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The accurate prediction of solvation free energy is of significant importance as it governs the behavior of solutes
in solution. In this work, we apply a variety of machine learning techniques to predict and analyze the alchemical
free energy of small molecules. Our methodology incorporates an ensemble of machine learning models with feature
processing using the K-nearest neighbors algorithm. Two training strategies are explored: one based on experimental
data, and the other based on the offset between molecular dynamics (MD) simulations and experimental measurements.
The latter approach yields a substantial improvement in predictive accuracy, achieving a mean unsigned error (MUE)
of 0.64 kcal/mol. Feature analysis identifies molecular geometry and topology as the most critical factors in predicting
alchemical free energy, supporting the established theory that surface tension is a key determinant. Furthermore, the
feature analysis of offset results highlights the relevance of charge distribution within the system, which correlates
with the inaccuracies in force fields employed in MD simulations and may provide guidance for improving force field
designs. These results suggest that machine learning approaches can effectively capture the complex features governing
solvation free energy, offering novel pathways for enhancing predictive accuracy.

I. INTRODUCTION

Alchemical free energy calculations, also known as Free
Energy Perturbation (FEP), play a critical role in the early
stages of drug discovery by screening out potential candi-
dates.1–4 However, their widespread application has been hin-
dered by challenges such as high computational costs and in-
accuracies in potential energy functions. Despite these limita-
tions, there is growing interest in enhancing these methods to
expand their utility. A critical aspect of FEP is the prediction
of solvation free energy, which plays a vital role in under-
standing how solutes behave in solution. Accurately predict-
ing solvation free energies provides valuable insights that aid
in understanding molecular interactions in solution, with sig-
nificant implications for drug design and materials science.5

One important application of free energy calculations is in
predicting protein-ligand binding free energies, which deep-
ens the understanding of such binding mechanisms and pro-
vides critical theoretical support and guidance for drug design
and biomedical research.6–8 Achieving accurate predictions in
this context often hinges on the optimization of force field pa-
rameterization. This remains a significant challenge, as it re-
quires considerable time and effort to develop stable models
that consistently provide accurate results.

Recent efforts have focused on refining force field parame-
terization to enhance the accuracy and generality of parameter
sets.9–11 However, determining the necessary modifications to
improve the accuracy of parameter sets remains a challenging
task, as the performance of force fields depends on multiple
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factors, including molecular chemical structure and coverage
of conformational space. Despite significant progress in force
field parameterization, classical force field-based calculations
still face fundamental accuracy limitations, particularly due to
the simplifications in models such as fixed-charge force fields
that neglect polarization effects. The recognition of these lim-
itations has spurred the development of post-processing meth-
ods based on quantum mechanical (QM) calculations.12,13

These methods introduce correction terms into classical force
field-based free energy predictions to correct or compensate
for errors introduced by simplified models like fixed-charge
force fields, aiming to improve the accuracy and reliability
of free energy calculations. Therefore, current research and
method development aim to leverage the strengths of both
classical force field and quantum mechanical calculations to
enhance the predictive accuracy of important biomolecular in-
teractions and improve the accuracy of their physical descrip-
tions.

In recent years, data-driven machine-learning (ML) meth-
ods have experienced a resurgence of interest in the field of
drug discovery. Impressive advances have been made in ar-
eas such as quantum chemical calculations, virtual screening,
and free energies calculations. In the context of predicting
molecular properties, it have been used in predicting prop-
erties such as solvation free energy, protein-ligand binding
affinity, and others. These studies highlight the versatility and
potential of ML in improving our understanding and predic-
tion of molecular interactions. Zhang et al.14 investigates the
prediction of hydration free energy using ML models that do
not rely on specific input features associated with molecular
structure. This approach demonstrated the ability of ML to
accurately predict hydration free energies without the need for
atom-, bond-, or geometry-specific descriptors. Osaki et al.15

introduced another ML approach called 3D-RISM-AI, which
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predicts protein-ligand binding affinity by incorporating hy-
dration free energy as a key factor to improve the accuracy
of binding free energy prediction. This study highlights the
importance of hydration free energy in improving the predic-
tion of protein-ligand interactions. In addition, Alibakhshi &
Hartke16 presents a kernel-based ML model designed to pre-
dict the free energies of solvated organic molecules in water
using implicit solvent molecular dynamics simulations. The
model illustrates the potential of ML in estimating the free en-
ergy of solvation for various molecular types. Lim & Jung17

developed Delfos, a deep learning model for predicting the
free energy of solvation in general-purpose organic solvents,
which improves prediction accuracy. Meng et al. further ad-
vanced solvation free energy prediction using a δ -learning ap-
proach.18 Ansari et al. accurately predicted the solvation free
energy of organic molecules from paired-atom interactions
via graph-attentive networks and message-passing neural net-
works, which outperforms the existing methods.19 Overall,
these studies demonstrate the substantial progress and poten-
tial of ML models for predicting a wide range of molecular
properties, from solvation free energy to protein-ligand bind-
ing affinity. By leveraging ML techniques, researchers can
improve the accuracy and efficiency of predicting molecu-
lar properties, thereby advancing the field of computational
chemistry and molecular modelling.

The achievements made using ML methods are remark-
able, but the methods usually have specific requirements on
the training set, one of the widely used datasets is the Free-
Solv database, which contains 642 molecules.20 The limited
variety of samples in this dataset can lead to data imbalance,
potentially resulting in models with poor generalization abil-
ity or inaccurate predictions for certain molecular properties.
Additionally, the choice of features during molecular finger-
printing significantly influences prediction accuracy. Identify-
ing important features is crucial for optimizing the modeling
process.

In this paper, we first performed feature transformation on
the molecules in the dataset, converting them into numeri-
cal features suitable for machine learning models by apply-
ing various molecular fingerprinting methods. We also uti-
lized the K-Nearest Neighbors (KNN) algorithm to handle
feature imputation. In Section II, we describe the preprocess-
ing steps in detail, including the feature engineering and impu-
tation process. In Section III, we explore the predictive perfor-
mance of multiple ML models, including Support Vector Ma-
chine (SVM), Random Forest (RF), Multiple Linear Regres-
sion (MLR), Deep Neural Network (DNN), XGradient Boost-
ing (XGB), and ensemble learning. We also compare our re-
sults with those from previous studies, as summarized in Ta-
ble I. Among these, the first reference study utilized the Mol-
PropsAPFP molecular fingerprint on the FreeSolv database20,
while the second study employed the FCFP molecular finger-
print21. The third reference study collected data from pre-
vious literature,22 using the MolProps molecular fingerprint.
We also compared the results using the interpretable Graph In-
teraction Network (CIGIN) as the machine learning model.23

This study was conducted on the Solv@TUM database24 and
the FreeSolv dataset,20 achieving a final test error of 0.76

kcal/mol. Notably, our results yield a substantial improvement
in predictive accuracy compared to these prior studies. Fea-
tures Analysis focuses on the analysis of feature importance
using heatmaps, providing insights into the key factors influ-
encing solvation free energy. Our findings suggest that molec-
ular polarizability and charge distribution are critical determi-
nants. Finally, in Section 5, we summarize the overall work
and offer prospects for future research on predicting molecu-
lar properties using ML models.

TABLE I. Comparison of the predictive effectiveness of the
best-performing machine learning models from previous research
efforts.21,25,26 (with MUE as the assessment metric)

Ref. [25] Ref. [21] Ref. [26] This Work

MUE 0.76 1.65 0.91 0.64

II. THEORY AND METHODS

A. Data set acquisition

The dataset used in this study is sourced from the FreeSolv
database (version 0.52),20 a widely utilized benchmark dataset
for the prediction of solvation free energies. The FreeSolv
database provides both experimental measurements and the-
oretical calculations of solvation free energies for 642 small
neutral organic molecules, making it an ideal resource for
building and evaluating computational models aimed at pre-
dicting solvation properties.

