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Abstract—We propose a novel integrated sensing and commu-
nication (ISAC) system, where the base station (BS) passively
senses the channel parameters using the information carrying
signals from a user. To simultaneously guarantee decoding and
sensing performance, the user adopts sparse regression codes
(SPARCs) with cyclic redundancy check (CRC) to transmit its
information bits. The BS generates an initial coarse channel
estimation of the parameters after receiving the pilot signal. Then,
a novel iterative decoding and parameter sensing algorithm is
proposed, where the correctly decoded codewords indicated by
the CRC bits are utilized to improve the sensing and channel
estimation performance at the BS. In turn, the improved estimate
of the channel parameters lead to a better decoding performance.
Simulation results show the effectiveness of the proposed iterative
decoding and sensing algorithm, where both the sensing and the
communication performance are significantly improved with a few
iterations. Extensive ablation studies concerning different channel
estimation methods and number of CRC bits are carried out for
a comprehensive evaluation of the proposed scheme.

Index Terms—Sparse regression code, Integrated sensing and
communication (ISAC), Iterative decoding.

I. INTRODUCTION

Integrated sensing and communications (ISAC) has been
gaining significant research interest [1]–[3]. ISAC can signif-
icantly enhance spectrum and energy efficiency, reducing the
hardware costs and addressing bandwidth congestion problems
in upcoming 6G networks. ISAC systems can be catagorized
as active or passive sensing. In ISAC with active sensing, the
transmitter (typically the BS) transmits both the sensing signal
and the information carrying signal, and utilizes the echo signal
to estimate the parameters of interest [1]. In passive sensing, on
the other hand, the BS uses the signals it receives from the users
to perform joint sensing and decoding without transmitting
signals of its own [4], [5].

Existing studies rarely address channel coding in ISAC
systems, focusing instead on theoretical bounds on the mean
square error (MSE) of the estimated parameters and the achiev-
able communication rate [1], [2]. In practice, these commu-
nication rates cannot be realized without the implementation
of channel codes [6], [7]. Exploring this, the authors in [6]
reveal the fact that satisfactory (active) sensing performance
can be achieved if the low density parity check (LDPC)-coded
signals are utilized for sensing. In [7], the authors first show that
sparse vector coding (SVC) can be a good candidate for active
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Fig. 1: In the considered passive ISAC scenario, the user
transmits both pilot and data packets to the BS under the OFDM
framework. We assume L static targets/scatterers, where the l-
th one, l ∈ [1, L], is associated with a delay τl and a complex
gain αl.

sensing as the ambiguity function of the SVC signal has less
significant side lobes compared with the uncoded signal. They
then show that SVC outperforms convolutional codes in both
error correction ability and sensing performance. However, both
works focus on active sensing and to the best of our knowledge,
no prior work considers coded passive sensing under the ISAC
framework. The most relevant works are [4] and [5] where both
consider transmitting uncoded QAM symbols. In particular, in
[5], the authors adopt a Transformer-based neural network to
first decode the QAM symbols and the decoded symbols are
used for parameter sensing. However, as the QAM symbols
are uncoded and a considerable amount of symbol errors may
occur even under a relatively high SNR, the symbol errors
will degrade the sensing performance, which further hinders
the subsequent communication performance. Similar analysis
applies for [4] as well, although the authors propose advanced
learning-based iterative data detection and sensing algorithm to
improve the system performance, the framework can be further
strengthened with the aid of channel coding.

In this paper, we implement the first integrated passive
sensing and communication system using coded signals in the
orthogonal frequency division multiplexing (OFDM) frame-
work. We start from a simplified setup where both the user
and the BS have only one antenna and the scatters are assumed
to be static. The cyclic redundancy check (CRC)-aided sparse
regression code [8] with a K-best decoding algorithm proposed
in [9] is adopted due to its superior performance for short
packet transmission [10], [11]. The user transmits both the pilot
and the coded data packets to the BS over a multi-path fading
channel, and the BS performs iterative sensing and decoding.
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The iteration starts with initial channel estimation using the
received pilot signal. However, the coarse initial channel es-
timate from the pilot signal can be insufficient to achieve a
satisfactory decoding performance. To this end, we first apply
the K-best decoding algorithm to each of the received data
packets using the estimated channel in the previous iteration.
The decoder outputs the decoded bit sequence as well as an
error flag indicating whether the decoded bit sequence passes
the CRC, for each of the received codewords. The decoded bit
sequences that pass the CRC will be used for the subsequent
parameter sensing and channel estimation steps to provide more
accurate estimates. It is shown in our experiments that both the
sensing and communication performance can be significantly
improved within a few iterations. Extensive simulations are
carried out to evaluate the packet error rate (PER) performance
and the sensing MSE of the proposed iterative ISAC algorithm.
The superiority of SPARC over the Polar coded and uncoded
baselines is also verified.

