fixes the domain-wall pattern C(s), the post-measurement state on B, C reads

alsluzg)oc T CZyl+)pe = ISPTe Hlew - (95)
(ieB,jeC)eC(s)

where |SPT>C(S) is the 1d cluster-state SPT defined on B, C along the domain wall C(s), and all the other qubits not

on the domain wall, i.e. C(s), are in the Pauli-X product state |+).

This allows us to easily derive the state obtained by Pauli-X measurements on the sublattice A. Specifically, the
single-qubit Pauli-X measurement on the sublattice A (with the fixed measurement outcomes X; = 1) projects all the
qubits on A into |+) 4, and the corresponding post-measurement pure-state on B, C is:

a+[oz) o> a(s|va) x D ISPTc 1+)e (96)
s c

where we first expand 4 (+] in the Z basis, and then use Eq.95. This is exactly the SPT soup discussed in the main
text.

B. Levin-Gu SPT under measurements

With a similar strategy, one can also derive the post-measurement wavefunction obtained by measuring Pauli-X on
one sublattice for the Levin-Gu SPT [32] (also known as the Z SPT). On a triangular lattice, the Levin-Gu SPT is
defined as |1 z,) = UcczUczUz |+) [81], where CCZ denotes CCZ gates applied to every triangle, Ucy denotes CZ gates
applied to every edge, and Uz denotes Pauli-Zs applied to every site. Again we first divide the triangular lattice into
the sublattice A, B, C, and perform Pauli-X measurement on every qubit on the sublattice A. The post-measurement
state on B, C reads

|6) oca (+vz,) Z (s'] HCCZA [Tcz; H Z; |1+) (97)
(i5)
To proceed, we first note that

|HcczA = a6l ] <z (98)

(ZJ>€C( )

where C(s) denotes the domain wall of the configuration s on A sublattice. On the other hand,

A <S| H CZ” = H CZ” A <S| H CZ” H CZZJ
(ig) (z])EBUC i (icA,jEB) (teA,jeC) (99)

1-Tljenn(s),jeA 5

=| II oz HZi Y

L (i7)eBUC i€ BUC
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where Hjenn(i) jeA S denotes the product of three s on the three sites (belonging to A) that are the nearest neighbors

of the site i (belonging to either B or C). Combining the above results and using 4 (s|[[,c4 Zi =a (s|]];c4 i, one
finds

“jenn(i),jea 5

s (iyeC(s) i€ BUC i€A

|p) o< H CZ;; lH Z;

(ij)e BUC 1€ BUC

This can be further simplified by noticing that s and s = {—s;,Vi} have the same domain wall configuration C, i.e.
C(s) = C(3). This allows us to rewrite the summation over s as the summation over C:

I-Tljenn(i).jea %
2

ST czy [ z IE

s (if)eC(s) i€ BUC i€A
U i (101)
71ljenn(i).jea % 71ljenn(i).jea
:Z H CZU‘ H Z, 2 HSZ+ H CZij H Z; 2 Hgi
¢ | (igrec(s) i€BUC icA (ijyec(s) i€BUC icA
We consider the case with an even number of sites on the sublattice A, so [[;c48: = [l;ca5i- Also,
1=Mjenn(i) jea™s 1=ljenn(i)jea s
Z, 2 =2; Z; 2 . Therefore, Eq.101 can be simplified as

1-Tljenn(i),jea Si
i€ BUC C (ijyec(s) i€ BUC i€A
Finally, the post-measurement state can be written as

o | T[] Cz <1+ 11 Z)Z IT cz; ]I Zi—lfnje"“é“’je“"Hsi|+>BC (103)
C

(ij)e BUC i€ BUC (ijyeC(s") i€ BUC icA
This can be further simplified as
oo | ] Czi (1 + II Zi) 11 (1 + ﬁp) I+) go s (104)
(ijye BUC i€ BUC p

where l_'pr is an operator acting on the 6 qubits on the vertices of a plaquette p on the BU C"
0= I oz [ |-tz (105)
(ij)€p iep

This shows that |¢) respects the 1-form non-onsite symmetry generated by (71,, namely ﬁp |¢) = |¢p). Taking the
product of U, generates the 1-form symmetry along any contractible loops, e.g.