Out of the 642 molecules, 47 were specifically selected for
the SAMPL4 blind challenge, an influential benchmarking ex-
ercise designed to evaluate and compare different predictive
models in the context of solvation and molecular interactions.
These 47 molecules are designated as the test set, as their free
energy values are excluded from the training process to allow
for unbiased model validation. This blind testing ensures that
the model’s performance can be evaluated based on unseen
data, simulating a real-world predictive scenario.

The remaining 595 molecules serve as the training set for
developing and optimizing the computational models. These
molecules provide a rich dataset to enable the model to learn
relevant patterns and relationships between molecular struc-
tures and their solvation energies. To avoid data leakage and
ensure generalizability, none of the molecules from the test
set were used in the model-building phase. By carefully sep-
arating the test and training sets, this study adheres to best
practices in machine learning and statistical analysis, ensur-
ing that the reported performance metrics reflect the model’s
ability to generalize beyond the training data.

B. feature preprocessing

In the field of machine learning, directly utilizing three-
dimensional molecular structures for prediction is challeng-
ing due to the inherent complexity of these structures, which
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often involves intricate spatial information and multidimen-
sional data. Traditional ML algorithms struggle to capture
these features effectively. Therefore, it is essential to con-
vert these molecular structures into numerical features that are
suitable for ML. For these molecular samples, a variety of fea-
ture generators are available, allowing for the creation of de-
scriptors that can be utilized both individually and in concate-
nated forms. The descriptors employed in this investigation
include APFP, ECFP6, TOPOL, MolProps, and their concate-
nated combinations, MolPropsAPFP and MolPropsECFP6.
Additionally, the descriptor X-NOISE is included to introduce
noise into the dataset.

Furthermore, during the generation of molecular features,
we observed that certain features exhibited non-numeric val-
ues. While this is reasonable, traditional ML models are
unable to effectively process these features. Initially, non-
numeric features are removed to ensure that only relevant nu-
merical data is retained, which aids in effective data analysis.
For molecules that lack certain features, we employ the K-
Nearest Neighbor (KNN) algorithm to estimate missing val-
ues, thereby preserving the dataset’s integrity. Finally, all fea-
ture data are normalized to create a consistent scale across the
dataset. This comprehensive preprocessing approach results
in a robust dataset, well-suited for analysis and subsequent
model training.

C. Training Strategy

We propose two strategies for training models to predict
the solvation free energy of molecules, denoted as ∆G. The
first strategy involves directly predicting experimental values
based on molecular features, resulting in free energies referred
to as ∆GStrategy1. The second strategy incorporates calculation
values as additional molecular features. Here, the model pre-
dicts the offset between the computed values and the experi-
mental values, allowing for a correction of the calculated free
energies.

∆Goffset(A) = ∆GEXP(A)−∆GFEP(A), (1)

where A represents an arbitrary sample in the database. Here,
∆GFEP(A), is the calculated free energies obtained using MD
simulations with the General Amber Force Field (GAFF).27,28

The experimental value is denoted as ∆GEXP(A). For each
training set, defined by its descriptors, ML models were ap-
plied using 5-fold cross-validation. This resulted in a total
population of N = 5 trained models. Each individual model in
N predicts its own ∆Goffset value. The offset estimator is de-
fined as the arithmetic mean of these predicted offset values,
with the standard deviation of the mean serving as a measure
of precision. In this approach, the ML model predicts the off-
set, and the final corrected hydration free energy is calculated
by adding this offset to the computed values:

∆GStrategy2(A) = ∆GFEP(A)+
〈
∆Ĝoffset(A)

〉
N , (2)

The precision of the ∆GStrategy2(A) is determined by propa-
gating the statistical errors from both the alchemical and ML
terms.

Based on the strategy 1, we can directly predict the solva-
tion free energy of molecules. The results obtained through
this method maintain a high level of interpretability, as there
is a relatively direct physicochemical relationship between the
features and the outcomes. Additionally, the trained model ex-
hibits strong generalization ability. In the strategy 2, instead of
directly predicting the experimental value of the free energy,
we correct the simulation value by predicting the difference
between the experimental and simulated values. The motiva-
tion behind this approach is multifaceted: it preserves the cor-
rect trend set by the simulation calculations and avoids ’wast-
ing’ effort in regions where the calculated values are already
highly accurate. However, its limitation lies in its weaker
generalization ability, requiring the data sources (calculation
methods) of the training and test sets to be highly consistent.
In this study, we will analyze and discuss the results generated
by both training strategies separately.

D. Models and Optimization

We implemented five distinct machine learning models:
Support Vector Machines (SVMs), Random Forests (RFs),
Deep Neural Networks (DNNs), Multiple Linear Regression
(MLR), and XGBoost (XGB). These models were selected for
their diverse strengths in handling different aspects of the pre-
diction task. The specific hyperparameter search space for
each model is comprehensively detailed in TABLE A3, where
all parameters influencing the model’s performance are out-
lined.

To efficiently identify the optimal hyperparameter configu-
rations for each model, we adopted a Bayesian optimization
approach utilizing the SciKit-Optimize (SKOPT) library, ver-
sion 0.5.229. This method leverages an expected improvement
acquisition function, which allows for more strategic and ef-
fective exploration of the hyperparameter space compared to
traditional methods like random or grid searches. By focus-
ing the search on promising regions of the space, Bayesian
optimization helps to identify high-performing configurations
with fewer iterations. We set the optimization steps to a max-
imum of 40, as prior experience indicates that model conver-
gence typically occurs well before this limit.

For each iteration during the optimization process, the
MUE on the validation set, averaged across cross-validation
folds, was computed and returned to the SKOPT routine. This
metric served as the cost function to guide the selection of
the next set of hyperparameters. With each successive call,
SKOPT further refined its search, aiming to minimize the cost
function and achieve the best possible performance. This iter-
ative process continued until either convergence was observed
or the step limit was reached. A complete visualization of
this workflow, outlining the model training and hyperparame-
ter optimization process, is provided in Figure 1.
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FIG. 1. The workflow for this study consists of dataset acquisition,
feature encoding, data cleaning, model training, optimization, pre-
diction, and feature analysis.

E. Ensemble

For each individual model, the process begins with the iden-
tification of the optimal set of hyperparameters that minimizes
the MUE during cross-validation. This step ensures that each
model is fine-tuned to achieve its best possible performance
on the validation data, balancing the trade-off between model
complexity and accuracy. Once the optimal hyperparameters
have been identified, the model is retrained using the entire
training dataset. This retraining phase allows the model to
fully utilize all available data, enhancing its capacity to gener-
alize to unseen instances, which is critical for achieving robust
predictive performance.

After retraining, the model is applied to the test set, where
it generates predictions based on the newly trained configu-
ration. These predictions represent the final outputs of the
individual models. However, instead of relying solely on the
performance of a single model, we employ an ensemble ap-
proach to further boost accuracy and reliability.

In the ensemble strategy, predictions from all models are
combined by averaging their outputs. This method lever-
ages the unique strengths of each model, as different mod-
els may excel at capturing distinct patterns or relationships
within the data. By integrating their predictions, the ensem-
ble mitigates the potential weaknesses or biases inherent in
any single model. The result is typically an overall perfor-
mance improvement, as the ensemble benefits from the diver-
sity of model predictions, leading to better generalization on
new data.