II. SYSTEM MODEL

A. Pilot and Data Transmission

We consider the passive ISAC scenario depicted in Fig. 1.
We assume N OFDM subcarriers, each occupying a bandwidth
of ∆B. The pilot signal, denoted by xp ∈ CN in the
frequency domain, is transmitted by the user over the multi-
path channel. We assume there exist L static targets/scatterers
in the environment1, whose time domain channel response can
be expressed as:

h(t) =

L∑
l=1

αlδ(t− τl), (1)

where αl and τl denote the complex gain containing the radar
cross section (RCS) of the l-th target, and the delay correspond-
ing to the l-th path, respectively. It is worth emphasizing that
τl is a multiple of 1

∆B , i.e., τl = nl
1

∆B , nl ∈ [1, NG], where
NG is the guard interval of the OFDM symbol, and typically
we have NG = N/4. The received pilot signal in the frequency
domain can be expressed as:

yp = h⊙ xp +wp, (2)

where h ∈ CN is the frequency domain response of h(t)
in (1), ⊙ represents element-wise multiplication and wp ∈
CN (0, σ2

pIN ) denotes the AWGN. The SNR of the pilot signal

is defined as SNRp ≜ E(∥xp∥2
2)

E(∥wp∥2
2)

= 1/σ2
p as we assume

E(∥xp∥22) = N .
The estimated channel, ĥ, can be obtained from the received

pilot, yp via linear minimum mean square error (LMMSE)
channel estimation:

ĥ = Rh(Rh + σ2
p(xpx

†
p)

−1)−1yp/xp, (3)

where Rh ≜ Eh(hh
†) denotes the covariance matrix of the

channel frequency response.
The data packet contains information bit sequence, b ∈
{0, 1}Nb , which is coded and modulated to generate xd ∈ CN .

1We leave the study of the mobile scenario as a future work.

The modulated codeword is transmitted over the same channel2

with the same channel state information (CSI), h, in (2).
We detect and decode the information bit sequence using the
estimated channel, ĥ. In particular, MMSE channel equalization
is adopted to generate the log likelihood ratio (LLR) values for
each coded bit followed by channel decoder to produce the
final decoded bit sequence, b̂. The equalization and decoding
processes are standard and we skip them due to the page limit.
The packet error rate (PER) of the system can be defined as:

PER = E[1(b ̸= b̂)], (4)

where 1(·) denotes the indicator function, which is 1 if the
two-bit sequences are identical, and 0 otherwise.

B. Parameter Sensing

This subsection outlines the parameter estimation process
in the considered ISAC system. Following the generally in-
vestigated parameter sensing scenario, we are interested in
estimating (αl, nl), l ∈ [1, L], where the number of paths L
is assumed to be known in advance at the BS3. These two
parameters are essential for characterizing the environment and
the objects within it, while the estimated values can also be
leveraged to reconstruct the communication channel, and as a
result, to enhance the reliability of data transmission.

Based on the estimated channel ĥ in (3), we apply inverse
fast Fourier transform (IFFT) to convert it into the discrete time-
domain response, i.e., ĥt = IFFT(ĥ). The estimated (α̂l, n̂l)
denote the complex gain and the index of the element whose
amplitude is the l-th largest in ĥt:

{n̂l}1:L = topL(|ĥt|),
α̂l = ĥt[n̂l], ∀l ∈ [1, L], (5)

where topL(x) outputs the indices of the top-L values of x.
The reconstructed time domain response, ĥt

r ∈ CN , can be
expressed as:

ĥt
r[n] =

{
α̂l, n = n̂l,

0, otherwise.
(6)

The sensing performance is evaluated by calculating the MSE
between ĥt

r and the ground truth, ht ≜ IFFT(h):

MSE = E(∥ĥt
r − ht∥22). (7)

III. THE PROPOSED CODED ISAC SYSTEM

In this section, we will first illustrate the encoding and
decoding processes of the proposed CRC-assisted SPARC over
the considered multi-path fading channel. Then, the iterative
decoding and sensing algorithm is presented, and shown to
significantly improve both the communication and sensing
performances.