where the red wiggling curve depicts the two-body CZ gates and the orange dots label the location of the single-site
Pauli-Zs. It is also straightforward to see that |¢) respects the global Zy (0-form) symmetry generated by ], g o Xi-
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These two symmetries carry a mixed anomaly, which can be shown by the algebra between their truncated symmetry
actions. Specifically, we denote a truncated O-form symmetry operator as Uiune and a truncated 1-form symmetry
operator as Wiyyne. They create a loop-like defect (green circle) and two point-like defects (red dots) in the lattice
below:

We assume the two end points of the truncated string operator, v, and v, are far from each other, and both of
them are far from the green circle. The braiding between the loop-like defect and two point-like defects gives rise to

UtruncWtrunCUtTrunthTrunC = ( UI;L Xv) ( ]_;[1(_1) s ZviCZvi’vH—l) ( v];7[€ X”)T ( i];[(_l) ; Z”iCZUi’UH'l)T (106)

= Z’Ua Z’Ubv

up to a minus sign. Thus the operator Z,, near endpoint v, can be seen as the braiding between a loop-like defect
and one point-like defect. Furthermore, this operator and a loop-like defect have a nontrivial braiding phase,

Usranc Zo, Ugine Zo, = —1. (107)

trunc“va

There is a phase ambiguity in defining the local braiding operator near v,, which will be discussed later. This nontrivial
topological data between the symmetry defects indicates the mixed anomaly between the two symmetries [82]. This
mixed anomaly is analogous to the mixed anomaly between two O-form Zs symmetries in 1d discussed in Ref.[83-85],
and the above braiding phase is generalized from the 3-cocycle w(g, h, k) defined in Ref.[83]. We therefore expect |¢)
to be long-range entangled. A simple argument can be made as follows.

Suppose the state |¢) is a short-ranged entangled symmetric state, then Wiyune |¢) = S} |¢), where X is a local
unitary operator near v,, and ¥} is a local unitary near v,. We redefine the truncation of the 1-form symmetry as

Wtrunc = EaVVtrunca (108)

such that Wirunc |¢) = X} |¢). With the modified truncation, the braiding between the two point-like defects and a
loop-like defect is given by

UtrunthruncUtTruncWgrunc = UtruncEaWtruncUJrunthTruncZ:; = BaBba (109)

where B, is a local unitary near v,, and By is a local unitary near v,. Now we show the braiding between B, and the
loop-like defect still gives a nontrivial phase,

UtruncBaUtTruncBa
= Utrunc (UtruncEaWtFUHCUtTrunthTruncEjz) UtTrunc (UtruncEaWtrUﬂCUJrunthTruncEj;)
a a
= Utrunc (UtrunCEaUtTruncUtl‘unCWtTunCUtTrunthTrunc> ZJtrzUt]Lrunc (UtrunCEaUtTruncUtrunCWtTUHCUtTrunthTrunc) EIL
a a

(110)
= UtruncUtruncEaUJrunc (UtrunthruncUJrunCWtTrunc) ZZUtTruncUtruncZaUJrunc (Uv‘cruncI/Vtrunc[]Jr WT
a

trunc trunc) a
a

= z:alj‘crunc (UtrunthruncUgrunCWtTrunc) UtJrrunC (UtrunthruncUgrunCWtTrunc> E:fl
a a
= %N, =—1.
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In the above equation, we use (--- ), to denote the part of the operator (---) that is near v,. From the second line to
the third line, we took X! out of the bracket (---), because it is already a local unitary near v,. From the third line

to the fourth line, we took UiruncXa U,Erunc outside of the bracket, since it is a local unitary near v,. From the fourth
line to the fifth line, we used UZ,,. = 1. From the fifth line to the sixth line, we used Eq.106 and Eq.107.