Finally, the ensemble predictions are compared to the ac-

FIG. 2. Comparison of the best predicted and actual values of
∆Goffset by different models, where blue represents that the predicted
value has the same sign as the actual value (positively corrected), red
represents that the predicted value has the opposite sign to the actual
value (negatively corrected), and the values on the diagonal line in-
dicate that the experimental value is equal to the predicted value.

tual values from the test set (ytest) to compute the final MUE.
This metric provides a comprehensive measure of the ensem-
ble’s accuracy, indicating how closely the combined predic-
tions align with the true outcomes. The ensemble learning
framework not only enhances the predictive power of the sys-
tem but also helps reduce the risk of overfitting and ensures
more robust performance compared to any individual model.
Through this approach, we aim to achieve a higher level of
reliability and accuracy in the final results.

III. RESULTS AND DISCUSSION

A. Each individual model & Ensemble

Figure 2 presents a comparison between the predicted and
actual values of ∆Goffset for the six different models. For each



5

model, the best performing feature set is shown. We begin by
examining the results of the SVM model, a well-established
supervised learning technique used for both classification and
regression tasks. In regression tasks, such as Support Vector
Regression (SVR), the primary objective is to minimize the
error between the predicted and actual values by identifying
an optimal hyperplane. From the analysis of Figure 2, the
MolPropsTOPOL feature set outperforms other feature sets.
This feature set not only excels in the SVM model but also
demonstrates strong performance in other models, including
multiple linear regression (MLR) and deep neural networks
(DNN). The effectiveness of MolPropsTOPOL could be at-
tributed to its comprehensive feature set, which likely captures
essential information and enhances the ability of the model to
identify critical patterns within the data. As a result, the SVM
model achieves commendable performance, with a controlled
MUE of approximately 0.69 and a lower relative error when
compared to the actual values.

In contrast, MLR is a traditional statistical learning tech-
nique that models the linear relationship between a target
variable and one or more features. In MLR, the target vari-
able is expressed as a linear combination of the features, and
the model parameters are estimated by minimizing the sum
of squared errors. Compared to other ML models, MLR is
highly efficient since it does not involve iterative parameter
updates. Despite its straightforward approach, MLR achieves
a commendable predictive performance, with a MUE of ap-
proximately 0.69, comparable to that of the SVM and DNN
models. However, the higher uncertainty observed with MLR
indicate underfitting, as the model struggles to capture more
complex patterns within the data.

To capture these nonlinear relationships, DNNs offer a
more sophisticated approach. DNNs utilize multiple hidden
layers to automatically learn and extract high-level features
from data. In this study, the sigmoid activation function is
employed to facilitate nonlinear transformations, allowing the
model to better fit complex patterns. Through backpropaga-
tion, DNNs iteratively adjust their weights to minimize pre-
diction error. Among the models evaluated, the DNN demon-
strated the best performance, achieving a lower MUE and re-
duced uncertainty compared to MLR. The optimal architec-
ture for the DNN consisted of three layers, each with 50 neu-
rons. However, similar to MLR, the DNN also faced chal-
lenges in correcting biases introduced by outliers.

The RF model, on the other hand, combines multiple de-
cision trees trained on randomly selected data samples. This
technique enhances robustness and can mitigate some issues
related to individual model biases. While RF is generally less
sensitive to missing features due to its random selection pro-
cess, it can be difficult to interpret and may overfit when noise
is present in the data. As illustrated in Figure 2, RF exhibited
the weakest predictive performance among all models, using
ECFP6 as its input feature set. Nevertheless, RF displayed
the smallest uncertainty estimates, likely due to its effective
handling of feature variability.

In addition to RF, we also implemented XGBoost, another
decision tree-based algorithm that excels in handling imbal-
anced data and adjusting weights flexibly. Utilizing a gradient

boosting framework, XGBoost iteratively trains weak learners
on the residuals of previous rounds to progressively minimize
prediction error. As shown in Figure 2, XGBoost achieves a
lower MUE than RF and demonstrates better correction for
outliers. However, while XGBoost performs well, its overall
performance does not surpass that of the other models. No-
tably, the best input feature set for XGBoost was also ECFP6,
consistent with the findings for RF.

After determining the best predictions for each individual
model, we further enhanced our results by applying an ensem-
ble approach. By averaging the predictions across all models,
we generated a unified ensemble prediction, which was then
compared to the test set to evaluate the final MUE. The en-
semble predictions generally aligned more closely with the
experimental results, effectively reducing the number of out-
liers. However, the overall prediction error exhibited a slight
increase, possibly due to the averaging process diminished the
strengths of each individual model.

In addition to the general trends observed, we identified two
persistent outliers in the prediction results of several ML mod-
els, as shown in Figure 2. Further investigation revealed that
these outliers correspond to hexane-1,2,3,4,5,6-hexol and 2-
hydroxybenzaldehyde. The presence of these extreme out-
liers significantly contributes to the larger prediction errors
across the models. Our analysis revealed that the experimen-
tal solvation free energy of hexane-1,2,3,4,5,6-hexol was de-
termined through temperature extrapolation.30,31 Meanwhile,
the substantial discrepancy observed for the hydroxybenzalde-
hyde between its calculated and experimental free energy
can be attributed to the uncertainties in assigning the partial
charges during simulation.32 Incorporating these data points
into Stragety 2 predictions would inevitably lead to increased
errors.

For the Strategy 1, the predictions of the models are shown
in Figure 3, and the corresponding feature set for each model
is consistent with that in Figure 2. The figure presents a com-
parison of predicted free energy values from five individual
ML models as well as an ensemble model, against experimen-
tal values. The performance of each model is also evaluated
using three key metrics: the Pearson correlation coefficient r,
MUE, and Kendall’s tau τ . These metrics collectively assess
the models’ ability to predict free energy values accurately
and capture the correlation between predicted and experimen-
tal outcomes. Among the models, SVM and DNN demon-
strate the highest correlation with the experimental data, with
r-values of 0.95± 0.03 and 0.93± 0.1, respectively. These
high correlation values indicate that both models have a strong
linear relationship with the experimental results, suggesting
they are well-suited to capturing the underlying trends in the
data.

In terms of prediction error, as measured by the MUE, the
SVM model again performs best, achieving the lowest MUE
of 0.9± 0.38, closely followed by the ensemble model with
an MUE of 0.98± 0.55. This suggests that the SVM model
makes the most accurate predictions among the individual
models, while the ensemble model, which combines the pre-
dictions of all models, also performs admirably by averaging
out the errors. On the other hand, the RF model exhibits the
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FIG. 3. Prediction of Strategy 1. Each model is consistent with the
models and corresponding dataset categories in Figure 2, and the
Strategy 2 gives more accurate predictions compared to the Strat-
egy 1.

highest MUE of 1.36±0.4, indicating larger deviations from
the experimental values, and its correlation coefficient is com-
paratively lower at r = 0.86±0.1, reflecting weaker predictive
performance overall.

The ensemble model shows a well-balanced performance,
with a correlation coefficient of r = 0.93± 0.07, an MUE of
0.98± 0.55, and Kendall’s tau of 0.76± 0.11. By averaging
the predictions from all individual models, the ensemble ap-
proach effectively captures diverse patterns in the data, lead-
ing to more robust and accurate predictions. This method
leverages the strengths of different models, mitigating the po-
tential biases and errors inherent in any single model’s predic-
tions.