2We assume the channel keeps constant for B ≥ 1 data packets.
3If L is unknown, it can be determined by counting the number of taps

which are above a predetermined threshold.
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Fig. 2: Illustration of the proposed coded ISAC system. At the encoder, B bit sequences are CRC and SPARC encoded to
generate the transmit signals. At the decoder, upon receiving the data packets yb, b ∈ [1, B] as well as the pilot signal, yp, we
run the proposed iterative decoding and sensing algorithm. In particular, for the n-th iteration, we apply the SPARC decoding
algorithm which takes ĥ(n−1) and yb as input and outputs the decoded bits, ĉb and the CRC flag, Tb. The decoded bits ĉb with
Tb = 1 are SPARC re-encoded for a refined channel and parameter estimation. Finally, we obtain the decoded bits, ĉb and the
estimated sensing parameters, (τ̂ (Ni)

l , α̂
(Ni)
l ),∀l ∈ [1, L] as output.

A. CRC-assisted SPARC for OFDM system

We consider the CRC-assisted SPARC due to its superior
performance with respect to (w.r.t.) the state-of-the-art Polar
codes for short packet transmission over AWGN and MIMO
channels [9], [11]. The encoding and decoding of SPARC over
an OFDM channel are detailed next.

1) CRC-assisted SPARC encoding: The encoding process
is comprised of two parts, namely, the CRC and SPARC
encoding. To start with, the input bit sequence, denoted by
b ∈ {0, 1}V log2(M)−Ncrc , is fed to the CRC encoding block
where Ncrc extra CRC bits are appended to b to produce
a new bit sequence c ∈ {0, 1}V log2(M) for the subsequent
SPARC encoding. Then, we partition c into V blocks, each is
comprised of log2(M) bits4. The SPARC is characterized by
its codebook, C ∈ CV×M×N , consisting of independent and
identically distributed (i.i.d.) entries from the complex Gaussian
distribution CN (0, 1/V ). log2(M) bits of the v-th block are
mapped to an index, mv ∈ [1,M ], which corresponds to the
length-N sub-codeword, Cv[mv]. By superposing all V sub-
codewords, the transmitted codeword is obtained as:

x =

V∑
v=1

Cv[mv]. (8)

We can easily verify that E(x†x) = N using the i.i.d. property
of the elements within the codebook.

2) SPARC decoding: Then, we present SPARC decoding for
an OFDM channel. We provide a brief overview of the decoding
algorithm here, and refer the readers to [9] for more details.

Codebook update: We assume CSI, h, is perfectly available
at the decoder5. The codebook, C, is updated w.r.t h as:

Cv,h[m] = h⊙ Cv[m], ∀v ∈ [1, V ],∀m ∈ [1,M ]. (9)

4We assume M is a power of 2.
5The SPARC decoding algorithm is still valid when there is an estimation

error in h.

K-best decoding: We then illustrate the procedure to decode
SPARC codeword with a K-best decoding algorithm. To be
precise, the posterior probability of the SPARC codeword can
be expressed as:

P (m1, . . . ,mV |y,h) ∝

exp{− 1

2σ2
||y −

V∑
v=1

Cv,h[mv]||22}. (10)

The decoding objective is to find a combination of indices,
{m1,m2, . . . ,mV } that maximizes (10). This is equivalent to
minimizing the L2 distance, ||y −

∑V
v=1 Cv,h[mv]||22.

Similarly [9], we define the score metric, s(l) =
||y −

∑l
i=1 Ci,h[mi]||22, which can be expressed recursively as:

s(l) = s(l−1) + ||Cl,h[ml]||22
+ 2ℜ(C†

l,h[ml]u
(l−1) − C†

l,h[ml]y), (11)

where u(l−1) =
∑l−1

i=1 Ci,h[mi] is the cumulative vector. It
is easy to show that s(V ) is the L2 distance of interest, i.e.,
s(V ) = ||y −

∑V
v=1 Cv,h[mv]||22.