On the other hand, we recall that Wiyune [¢) = X5 |6), and Uprunc |¢) = Lor |¢), where Lor is a unitary near the
boundary of region R. When v, and v, are far from each other and are both far away from OR, the two operators
commute up to some local unitaries near v, and vy,

UtrunCWtrUHCUtrunCWt]Lrunc B, By. (111)

Importantly, since both Upryne and Wipune locally stabilize state |¢), the local unitary B, also stabilizes |¢). Thus we
have

UtrunCB Utrunc Ba | ¢>

= Usrune BaUune |)

= UiruncBaLor |9)

= UpuncLor Ba |9) (112)
= UruncLor |0)

= UtrunCUtTrunc |¢>
=|9).

From the first line to the second line, we used the fact that B, stabilizes the state. From the third line to the fourth
line, we used that B, and Lsr commute, since they do not overlap. This equation directly contradicts the result in
Eq.110.

We note that the definition of B, above is ambiguous up to a phase, i.e., we can always assign an extra phase ¢
to B,, and phase —i to By, such that the braiding UiuncBa UtmnCBa becomes trivial. Nonetheless, we can define a
different braiding operator as C, = (UtmnCT/VtT W,

runc Utrunc trunc

)a, and the following phases

CaWtruncBaWtrunc
= (UtruncWtruncUJrunthTrunc) Wirune (UtruncWtrUHCUtrunthTrunc) Werune,
ot f (113)
UtrunCWtruncWtruncUtrunCB C
= UtrunCWtrunthTruncUtTrunc (UtrunthTunCUtrunCWtTunC) (WtruncUtrunCWtruHCUtTrunC)
a

For our original definition of truncation, we can let B, = C, = Z,,,, then the above two phases are trivial. Following
a similar derivation as in Eq.110, we can show that the above two phases are invariant under the redefinition of
truncation Wirune. No matter how we redefine the local braiding operators B, and C, by a phase, at least one of the
above quantities would be nontrivial. On the other hand, we can show that after defining the truncated operator as
Wirune, all of them stabilize state |¢). As a result, the symmetric state |¢) should be long-range entangled.

C. Wavefunction Overlap

Here we calculate the overlap between |¢)) and Wr, |¢). By mapping to the Ashkin-Teller model on a triangular
lattice, we argue the overlap decays exponentially small in the system size. To start,

W W, [9) _ HWr, [, +Up)[+) Yo (+ISPT)e

() (HITL,A+Up) [+) >c (+ISPT)¢

(114)

where C is a contractible loop, and C’ is non-contractible along & direction. The overlap between a L- qubit |[+) state

and a L-qubit Zy x Zy SPT cluster state (with L being even) is 275 *1, and therefore (+|SPT), = = 2~ '5'2Ne | where
N¢ is the number of disconnected loops in C.

To compute (+|SPT).,, we consider the system sizes in the two spatial directions to be even by even, in which case,

C/
the non-contractible loop C’ must have even number of qubits and (+|SPT)., = 2_‘7|2N0/. As a result, one finds
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we ) _Ze () 2
([ Wr, ) _ =c V3 , (115)

<¢W> ZC (%)lc‘ 92Nc

This is the ratio of the two partition functions of the O(2) loop models, one with only contractible loops and one
with only non-contractible loops.

It is known that the O(n) loop model on the honeycomb lattice can be exactly mapped to the n-color Ashkin-Teller
(AT) model at the infinite-coupling limit on a triangular lattice [86, 87]. Here we review the mapping for n = 2,
and based on which, show that the overlap in Eq.115 relates to the free energy cost of inserting a line defect in the
two-color AT model at a critical point, therefore indicating the exponential decay of the wavefunction overlap.

Consider a triangular lattice where each lattice site has two flavors of Ising spins, the partition function of the
corresponding AT model reads

ZAT:ZefHAT W]th HAT = 7J2 Z(O’Z‘Jjﬁ*TiTj)*JALZO'iO’jTiTj (116)
o,T (ij) (i5)

Below we show that at the infinite-coupling limit: Jy — oo, Jy — —oo with Jy + Jy = J fixed at a finite value, the
AT model can be mapped to the O(2) model on the honeycomb lattice using a low-temperature expansion. On a
given bond (ij) on the triangular lattice, there are three cases:

(i) oy0; = 7;7; = 1: the corresponding Boltzmann weight is e2/2774,

(ii) only one disagreement on the bond (ij), i.e. 0,05 =1 = —7;7; or —0;0; = 1 = 7;7;, the corresponding Boltzmann
weight is e™74.

