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Abstract

A graphG is F -free ifG does not contain F as a subgraph. Let ρ(G) be the spectral radius
of a graph G. Let θ(1, p, q) denote the theta graph, which is obtained by connecting two
distinct vertices with three internally disjoint paths with lengths 1, p, q, where p ≤ q. Let
Sn,k denote the graph obtained by joining every vertex of Kk to n − k isolated vertices
and S−

n,k denote the graph obtained from Sn,k by deleting an edge incident to a vertex

of degree k, respectively. In this paper, we show that if ρ(G) ≥ ρ(S−

m+4

2
,2
) for a graph G

with even size m ≥ 92, then G contains a θ(1, 3, 3) unless G ∼= S−

m+4

2
,2
.
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1 Introduction

Throughout this paper, we consider all graphs are always undirected and simple. We follow
the traditional notation and terminology [1]. Let G be a graph of order n with vertex set
V (G) = {v1, v2, . . . , vn} and size m with edge set E(G). For a vertex u ∈ V (G), let NG(u) be
the neighborhood set of a vertex u, NG[u] = NG(u)∪ {u} and N2

G(u) be the set of vertices of
distance two to u in G. In particular, NS(v) = N(v) ∩ S and dS(v) = |NS(v)| for a subset
S ⊆ V (G). Let dG(u) = |NG(u)| be the degree of a vertex u. For the sake of simplicity, we
omit all the subscripts if G is clear from the context, for example, N(u), N [u], N2(u) and
d(u). For a graph G and a subset S ⊆ V (G), let G[S] be the subgraph of G induced by S.
For two vertex subsets S and T of V (G) (where S ∩ T may not be empty), let e(S, T ) denote
the number of edges with one endpoint in S and the other in T . e(S, S) is simplified by e(S).
Given two vertex-disjoint graphs G1 and G2, we denote by G1 ∪G2 the disjoint union of the
two graphs, and by G1 ∨ G2 the joint graph obtained from G1 ∪ G2 by joining each vertex
of G1 with each vertex of G2. The adjacency matrix of a graph G is an n × n matrix A(G)

∗Supported by the National Natural Science Foundation of China (No. 12271439).
†Corresponding author.
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whose (i, j)-entry is 1 if vi is adjacent to vj and 0 otherwise. The spectral radius ρ(G) of a
graph G is the largest eigenvalue of its adjacency matrix A(G).

Let Pn, Cn,K1,n−1 and Ka,b be the path of order n, the cycle of order n, the star graph of
order n and the complete bipartite graph with two parts of sizes a, b, respectively. Let Sk

n be
the graph obtained from K1,n−1 by adding k disjoint edges within its independent sets. Let
Sn,k be the graph obtained by joining every vertex of Kk to n− k isolated vertices. Let S−

n,k

be the graph obtained from Sn,k by deleting an edge incident to a vertex of degree k. Let
θ(1, p, q) denote the theta graph, which is obtained by connecting two distinct vertices with
three internally disjoint paths with lengths 1, p, q, where q ≤ p.

Given a graph F , a graph G is F -free if it does not contain F as a subgraph. Let G(m,F )
denote the family of F -free graphs with m edges and without isolated vertices. The classic
Turán type problem asks what is the maximum number of edges in an F -free graph of order
n. In spectral graph theory, Nikiforov [16] posed a spectral Turán type problem which asks to
determine the maximum spectral radius of an F -free graphs of n vertices, which is known as
the Brualdi-Solheid-Turán type problem. In the past decades, this problem has received much
attention. For more details, we suggest the reader to see surveys [3, 6, 10, 17], and references
therein. In addition, Brualdi and Hoffman raised another spectral Turán type problem: What
is the maximal spectral radius of an F -free graph with given size m? This problem is called
the Brualdi-Hoffman-Turán type problem. This problem has been studied for various families
of graphs. For example, K3 [18], Kr+1 [14, 15], K2,r+1 [20], F2k+2 [8] (where Fk = K1∨Pk−1),
Fk,3 [8] (where Fk,3 is the friendship graph obtained from k triangles by sharing a common
vertex).

For theta graphs, Sun, Li and Wei [19] characterized the extremal graph with maximum
spectral radius of θ(1, 2, 3)-free and θ(1, 2, 4)-free graphs with odd size. Fang and You [5]
characterized the extremal graph with maximum spectral radius of θ(1, 2, 3)-free graphs with
even size. Liu and Wang [12] characterized the extremal graph with maximum spectral
radius of θ(1, 2, 4)-free graphs with even size. Lu, Lu and Li [11] characterized the extremal
graph with maximum spectral radius of θ(1, 2, 5)-free with given size. Li, Zhai and Shu
[9] characterized the extremal graph with maximum spectral radius of θ(1, 2, 2k − 1)-free or
θ(1, 2, 2k)-free with given size.

Recently, Li, Zhao and Zou [8] characterized the extremal graph with maximum spectral
radius of θ(1, p, q)-free with size m for q ≥ p ≥ 3 and p+ q ≥ 7.

Theorem 1.1. ([8]) Let k ≥ 3 and m ≥ 9
4k

6 + 6k5 + 46k4 + 56k3 + 196k2. If G ∈
G(m, θ(1, p, q))∪G(m, θ(1, r, s)) with q ≥ p ≥ 3, s ≥ r ≥ 3, p+ q = 2k+1 and r+ s = 2k+2,
then

ρ(G) ≤ k − 1 +
√
4m− k2 + 1

2
,

and equality holds if and only if G ∼= Kk ∨ (m
k
− k−1

2 )K1.

At the same time, they [8] proposed the following problem.