We observe that while the overall predictive performance of
the model is satisfactory, there are noticeable gaps when com-
pared to the Strategy 2. Especially for models like RF and
XGB, where MUE values exceed 1 kcal/mol. Additionally,
even the more accurate models, such as SVM and DNN, show
greater variability in performance as indicated by relatively
large error bars in the correlation coefficients and MUE. The
ensemble model, though more balanced, still suffers from er-
rors when directly predicting free energy values without lever-

FIG. 4. Comparison of model performance between Previous
Work33 and Our Work. Light green bars represent the MUE of mod-
els trained with Strategy 1 in Previous Work, while dark green bars
represent the MUE of models trained with Strategy 1 in Our Work.
Light blue and dark blue bars represent the MUE for models trained
with Strategy 2 in Previous Work and Our Work, respectively. Under
Strategy 1, all models show significant improvement in predictive
accuracy, except for the RF model, which performs slightly worse.
Under Strategy 2, all models outperform Previous Work, except for
the MLR model. The Ensemble model under Strategy 1 achieves the
best performance.

aging simulation results as a reference.

B. Comparison and Enhancement

We began with a comparsion with the models of previous
work developed by Scheen et al.33, which utilizes four ML al-
gorithms: SVM, RF, MLR, and DNN. Molecular features are
characterized by molecular fingerprints and descriptors. To
enhance model performance, we extended the original frame-
work by adding XGBoost (XGB) and an ensemble model, as
well as a new data-filling method for feature engineering. We
then tested these models on the same dataset and compared
their results with the models of previous work. The results
indicate that, except for RF, all other models outperform the
models of previous work in terms of MUE, demonstrating the
effectiveness of our improvement strategy. Figure 4 compares
the MUE for both the previous work and our work across six
algorithms: SVM, RF, DNN, MLR, XGB, and an ensemble
method. Overall, our models exhibit reduced MUE values
compared to previous work counterparts, highlighting the suc-
cess of the optimization techniques employed.

Notably, the Strategy 2 consistently outperforms the Strat-
egy 1 across all algorithms, showing a significant difference
in MUE, particularly for DNN and RF. For instance, the MUE
for the DNN model of Strategy 1 is around 1.8, while the
DNN model of Strategy 2 achieves approximately 1.2. This
trend is also evident in other models, including RF and XGB.
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Following improvements, the models based on Strategy 2 re-
tain a distinct advantage, achieving lower MUEs across all
algorithms, with the enhanced Ensemble model delivering the
lowest MUE overall. This indicates that while ML techniques
benefit from enhancements in feature and model architecture,
Strategy 2 remains more robust for this application. Future re-
search into hybrid approaches or advanced feature extraction
methods may help narrow the gap between the two strategies.

C. Features Analysis

1. Relationships between models and datasets

The evaluation of different ML models across various fea-
ture sets reveals a significant interplay between model perfor-
mance and the nature of the features used, as we compared the
MUE in Table II, the performance metrics of all molecular fin-
gerprints under all models can be found in Appendix A, Table
A1, A2. Notably, RF demonstrated consistent performance
across all feature sets, achieving the lowest MUE of 1.0±0.08
with the ECFP6 feature set. This suggests that RF is particu-
larly well-suited for handling discrete variables, such as those
in molecular fingerprints. However, its performance slightly
declined when applied to the MolProps feature set, which
consists of continuous variables, likely due to challenges in
managing high-dimensional continuous data. In contrast, the
DNN model excelled with a combination of MolProps and
TOPOL feature sets, achieving the best performance with an
MUE of 0.67± 0.17. This success can be attributed to the
ability of DNN to navigate complex, high-dimensional fea-
ture space, making it particularly effective with continuous
data. However, while its performance with discrete features
remained robust, it was relatively less effective, underscoring
its advantage with numerical data.

On the other hand, the MLR model exhibited less stability,
particularly with discrete feature sets, showing a significant
increase in error when using the MolPropsAPFP set (MUE =
1.7±0.63). The linear nature of MLR limits its ability to cap-
ture nonlinear relationships, making it less effective with the
complex interactions present in continuous data, although it
performed reasonably well with the MolProps set. Similarly,
the SVM model showed strong performance with discrete fea-
ture sets like ECFP6 and TOPOL (MUE = 0.72± 0.19 and
0.69±0.18, respectively). However, it shows variability when
handling continuous variables, potentially due to its reliance
on finding optimal decision boundaries in high-dimensional
spaces. This variability highlights the importance of feature
selection in aligning with the strengths of model. Lastly, XGB
performed well with discrete features (MUE = 0.78±0.28 for
ECFP6) but its performance deteriorated with the noisy X-
NOISE feature set (MUE = 1.13±0.26), indicating the sensi-
tivity to data noise despite its robustness with large-scale dis-
crete and continuous variables. This sensitivity further em-
phasizes the need for careful feature selection across all mod-
els.

Overall, these findings underscore the importance of align-
ing feature types with the strengths of the selected machine

FIG. 5. Importance ranking of features based on the MolProp-
sTOPOL dataset given by the XGB(Strategy 1) model (top 11). A
higher score indicates that the feature has a greater impact on the
target predictive value during training, i.e., the feature has a greater
hybrid free energy correlation with the sample. The bars are labeled
with the importance scores of the corresponding features. GSI stands
for GeomShapeIndex.

learning models. Specifically, DNN and XGB excel with con-
tinuous variables, while RF and SVM demonstrate greater
consistency with discrete variables. This highlights the ne-
cessity of thoughtful feature selection that considers both the
physical meaning of the features and the inherent capabilities
of the models to achieve optimal predictive performance.

2. Relationship between features and predicted outcomes

Next, we aim to illustrate how the hydration free energy
of molecules is related to specific chemical properties, par-
ticularly from the perspective of feature importance. For as-
sessing feature importance, XGBoost provides an intuitive
and interpretable framework. At each split node, impor-
tance scores for features are calculated, allowing us to iden-
tify which features significantly influence the model’s pre-
dictions. As illustrated in Figure 5, the top 11 features for
the XGB(Strategy 1) model, which utilizes hydration free en-
ergies as labels, include GeomShapeIndex, MOMI-Z, PBF,
RNCS, TASA, RPCG, ATSC5c, FNSA4, and others. These
features are intricately linked to molecular geometry, topol-
ogy, and charge distribution, all of which play crucial roles in
determining molecular interactions in solution. Here, we se-
lect the top three features with the highest scores and explain
their relevance to solvation free energy. First, the geometric
shape index of a molecule captures its shape characteristics,
influencing interactions with solvent molecules and affecting
the solvation free energy. The second feature, MOMI-Z, refers
to the moment of inertia along the Z-axis. This feature re-
flects both the molecular geometry and the distribution of po-
larity, impacting the way the molecule interacts with the sol-
vent. The above features are both related to the geometrical
properties of the molecule. In general, the solvation free en-
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TABLE II. Comparison of the performance of five machine learning models (RF, DNN, MLR, SVM, and XGB) using different feature sets.

