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Abstract

We propose a functional MIDAS model to leverage high-frequency information for fore-

casting and nowcasting distributions observed at a lower frequency. We approximate the

low-frequency distribution using Functional Principal Component Analysis and consider a

group lasso spike-and-slab prior to identify the relevant predictors in the finite-dimensional

SUR-MIDAS approximation of the functional MIDAS model. In our application, we use the

model to nowcast the U.S. households’ income distribution. Our findings indicate that the

model enhances forecast accuracy for the entire target distribution and for key features of

the distribution that signal changes in inequality.

J.E.L Classification Code: C32; E32

Keywords: Nowcasting; Functional PCA; SUR; MIDAS; Inequality

∗Andrea Renzetti and Massimiliano Marcellino thank MUR-Prin 2022 - Prot. 20227YZ9JK, financed by the

European Union - Next Generation EU, for partial financial support. We thank Vasco Botelho, Michael Pfarrhofer,

Anna Simoni and Jonas Striakus for helpful comments.
†Bocconi University and BAFFI-CAREFIN Center; email: massimiliano.marcellino@unibocconi.it
‡Bocconi University and BAFFI-CAREFIN Center; email: andrea.renzetti2@unibo.it.
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1 Introduction

Economists, policymakers, and social scientists have long recognized the profound implications

of income distribution for social stability, economic growth, and overall well-being. The ongoing

shifts in income distribution are central to understanding the evolution of economic inequality.

Additionally, the income distribution influences aggregate demand through consumption and

investments, as well as the demand for financial assets (Aiyagari 1994; Kaplan et al. 2018; Bayer

et al. 2019; Bilbiie et al. 2023). Therefore, closely monitoring the evolution of household income

distribution is crucial, not only for tracking household income inequality per-se, but also for

an accurate assessment of the current state of the economy. Real-time monitoring of income

distribution provides critical insights that can guide effective policy interventions and promote

equality, economic development and stability.

Most of the times, however, for what concerns the distribution of households’ income we

only have imperfect knowledge of the present state and even of the recent past. Comprehensive

surveys on households’ income are often released with considerable lag, since gathering data from

a large and diverse sample of households is time-consuming. Surveys often require in-person

interviews, phone calls, or mailed questionnaires, which can take several months to complete.

This is especially true for large surveys that involve a representative sample of households and

provide information on the annual stream of income, deriving not only from wages and salaries,

but also from self employed income, social security benefits, interest and dividends, retirement

income, unemployment compensations etc.

The importance of monitoring real-time changes in income distribution necessitates seeking

timely signals from various indicators available before the release of official data. In this work

we introduce a functional MIDAS (MIxed DAta Sampling) model for nowcasting the low fre-

quency households’ income distribution leveraging high frequency macroeconomic and financial

indicators.1 To exploit high-frequency macroeconomic indicators for nowcasting the households’

income distribution, we face three main challenges. First, we need a finite dimensional approxi-

mation of the continuous distribution of household income. Second, we have to match the high

frequency macroeconomic indicators with the low-frequency approximation of the distribution

of income. Third, we might want to identify the relevant predictors from a potentially large

number of macroeconomic and financial time series. These facts can easily cause a proliferation

1. For an extensive treatment of MIDAS models see Ghysels et al. (2025).
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of parameters, potentially leading to overfitting with subsequent negative effects on forecast ac-

curacy, particularly due to the small sample size resulting from annual or biannual observations

in these types of household surveys. We address the first challenge using functional principal

component analysis (Ramsay et al. 2005), which allows us to approximate the distribution of

income with a relatively small number of basis functions. Approximating the distribution of

income using functional principal components leads to a seemingly unrelated MIDAS regression

(SUR-MIDAS) approximation of the functional MIDAS model. Still, when considering a possi-

bly large number of high frequency indicators and a meaningful lag dynamics for these indicators,

the SUR-MIDAS model is highly-parameterized. For this purpose, we extend the MIDAS group

lasso spike and slab adaptive prior in Mogliani et al. (2021) to a SUR framework. Since this prior

is constructed to set exactly to zero the coefficients of the irrelevant predictors, this approach

allows us to explore the usefulness of a potentially large number of predictors while performing

variable selection. For the specification of the prior, we consider a re-parameterization of the

original SUR model which enables an efficient equation by equation estimation of the parameters

of the model. Thus, the paper also contributes to the recent MIDAS literature by extending the

sparse-group LASSO regression-based approach (Babii et al. 2021; Mogliani et al. 2021; Babii

et al. 2024) to a SUR framework.