The maximum a posterior (MAP) solution can be obtained by
checking all possible {m1,m2, . . . ,mV } combinations. How-
ever, this would lead to an overwhelmingly high complexity. As
a low complexity alternative, we introduce the K-best decoding
algorithm. In particular, for each layer, we only preserve K
candidates, and prune the others. The process starts from the
root of the tree with a score initialized to s(0) = 0. In the
l-th layer, the k-th surviving node in the previous layer with
accumulated indices (mk

1 , . . . ,m
k
l−1) is extended to M child

nodes and the score of its m-th child, can be calculated as:

s
(l)

mk
1 ,...,m

k
l−1,ml

= s
(l−1)

mk
1 ,...,m

k
l−1

+ ||Cl,h[ml]||22

+ 2ℜ(C†
l,h[ml]u

(l−1)
k − C†

l,h[ml]y), (12)

where u
(l−1)
k =

∑l−1
i=1 Ci,h[m

k
i ]. After obtaining KM metrics

belonging to all the K surviving nodes in the previous layer,



we select the K smallest candidates and prune the others.
By iteratively extending and pruning the tree, we can obtain
K candidates at the V -th layer, where the k-th candidate
can be characterized by its accumulated indices denoted by
(mk

1 , . . . ,m
k
V ). It is also associated with its accumulated vector,

u
(V )
k , and the metric, s(V )

k ≜ s
(V )

mk
1 ,...,m

k
V

.
It is worth mentioning that the decoding order of the layers

makes a difference and we adopt the per-layer sorting in [9],
where the layers with more ‘reliable’ candidates should be
decoded earlier to prevent error propagation to the remaining
layers. As a result, the true decoding order, L, is a permutation
of [1, 2, . . . , V ].

We also implement ‘looped K-best decoding’, proposed
in [9], with Nd

i extra iterations to further improve the PER
performance. In particular, the looped K-best decoder takes the
output of the original K-best decoding algorithm as input and
outputs the updated indices of the K candidates, which can be
expressed as:

{(mk
1 , . . . ,m

k
V )}k∈[1,K] = loopedKbest(

{(mk
1 , . . . ,m

k
V ),u

(V )
k , s

(V )
k }k∈[1,K],L, Nd

i ). (13)

We refer the interested readers to [9] for more details of the
looped K-best decoding procedure.

Finally, for the k-th candidate of the looped K-best decoder,
we convert each of its V indices, (mk

1 , . . . ,m
k
V ) into a bit se-

quence, denoted by ĉvk, v ∈ [1, V ]. Then, the overall decoded bit
sequence corresponding the the k-th candidate is obtained by
concatenating all V bit sequences together, ĉk = (ĉ1k, . . . , ĉ

V
k ).

We apply CRC to each of the K bit sequences, ĉk, k ∈ [1,K],
in sequential order and the first bit sequence which passes the
CRC will be served as the final decoded output, ĉ. If none of
the K bit sequences passes the CRC, we set the error flag, T to
0, otherwise set T = 1. The entire CRC-aided K-best decoding
algorithm is summarized in Algorithm 1. Note that we use the
notation idx(k) to represent the indices, (mk

1 , . . . ,m
k
V ) in the

algorithm.

B. Iterative decoding and parameter sensing

We then illustrate the proposed iterative decoding and param-
eter sensing algorithm which significantly improves both the
communication and sensing performance. In the standard ISAC
algorithm, the BS outputs the estimated sensing parameters
and the CSI merely using the pilot signal, and the B ≥ 1
data packets are decoded using the estimated CSI. The main
idea behind the proposed iterative algorithm is to treat the
successfully decoded data packets as pilot signals, and use them
to generate a more accurate channel estimation and the refined
CSI will help improve the decoding performance. The overall
flowchart of the proposed scheme is shown in Fig. 2 and is
detailed as follows.

As shown in the left of Fig. 2, B input bit sequences,
(b1, . . . , bB) are CRC encoded to produce cb, b ∈ [1, B], and
the transmitted symbols, xb, are generated via SPARC encod-
ing. After passing the multi-path fading channel, the receiver
has access to yb, b ∈ [1, B], as well as the received pilot, yp.
Since the BS has not yet decoded the data symbols, i.e., xb, it

Algorithm 1: CRC-aided K-best decoding algorithm
with per-layer sorting for OFDM channel.