RF DNN MLR SVM XGB

Feature set MUE Feature set MUE Feature set MUE Feature set MUE Feature set MUE

ECFP6 1.0±0.08 MolProps
TOPOL 0.67±0.17 MolProps

TOPOL 0.69±0.45 MolProps
TOPOL 0.69±0.18 ECFP6 0.78±0.28

MolProps
TOPOL 1.03±0.09 TOPOL 0.69±0.25 MolProps

ECFP6 0.88±0.29 TOPOL 0.72±0.19 TOPOL 0.81±0.23

MolProps
APFP 1.05±0.11 MolProps

ECFP6 0.74±0.19 MolProps
APFP 1.7±0.63 MolProps 0.76±0.19 MolProps

TOPOL 0.83±0.25

MolProps 1.06±0.11 MolProps
APFP 0.81±0.24 MolProps 1.72±0.75 MolProps

ECFP6 0.81±0.12 MolProps
ECFP6 0.87±0.27

MolProps
ECFP6 1.06±0.12 ECFP6 0.88±0.2 X-NOISE 1.74±0.34 MolProps

APFP 0.81±0.16 MolProps 0.9±0.26

TOPOL 1.11±0.2 MolProps 1.04±0.34 APFP \ ECFP6 0.9±0.15 MolProps
APFP 0.94±0.23

APFP 1.13±0.17 APFP 1.11±0.25 TOPOL \ APFP 1.04±0.21 APFP 1.05±0.28
X-NOISE 1.16±0.13 X-NOISE 1.17±0.05 ECFP6 \ X-NOISE 1.18±0.03 X-NOISE 1.13±0.26

ergy is considered as the balance between the solute-solvent
interactions and the energy costs associated with increased
surface tension of the solvent.34,35 Therefore, the geometri-
cal properties of molecule, which directly affect its solvent-
accessible surface area, contribute significantly to the solva-
tion free energy. Lastly, under Strategy 1, the PBF feature is
associated with the degree of polarity. The higher the molec-
ular polarity, the more likely it is to engage in induced dipole-
dipole interactions with water molecules, and it can also fa-
cilitate more effective hydrogen bond formation. Therefore,
fundamentally, we find that molecular structural characteris-
tics and polarity have a significant impact on solvation free
energy. Similarly, features related to surface areas and charge
distributions, such as RNCS and TASA, provide insight into
how these molecules interact with solvents. We found that the
above features are primarily related to the structural charac-
teristics and polarized charges of molecules. Given the com-
plexity and significance of these features, detailed explana-
tions regarding their meanings and implications are provided
in the Appendix C. This additional information will enhance
understanding of how each feature contributes to the predic-
tive performance of the models regarding hydration free en-
ergy.

Building on the discussion of feature importance, the model
based on Strategy 2 utilizes a dataset where the labels repre-
sent the offsets between computed and experimental values.
Consequently, high-scoring features may not directly corre-
late with physicochemical properties closely tied to hydra-
tion free energy. Instead, these features significantly influ-
ence the offset by encompassing various molecular properties,
such as topology, charge, polarity, and aromaticity, as shown
in Figure 6, which shows the top 10 feature importance rank-
ings given by the XGB(Strategy 2) model based on the Mol-
PropsTOPOL dataset. The top three features in Figure 6 are
AATSC2dv, GATS3s, and PEOE-VSA8. The AATSC2dv fea-
ture is related to the structural characteristics of the molecule,
while the latter two features are associated with the molecular
polarity. This suggests that machine learning has captured the

FIG. 6. Importance ranking of features based on the MolProp-
sTOPOL dataset given by the XGB(Strategy 2) model (TOP 10).

limitations of force field in describing polarization effects of
molecules. These issues have also been the focus of ongoing
efforts in MD over the past few years.9–11,36 This aligns with
our analysis from Strategy 1, indicating that for solvation free
energy, both structural characteristics and molecular polarity
play a dominant role. Specific definition of these features are
also provided in the Appendix C. This relationship can be un-
derstood in the context of the common discrepancies observed
between simulation results and actual experimental outcomes.
These deviations often arise due to the inherent limitations of
current methods. In this scenario, ML techniques can serve to
bridge this gap, enhancing simulation accuracy and providing
valuable support for improving the precision of computational
predictions.

To provide further insights into the interrelationships
among these molecular descriptors, Figure 7 depicts the
correlation heatmap of the top 10 features selected by the
XGB(Strategy 2) model based on MolPropsTOPOL dataset.
By analyzing these correlations, we can deepen our under-
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FIG. 7. Correlation Heatmap of TOP 10 Features for XGB(Strategy
2) (MolPropsTOPOL). Blue color represents a negative correlation
between pairs of features and red color represents a positive correla-
tion between features. The darker the color, the higher the correla-
tion, and the corresponding value is marked on the graph.

standing of how individual features may collectively influ-
ence the predictions, as well as identify potential redundan-
cies or complementary aspects. As shown in Figure 7, most
features exhibit low correlation coefficients, generally ranging
between -0.2 and 0.2. The results indicate that the selected
features capture distinct molecular characteristics with mini-
mal overlap. However, there are notable positive correlations
among certain features, ATSC5se & AATSC5are (0.68), such
as GATS3s & GATS3pe (0.78).

The positive correlation suggests that ATSC5se and
AATSC5are are capturing similar aspects of molecular prop-
erties, particularly regarding polarity and charge distribution.
Specifically, ATSC5se is an autocorrelation descriptor based
on electronegativity, while AATSC5are pertains to the aro-
maticity and radius eigenvalue weighting. Both features indi-
cate regions of high or low polarizing intensity on the molec-
ular surface that directly influence solvation properties. Simi-
larly, GATS3s and GATS3pe also capture comparable features
of the molecular electronic environment, as both relate to the
molecule’s polarity and its capacity to interact with solvent
molecules. Overall, these features provide valuable informa-
tion captured in the training of ML models, complementing
the limitations of traditional MD simulations.

Additionally, some features display moderate negative cor-
relations, providing insights into inverse relationships. For in-
stance, the negative correlation between the distance weighted
by van der Waals volume (AATSC2dv) and overall char-
acteristics of the internal charge distribution of a molecule
(ATSC8c) suggests that molecules with greater van der Waals
volume tend to have weaker interactions to solvents. This may
imply that larger molecules in a solvent occupy more space
and therefore need to displace more solvent molecules. This

creates stronger repulsive forces, resulting in a greater en-
ergy requirement to maintain the presence of these molecules,
thereby affecting their solvation behavior. Similarly, the rela-
tionship between AATSC2dv and ATSC5se, AATSC2dv and
AATSC5 also suggest that greater van der Waals volume may
influence overall solvation dynamics. Similar analysis is done
for Strategy 1, as shown in Figure 8. Overall, Figure 8 shows a
stronger correlations among the top features, highlighting the
crucial role of molecular geometries in shaping solute-solvent
interactions. Additionally, this indicates the presence of non-
linear relationships among these features, which collectively
influence the solvation free energy.

FIG. 8. Correlation Heatmap of TOP 11 Features for XGB(Strategy
1). Blue color represents a negative correlation between pairs of fea-
tures and red color represents a positive correlation between features.
The darker the color, the higher the correlation, and the correspond-
ing value is marked on the graph. ’GSI’ stands for ’GeomShapeIn-
dex’.

IV. CONCLUSION

In this work, we employed ML methods to improve the
accuracy of prediction of alchemical free energy of small
molecules. To achieve this goal, we trained five popular mod-
els (SVM, MLR, RF, DNN, XGB) using two distinct training
strategies and comparing the test results. The results demon-
strated that our ML approach outperformed previous studies,
with models trained using Strategy 2 exhibiting superior over-
all performance compared to those trained with Strategy 1.
Notably, the best-performing individual model achieved an
evaluation metric (MUE) of 0.67. Building on this, we com-
bined the individual models into an ensemble, which further
improved the prediction accuracy to 0.64.

The accuracy enhancement is mainly attributed by the im-
provement we made in data preprocessing process and the use
of model ensembling technique. For samples with missing
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molecular features, we utilized the KNN algorithm for fea-
ture imputation, effectively minimizing information loss that
might have resulted from discarding incomplete data. More-
over, we filtered out molecules for which computational meth-
ods in the database were deemed unreliable, ensuring the ro-
bustness and reliability of our training data.