Our model is a direct forecasting tool that matches high-frequency information from macroe-

conomic and financial indicators to predict the entire household income distribution before it is

officially released. In general, although it does not enable predictions for the micro-level distri-

bution at a high frequency, the MIDAS framework allows leveraging high-frequency information

for nowcasting the low-frequency micro-level income distribution. This applies both when the

micro variable reports income for the fourth quarter of the current year and when they refer to

the entire year, as in the application we consider. Indeed, since the MIDAS approach does not

require filtering out missing observations of the micro-variable’s low-frequency distribution, it

avoids the issue of aggregating latent high-frequency distributions, as it would be required in the

mixed frequency framework of Schorfheide et al. (2015). This circumvents the need to impose

additional assumptions when approximating the cross-sectional distributions.

In the application, we use the model for nowcasting the distribution of households’ income

in the United States from the Annual Social and Economic Supplement (ASEC) of the Current

Population Survey (CPS). This annual survey on yearly household income is released in March

of the following year. This data provides a comprehensive measure of the financial resources
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accrued by a household in a given year, and it is usually used for analyzing economic well-being

and poverty status among different demographic groups in the United States. To investigate

the usefulness of high frequency macroeconomic indicators for nowcasting the distribution of

household income, we set up a pseudo-real-time forecasting exercise. The set of predictors

comprehends quarterly indicators concerning the evolution of aggregate income, employment,

financial accounts, government expenditure, consumption, interest rates and stock prices within

the year. In the application, we find that leveraging quarterly macroeconomic and financial in-

dicators with our model enhances forecast accuracy about the yearly cross-sectional distribution

of household income for the US. In particular, we find that exploiting high frequency information

allows to enhance forecast accuracy of key features of the distribution that signal changes in

inequality.

The rest of the article is organized as follows. In Section 2 we introduce the functional MIDAS

model and the group lasso-type prior for the parameters of its finite dimensional SUR-MIDAS

approximation. To assess the small-sample performance of our modelling strategy and the prior

specification, in section 3 we set-up a Monte Carlo simulation, which highlights the merits of

our approach in realistic settings. Section 4 presents the application of the SUR-MIDAS to the

problem of nowcasting the cross-sectional distribution of household income in the US released

in the March ASEC of the CPS. Section 5 summarizes the main findings and concludes. The

appendix presents additional theoretical and empirical results.

2 A Functional-MIDAS model for nowcasting distributions

We analyze the dynamics of the cross-sectional distributions of income by modelling the as-

sociated Log-Quantile Density (LQD) function, i.e the first derivative of the quantile function

corresponding to the distribution of interest (Parzen 1979; Jones 1992). That is:

qt(τ) = log

(
∂Qt(τ)
∂τ

)
(1)

where Qt(τ) is the quantile function mapping τ ∈ [0, 1] → [x, x̄] at each time t, for t = 1, . . . , T .

As discussed by Petersen et al. 2016 and Huber et al. 2024, the use of the LQD function is

convenient since qt(τ) does not need to integrate to one or to obey non-negativity constraints,

as it would be the case for the probability density function, or satisfy monotonicity constraints,
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which would be the case for the cumulated density function or the quantile function. As en-

forcing such constraints in a dynamic linear model is extemely challenging, modelling the LQD

simplifies considerably the econometric analysis of the time variation in the distribution of in-

terest. The explicit mapping from the probability density function f(x) into the LQD function,

is defined by ψQ(f)(τ) = − log(f(Q(τ))), where Q(τ) is the quantile function. To model the

dynamic interaction between the low frequency cross-sectional distribution of income and the

high frequency macroeconomic indicators, we specify the following functional MIDAS regression

model:

qt(τ) = cq(τ) +
px−1∑
l=0

Bqx,l(τ)L(l/m)x(m)
t +

pq∑
l=1

∫ 1

0
Bqq,l(τ, τ ′)L(l)qt(τ ′)dτ ′ + uq,t(τ) (2)

where x
(m)
t is the nx × 1 vector of high-frequency macroeconomic indicators, L(.) is the lag

operator, such that L(1/m)xt = x
(m)
t−1/m and L(1)qt(τ) = qt−1(τ). The function q(τ) and the

high-frequency macroeconomic indicators x
(m)
t are assumed to be sampled at different frequen-

cies. For instance, when the cross-sectional distribution is observed yearly and the macroeco-

nomic indicators are observed quarterly, then m = 4.2 Hence, in the model, the LQD function

is expressed as a combination of px lags of the high frequency macroeconomic indicators and its

own pq lags. We assume that the LQD function admits the Karhunen-Loéve expansion

qt(τ) = µ(τ) +
∞∑

k=1

√
λkzt,khk(τ) (3)

and we approximate qt(τ) by truncating the infinite sum in (3) at a level K, namely:

qt(τ) = µ(τ) +
K∑

i=1
hi(τ)ft,i = µ(τ) + hK(τ)′f t;K (4)

where hK(τ ) is a K × 1 vector of basis functions, while f t;K is a K × 1 vector of coefficients or

scores associated to the basis functions. Once the LQD function is approximated using K basis

functions, the functional MIDAS model in (2) can be rewritten as a SUR-MIDAS (Seemingly