Input : K,Nd
i ,y, {Ch}

Output: T, ĉ

1 for k = 1 to K do
2 u(k)← 0 (zero accumulative vector)
3 s(k)← 0 (zero score metric)
4 idx(k)← [ ] (empty candidate index)

5 L ← [ ] (empty decoded layer index)
6 T ← 0 (CRC flag)
7 %% Original K-best decoding:
8 for j = 1 to V do
9 lj ← ChooseLayer(L)

10 L ← [L, lj ]
11 for k = 1 to K do
12 stmp(k)← s(k)− 2ℜ(y†Clj ,h − u†(k)Clj ,h) +

diag(C†
lj ,h

Clj ,h)

13 [s, idxnew,anc]← SelectNodes(stmp,K)
14 for k = 1 to K do
15 u(k)← u(anc(k)) + Clj ,h[idxnew(k)]
16 idx(k)← [idx(anc(k)), idxnew(k)]

17 %% Looped K-best decoding:
18 idx = LoopedKBest (idx, {u(V )

k , s
(V )
k }k∈[1,K],L, Nd

i )
19 outputList ← Reorder(idx, L)
20 %% CRC decoding:
21 while T ̸= 1 and k ≤ K do
22 ĉ ← IdxToBits(outputList (k))
23 T ← CRCDecode(ĉ)

can only produce the LMMSE estimate of the channel, denoted
by ĥ(0), using the pilot as shown in (3). Moreover, we initialize
the CRC flag and the decoded bit sequences for each of the B
data packets to {Tb = 0, ĉb = 0}b∈[1,B], respectively.

In the first iteration, the data symbols are decoded using
ĥ(0). The SPARC decoding process for the b-th packet can be
expressed as:

{Tb, ĉb} = g(K,Nd
i ,yb,Cĥ(0)), (14)

where g(·) denotes the CRC-aided K-best decoding algorithm
summarized in Algorithm 1, Tb ∈ {0, 1} represents the CRC
flag, and Cĥ(0) is calculated as in (9). It is worth mentioning
that having Tb = 1 does not guarantee successful decoding
of the packet, i.e., ĉb ̸= cb. This is because some wrongly
decoded packets may also pass the CRC. We term this event
as an ‘outage’ and the outage probability is denoted by Po.
Since Po is typically small, it is plausible to assume that the
packet with Tb = 1 is correctly decoded and the output bit
sequence, ĉb, will be used to re-estimate the channel6. We
denote the number of successfully decoded data packets in the

6It is shown in the experiment that the wrongly decoded packets that pass
the CRC have little effect on the final performance.



Algorithm 2: The iterative decoding and sensing algo-
rithm.
Input : xp,yp, {yb}b∈[1,B],K,Nd

i , Ni, B,C
Output: {ĉb}b∈[1,B], ĥ

(Ni)

1 ĥ(0) = Rh(Rh + σ2
p(xpx

†
p)

−1)−1yp/xp

2 {Tb, x̂b}b∈[1,B] ← 0B ,0B×N

3 for n = 1 to Ni do
4 Cĥ(n−1) ← UpdateCodebook(C, ĥ(n−1))
5 ▷ Equation (9).
6 for b = 1 to B do
7 if Tb = 0 then
8 {Tb, ĉ

(n)
b } = g(K,Nd

i ,yb, {Cĥ(n−1)})
9 x̂b ← SPARCEncode(ĉ(n)b )

10 else
11 pass

12 y
(n)
ext,x

(n)
ext,X

(n)
S ←

Construct(xp,yp, {yb, x̂b, Tb}b∈[1,B])
13 ▷ Equation (16) and (17).

14 h̃(n) = Rh(Rh + (X
(n)
S X

(n)
S

†
)−1)−1y

(n)
ext/x

(n)
ext

15 Estimate (τ̂
(n)
l , α̂

(n)
l ) using h̃(n);

16 Generate ĥ(n) using (τ̂
(n)
l , α̂

(n)
l ).