Our data analysis involved a comprehensive investigation
of feature importance and model interpretability. By employ-
ing the XGB algorithm, we ranked feature importance scores
under both training strategies, identifying key features that in-
fluence predictions, through the analysis of these key features,
we found that they primarily pertain to the molecular struc-
tural characteristics and the molecular polarity. These aspects
align with the recent advancements in molecular dynamics
simulations, indicating that our model has the capability to
capture these correlations effectively. Furthermore, we visu-
alized the correlations among high-scoring features, which not
only aids in effective feature selection but also enhances com-
putational efficiency.

We evaluated the heatmaps of Strategy 1 and Strategy 2 sys-
tematically. We found that the high-scoring, highly correlated
features are closely related to the molecular structural char-
acteristics and polarity charges, which can be explained by
the surface tension of the solvent and intramolecular polariza-
tion effects. Our work enriches the understanding of solvation
free energy, provides insights into the features and results ob-
tained from machine learning predictions, and offers perspec-
tives and guidance for future research.
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Appendix A: Performance metrics for different models
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TABLE A1. Performance metrics for different models (Part I)

Model Featureset Labels Pearson r MUE RMSE Spearman rho Kendall tau

XGB ECFP6 G_offset 0.96±0.02 0.78±0.28 1.31±0.07 0.92±0.03 0.80±0.06
XGB TOPOL G_offset 0.96±0.02 0.81±0.23 1.21±0.08 0.92±0.03 0.79±0.04
XGB MolPropsTOPOL G_offset 0.95±0.02 0.83±0.25 1.45±0.01 0.94±0.02 0.82±0.04
XGB MolPropsECFP6 G_offset 0.95±0.02 0.87±0.27 1.48±-0.00 0.94±0.04 0.81±0.04
XGB MolProps G_offset 0.95±0.02 0.90±0.26 1.68±-0.15 0.93±0.02 0.81±0.03
XGB MolPropsAPFP G_offset 0.95±0.02 0.94±0.23 1.77±-0.22 0.94±0.03 0.82±0.04
XGB APFP G_offset 0.93±0.03 1.05±0.28 2.37±-0.56 0.88±0.04 0.73±0.06
XGB X-NOISE G_offset 0.92±0.02 1.13±0.26 2.43±-0.66 0.88±0.05 0.74±0.06
XGB MolPropsECFP6 G_FEP 0.90±0.11 1.27±0.73 2.99±-0.46 0.84±0.09 0.70±0.10
XGB MolPropsAPFP G_FEP 0.89±0.09 1.28±0.66 3.15±-0.72 0.86±0.11 0.72±0.14
XGB MolProps G_FEP 0.91±0.09 1.30±0.70 2.96±-0.54 0.86±0.12 0.70±0.13
XGB MolPropsTOPOL G_FEP 0.88±0.09 1.32±0.59 3.42±-0.99 0.85±0.10 0.70±0.11
XGB APFP G_FEP 0.86±0.21 1.39±1.11 3.78±-0.75 0.72±0.36 0.56±0.30
XGB TOPOL G_FEP 0.81±0.26 1.54±1.19 5.20±-1.61 0.70±0.14 0.55±0.14
XGB ECFP6 G_FEP 0.73±0.31 1.83±1.37 6.89±-2.91 0.68±0.32 0.49±0.24
XGB X-NOISE G_FEP -0.07±0.25 3.00±1.18 21.44±-16.03 -0.04±0.35 -0.04±0.19
SVM MolPropsTOPOL G_offset 0.97±0.01 0.69±0.18 1.00±0.16 0.94±0.02 0.83±0.03
SVM TOPOL G_offset 0.96±0.01 0.72±0.19 1.09±0.12 0.91±0.03 0.79±0.05
SVM MolProps G_offset 0.95±0.02 0.76±0.19 1.51±-0.08 0.93±0.04 0.81±0.06
SVM MolPropsECFP6 G_offset 0.95±0.01 0.81±0.12 1.47±-0.15 0.94±0.01 0.82±0.02
SVM MolPropsAPFP G_offset 0.95±0.01 0.81±0.16 1.59±-0.18 0.94±0.01 0.81±0.02
SVM ECFP6 G_offset 0.95±0.01 0.90±0.15 1.53±-0.16 0.92±0.01 0.78±0.01
SVM APFP G_offset 0.94±0.01 1.04±0.21 2.20±-0.55 0.92±0.02 0.78±0.03
SVM X-NOISE G_offset 0.92±0.00 1.18±0.03 2.61±-0.97 0.86±0.00 0.72±0.00
SVM MolProps G_FEP 0.95±0.03 0.90±0.38 1.58±0.02 0.91±0.06 0.77±0.08
SVM TOPOL G_offset 0.96±0.01 0.72±0.19 1.09±0.12 0.91±0.03 0.79±0.05
SVM MolProps G_offset 0.95±0.02 0.76±0.19 1.51±-0.08 0.93±0.04 0.81±0.06
SVM MolPropsECFP6 G_offset 0.95±0.01 0.81±0.12 1.47±-0.15 0.94±0.01 0.82±0.02
SVM MolPropsAPFP G_offset 0.95±0.01 0.81±0.16 1.59±-0.18 0.94±0.01 0.81±0.02
SVM ECFP6 G_offset 0.95±0.01 0.90±0.15 1.53±-0.16 0.92±0.01 0.78±0.01
SVM APFP G_offset 0.94±0.01 1.04±0.21 2.2±-0.55 0.92±0.02 0.78±0.03
SVM X-NOISE G_offset 0.92±0.0 1.18±0.03 2.61±-0.97 0.86±0.0 0.72±0.0
SVM MolProps G_FEP 0.95±0.03 0.90±0.38 1.58±0.02 0.91±0.06 0.77±0.08
SVM MolPropsAPFP G_FEP 0.94±0.02 0.93±0.32 1.85±-0.18 0.91±0.04 0.77±0.06
SVM MolPropsTOPOL G_FEP 0.93±0.04 1.03±0.34 2.27±-0.45 0.87±0.04 0.71±0.05
SVM MolPropsECFP6 G_FEP 0.92±0.04 1.12±0.24 2.89±-0.9 0.89±0.05 0.72±0.06
SVM TOPOL G_FEP 0.78±0.12 1.55±0.68 6.02±-3.02 0.76±0.07 0.60±0.08
SVM APFP G_FEP 0.85±0.10 1.63±0.87 4.95±-1.93 0.71±0.08 0.53±0.08
SVM ECFP6 G_FEP 0.69±0.13 1.86±0.72 8.13±-4.65 0.69±0.10 0.51±0.11
SVM X-NOISE G_FEP -0.25±0.27 2.93±0.14 20.5±-15.89 -0.27±0.33 -0.18±0.24
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TABLE A2. Performance metrics for different models(Part II)