Unrelated Regression - MIDAS) model for f t;K , that is

f t;K = ϕ0 +
px−1∑
l=0

Φfx,lL(l/m)x(m)
t +

pq∑
l=1

Φff,lL(l)f t;K + uf,t (5)

2. Note that we are considering the same number of lags for all the high frequency macroeconomic indicators
nx. This is for ease of exposition.
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with E[uf,t] = 0 and E[uf,tuf,t
′] = Ω.3 It is easy to see that when the number of basis

functions in the approximation of the log-quantile-density function K is big, the SUR-MIDAS

model becomes highly-parameterized. To approximate the LQD functions qt(τ) using a rela-

tively small number of basis functions, we resort to Functional Principal Component Analysis

(FPCA, Ramsay et al. 2005). While this approach allows to obtain a SUR-MIDAS model for

a vector f t;K of moderate dimensions, in our application we still face two challenges. First, we

might consider incorporating a wide array of macroeconomic indicators and then select which

of them are most relevant. Second, we might need a potentially large number of lags of the high

frequency macroeconomic indicators to capture a meaningful lag dynamics. For example, in a

typical application in which the cross-sectional distribution is observed at the yearly frequency

and the macroeconomic indicators are observed at the quarterly frequency, including an extra

macroeconomic indicator with the corresponding observations for just one year leads to 4K ad-

ditional coefficients in the model. In general, since the model features Kpxnx coefficients on the

high frequency macroeconomic indicators and K2pq coefficients on the lags of ft;K , the number

of parameters increases as the number of high frequency indicators nx or the number of their

lags px increases, but also when the number of lags of the log-quantile-density function pq in-

creases. This proliferation of parameters can easily lead to overfitting since working with yearly

cross-sectional income distributions typically implies small sample sizes in most applications.

We address this issue by considering a group lasso spike and slab type prior for the coefficients

in the MIDAS-SUR model (Xu et al. 2015; Mogliani et al. 2021). Section 2.1 below, presents

the details concerning the approximation of the LQD function with FPCA, while section 2.2

presents the group lasso-type prior for the SUR-MIDAS model; section 2.3 discusses forecasting

and nowcasting, and section 2.4 introduces the estimation algorithm.

2.1 Approximation of the LQD function by FPCA

Our estimation strategy follows a two-step approach. First, we approximate the low-frequency

distributions using functional principal component analysis. Next, we estimate the SUR MI-

DAS model to generate nowcasts of the factors, and consequently, of the corresponding distri-

butions. 4 In this section, we detail the approximation of the targeted micro-variable distribu-

3. Appendix A.1 reports the steps involved to go from the Functional MIDAS model to its SUR-MIDAS model
representation.

4. Conditioning on the estimates of the eigenfunctions from FPCA in the first step, the factors can also be
treated as random and estimated jointly with the parameters of the SUR MIDAS model in the Gibss Sampler by
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tion through FPCA. The basis function approximation in equation (4) allows to approximate

non-parametrically potentially very flexible distributions. FPCA can be used to determine the

“optimal basis functions” for approximating functional data. These basis functions are derived

to capture the maximum variance in the data with a given number of components, ensuring

that the representation is both efficient and comprehensive. In the context of approximating

distribution functions, Petersen et al. (2016) has pointed out the advantages of exploiting the

LQD transformation. The LQD transformation ensures that the original density functions are

mapped into a linear Hilbert space, which is essential for the proper application of FPCA. This

approach retains the interpretability of the principal components while overcoming the challenges

posed by the nonlinear constraints intrinsic in the space of density functions. Additionally, the

LQD transformation leads to more efficient and meaningful representations of the variability

in a sample of densities, as it captures both vertical and horizontal variations more effectively

than direct FPCA on densities. Observations from the LQD functions qt(τ) are obtained by

evaluating

q(τ) = −log(f̂(Q(τ))) (6)

on a set of grid points τ1, . . . , τNgrid . In Equation (6), f̂(.) is a kernel smoothed density estimate

of the probability density function namely:

f̂(x) = 1
Ngridh

n∑
i=1

K

(
x− xi

h

)
(7)