Problem 1.2. ([8]) How can we characterize the graphs among G(m, θ(1, 3, 3)) having the
largest spectral radius?

Theorem 1.3. ([7]) Let G ∈ G(m, θ(1, 3, 3)) be a graph of size m ≥ 43. Then

ρ(G) ≤ 1 +
√
4m− 3

2
,
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and equality holds if and only if G ∼= Sm+3

2
,2.

However, for a θ(1, 3, 3)-free graph G with size m, the bound ρ(G) ≤ 1+
√
4m−3
2 is sharp

only for odd m. Motivated by this, we want to obtain a sharp upper bound of ρ(G) for even
m. Our result is presented as follows.

Theorem 1.4. Let G ∈ G(m, θ(1, 3, 3)) be a graph of even size m ≥ 92, then ρ(G) ≤
ρ(S−

m+4

2
,2
), and equality holds if and only if G ∼= S−

m+4

2
,2
.

2 Preliminary

In this section, we introduce some lemmas which are used to prove our result.

Lemma 2.1. ([21]) Let u, v be two distinct vertices of the connected graph G, {vi|i =
1, 2, . . . , s} ⊆ N(v) \ N(u), and X = (x1, x2, . . . , xn)

T be the Perron vector of G. Let
G′ = G−∑s

i=1 viv +
∑s

i=1 viu. If xu ≥ xv, then ρ(G) < ρ(G′).

Definition 2.2. ([4]) Given a graph G, the vertex partition Π: V (G) = V1 ∪ V2 ∪ . . . ∪ Vk is
said to be an equitable partition if, for each u ∈ Vi, |Vj ∩N(u)| = bij is a constant depending
only on i, j (1 ≤ i, j ≤ k). The matrix BΠ = (bij) is called the quotient matrix of G with
respect to Π.

Lemma 2.3. ([4]) Let Π: V (G) = V1 ∪V2 . . .∪Vk be an equitable partition of a graph G with
quotient matrix BΠ. Then det(xI−BΠ) | det(xI−A(G)). Furthermore, the largest eigenvalue
of BΠ is just the spectral radius of G.

Lemma 2.4. ([20]) Let G∗ be the extremal graph with the maximum spectral radius in
G(m,F ). Let X = (x1, x2, . . . , xn)

T be the Perron vector of the graph G∗. If F is a 2-
connected graph and xu∗ = max{xv | v ∈ V (G∗)}, then the following statements hold.

(i) G∗ is connected.
(ii) There exists no cut vertex in V (G∗) \ {u∗}, and hence d(u) ≥ 2 for any u ∈ V (G∗) \

N [u∗].

Lemma 2.5. ([2]) Let G be a bipartite graph of size m. Then ρ(G) ≤ √
m, and equality holds

if and only if G is a disjoint union of a complete bipartite graph and isolated vertices.

Lemma 2.6. ([13]) ρ(S−
m+4

2
,2
) > 1+

√
4m−5
2 for m ≥ 6.

Lemma 2.7. ([13]) Let X = (x1, x2, . . . , xn)
T be the Perron vector of a connected graph G

of size m and let xu⋆ = max{xv|v ∈ V (G)} and W = V (G)\N [u⋆]. If ρ(G) > 1+
√
4m−5
2 and

there exists a vertex v of G such that xv < (1− β)xu⋆ , where 0 < β < 1, then

e(W ) < e(N(u⋆))− |N(u⋆) \N0(u
⋆)|+ 3

2
− βdN(u⋆)(v),

for v ∈ N2(u⋆).
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3 Proof of Theorem 1.4.

Let G∗ be the extremal graph with maximum spectral radius in G(m,F ). Let ρ = ρ(G∗) and
X∗ = (x1, x2, . . . , xn)

T be the Perron vector of G∗ with coordinate xv corresponding to the
vertex v ∈ V (G∗). A vertex u∗ in G∗ is said to be an extremal vertex if xu∗ = max{xv |
v ∈ V (G∗)}. Let W = V (G∗)\N [u∗] and N+(u

∗) = N(u∗) \ N0(u
∗), where N0(u

∗) denotes
the set of isolated vertices of G∗[N(u∗)]. Let WH = ∪u∈V (H)NW (u) for any component H of
G∗[N(u∗)].

Lemma 3.1. Let G∗ ∈ G(m, θ(1, 3, 3)). Then G∗[N(u∗)] is P5-free, that is, each component
H of G∗[N(u∗)] is one of the following.

(i) a graph with C4 as its spanning subgraph, that is, C4, θ(1, 2, 2) or K4;
(ii) a copy of S1

r+1 for r ≥ 2, where S1
3 is a triangle for r = 2;

(iii) a double star Da,b for a, b ≥ 1, which is obtained from two stars K1,a and K1,b by
joining a new edge between their centers;

(iv) a star K1,r for r ≥ 0, where K1,0 is a singleton component.

Lemma 3.2. ([7]) For any non-trivial component H in G∗[N(u∗)], if H contains a cycle of
length four, then NW (u)∩NW (v) = ∅ for any two vertices u and v in the cycle of length four.

Since A(G∗)X = ρX, we have

ρxu∗ =
∑

u∈N+(u∗)

xu +
∑

u∈N0(u∗)

xu.

Furthermore, we have

ρ2xu∗ =
∑

u∈N+(u∗)

ρxu +
∑

u∈N0(u∗)

ρxu

= |N+(u
∗)|xu∗ +

∑

u∈N+(u∗)

dN(u∗)(u)xu +
∑

w∈NW (u)

dW (u)xw + |N0(u
∗)|xu∗

= d(u∗)xu∗ +
∑

u∈N+(u∗)

dN(u∗)(u)xu +
∑

w∈N2(u∗)

dN(u∗)(w)xw.