(iii) both flavors of the spins disagree, i.e. o;0; = 7;7; = —1, the corresponding Boltzmann weight is e 2t

If one normalizes the Boltzmann weight w.r.t the weight in the case (i), one has the normalized weights:

Case (i): 1, Case (ii): 72727271 = ¢72/ and Case (iii): e=*72.

Therefore, by taking the limit J, — oo, Jy — —oo with Jy + Jy = J, one only needs to consider the case (i) and
(ii). The probability of having case (iii) would be zero, which implies that the domain walls of the o spins and 7 spins
cannot overlap, e.g. see below for allowed configurations:

Correspondingly, when considering the low-temperature expansion by flipping spins, the partition function (up to
a constant) of the infinite-coupling limit Ashkin-Teller (ICLAT) model is

ZICLAT = lec‘QNca (117)
C

where C is any contractible loop, with the loop tension x = e~27. The factor 27¢ appears since each loop can be the
domain wall of either one of the two flavors of spins. Eq. 117 is exactly the partition function of the O(2) loop model.
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The phase diagram of the infinite-coupling AT model is studied in Ref.[87]; for # = ¢72/ < x, = %, both o, 7
spins are in the ferromagnetic ordered phase, while for x > x., the spins are in the critical phase. x. is the critical
point described by a Berezinskii-Kosterlitz-Thouless (BKT) transition.

Alternatively, the model can be written as two flavors of the Ising models subject to the constraint:

Ziouar = Y 7 26 Ot T 6, (050 # —1 & mimy # —1), (118)

o, (ig)

where the delta function enforces the constraint that on every bond, the domain wall of ¢ and 7 cannot exist
simultaneously. For large J, one expects both ¢ and 7 to be in the ordered phase. When decreasing J (increasing
temperature), since the domain wall of o and 7 cannot be present at the same time, the spins cannot be completely
disordered, i.e. the domain wall cannot condense at the same time. This gives an intuitive reasoning for the emergence
of the critical phase.

Therefore, the wavefunction overlap relates to the free-energy cost of inserting a non-contractible line defect:

W Wr, |¥)  Zicpar
(W)  Zicrar’ (119)

where Z]~ ar is the AT model at the critical point with a line defect obtained by flipping the sign of spin coupling

along a non-contractible loop of size L. At the critical point, one expects gfgiﬁ ~ e~L at the leading order with a

being an O(1) constant so the wavefunction overlap vanishes in the thermodynamic limit [88].

D. Two-point functions

Here we compute the two-point functions Z;, Z;, on the sublattice A:

14U, 14U,
<+| ]._[p 2 ZiAZjA Hp 2 ‘+>
140, 110,
(HITT, 5= 11, == 1)
1+U,
(+l Hp TpZiAZjA I+) (120)
140,
(+1L, =52 +)
e (e {SPTle Zia Ziu [ ) [H)e
2oc (Hle SPTe [+)e [+)e
where from the second to the third line, we expand the product over plaquette p. Now we can consider applying Z;, Z;,
to the right-hand-side |+) state. If Z;, Z;, has support on C, then the inner product (+|s Z;, Z;, |+); vanishes. The

only case when it is non-vanishing is Z;, Z;, acting on the same loop v in the loop configuration C. If Z;, Z;, acts
on different loops v, and 72, then the inner product (SPT|, Z;, |+)., also vanishes. The overlap between a L-qubit

|+) state and a L-qubit Zs x Zy SPT cluster state (with L being even) is 2~ 2 +1. Therefore, the two-point function
can be expressed as

(W1 ZinZja ) =

W1 ZisZis V) = =T eone (121)

where C’ is the loop configuration where there always exists a loop v connecting 74 and j4. This is exactly the 2-leg
watermelon correlator in the O(2) loop model with at the critical loop tension K, = %, which is known to decay as

[42].
1

(W ZiyZj,u [10) ~ Toa—Jal’ (122)

IV. SYMTFT DESCRIPTION

The SymTFT /topological holography framework is known as an insightful way to describe quantum systems with
symmetries [65-75]. The core idea of SymTFT is to encode the symmetry data of a quantum system into the topological
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order in a one-dimensional-higher bulk. This is illustrated with a sandwich picture, where the bulk topological order
has a gapped boundary (reference/topological boundary) on the left and another (dynamical/physical) boundary on
the right. The reference boundary realizes the specific symmetry data given from the bulk topological order, whereas
the dynamical boundary is given from the details of the theory, and is potentially not topological.