We resort to FPCA in order to approximate qt(τ) in equation (4). Specifically, the basis functions

hK(τ ) and the scores f t;K are obtained by static FPCA of the deviation of qt(τ), observed over

t = 1, . . . , T , from their mean. More precisely, to represent the continuous functions qt(τ) in a

finite dimensional data matrix Q ∈ RNgrid×T , we center the data matrix by subtracting from

each LQD function qt(τ) evaluated on a grid τ = τ1, ..., τNgrid
a simple estimate of their mean

obtained as µ̂(τ) = 1
T

∑T
t=1 qt(τ), to get Q. Then we apply Singular Value Decomposition (SVD)

to the centered matrix, namely

Q = USV T (8)

where U and V are orthogonal matrices, and S is a diagonal matrix containing the singular

values (we omit the dependence on τ just for notation convenience). To obtain the basis functions

the Kalman filter (Carter et al. 1994) or by the precision sampler (Chan et al. 2009).
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h(τ ), we select K columns from V , which represent the eigenbasis associated with the K largest

eigenvalues. The f t;K in (4) are therefore given by the principal component scores corresponding

to the selected K eigenbasis. Petersen et al. (2016) demonstrates the consistency of these

estimates and we refer to this paper for rates of convergence.

2.2 A Group Lasso Shrinkage prior for the SUR-MIDAS model

Once the LQD functions are approximated by FPCA, the functional MIDAS model in (2) can

be rewritten as the SUR-MIDAS model for the principal component factors f t;K in (5). As

anticipated above, this model is highly parameterized. In this section we define a group lasso-

type shrinkage prior for the coefficients in the SUR-MIDAS model. This prior is meant to

select the most relevant predictors and, at the same time, shrinking the coefficients within

the selected groups to zero. More in detail, this prior extends the MIDAS adaptive group

lasso prior of Mogliani et al. (2021) to a SUR framework. We collect the lags of the high

frequency macroeconomic indicators and the lags of the low frequency factors in the vector

xt = [vec([x(m)
t−1/m . . .x

(m)
t−px/m]′)′, vec([f t−1, . . . ,f t−pq

]′)′]′. Then the we rewrite the model (5) as

f t = Φ′xt + ut ut ∼ N (0,Ω) (9)

where we are setting h = 0 (nowcasting) and consider ϕ0 = 0 just for the sake of the exposition.5

In this notation, the matrix of coefficients Φ of dimension (nxpx + Kpq) × K is storing the

coefficients on both the lags of the high frequency indicators and the low frequency factors in

all the K equations of the SUR model. In equation (9) we assume normality of the error term

ut and allow for possibly correlated errors across equations, meaning that E[u2
1t] = ω2

i and

E[uiuk] = ωik for k ̸= i. Rewriting the SUR model equation by equation we have

f1t = xt
′ϕ1 + u1t

f2t = xt
′ϕ2 + u2t

...

fKt = x′
tϕK + uKt

(10)

5. For ease of exposition we also suppress the K subscript in f t;K and just write it as f t
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where the vector ϕi for i = 1, . . . ,K is the ith column of Φ. We re-parameterize the SUR model

following Zellner et al. (2010) as follows

f1t = xt
′ϕ1 + ε1t ε1t = u1t ∼ N (0, σ2

1)

f2t = xt
′ϕ2 + α21u1t + ε2t ε2t ∼ N (0, σ2

2)
...

fKt = x′
tϕK + αK,1u1t + . . .+ αK,K−1uK−1t + εKt εKt ∼ N (0, σ2

K)

(11)

This re-parameterization is convenient since it allows to rewrite the system of equations of the

SUR model as a set of univariate regressions, with uncorrelated error terms εit. Clearly, the

correlation across the equations remains evident, originating from the product of the ui,t terms

and the coefficients αi,c for i = 2, . . . ,K and c = 1, . . . , i−1 . We specify a prior for the elements

of αi,. = [αi,1, . . . , αii−1] and for the variances σ2
1, . . . , σ

2
K which implies a symmetric prior for

the variance covariance matrix of the error term in the original model Ω. More specifically, we

assume

(αi,c|σ2
i ) ∼ N

(
0, σ

2
i

s2
c

)
1 ≤ c ≤ i = 2, . . . ,K (12)

σ2
i ∼ IG

(
v0 + i−K

2 ,
s2

i

2

)
i = 1, . . . ,K (13)