Therefore,

(ρ2 − ρ)xu∗ = d(u∗)xu∗ +
∑

v∈N+(u∗)

(dN(u∗)(v)− 1)xv +
∑

w∈N2(u∗)

dN(u∗)(w)xw −
∑

v∈N0(u∗)

xv

≤ |N(u∗)|xu∗ +
∑

u∈N+(u∗)

(dN(u∗)(u)− 1)xu + e(N(u∗),W )xu∗ −
∑

u∈N0(u∗)

xu.

(1)

Note that S−
m+4

2
,2

is θ(1, 3, 3)-free, we have ρ ≥ ρ(S−
m+4

2
,2
) > 1+

√
4m−5
2 > 10 for m ≥ 92.

By Lemma 2.6, we have

(ρ2 − ρ)xu∗ > (m− 3

2
)xu∗ = (|N(u∗)|+ e(N+(u

∗)) + e(N(u∗),W ) + e(W )− 3

2
)xu∗ . (2)

4



Combining with (1) and (2), we get

∑

u∈N+(u∗)

(dN(u∗)(u)− 1)xu >



e(N+(u
∗)) + e(W ) +

∑

u∈N0(u∗)

xu
xu∗

− 3

2



xu∗ .

LetH be the set of all non-trivial components in G∗[N(u∗)]. For each non-trivial connected
component H of H, we denote ζ(H) =

∑

u∈V (H)(dH(u)− 1)xu. Obviously,

∑

H∈H
ζ(H) >



e(N+(u
∗)) + e(W ) +

∑

u∈N0(u∗)

xu
xu∗

− 3

2



xu∗ . (3)

Lemma 3.3. G∗[N(u∗)] contains no any cycle of length four.

Proof. Let H′ be the family of components of G∗[N(u∗)] each of which contains C4 as a
spanning subgraph and H \ H′ be the family of other non-trivial components of G∗[N(u∗)]
each of which contains no C4 as a spanning subgraph. By Lemma 3.1 (ii)-(iv), for each
H ∈ H \ H′, we have

ζ(H) =
∑

v∈V (H)

(dH(v)− 1)xv ≤ (2e(H) − |V (H)|)xu∗ ≤ e(H)xu∗ .

Next we show that

ζ(H) < (e(H)− 3

2
)xu∗ +

2
∑

w∈WH
xw

ρ− 3

for each H ∈ H′. Let H∗ ∈ H′ with V (H∗) = {u1, u2, u3, u4} and the cycle of length four be
u1u2u3u4u1.

First, we consider WH∗ = ∅. Assume that xu1
= max{xui

|1 ≤ i ≤ 4}. Then

ρxu1
=

∑

u∈N(u1)

xu ≤ xu∗ + xu2
+ xu3

+ xu4
≤ xu∗ + 3xu1

.

Hence, xu1
≤ 1

ρ−3xu∗ < 1
4xu∗ for ρ ≥ ρ(S−

m+4

2
,2
) > 1+

√
4m−5
2 > 10 due to m ≥ 92. Further-

more,

ζ(H∗) ≤ (2e(H∗)− |V (H∗)|)xu1
< (e(H∗)− 3

2
)xu∗ +

2
∑

w∈WH∗
xw

ρ− 3
,

as desired.
In the following, we assume that WH∗ 6= ∅, we consider the following two cases.
Case 1. All vertices in WH∗ have a unique common neighbor in V (H∗).
Without loss of generality, let u1 ∈ V (H∗) be the unique common neighbor. Thus,

NW (ui) = ∅ for i ∈ {2, 3, 4}. Assume that xu2
= max{xui

|2 ≤ i ≤ 4}, we have

ρxu2
≤ xu∗ + xu1

+ xu3
+ xu4

≤ 2xu2
+ 2xu∗ .

5



Thus, xu2
≤ 2

ρ−2xu∗ < 1
4xu∗ due to ρ > 10. Thus,

ζ(H∗) =
∑

u∈V (H∗)

(dH∗(u)− 1)xu

≤ (dH∗(u1)− 1)xu1
+ (2e(H∗)− dH∗(u1)− 3)xu2

<

(

dH∗(u1)− 1 +
1

2
e(H∗)− 1

4
dH∗(u1)−

3

4

)

xu∗

≤ (
3

4
dH∗(u1) +

1

2
e(H∗)− 7

4
)xu∗

≤ (
1

2
e(H∗) +

1

2
)xu∗

< (e(H∗)− 3

2
)xu∗ +

2
∑

w∈WH∗
xw

ρ− 3

due to dH∗(u1) ≤ 3, as desired.
Case 2. There are at least two distinct vertices of WH∗ such that they have distinct

neighbors in V (H∗). Since



























ρxu1
≤ xu∗ + xu2

+ xu3
+ xu4

+
∑

w∈NW
H∗

(u1)
xw,

ρxu2
≤ xu∗ + xu1

+ xu3
+ xu4

+
∑

w∈NW
H∗

(u2)
xw,

ρxu3
≤ xu∗ + xu1

+ xu2
+ xu4

+
∑

w∈NW
H∗

(u3)
xw,

ρxu4
≤ xu∗ + xu1

+ xu2
+ xu3

+
∑

w∈NW
H∗

(u4)
xw,

we obtain

ρ(xu1
+ xu2

+ xu3
+ xu4

) ≤ 3(xu1
+ xu2

+ xu3
+ xu4

) + 4xu∗ +
4

∑

i=1

∑

w∈NW
H∗

(ui)

xw.