In the 1d model we discussed, the Z3 symmetry given by U, = [I; X2i, Uo =[], X2i41, and the non-onsite Ucyz =
[1; CZ; ;41 together form a type-IIT mixed-anomaly. The 2d bulk topological order for this anomalous symmetry is a
twisted quantum double, which is also equivalent to a Dg (the dihedral group of order 8) quantum double [12]. The
reference boundary on the left corresponds to condensing all the abelian anyons (charges) in the topological order,
given by the Lagrangian algebra 1+ ey + ea +e3 + e1ea + e1e3 + eses + ereses [89]. The topological symmetry defects
in this quasi-1d system are the insertions of my, mo and mg lines in the bulk topological order. The spontaneously
breaking phase of one of the Zs symmetry is a gapped phase, which corresponds to the choice of a gapped dynamical
boundary on the right, given by Lagrangian algebra 1 + e; + mgy + mg + mas [89)].

reference dynamical
boundary boundary

FIG. 6: The bulk topological order is a Z3 type-III twisted quantum double. The left boundary is the refer-
ence/topological boundary, given by Lagrangian algebra 1+e; +eo+e3+e1es+e1e3+eges+ejeaes. The symmetry of
the quasi-1d system is given from this reference boundary, i.e. by inserting the m; lines denoted in orange. The right
boundary is the dynamical/physical boundary, given by Lagrangian algebra 1+ e; 4+ mg + m3 + me3. The local oper-
ator denoted in green is an e; line that ends on both boundaries. It is charged under my, thus is an order parameter
indicating the spontaneous breaking of this Zs symmetry, or the emergent Zs 1-form in this symmetry breaking phase.

In choosing the two boundaries in the sandwich picture, there is an emergent 1-form symmetry in the system, which
is given by the e; lines ending on both boundaries, denoted as a horizontal green line in the above figure. It braids
non-trivially with m; lines, and braids trivially with mso, mg lines. Therefore, this operator can be understood as
the order parameter for the Z, symmetry breaking, and the emergent Zy 1-form operator in this symmetry breaking
phase [65, 66, 74].

In the symmetry-breaking phase of the non-onsite Ucyz, we have a co-existence of trivial/SPT phases under two
onsite Zs symmetries, which is mixed-anomalous of type-III. As we have shown in the main text, there is no unitary
operator V charged under Ucyz, i.e. Ux ZVUgZ = —V. Therefore, this non-onsite symmetry breaking phase does not
have an emergent 1-form symmetry, hence does not match the SymTFT description.

1d: In the following, we give two closely related models with the same mixed-anomalous Z3 symmetry but in the
SSB phase of one of the onsite Zy symmetries, which can be described with the above SymTFT picture.
The first model is given by

H=- Z Z9i—1X2iZ2i41 — ZX% (123)

which has the same Z3 symmetry, but in the broken phase of the onsite Zy symmetry U,. The two ground states
[Yo) =10--0) ga @ |+ +)pen and [1) = [1---1) . ® |+---4)_,., are both product states. We can also regard
it as a trivial/SPT co-existing phase of U, and Ucz symmetry since [¢g) (]11)) can be regarded as an SPT state
obtained from decorating trivial (nontrivial) Ucz charge on the U. domain walls. Specifically, both states contain
[+ ) even X Dspi=0.1 152584, ) on the even sublattice. This can be understood as a condensation of U, domain
walls, where a U, domain wall between site 2¢ and site 2i+ 2 refers to the configurations sq; # s9;42. Since |1)1) always
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has sgi+1 = 1 on the site 2i 4+ 1, applying [[, CZ; ;41 gives rise to a —1 phase on this domain wall (i.e. a non-trivial
Uc z-charge decoration). In contrast, |¢1) has sg;11 = 0 on the site 2i 4 1, so applying [[, CZ; ;41 gives the +1 sign
(a trivial charge) on the U, domain walls. We note that for this model, there is an emergent 1-form symmetry in
the ground subspace, the operator of which is exactly the order parameter Zs;11Z5;11 for the onsite U, symmetry
breaking.