It can be shown that this specification implies an Inverse-Wishart prior for the variance covari-

ance matrix of the error term in the original model (5), namely6

Ω ≡ E[utu
′
t] = Ã

−1Σ
(
Ã

−1)′
∼ IW(S, v0) (14)

where Σ = diag(σ2
1, . . . , σ

2
K), Ã is the lower triangular matrix with unit elements on the main

diagonal and rows given by α̃i,. = [−αi,1, . . . ,−αii−1] and S = diag(s2
1, . . . , s

2
K). Hence, this

specification keeps the symmetry of the prior distribution for the variance-covariance matrix of

the error term in the original model. At the same time, the specification allows to directly specify

a prior for the coefficients in Φ. In this respect, our SUR-MIDAS model features an unrestricted

lag-dynamics for both the high frequency macroeconomic indicators and for the low frequency

factors. To specify a group lasso-type prior for the elements in ϕi i.e. the coefficients in the i =

1, . . . ,K equations of the SUR-MIDAS model, the natural approach would be to define nx groups,

6. The proof of this result can be found in Chan (2022).
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one for each high frequency macroeconomic indicator, and K groups, one for each low frequency

factor. This makes a total of G = nx +K groups with nx groups of dimension px (the number of

lags for each high frequency regressor) and K groups of dimension pq (the number of lags for each

low frequency factor). Alternatively, as in Mogliani et al. (2021), one can reduce the number

of unknown parameters by restricting the lag-dynamics of the high frequency macroeconomic

indicators
∑px−1

l=0 L(l/m)x(m)
t and low-frequency factors

∑pq

l=1 L(l)f t;K , exploiting the Almon lag

polynomial. More specifically, the direct representation of the Almon lag polynomial allows to

keep the model linear in the parameters, by just considering a transformation of the regressors

xt. In particular, considering an Almon lag polynomial leads to the following transformation of

the regressors

zj,t = W xj,t (15)

where xj,t = [x(m)
jt−1/m, . . . , x

(m)
j,t−px/m]′ for the lags of the high frequency variables and xj,t =

[xjt−1, . . . , xj,t−pq ]′ for the lags of the low frequency factors and W is the polynomial weighting

matrix of this transformation. This approach allows to further reduce the dimension of the

groups made of the lags of the high frequency indicators and of the lags of the low frequency

factors to pa + 1 − ra where pa is the order of the Almon lag polynomial and ra are the number

of restrictions on the shape of the Almon lag polynomial.7 Exploiting the direct representation

of the Almon lag polynomial, we rewrite the SUR-MIDAS model as:

f1t = z′
tθ1 + ε1t ε1t ∼ N (0, σ2

1)

f2t = z′
tθ2 + α21u1t + ε2t ε2t ∼ N (0, σ2

2)
...

fKt = z′
tθK + αK,1u1t + . . .+ αK,K−1uK−1t + εKt εKt ∼ N (0, σ2

K)

(16)

where the vector θi = [θi,1
′, . . . ,θi,G

′]′ collects all the parameters of the Almon lag polynomial of

each of the G = (nx +K) groups in the ith equation of the SUR model. The vector zt is instead

storing the transformed regressors. Note that each vector θij is of dimension (pa +1−ra)×1 as,

for ease of exposition, we are considering the same Almon lag polynomial order and the same

7. The weighting matrix Q is of dimension (pa + 1 − ra) × px for the transformation of the high frequency
variables and of dimension (pa + 1 − ra) × pq for the transformation of the low frequency factors. Note that just
for ease of the exposition we are considering the same degree of the Almon lag polynomial for all the groups.
Clearly, it is also possible to keep an unrestricted lag dynamics on the lags of the low-frequency factors by just
considering a linear transformation where Q = Ipq such that the dimension of the groups of each low frequency
factor remains pq.
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number of restrictions for all the groups. Once we have obtained the groups and defined θij as

the vector of coefficients in the ith equation for the jth group we specify the following prior (Xu

et al. 2015; Mogliani et al. 2021)

p(θij |σ2
i , τ

2
ij , πi0) = (1 − πi0)N (0, σ2τ2

ijIgij ) + πi0δ0(θij) (17)

p(τ2
ij) ∼ Gamma

(
gij + 1

2 ,
λ2

ij

2

)
(18)

πi0 ∼ Beta (c, d) (19)

for i = 1, . . . ,K and j = 1, . . . , G. This prior introduces two types of shrinkage effects: a point

mass at zero, resulting in exact zero coefficients (the spike component), and a Group Lasso prior

applied to the slab component. Therefore this prior enhances variable selection at the group

level while simultaneously shrinking the coefficients within the selected groups.