By Lemma 3.2, we get NWH∗ (ui) ∩NWH∗ (uj) = ∅ for arbitrary two distinct vertices ui, uj ∈
V (H∗). Thus,

∑

w∈NW
H∗

xw =
∑

w∈NW (V (H∗)) xw =
∑4

i=1

∑

w∈NW
H∗

(ui)
xw. Combining ρ >

10, we obtain

xu1
+ xu2

+ xu3
+ xu4

≤ 4xu∗

ρ− 3
+

∑

w∈WH∗
xw

ρ− 3

<
4

7
xu∗ +

∑

w∈WH∗
xw

ρ− 3
.

Hence, by the definition of ζ(H∗),

ζ(H∗) ≤ 2(xu1
+ xu2

+ xu3
+ xu4

)

<
8

7
xu∗ +

2
∑

w∈WH∗
xw

ρ− 3

< (e(H∗)− 3

2
)xu∗ +

2
∑

w∈WH∗
xw

ρ− 3
.

6



Thus, we obtain ζ(H) < (e(H) − 3
2)xu∗ +

2
∑

w∈WH
xw

ρ−3 for each H ∈ H′. Recall that ζ(H) ≤
e(H)xu∗ for each H ∈ H \H′. Furthermore,

∑

H∈H
ζ(H) =

∑

H∈H′

ζ(H) +
∑

H∈H\H′

ζ(H)

<
∑

H∈H′

(e(H) − 3

2
)xu∗ +

∑

H∈H′

2
∑

w∈WH
xw

ρ− 3
+

∑

H∈H\H′

e(H)xu∗

= e(N+(u
∗))xu∗ − 3

2

∑

H∈H′

xu∗ +
∑

H∈H′

2
∑

w∈WH
xw

ρ− 3
.

For any H ∈ H′ satisfying WH = ∅, we have
∑

w∈WH
xw = 0. For any H ∈ H′ satis-

fying WH 6= ∅ and any w ∈ WH , since G∗ is θ(1, 3, 3)-free, we get WH ∩ WN(u∗)\H = ∅.
Then dN(u∗)\H(w) = 0. By Lemma 3.2, we have dH(w) = 1. Furthermore, dN(u∗)(w) = 1
and dW (w) ≥ 1 from Lemma 2.4. Thus,

∑

H∈H′

∑

w∈WH
xw ≤ ∑

H∈H′

∑

w∈WH
dW (w)xw ≤

∑

H∈H′

∑

w∈WH
dW (w)xu∗ ≤ 2e(W )xu∗ . Note that ρ > 10. Thus,

∑

H∈H
ζ(H) < e(N+(u

∗))xu∗ − 3

2

∑

H∈H′

xu∗ +
∑

H∈H′

2
∑

w∈WH
xw

ρ− 3

< (e(N+(u
∗)) +

4

7
e(W )−

∑

H∈H′

3

2
)xu∗

< (e(N+(u
∗)) + e(W )−

∑

H∈H′

3

2
)xu∗ ,

which contradicts (3). Furthermore, G∗[N(u∗)] contains no C4. This completes the proof of
Lemma 3.3.

By Lemma 3.1, we know that each non-trivial component of G∗[N(u∗)] is either a tree or
a unicyclic graph S1

r+1 with r ≥ 2. Let c be the number of non-trivial tree components of
G∗[N(u∗)]. Then

∑

H∈H
ζ(H) ≤

∑

H∈H

∑

u∈V (H)

(dH(u)− 1)xu∗ =
∑

H∈H
(2e(H) − |H|)xu∗ = (e(N+(u

∗))− c)xu∗ .

Combining (1), we get

e(W ) <
3

2
− c−

∑

u∈N0(u∗)

xu
xu∗

. (4)

Thus, e(W ) ≤ 1 and c ≤ 1. In addition, if e(W ) = 1, then c = 0 and
∑

u∈N0(u∗)
xu

xu∗
< 1

2 .

Lemma 3.4. e(W ) = 0.

Proof. Suppose on the contrary that e(W ) = 1. In this case, we have c = 0 and
∑

u∈N0(u∗)
xu

xu∗

< 1
2 . It follows that each component of G∗[N(u∗)] is isomorphic to a unicyclic graph S1

r+1 with
r ≥ 2. That is, each component of G∗[N(u∗)] contains a triangle. Let H∗ be a component of
G∗[N(u∗)] and u1u2u3 is a C3 of H∗. Let w1w2 be the unique edge of e(W ). By Lemma 2.4,

7



we obtain that dN(u∗)(wi) ≥ 1 for each i ∈ {1, 2}. If H∗ ∼= S1
3 , then we obtain dS1

3
(w) ≤ 3.