first iteration by n1 =
∑B

b=1 Tb, with indices {I1, . . . , In1
}

satisfying 1 ≤ I1 < · · · < In1
≤ B. Each of the n1

decoded bit sequences, ĉIi are SPARC re-encoded to generate
the codeword, x̂Ii , and x̂Ii = xIi holds if no outage happens.
Then, the re-encoded codewords, x̂Ii , can be treated as pilot
signals known by the receiver, and the corresponding received
signals, yIb , are utilized to generate a refined channel estimate,
which can be expressed as:

h̃(1) = Rh(Rh + (X
(1)
S X

(1)
S

†
)−1)−1y

(1)
ext/x

(1)
ext, (15)

where Rh is the same as in (3), y(1)
ext ∈ C(n1+1)N is obtained

by concatenating the received pilot signal, yp, and the received
data packets that pass CRC:

y
(1)
ext = [y⊤

p ,y
⊤
I1 , . . . ,y

⊤
In1

]⊤, (16)

and x
(1)
ext is obtained in the same way. The matrix, X

(1)
S is

defined as:

X
(1)
S = [xp/σp, x̂I1/σ, . . . , x̂In1

/σ], (17)

where σ denotes the noise power for the data packets.
After obtaining h̃(1) from the LMMSE channel estimator, we

update the sensing parameters, (τ̂ (n)l , α̂
(n)
l ) as in Section II-B.

The frequency response, ĥ(1) corresponding to the updated
sensing parameters, will be used in the second iteration.

It is worth mentioning that, for the second iteration, we only
need to decode the remaining (B−n1) data packets using ĥ(1),
while the n1 successfully decoded packets, (ĉI1 , . . . , ĉIn1

)
remain the same. The iterative decoding and sensing process

terminates if the number of iterations reaches Ni, or all the B
data packets pass CRC.

We evaluate the performance of the proposed iterative algo-
rithm by calculating the PER and the MSE defined in (4) and
(7), respectively. We summarize the entire iterative decoding
and sensing procedure in Algorithm 2.

IV. NUMERICAL EXPERIMENTS

A. Parameter Settings

Unless otherwise specified, we consider short packet trans-
mission where each data packet is comprised of 13 informa-
tion bits with an 11-bit CRC whose generator polynomial is
x11+x10+x9+x5+1. The parameters of the SPARC are set to
V = 3,M = 256, N = 32. The number of OFDM subcarriers
is N = 32 and L = 3 paths are considered. Without loss
of generalizability, we assume αl ∈ CN (0, 1

L ), l ∈ [1, L] and
nl = l, i.e., the delay occupies the first L taps. Finally, for the
SPARC decoding, we set the number of surviving candidates,
K = 16 at each layer and set the number of extra iterations,
Nd

i = 3.

B. Performance Evaluation

1) Performance improvement w.r.t. Ni: We first illustrate
the improvement brought by the number of iterations. In this
simulation, different pilot SNR values, SNRp ∈ {−3, 1, 5, 9}
dB are considered and the number of pilot frames and data
packets are set to 1 and B = 6, respectively. The SNR of the
data packets is fixed at 9 dB. The PER and MSE performances
are evaluated after collecting enough number of packet errors. It
can be seen from Fig. 3 (a) and (b) that both the PER and the
MSE improve significantly w.r.t Ni. In particular, Fig. 3 (a)
shows for all SNRp values, the PER performance converges
with merely 3 iterations. We can also observe that the PER
performance of the SPARC with SNRp = 9 dB and Ni = 4
nearly approaches the PER performance of the SPARC with
perfect pilot.

We also provide the PER performance of the Polar baseline
to outline the effectiveness of the proposed SPARC. The Polar
baseline utilizes the same 11-bit CRC and adopts successive
cancellation list decoding algorithm. In particular, the 13 in-
formation bits are first CRC encoded and the Polar encoder
encodes the length-24 input bit sequence into a bit sequence
with 64 bits which is modulated to generate 32 QPSK symbols
for transmission. The decoded bit sequence is obtained after
the MMSE equalization and Polar decoding. As can be seen in
Fig. 3 (a), the proposed SPARC outperforms the Polar baseline
in terms of PER.