2.3 Forecasting

The MIDAS regression is a direct forecasting tool which results in different forecasting models

for each forecast horizon (Ghysels et al. 2004). Collecting the parameters of the Almon lag poly-

nomial for all the groups in the ith equation of the SUR-MIDAS model in θi = [θi,1
′, . . . ,θi,G

′]′

and defining Θ as the matrix stacking the vectors θi for i = 1, . . . ,K on its columns, we can

write the h-step ahead direct forecast of the low frequency factors as

f t+h = Θ′zt + ut+K ut+K ∼ N (0,Ω) (20)

The h-step ahead direct forecast of the LQD function is therefore

qt+h(τ) = µ(τ) + h(τ )′f t+h. (21)

From the forecast of the LQD function we obtain the corresponding distribution function, as in

Kokoszka et al. (2019). More in detail, the backward mapping recovers the h-step ahead pre-

dicted density function from the log-quantile density function through f(x) = exp{−ψQ(f)(F (x))}.

In this regard, our MIDAS approach allows to recover the distribution function regardless of

whether the micro-variable is a flow or a stock. Unlike the standard mixed-frequency literature

(Schorfheide et al. 2015), we do not treat the high-frequency distribution of the micro-level
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variable as latent. Therefore, we avoid the issue of aggregating missing high-frequency distri-

butions, which can be non-trivial task, as noted by Chang et al. (2022). For instance, in the

case of flow variables, our method can accommodate both low-frequency observations relative

to the last high-frequency period and those spanning the entire low-frequency period. In other

words, when predicting the household-level income distribution observed at a yearly frequency

using quarterly predictors, our approach works regardless of whether the micro variable reports

income for the fourth quarter of the current year or for the entire year. In the latter case, as

with the income variable from the CPS ASEC in our application, specifying an aggregation

rule for the missing quarterly distribution within the mixed-frequency framework of Schorfheide

et al. 2015 would be complex and might require a more structured approach. This complex-

ity arises because the observed yearly income distribution is a convolution of four unobserved

quarterly income distributions and would require imposing additional structure by means of an

appropriate aggregation rule.8 Hence, although it does not enable high-frequency predictions

for the micro-level distribution, the MIDAS framework allows to impose less structure when

approximating low frequency distributions and leverage high frequency information.

2.4 Bayesian Inference

As anticipated above, inference proceeds in two steps. First we approximate the LQD function

using FPCA and obtain an estimate of the factors f t. Then we estimate the SUR-MIDAS model

using a Gibbs sampler that iteratively samples from the conditional posterior distributions of

the parameters in model (16), namely:

1. Sample from p(θij |.) for i = 1, . . . ,K and j = 1, . . . , G.

2. Sample from p(αi,.|.) for i = 2, . . . ,K

3. Sample from p(σ2
i |.) for i = 1, . . . ,K

4. Sample from p(τij |.) for i = 1, . . . ,K and j = 1, . . . , G

5. Sample p(πi0|.) for i = 1, . . . ,K

As anticipated above, the specification of the priors on the re-parameterized version of the

model (11) enables the use of an efficient posterior sampling algorithm to produce inference

8. De Polis et al. (2024) recently consider a mixed frequency functional VAR, treating the high frequency
cross-sectional distributions as missing and imposing such intertemporal restrictions in the aggregation rule.
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about coefficients of the model equation by equation. In particular, to sample the coefficients

in Step 1 we exploit the triangular algorithm proposed in Carriero et al. (2019) and corrected

in Carriero et al. (2022). The formulas of the conditional posterior distributions are reported

in the appendix A.2. To set the hyper-parameter λ2
ij , we follow the approach in Mogliani et

al. (2021) which is an Empirical Bayes approach that relies on the so-called internal adaptive

MCMC algorithms in Atchadé et al. (2011).9

3 Monte Carlo simulation

We perform a Monte Carlo simulation to investigate the gains of exploiting high frequency

variables for nowcasting a distribution observed at a lower frequency with our approach. In

particular, we assume that the true LQD function of the low frequency distribution we aim to

forecast has the following representation

qt(τ) = µ(τ) +
3∑

i=1
hi(τ)ft,i = µ(τ) + h(τ)′f t (22)

We assume that the probability density function associated to this LQD function is defined on

the support (0, 10). We consider the following SUR MIDAS dynamics for the elements of the

vector of factors f t

fit = αi +
30∑

j=1
βij

24−1∑
c=0

B̃(c; θ)L(m)
c x

(m)
j,t−h +

2∑
l=1

ϕil
′f t−l + ui,t (23)

x
(m)
j,t = µ+ ρx

(m)
j,t−1/m + ϵj,t (24)

where i = 1, . . . , 3 is the number of factors and therefore of equations in the SUR-MIDAS

representation of the functional MIDAS model. j = 1, . . . , 30 is the number of high frequency

variables while 24 is the lag length of the high frequency variables and 2 is the number of lags

for the low frequency factors. The high frequency variables are sampled at frequency m = 4,

to mimic yearly low frequency observations and quarterly high frequency observations as in our

application. The lag-polynomial B̃(c; θ) denotes the normalized weights (i.e., summing up to 1).