If H∗ ∼= S1
r+1 with r ≥ 3, then let dH∗(u2) = dH∗(u3) = 2 and u4, u5, · · · , ur+1 be the

neighbors of u1. For w ∈ WH∗ , we claim dH∗(w) ≤ 1. Otherwise, we consider the following
five cases in the sense of symmetry. If {u1, u2} ⊆ NH∗(w), then u1u3,u1wu2u3,u1u4u

∗u3
are three internally disjoint paths of lengths 1, 3, 3 between u1 and u3, a contradiction. If
{u2, u3} ⊆ NH∗(w), then u1u3,u1u2wu3,u1u4u

∗u3 are three internally disjoint paths of lengths
1, 3, 3 between u1 and u3, a contradiction. If {u1, u4} ⊆ NH∗(w), then u1u

∗,u1u2u3u∗,u1wu4u∗

are three internally disjoint paths of lengths 1, 3, 3 between u1 and u∗, a contradiction. If
{u2, u4} ⊆ NH∗(w), then u∗u2,u2wu4u∗,u2u1u3u∗ are three internally disjoint paths of lengths
1, 3, 3 between u∗ and u2, a contradiction. If {u4, u5} ⊆ NH∗(w), then u∗u4,u4wu5u∗,u4u1u3u∗

are three internally disjoint paths of lengths 1, 3, 3 between u∗ and u4, a contradiction. Thus,
dH∗(w) ≤ 1 for w ∈ WH∗ and H∗ ∼= S1

r+1 with r ≥ 3. In addition, we can check that
WH∗ ∩WN(u∗)\H∗ = ∅ for H∗ ∼= S1

r+1 with r ≥ 2. Consequently, d(w) = dH∗(w) for w ∈ WH∗ .
Furthermore, let xw1

≥ xw2
, we consider the following two cases.

Case 1. At least a vertex wi ∈ ∪3
j=1NW (uj) for some i ∈ {1, 2}.

Subcase 1.1. w1, w2 ∈ ∪3
j=1NW (uj).

In this case, we obtain (∪3
j=1NW (uj))∩(WN(u∗)\{∪3

j=1NW (uj)}) = ∅. Thus, NN(u∗)(w) ⊆
∪3
j=1NW (uj) for each w ∈ ∪3

j=1NW (uj). If NC3
(w1) ∩ NC3

(w2) = ∅, then there exists a
θ(1, 3, 3), a contradiction. If |NC3

(w1)∩NC3
(w2)| ≥ 2, then there exists a θ(1, 3, 3), a contra-

diction. Thus, |NC3
(w1)∩NC3

(w2)| = 1 and hence there exists a cut vertex, which contradicts
Lemma 2.4 (ii).

Subcase 1.2. w1 ∈ ∪3
j=1NW (uj) and w2 /∈ ∪3

j=1NW (uj).

In this case, suppose that w2 ∈ WH∗ , where H∗ ∼= S1
r+1 with r ≥ 3. Then

{

ρxw1
≤ xw2

+ xu1
+ xu2

+ xu3
≤ xw2

+ 3xu∗ ,

ρxw2
= xw1

+ xuk
≤ xw1

+ xu∗ ,

where uk ∈ V (H∗) \ {u1, u2, u3}. Combining with the above system of inequalities, we get
xw1

≤ 3ρ+1
ρ2−1

xu∗ . Since f(x) = 3x+1
x2−1

is decreasing with x > 10, we have xw1
≤ 3ρ+1

ρ2−1
xu∗ < 31

99xu∗ .

By Lemma 2.7, we get 1 = e(W ) < 0+ 3
2− 68

99 = 161
198 , a contradiction. Suppose that w2 ∈ WH⋆ ,

where H⋆ ⊆ N+(u
∗) \H∗ and H⋆ ∼= S1

r′+1 with r′ ≥ 2. Furthermore, if H∗ ∼= S1
3 : u1u2u3 and

H⋆ ∼= S1
3 : u′1u

′
2u

′
3, then

{

ρxw1
≤ xw2

+ xu1
+ xu2

+ xu3
≤ xw2

+ 3xu∗ ,

ρxw2
≤ xw1

+ xu′

1
+ xu′

2
+ xu′

3
≤ xw1

+ 3xu∗ .

Combining with the above system of inequalities, we get xw1
≤ 3

ρ−1xu∗ < 1
3xu∗ due to ρ > 10.

By Lemma 2.7, we get 1 = e(W ) < 0+ 3
2− 2

3 = 5
6 , a contradiction. If H∗ ∼= S1

3 and H⋆ ∼= S1
r′+1

with r′ ≥ 3, then
{

ρxw1
≤ xw2

+ xu1
+ xu2

+ xu3
≤ xw2

+ 3xu∗ ,

ρxw2
≤ xw1

+ xu∗ .

Combining with the above system of inequalities, we get xw1
≤ 3ρ+1

ρ2−1xu∗ . Since f(x) = 3x+1
x2−1 is

decreasing with x > 10, we have xw1
≤ 3ρ+1

ρ2−1
xu∗ < 31

99xu∗ . By Lemma 2.7, we get 1 = e(W ) <

0+ 3
2 − 68

99 = 161
198 , a contradiction. If H∗ ∼= S1

r+1 with r ≥ 3 and H⋆ ∼= S1
r′+1 with r′ ≥ 3, then

{

ρxw1
≤ xw2

+ xu∗ ,

ρxw2
≤ xw1

+ xu∗ .

8



Combining with the above system of inequalities, we get xw1
≤ 1

ρ−1xu∗ < 1
9xu∗ due to x > 10.

By Lemma 2.7, we get 1 = e(W ) < 0+ 3
2− 8

9 = 11
18 , a contradiction. Suppose that w2 ∈ WN0(u∗)

and H∗ ∼= S1
3 , then

{

ρxw1
≤ xw2

+ xu1
+ xu2

+ xu3
≤ xw2

+ 3xu∗ ,

ρxw2
≤ xw1

+
∑

u∈N0(u∗) xu < xw1
+ 1

2xu∗ .

Combining with the above system of inequalities, we get xw1
<

3ρ+ 1

2

ρ2−1
xu∗ <

30 1

2

99 . By Lemma

2.7, we get 1 = e(W ) < 0 + 3
2 − 68 1

2

99 = 80
99 , a contradiction. Suppose that w2 ∈ WN0(u∗) and

H∗ ∼= S1
r+1 with r ≥ 3, then

{

ρxw1
≤ xw2

+ xu∗ ,

ρxw2
≤ xw1

+
∑

u∈N0(u∗) xu < xw1
+ 1

2xu∗ .