The second model is obtained by introducing an ancilla qubit at state [+)_ on each even site of the spin chain,

which is similar to the setting in Append.I B. We consider the diagonal symmetry ngg between the non-onsite Ucz
and the onsite [[, 73; symmetry on the ancillae. The symmetry operator is given by

Udiag = HCZi,z'HTin, (124)

which is non-onsite. As shown in Append.IB, the non-onsite operator Ug;qy becomes onsite after the conjugation of
a unitary V in Eq.12. In fact, the spontaneously breaking phase of this onsite [[, 75; symmetry can be obtained from
a trivially symmetric phase with onsite Dy symmetry, via a Kramers-Wannier transformation for the Z, center. The
fixed-point ground states are simply given by

[U) = 4™ © 25 (10..0), £ [1..1),). (125)

Therefore, the ground states of the non-onsite Zgiag symmetry breaking phase are
1
V2

There is an emergent 1-form symmetry in this phase, and the operator is 75,75;.

[Yx) =V Uh) = —= (1+) ©0..0), £ |c) ® [1...1),) . (126)

2d: The story in the SPT soup model of 1-form non-onsite symmetry breaking in 2d is similar, which has no emergent
(dual) 1-form symmetry. However, we can consider the following model with the same anomaly, but on a different
lattice, where the 1-form symmetry is onsite, and one of the two 0-form symmetries is non-onsite. We will show that
this model gives rise to a gapped phase for the 1-form onsite symmetry breaking.

The mixed anomaly corresponds to a 3d bulk SPT phase with 0-, 0-, and 1-form Zy symmetry given in Ref. [30],
and the bulk topological order in the SymTFT description is given from gauging this SPT phase. We notice that
there are two choices for the 2d boundary on the lattice.

The first choice of boundary corresponds to a hexagonal lattice, with a qubit on each vertex. The (0, 0, 1)-form
anomalous symmetry operators are thus given by

U=][%r Ui=]][X Uec= [ CZu (127)
T b

<r,b>eC

where r, b-type of qubits are on two triangular sublattices, and the 1-form non-onsite symmetry U along any con-
tractible loops can be generated with the plaquette operator U, = []_, ;< ep CZ, 1 on each plaquette p. This is the
case we discussed in this work, and one of the 1-form symmetry-breaking ground states is given by the SPT soup

W) o [TA+Tp) [+, (128)

P

where |+...) can be regarded as a trivially symmetric state under the two 0-form symmetries.
The second choice of boundary corresponds to a hexagonal lattice, with a qubit on each plaquette and link as shown
below:
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The (0, 0, 1)-form anomalous symmetry operators are given by

U =11% Ul=1]C%. U:=]]X (129)
p (p,e) EEé

where C is any closed loop on the dual lattice (e.g., colored in orange in the figure above), and U] is the product of
controlled-Z gates between plaquette qubits and all the adjacent edge qubits.

Define U},; , the product of three Pauli-Xs on edges emanating from the vertex v, which is also the 1-form symmetry
generator along any contractible loop on the dual lattice, we consider the following state:

@) oc [T 1+ Uhr,) [symmtric) = [T (1 + Ur,) |+), @ 10), = [+), @ [T.C.), (130)

v

which is a toric-code ground state on the links and a product state on the plaquette centers. One can construct a
gapped parent Hamiltonian H that respects all the symmetries in Eq.129:

H=-Y J] - x0+]]2), (131)

v eCdTv eCp

with the ground states given by the tensor product of toric code ground states and a product state on the plaquettes.
This model has an emergent 1-form symmetry in the ground subspace, corresponding to the electric 1-form symmetry
in toric code, i.e., a product of Pauli-Zs along any closed loops in the primary lattice. This contrasts the non-onsite
1-form symmetry breaking model (SPT soup), which has no such emergent 1-form symmetry.
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