To set the weighting scheme we consider the DGP 1 in Mogliani et al. (2021). The lag dynamics

9. Alternatively we also report the formula of the conditional posterior of λ2
ij when treating it as random

variable with Gamma prior distributions
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of the low frequency factors is instead left unrestricted. The error terms ut := (u1,t, . . . , uK,t)′

and ϵt := (ϵ1,t, . . . , ϵnx,t)′ are i.i.d. with distribution

ut

ϵt

 ∼ N


0

0

 ,
Ω 0

0 Σϵ


 , (25)

Details on the other parameters of the DGP are in the Appendix A.3. The basis functions in (22)

are selected as the eigenbasis corresponding to the three largest eigenvalues obtained through

FPCA on the LQD function of a collection of Skew-t distributions (Azzalini et al. 2003). Each

distribution is characterized by different location, shape, scale, tail thickness and it is truncated

on the support (0,10).

As we want to assess whether our approach allows to correctly select the relevant high

frequency predictors among the thirty high frequency indicators, we assume a sparse structure

for the βij in (23). In other words, in each equation of the SUR-MIDAS model, only a subset

of predictors is relevant for predicting the low-frequency factors and therefore changes in the

distribution over time. We consider two sample sizes T = {60, 120} and the number of the Monte

Carlo simulations is 500. Figure 1, panel a) shows the time series of the simulated distributions

in one replication of the Monte Carlo. Figure 1 panel b) shows the first out-of-sample realization

of the true distribution, with the nowcast obtained from our functional VAR(2) model and a

functional MIDAS model with LASSO type prior discussed in the text and a ridge type prior

discussed in the appendix A.4. The point forecast of the distribution function is obtained by

averaging across the posterior distribution draws. For ease of analysis we assume h = 0, i.e. a

nowcasting model with high-frequency information fully matching the low frequency. While the

SUR-MIDAS models leverage information from both the high frequency variables and the lags

of the low frequency factors, the VAR(2) is just exploiting the information from the lags of the

low frequency factors.
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Figure 1: Output from one replication of the Monte Carlo

(a) In-sample simulated distributions (b) Out-of-sample true and predicted distribution

To assess the accuracy of the nowcasts across the Monte Carlo replications, we compare the

Kullback-Leibler (KL) distance and the Hellinger Distance (HD) to the true probability density

function, the quantile scores (QS) and the root mean squared error (RMSE) of some selected

moments of the distribution such as mean, variance, skewness and kurtosis. As a measure of

dispersion we consider the interquartile range while as a measure of inequality we consider the

Gini and the coefficient of variation (CV).

Table 1 reports the results from the Monte Carlo simulation. Even in small sample size T =

60, the spike and slab prior correctly selects the relevant predictors in the model, outperforming

both the SUR-MIDAS with ridge type prior and the VAR(2). The Monte Carlo simulation

shows that exploiting high frequency information allows to improve the forecasts from the entire

distribution and of key features that signal changes in inequality such as the Gini Index and the

coefficient of variation.
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Table 1: Forecast accuracy in the Monte Carlo Simulation

T=60

Avg KL Avg HD Avg QS5 Avg QS20 Avg QS50 Avg QS80 Avg QS95

VAR(2) 0.1651 0.1817 0.0760 0.0992 0.1195 0.1221 0.5795
RIDGE SUR-MIDAS 0.1204 0.1439 0.0713 0.0826 0.0934 0.1038 0.4422
BLASSO SUR-MIDAS 0.1029 0.1343 0.0645 0.0757 0.0861 0.0935 0.4188

RMSE Mean RMSE Variance RMSE Skewness RMSE Kurtosis RMSE IR RMSE GINI RMSE CV

VAR(2) 0.1794 2.1970e-1 0.4830 2.4652 0.1129 0.0623 2.1684
RIDGE SUR-MIDAS 0.1648 1.6270e-1 0.3840 1.8103 0.0438 0.0437 1.7081
BLASSO SUR-MIDAS 0.1570 1.5640e-1 0.3908 1.8028 0.0492 0.0436 1.5925