Combining with the above system of inequalities, we get xw1
< 2ρ−1

2ρ2−ρ−2
xu∗ < 19

188 . By Lemma

2.7, we get 1 = e(W ) < 0 + 3
2 − 169

188 = 113
188 , a contradiction.

Case 2. wi /∈ ∪3
j=1NW (uj) for any i ∈ {1, 2}.

Suppose that w1, w2 ∈ WH∗ , where H∗ ∼= S1
r+1 for r ≥ 3. Then NH∗(w1) ∩NH∗(w2) = ∅.

Otherwise there exists a cut vertex, which contradicts Lemma 2.4 (ii). By lemma 2.4, we get
|NH∗(wi)| = 1 for each i ∈ {1, 2}. Moreover,

{

ρxw1
≤ xw2

+ xu∗ ,

ρxw2
≤ xw1

+ xu∗ .

Combining with the above system of inequalities, we get xw1
≤ 1

ρ−1xu∗ < 1
9 due to ρ > 10. By

Lemma 2.7, we get 1 = e(W ) < 0+ 3
2− 8

9 = 11
18 , a contradiction. Suppose that w1 ∈ WH∗ , where

H∗ ∼= S1
r+1 for r ≥ 3 and w2 ∈ WH⋆ , whereH⋆ ∼= S1

r′+1 for r
′ ≥ 3 andH⋆ ∈ N+(u

∗)\H∗. Then
|NH⋆(w2)| = 1. Similar with above, we get a contradiction. Suppose that w1 ∈ WH∗ , where
H∗ ∼= S1

r+1 for r ≥ 3 and w2 ∈ WN0(u∗). Then |NH∗(w1)| = 1 and |NN0(u∗)(w2)| ≤ |N0(u
∗)|.

Thus, we get
{

ρxw1
≤ xw2

+ xu∗ ,

ρxw2
≤ xw1

+
∑

u∈N0(u∗) xu < xw1
+ 1

2xu∗ .

Combining with the above system of inequalities, we get xw1
≤ ρ+ 1

2

ρ2−1
xu∗ <

10 1

2

99 . By Lemma

2.7, we get 1 = e(W ) < 0 + 3
2 − 88 1

2

99 = 60
99 , a contradiction. Suppose that w1, w2 ∈ WN0(u∗)

for each i ∈ {1, 2}. Then |NN0(u∗)(wi)| ≤ |N0(u
∗)| for each i ∈ {1, 2}. Thus, we get

{

ρxw1
≤ xw2

+
∑

u∈N0(u∗) xu < xw1
+ 1

2xu∗ ,

ρxw2
≤ xw1

+
∑

u∈N0(u∗) xu < xw1
+ 1

2xu∗ .

Combining with the above system of inequalities, we get xw1
< 1

2(ρ−1)xu∗ < 1
18xu∗ . By Lemma

2.7, we get 1 = e(W ) < 0 + 3
2 − 17

18 = 5
9 , a contradiction. This completes the proof of Lemma

3.4.

Lemma 3.5. G∗[N(u∗)] contains no triangle.
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Proof. Suppose on the contrary that G∗[N(u∗)] contains triangles. Then G∗[N(u∗)] contains
a component which is isomorphic to S1

r+1 for r ≥ 2. Let H∗ ∼= S1
r+1 be a component of

G∗[N(u∗)]. Then e(H∗) = r+1. Let u1u2u3u1 be the triangle of H∗ and dH∗(u1) = dH∗(u2).
If WH∗ = ∅, then xu1

= xu2
. Furthermore,

ρxu1
= xu2

+ xu3
+ xu∗ ≤ xu1

+ 2xu∗ .

Thus, xu1
≤ 2

ρ−1xu∗ < 2
9xu∗ due to ρ > 10.

ζ(H∗) = xu1
+ xu2

+ (r − 1)xu3

< (
4

9
+ r − 1)xu∗

= (e(H∗)− 14

9
)xu∗ .

Recall that ζ(H) ≤ e(H)xu∗ for H ∈ H \H∗. Thus,

∑

H∈H
ζ(H) = ζ(H∗) +

∑

H∈H\H∗

ζ(H)

< (e(H∗)− 14

9
)xu∗ +

∑

H∈H\H∗

e(H)xu∗

= (e(N+(u
∗))− 14

9
)xu∗

,

which contradicts (3). Thus, WH∗ 6= ∅.
Since e(W ) = 0, combining Lemma 2.4, we have dN(u∗)(w) ≥ 2. If r ≥ 3, then WH∗ ∩

WN(u∗)\H∗ = ∅, and hence d(w) = dH∗(w) ≤ 1 for w ∈ WH∗ , a contradiction. Thus, r = 2,
that isH∗ is a triangle u1u2u3. SinceG∗ is θ(1, 3, 3)-free, we obtain thatWH∗∩WN(u∗)\H∗ = ∅,
and hence d(w) = dH∗(w) ≤ 3. First, we assume that |WH∗ | = 1. Let WH∗ = {w}. As H∗ is
a triangle, we obtain 2 ≤ d(w) = dH∗(w) ≤ 3. We consider two cases as follows.

Case 1. dH∗(w) = 2.
In this case, without loss of generality, we suppose N(w) = {u1, u2}. Then xu1

= xu2
.

Since
ρxu3

= xu1
+ xu2

+ xu∗ ≤ 3xu∗ .