Model Featureset Labels Pearson r MUE RMSE Spearman rho Kendall tau

RF ECFP6 G_offset 0.94±0.01 1.00±0.08 1.87±-0.44 0.89±0.00 0.75±0.00
RF MolPropsTOPOL G_offset 0.94±0.01 1.03±0.09 1.94±-0.44 0.91±0.01 0.78±0.02
RF MolPropsAPFP G_offset 0.93±0.01 1.05±0.11 2.01±-0.48 0.91±0.02 0.77±0.02
RF MolProps G_offset 0.93±0.01 1.06±0.11 2.07±-0.50 0.90±0.01 0.76±0.01
RF MolPropsECFP6 G_offset 0.93±0.01 1.06±0.12 2.10±-0.52 0.90±0.02 0.76±0.02
RF TOPOL G_offset 0.93±0.02 1.11±0.20 2.09±-0.46 0.87±0.05 0.72±0.05
RF APFP G_offset 0.93±0.02 1.13±0.17 2.17±-0.52 0.90±0.02 0.76±0.04
RF X-NOISE G_offset 0.92±0.01 1.16±0.13 2.48±-0.78 0.86±0.02 0.71±0.02
RF MolPropsAPFP G_FEP 0.86±0.1 1.36±0.4 4.0±-1.46 0.87±0.05 0.73±0.07
RF MolPropsECFP6 G_FEP 0.86±0.1 1.37±0.4 4.13±-1.58 0.87±0.03 0.72±0.06
RF MolProps G_FEP 0.86±0.1 1.37±0.42 4.1±-1.53 0.86±0.04 0.71±0.07
RF MolPropsTOPOL G_FEP 0.84±0.11 1.41±0.37 4.56±-1.93 0.86±0.04 0.71±0.07
RF TOPOL G_FEP 0.77±0.19 1.62±0.43 7.11±-3.92 0.75±0.16 0.60±0.12
RF APFP G_FEP 0.83±0.13 1.87±0.44 6.13±-3.12 0.64±0.15 0.47±0.12
RF ECFP6 G_FEP 0.37±0.13 2.51±0.51 14.76±-10.48 0.46±0.1 0.34±0.09
RF X-NOISE G_FEP -0.11±0.37 2.88±0.33 20.32±-15.61 -0.05±0.47 -0.04±0.3

MLR MolPropsTOPOL G_offset 0.96±0.03 0.69±0.45 1.11±0.31 0.94±0.05 0.81±0.09
MLR MolPropsECFP6 G_offset 0.95±0.02 0.88±0.29 1.45±-0.0 0.92±0.05 0.77±0.06
MLR MolPropsAPFP G_offset 0.88±0.05 1.7±0.63 5.51±-2.45 0.85±0.1 0.68±0.11
MLR MolProps G_offset 0.82±0.08 1.72±0.75 5.99±-2.73 0.7±0.13 0.54±0.1
MLR X-NOISE G_offset 0.87±0.03 1.74±0.34 4.49±-2.08 0.77±0.03 0.6±0.04
MLR APFP G_offset 0.1±-0.04 \ \ 0.58±0.03 0.46±0.05
MLR TOPOL G_offset 0.21±-0.0 \ \ 0.07±-0.02 0.03±-0.01
MLR ECFP6 G_offset 0.04±0.07 \ \ 0.07±0.11 0.05±0.06
MLR MolPropsECFP6 G_FEP 0.93±0.05 1.12±0.49 2.06±-0.17 0.85±0.1 0.69±0.12
MLR MolPropsTOPOL G_FEP 0.92±0.06 1.17±0.7 3.02±-0.59 0.89±0.08 0.74±0.1
MLR MolProps G_FEP 0.9±0.17 1.37±1.36 3.53±-0.02 0.86±0.14 0.69±0.14
MLR MolPropsAPFP G_FEP 0.9±0.11 1.52±1.27 4.88±-1.14 0.86±0.11 0.7±0.11
MLR X-NOISE G_FEP -0.27±0.12 3.76±1.78 31.21±-24.26 -0.2±0.16 -0.15±0.09
MLR TOPOL G_FEP -0.2±-0.01 \ \ -0.05±0.0 -0.03±0.0
MLR APFP G_FEP -0.2±-0.04 \ \ 0.29±0.09 0.2±0.06
MLR ECFP6 G_FEP -0.19±-0.01 \ \ -0.13±0.06 -0.07±0.05
DNN MolPropsTOPOL G_offset 0.96±0.01 0.67±0.17 1.09±0.09 0.95±0.02 0.83±0.04
DNN TOPOL G_offset 0.96±0.02 0.69±0.25 1.15±0.13 0.93±0.03 0.81±0.05
DNN MolPropsECFP6 G_offset 0.96±0.01 0.74±0.19 1.18±0.06 0.94±0.03 0.82±0.05
DNN MolPropsAPFP G_offset 0.95±0.02 0.81±0.24 1.45±-0.03 0.93±0.02 0.79±0.04
DNN ECFP6 G_offset 0.95±0.01 0.88±0.2 1.46±-0.09 0.93±0.02 0.8±0.03
DNN MolProps G_offset 0.93±0.03 1.04±0.34 2.22±-0.42 0.9±0.05 0.74±0.07
DNN APFP G_offset 0.92±0.02 1.11±0.25 2.63±-0.77 0.9±0.04 0.74±0.04
DNN X-NOISE G_offset 0.92±0.0 1.17±0.05 2.57±-0.
DNN MolPropsAPFP G_FEP 0.93±0.1 0.95±0.72 2.0±0.24 0.9±0.11 0.76±0.14
DNN MolProps G_FEP 0.93±0.08 1.06±0.69 2.18±0.02 0.87±0.15 0.72±0.18
DNN MolPropsTOPOL G_FEP 0.92±0.08 1.08±0.57 2.84±-0.63 0.86±0.12 0.69±0.13
DNN MolPropsECFP6 G_FEP 0.92±0.08 1.1±0.5 2.44±-0.35 0.86±0.11 0.69±0.12
DNN TOPOL G_FEP 0.86±0.12 1.5±0.61 4.28±-1.63 0.78±0.15 0.6±0.13
DNN ECFP6 G_FEP 0.69±0.13 1.91±0.81 8.38±-4.79 0.67±0.09 0.48±0.08
DNN APFP G_FEP 0.84±0.12 2.19±1.38 8.54±-4.16 0.62±0.16 0.47±0.14
DNN X-NOISE G_FEP -0.01±0.48 2.86±0.05 19.86±-15.37 0.03±0.48 0.03±0.32
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Appendix B: Hyperparameter space

We tabulated the parameter optimisation ranges for all in-
dependent models (Table A3) for ease of viewing. The table
shows the optimised parameters corresponding to each model
and the total number of parameter searches.
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TABLE A3. Hyperparameter space definition for each model. The hyperparameter with the most accurate model prediction was selected
among all parameter combinations, and the model was retrained and tested on the test set under that parameter condition.

ML model Hyperparameter Range Total configurations
SVM C 1e-3, 1e-2, . . . , 1e+2 216

ε 1e-3, 1e-2, . . . , 1e+2
γ 1e-3, 1e-2, . . . , 1e+2

RF NumEstimators 1, 2, . . . , 1000 9e+4
MaxDepth 1, 2, . . . , 5

MinSamplesSplit 2, 3, . . . , 10
Bootstrap True, False

DNN ActivationFn logistic, tanh, relu 3.1e+6
Solver lbfgs, sgd, adam

Layers* (100, 50), (50, 20), (100, 100, 50),
(100, 50, 20), (50, 20, 5)

Adam-β 1 0.1, 0.2, . . . , 0.99
Adam-β 2 0.1, 0.2, . . . , 0.9
Adam-ε 10e-8, 10e-7, . . . , 10e-1

MLR No hyperparameters to tune. 1
XGBoost NumEstimators 1, 2, . . . , 1000

MaxDepth 1, 2, . . . , 15
MinchildWeight 1, 2, . . . , 10

Subsample 0.5, 0.6, . . . , 1.0 9e+5
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Appendix C: Feature Analysis

1. Feature Definations given by XGB Model of Strategy 1

Specific Definations of Features based on the MolProp-
sTOPOL dataset given by the XGB(Strategy 1) model (top
11):

GeomShapeIndex: This feature typically represents the ge-
ometric shape index of a molecule, reflecting its shape char-
acteristics. The shape of a molecule affects its interactions
with solvent molecules, which in turn influences hydration
free energy. Molecules with more complex shapes may have
larger contact areas and different solvation patterns, making
the shape index an important feature.