Fig. 3 (b) manifests the MSE of the parameters, (αl, τl), w.r.t.
Ni. The MSE is large when Ni = 0 which is due to the fact that
we only use one xp frame to estimate the parameters. When
Ni grows, a larger number of data packets are successfully
decoded and the LMMSE channel estimator in (15) produces
more accurate channel estimates leading to improved MSE
performance.
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Fig. 3: Performance evaluation of the proposed coded ISAC system: (a) & (b) the PER and MSE performances versus the number
of iterations, Ni, with different pilot SNR values and B = 6; (c) the PER performance with different numbers of blocks, B,
where SNRp = 1 dB and Ni = 4.
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Fig. 4: The PER performance of the SPARC with different
numbers of CRC bits and different channel estimation methods
are evaluated. We also provide an uncoded benchmark to
outline the effectiveness of the channel codes. It is worth
emphasizing that we adopt Eb/N0 as the x-axis for a fair
comparison of the schemes with different spectrum efficiencies.

2) The effects of different number of data packets: we inves-
tigate the effect of different number of data packets, B, on the
system performance. In this simulation, the pilot SNR is fixed
at SNRp = 1 dB, while B is selected from B ∈ {1, 4, 16, 64}.
Intuitively, increasing B enhances the probability of correctly
decoding a larger number of data packets, which can then serve
as additional pilot symbols, thereby improving the accuracy of
channel estimation. However, a larger B also introduces higher
latency, as the latency scales proportionally with B. Depending
on the specific application, it is important to determine an
optimal B that balances the trade-off between decoding latency
and PER performance.

As can be seen in Fig. 3 (c), the PER performance improves
rapidly from B = 0 to B = 4 yet it nearly ceases to improve
when B ≥ 16. It is also shown in the figure that there is a gap
between B = 64 and the SPARC with perfect CSI which is due

TABLE I: The outage probabilities, Po, for three CRC settings
with different SNR values.

SNR (dB) 3 6 9
Po w/ 6-bit CRC 0.102 0.058 0.040
Po w/ 8-bit CRC 0.028 0.015 0.009
Po w/ 11-bit CRC 2.2× 10−3 1.7× 10−3 1.2× 10−3

to the CRC outage: the wrong SPARC re-encoded codewords
would degrade the channel estimate which hinders the final
PER performance. This will be verified in the subsequent
simulations concerning the outage probability, Po.

3) Ablation studies: Finally, we provide ablation studies
for a comprehensive understanding of the proposed iterative
decoding and sensing system. In particular, we fix the SPARC
parameters, i.e., (V = 3,M = 256, N = 32) and change dif-
ferent CRC settings as well as the channel estimation methods.
In particular, we consider 6-bit and 8-bit CRC with generator
polynomials, x6+x5+1 and x8+x2+x+1, respectively. The
PER performance of the zero-forcing (ZF) channel estimation
method with 11-bit CRC is evaluated as well as the PER
performance of the uncoded QPSK symbols with perfect CSI.
For all the schemes, we set the number of blocks, B, to 6 and
the pilot SNR, SNRp = 5 dB. It is worth mentioning that,
to provide a fair comparison for the schemes with different
CRC lengths (leading to different spectrum efficiencies), we
use Eb/N0 instead of SNR as the x-axis.

As shown in Fig. 4, without the aid of channel codes, the
PER of the uncoded QPSK symbols is much higher than that
using channel codes. Moreover, a significant gain is observed
by comparing the PER performance between the LMMSE
channel estimator with the ZF counterpart. It is also shown that
having a shorter CRC would harm the system performance,
this is due to the fact that the outage probabilities, Po, for
both the 6-bit and 8-bit CRC settings are relatively high as
shown in Table I. This would lead to wrong SPARC re-encoded
symbols, x̂b, and harms the subsequent channel estimation
performance. The 11-bit CRC has a much smaller Po, thus,
it has the best PER performance. It is also shown in Table



I that Po is decreasing w.r.t. SNR as the proposed SPARC
decoding algorithm produces more reliable bit sequences with
higher SNR.

V. CONCLUSION

In this paper, a novel integrated passive sensing and com-
munication system is proposed for OFDM system where the
BS performs parameter sensing and channel decoding simul-
taneously. CRC-aided SPARC code is adopted to protect the
information bits from channel distortion. The BS adopts a novel
iterative decoding and sensing algorithm where the correctly
decoded data packets will be used to improve the sensing
performance, then, the improved parameter estimates will in
turn help to decode more data packets. Extensive simulations
are carried out to verify the gain achieved by the iterative
decoding and sensing algorithm. We also provide an ablation
study concerning different channel estimation methods and dif-
ferent numbers of CRC bits for a comprehensive understanding
of the proposed scheme.
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