Furthermore, xu3
≤ 3

ρ
xu∗ . Similarly,

ρxu1
= xu2

+ xu3
+ xu∗ + xw ≤ xu1

+
3

ρ
xu∗ + 2xu∗ ,

we obtain that xu1
≤ 2ρ+3

ρ(ρ−1)xu∗ . Thus,

ζ(H∗) = xu1
+ xu2

+ xu3
≤ 7ρ+ 3

ρ(ρ− 1)
xu∗ .

Since 7x+3
x(x−1) is decreasing in variable x > 10, we get

ζ(H∗) <
73

90
xu∗ < (e(H∗)− 3

2
)xu∗ .
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Recall that ζ(H) ≤ e(H)xu∗ for H ∈ H \H∗. Thus,

∑

H∈H
ζ(H) = ζ(H∗) +

∑

H∈H\H∗

ζ(H)

< (e(H∗)− 3

2
)xu∗ +

∑

H∈H\H∗

ζ(H)

= (e(N+(u
∗))− 3

2
)xu∗

,

which contradicts (3).
Case 2. dH∗(w) = 3.
In this case, let NH∗(w) = {u1, u2, u3}. Then xu1

= xu2
= xu3

. Since

ρxu1
= xu2

+ xu3
+ xu∗ + xw ≤ 2xu1

+ 2xu∗ ,

we obtain xu1
≤ 2

ρ−2xu∗ . Furthermore,

ζ(H∗) = xu1
+ xu2

+ xu3
≤ 6

ρ− 2
xu∗ <

3

4
xu∗ < (e(H∗)− 3

2
)xu∗ .

Thus,
∑

H∈H
ζ(H) < (e(N+(u

∗))− 3

2
)xu∗ ,

a contradiction. Thus, |WH∗ | ≥ 2.
Recall that WH∗ ∩WN(u∗)\H∗(w) = ∅ for any w ∈ WH∗ and 2 ≤ d(w) = dH∗(w) ≤ 3. Let

w1 ∈ WH∗ such that N(w1) = {u1, u2, u3} and w2 6= w1 in WH∗ satisfying d(w2) ≥ 2. Suppose
that u1, u2 ∈ N(w2). Then u∗u1, u∗u3w1u1 and u∗u2w2u1 are three internally disjoint paths
of lengths 1, 3, 3 between u∗ and u1, a contradiction. Hence, d(w) = dH∗(w) = 2 for any
w ∈ WH∗ . This implies 1 ≤ |N(w1) ∩ N(w2)| ≤ 2 for any two vertices w1, w2 ∈ WH∗ . If
|N(w1)∩N(w2)| = 1, without loss of generality, let N(w1) = {u1, u2} and N(w2) = {u1, u3},
then u∗u1, u∗u3w2u1 and u∗u2w1u1 are three internally disjoint paths of lengths 1, 3, 3 between
u∗ and u1, a contradiction. Thus, |N(w1) ∩ N(w2)| = 2. That is N(w1) = N(w2) for any
two vertices w1, w2 ∈ WH∗ . Without loss of generality, suppose that N(w) = {u1, u2} for
any w ∈ WH∗ . Let G1 = G∗ − {u1w|w ∈ NW (u1)} + {u∗w|w ∈ NW (u1)}. Obviously, G1 is
θ(1, 3, 3)-free. By Lemma 2.1, we get ρ(G1) > ρ, a contradiction. This completes the proof
of Lemma 3.5.
Proof of Theorem 1.4. By Lemmas 3.1,3.3 and 3.5, we obtain that each component of
G∗[N+(u

∗)] is a non-trivial tree. If c = 0, then G∗ is bipartite. By Lemma 2.5, we have

ρ ≤ √
m < 1+

√
4m−3
2 for m ≥ 92, a contradiction. Thus c = 1 and

∑

u∈N0(u∗)
xu

xu∗
< 1

2 from

Inequality (4). Let H be the unique component of G∗[N+(u
∗)], where H is a non-trivial tree.

By Lemma 3.1 (iii) and (iv), we have diam(H) ≤ 3.
If diam(H) = 3, then H is a double star. Let u1 and u2 be the two center vertices of

H. Let {v1, v2, · · · , va} ∈ NH(u1) \ u2 and let {z1, z2, · · · , zb} ∈ NH(u2) \ u1 for a, b ≥ 1. If
WH = ∅, without loss of generality, assume that xu1

≥ xu2
, then let G2 = G∗ − {u2v|v ∈

NH(u2)\{u1}}+{u1v|v ∈ NH(u2)\{u2}}. We can verify that G2 is θ(1, 3, 3)-free. By Lemma
2.1, we get ρ(G2) > ρ, a contradiction. Thus, WH 6= ∅. It is easily checked WH∩WN(u∗)\H = ∅
for any w ∈ WH . Hence, N(w) ⊆ V (H) and by Lemma 2.4, d(w) = dH(w) ≥ 2. We claim
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d(w) = dH(w) = 2. Suppose contrary that dH(w) ≥ 3. If {u1, u2, v1} ∈ WH(w), then u1u2,
u1v1wu2, u1u

∗z1u2 are three internally disjoint paths of lengths 1, 3, 3 between u1 and u2,
a contradiction. If {u1, v1, v2} ∈ WH(w), then u∗v2, u∗v1wv2, u∗u2u1v2 are three internally
disjoint paths of lengths 1, 3, 3 between u∗ and v2, a contradiction. If {u2, v1, v2} ∈ WH(w),
then u∗u2, u∗v1wu2, u∗v2u1u2 are three internally disjoint paths of lengths 1, 3, 3 between
u∗ and u2, a contradiction. If {v1, v2, z1} ∈ WH(w), then v1u