MOMI-Z: The moment of inertia of the molecule along the
Z-axis, as explained earlier, reflects the distribution of molec-
ular mass along the Z-axis. Features related to the molecu-
lar geometry and polarity distribution (such as the moment of
inertia) may influence the interaction modes of molecules in
solvents and thereby affect hydration free energy.

PBF (Partitioned Bond Field): This feature is related to the
bond field within a molecule, describing the characteristics of
bonds in the molecular structure. The polarity and bonding
properties of bonds within a molecule directly affect its inter-
actions in solution, thus influencing hydration free energy.

RNCS (Relative Negative Charged Surface Area): This rep-
resents the relative negative charged surface area. The charge
distribution on the molecular surface is crucial for its inter-
action with polar solvents such as water. A higher negative
charge surface area is usually associated with stronger solva-
tion effects, which can influence hydration free energy.

TASA (Total Area of Solvent-Accessible Surface Area):
Represents the total solvent-accessible surface area. The hy-
dration free energy of a molecule significantly depends on its
surface area, as it determines the potential for interaction with
the solvent.

RPCG (Relative Positive Charged Surface Area Gradient):
This is a feature that describes the gradient of the positively
charged surface of a molecule, indicating the variation in the
distribution of positive charges on the molecular surface. Sim-
ilar to negative charges, surface charge distribution has a sig-
nificant impact on solvation energy.

ATSC5c (Autocorrelation of Topological Structure -
Charge at Lag 5): This is a topological autocorrelation de-
scriptor representing the autocorrelation of charges at a lag of
5. It reflects the overall characteristics of molecular charge
distribution, which is important in electrolyte solvation pro-
cesses.

FNSA4 (Fractional Negative Solvent Accessible Surface
Area at a Specific Radius): This feature describes the frac-
tion of negative solvent-accessible surface area at a specific
radius of the molecule, influencing the solvation behavior in
polar solvents.

GATS2s (Geary Autocorrelation of Lag 2, Weighted by I-
State): This is a statistical feature that describes the autocorre-
lation of structural properties (I-state) of a molecule at a spe-
cific distance (lag 2), reflecting the atomic interactions within
the molecule.

GATS5pe (Geary Autocorrelation of Lag 5, Weighted by
Polarizability Eigenvalue): Represents the autocorrelation of
polarizability characteristics at lag 5, reflecting the influence
of molecular charge and polarity distribution on solvation en-
ergy.

FNSA2 (Fractional Negative Solvent Accessible Surface
Area at Radius 2): This feature is similar to FNSA4 but repre-
sents the fraction of negative solvent-accessible surface area
at a different radius, directly affecting the magnitude of hy-
dration free energy.

2. Feature Definations given by XGB Model of Strategy 2

Specific Definations of Features based on the MolProp-
sTOPOL dataset given by the XGB(Strategy 2) model (top
10):

AATSC2dv (Average Autocorrelation of Lag 2, Distance
Weighted by van der Waals Volume): This is a topologi-
cal autocorrelation descriptor based on molecular structure,
weighted by distance and van der Waals volume (vdW vol-
ume) at lag 2. It represents the structural autocorrelation con-
sidering van der Waals volume for atomic pairs at a distance
of 2 within the molecule. van der Waals volume reflects the
size and density of atoms in the molecule. Larger volumes
may lead to greater repulsion effects between the molecule
and solvent molecules, affecting hydration free energy.

GATS3s (Geary Autocorrelation of Lag 3, Weighted by I-
State): This is a Geary autocorrelation descriptor representing
the correlation of atomic states (I-state) in a molecular struc-
ture at lag 3. The I-state is a feature describing the electronic
environment of atoms. This feature can reflect differences
and similarities in the electronic environment between atoms
within a molecule, influencing the molecule’s polarity and its
ability to interact with solvent molecules.

PEOE_VSA8 (PEOE Charge Distribution Weighted by van
der Waals Surface Area, Bin 8): Uses Gasteiger PEOE charge
distribution (Partial Equalization of Orbital Electronegativi-
ties) weighted by the van der Waals surface area in the 8th bin.
This descriptor partitions the surface area by the magnitude of
charges and weights it accordingly. The combination of sur-
face area and charge reflects the polarity and surface proper-
ties of the molecule. It directly affects how solvent molecules
interact with the molecular surface, thereby influencing hy-
dration free energy.

PBF (Partitioned Bond Field): Describes the bond field
characteristics within a molecule, considering the polarity,
bond energy, and distribution of bonds within the molecule.
It is a comprehensive descriptor. As bond field characteristics
are directly related to molecular polarity and electron distri-
bution, it affects the molecule’s behavior in the solvent and
solvation effects.

ATSC8c (Autocorrelation of Topological Structure -
Charge at Lag 8): This is a topological autocorrelation de-
scriptor based on the molecular structure, using charge at a
lag of 8. It represents the autocorrelation of charges between
atomic pairs that are 8 bonds apart within the molecule. This
feature reveals the overall characteristics of the internal charge
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distribution of a molecule, which may affect interactions be-
tween the solvent and the molecule at longer distances, thus
impacting hydration free energy.

ATSC5se (Autocorrelation of Topological Structure -
Sanderson Electronegativity at Lag 5): This is a topological
autocorrelation descriptor based on Sanderson electronegativ-
ity, with a lag of 5. It reflects the autocorrelation of elec-
tronegativity between atoms that are 5 bonds apart within
the molecule. Electronegativity determines the polarity of a
molecule and its interactions with solvents. Higher autocor-
relation may indicate a greater variation in electronegativity,
which could affect the solvation pattern of the molecule.

AATSC5are (Average Autocorrelation of Lag 5, Aromatic-
ity Weighted by Radius Eigenvalue): This is an autocorre-
lation descriptor based on aromaticity and radius eigenvalue
weighting, with a lag of 5. It captures the correlation between
aromatic atoms at a distance of 5. The correlation between
aromatic atoms can influence the polarity and solvation prop-
erties of molecules, especially in polar solvents.

AATSC0i (Average Autocorrelation of Lag 0, Identity
Weighted): This is an autocorrelation descriptor with a lag of
0 (i.e., adjacent atomic pairs), representing the autocorrelation
weighted by the identity matrix. It is usually used to measure
the intrinsic properties of the atoms constituting the molecule
rather than their relationships. As a fundamental descriptor, it
reflects the intrinsic characteristics of the atoms constituting
the molecule, which may indirectly affect the behavior of the
molecule in solvents.

GATS3pe (Geary Autocorrelation of Lag 3, Weighted by
Polarizability Eigenvalue): Represents the Geary autocorrela-
tion descriptor weighted by polarizability eigenvalue at a lag
of 3. It reflects the variation in polarizability within the local
region of a molecule. Polarizability affects a molecule’s re-
sponse and interaction with solvents. Higher autocorrelation
may indicate uneven distribution of polarizability, affecting
solvation effects.

pfp190 (Fingerprint Descriptor, Length 190): This is a
path-based molecular fingerprint that represents the presence
of atomic paths in the molecule. The pfp190 feature indi-
cates the boolean presence (existence or non-existence) of all
atomic paths of length 190 in the molecule. Path length is re-
lated to the branching and complexity of the molecule. Longer
paths may involve more atoms and bonds, which can affect the
interactions between the molecule and solvent and its hydra-
tion free energy.
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