∗, v1wv2u∗, v1u1u2u∗ are three
internally disjoint paths of lengths 1, 3, 3 between v1 and u∗, a contradiction. If {v1, v2, v3} ∈
WH(w), then u∗v1, u∗v3wv1, u∗u2u1v1 are three internally disjoint paths of lengths 1, 3, 3
between u∗ and v1, a contradiction. Thus, d(w) = dH(w) = 2. We claim N(w) = {u1, u2}.
Otherwise, we consider five cases in the sense of symmetry as follows. IfN(w) = {u1, v1}, then
u∗u1, u∗v1wu1, u∗z1u2u1 are three internally disjoint paths of lengths 1, 3, 3 between u∗ and
u1, a contradiction. If N(w) = {u1, z1}, then u1u2, u1wu

∗z1u2, u2u∗z1u1 are three internally
disjoint paths of lengths 1, 3, 3 between u1 and u2, a contradiction. If N(w) = {v1, v2}, then
u∗v1, u∗v2wv1, u∗u2u1v1 are three internally disjoint paths of lengths 1, 3, 3 between u∗ and
v1, a contradiction. If N(w) = {v1, z1}, then u∗v1, u∗z1wv1, u∗u2u1v1 are three internally
disjoint paths of lengths 1, 3, 3 between u∗ and v1, a contradiction. Thus, N(w) = {u1, u2}.
Let G3 = G∗ −{u2w|w ∈ NW (u2)}+ {u∗w|w ∈ NW (u2)}. We can verify that G3 is θ(1, 3, 3)-
free. By Lemma 2.1, we get ρ(G3) > ρ, a contradiction.

If diam(H) ≤ 2, then H ∼= K1,r with r ≥ 1. Let V (H) = {u0, u1, · · · , ur} and u0 be the
center vertex of H with r ≥ 1. We claim r ≥ 9. By ρ > 10 and Inequality (4), we have

10xu∗ < ρxu∗ = xu0
+ xu1

+ · · ·+ xur
+

∑

v∈N0(u∗)

xv < (r + 1 +
1

2
)xu∗ .

Thus, r ≥ 9. We claim WH = ∅. Suppose on the contrary that WH 6= ∅.
First, we assume dH(w) ≥ 3 for any vertex w ∈ WH . If {u0, u1, u2} ∈ NH(w), then

u∗u1, u∗u2wu1 and u∗u3u0u1 are three internally disjoint paths of lengths 1, 3, 3 between u∗

and u1, a contradiction. If {u1, u2, u3} ∈ NH(w), then u∗u3, u∗u4u0u3 and u∗u1wu3 are
three internally disjoint paths of lengths 1, 3, 3 between u∗ and u3, a contradiction. Thus,
dH(w) ≤ 2. If dH(w) = 1, then we obtain that w is only adjacent to the center vertex u0.
Otherwise, let NH(w) = u1. By Lemma 2.4 and e(W ) = 0, we obtain |NN0(u∗)(w)| ≥ 1. Then
u∗u1, u∗vwu1, u∗u2u0u1 are three internally disjoint paths of lengths 1, 3, 3 between u∗ and
u1, where v ∈ NN0(u∗)(w), a contradiction. Thus, NH(w) = {u0}. By Inequality (4), we have

ρxw ≤ xu0
+

∑

v∈N0(u∗)

xv <
3

2
xu∗ .

Thus, xw < 3
2ρxu∗ < 3

20xu∗ due to ρ > 10. By Lemma 2.7, we get 0 = e(W ) < −1 + 3
2 − 17

20 =

− 7
20 , a contradiction. If dH(w) = 2, then we have NN0(u∗)(w) = ∅. Otherwise, G∗ contains a

θ(1, 3, 3). Furthermore, we get

ρxw ≤ xu0
+ xu1

≤ 2xu∗ .

This implies that xw ≤ 1
2ρxu∗ < 1

20xu∗ due to ρ > 10. By Lemma 2.7, we get 0 = e(W ) <

−1 + 3
2 − 19

20 < 0, a contradiction. Thus, WH = ∅. If W 6= ∅, then by Lemma 2.1, we obtain
d(w) = dN0(u∗)(w) for any vertex w ∈ W . Furthermore, N0(u

∗) 6= ∅ and

ρxw ≤
∑

v∈N0(u∗)

xv <
1

2
xu∗ .
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This implies that xw < 1
2ρxu∗ < 1

20xu∗ due to ρ > 10. By Lemma 2.7, we get 0 = e(W ) <

−1 + 3
2 − 19

20 = − 9
20 , a contradiction. Thus, W = ∅ and hence G∗ ∼= G4 (see Figure. 1). Let

|N0(u
∗)| = t. Since m is even, we obtain that t is odd and t ≥ 1. By Lemma 2.3, we obtain

that ρ is the largest root of the equation f(x, t) = 0 where

f(x, t) = x4 −mx2 − (m− t− 1)x+
t(m− t− 1)

2

for m = t+ 1 + 2r ≥ 92. Since

f(x, t)− f(x, 1) = (t− 1)x+
(t− 1)(m− t− 2)

2
> 0

for x > 0 and t ≥ 3, which implies that t = 1 for the extremal graph G∗. By Lemma 2.6,

we have ρ(S−
m+4

2
,2
) > 1+

√
4m−5
2 for m ≥ 92 and G∗ ∼= S−

m+4

2
,2
, as desired. This completes the

proof of Theorem 1.4. �

u
*

Figure 1: The graph G4.
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