T=120

Avg KL Avg HD Avg QS5 Avg QS20 Avg QS50 Avg QS80 Avg QS95

VAR(2) 0.1685 0.1794 0.0781 0.0995 0.1193 0.1247 0.5755
RIDGE SUR-MIDAS 0.1137 0.1393 0.0792 0.0846 0.0904 0.0975 0.4035
BLASSO SUR-MIDAS 0.0886 0.1208 0.0725 0.0740 0.0777 0.0838 0.3476

RMSE Mean RMSE Variance RMSE Skewness RMSE Kurtosis RMSE IR RMSE GINI RMSE CV

VAR(2) 0.1795 2.1950e-1 0.4864 2.4725 0.0999 0.0631 2.1946
RIDGE SUR-MIDAS 0.1633 1.5130e-1 0.3969 1.7699 0.0414 0.0432 1.6184
BLASSO SUR-MIDAS 0.1383 1.3680e-1 0.3453 1.6040 0.0319 0.0384 1.4008

Notes: The table reports the results from Monte Carlo simulations with T = 60 in the first two sections and T = 120 in the
last two sections. All values are rounded to four decimal places. Very small and very large numbers are written
using scientific notation for readability.

4 Nowcasting household income distribution in the US

4.1 Data and design of the nowcasting exercise

We now use our functional MIDAS model to nowcast the yearly cross-sectional distribution of

households’ income in the United States. We focus on the variable hhincome from the Annual

Social and Economic Supplement (ASEC) of the Current Population Survey (CPS). This variable

aggregates the income received by all members of a household from various sources over the past

year, including wages and salaries, self-employment earnings, interest, dividends, rents, and

other forms of income like social security benefits, retirement pensions, and public assistance.

In general, this variable provides a comprehensive measure of the financial resources available

to a household, and it is typically used for analyzing economic well-being and poverty status

among different demographic groups in the US. This annual survey on yearly household income

is released in March of the following year. Throughout the year, up until the release date,

information about the latest developments in both the real and the financial markets gradually

becomes available. This data includes macroeconomic and financial indicators, which might be

especially valuable for producing a more precise forecast of the yearly income distribution before
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its official announcement in March. To leverage this information effectively, we include these

high frequency indicators in a functional MIDAS model for the distribution of income. The set

of quarterly macroeconomic indicators and their transformation can be found in table 2. The

household-level nominal income given by the variable hhincome is normalized by dividing by

2/3 of nominal GDP per-capita and then transformed by computing the inverse hyperbolic sine

function as in (Chang et al. 2021).10

Table 2: List of quarterly indicators

Variable Mnemonic Transformation
Real Gross Domestic Product GDPC1 %∆
Real Government Receipts FGRECPTx %∆
Federal Government: Current Expenditures FGEXPND %∆
Real Personal Consumption Expenditures PCECC96 %∆
Real Disposable Personal Income DPIC96 %∆
Real Exports of Goods EXPGSC1 %∆
Real Imports of Goods & Services IMPGSC1 %∆
All Employees: Total nonfarm PAYEMS %∆
Civilian Labor Force Participation Rate CIVPART %∆
Civilian Unemployment Rate UNRATE %∆
Number of Civilians Unemployed for 27 Weeks and Over UEMP27OV %∆
Average Weekly Hours Of Production And Nonsupervisory Employees AWHNONAG %∆
Average (Mean) Duration of Unemployment UEMPMEAN ∆
Housing Starts HOUST %∆
Real Average Hourly Earnings of Production and Nonsupervisory Employees: Total AHETPIx %∆
Real Average Hourly Earnings of Production and Nonsupervisory Employees Construction CES2000000008x %∆
Real Average Hourly Earnings of Production and Nonsupervisory Employees Manufacturing CES3000000008x %∆
Consumer Price Index all items CPIAUCSL %∆
S&P 500 SP 500 %∆
Effective Federal Funds Rate FEDFUNDS ∆
10-Year Treasury Constant Maturity Rate (Percent) GS10 ∆
Cons. Expectations UMCSENTx level

Notes: The symbols refer to the following transformations ∆: first difference, %∆: growth rate.

In the nowcasting exercise our goal is to predict the yearly income distribution using timely

information derived from quarterly indicators available during and after the year’s end and before

the official release in March. For each year, we compute four nowcasts based on the different

information sets given by the information available up to the release of the first, second, third

and fourth quarterly data. The perspective is to consider at each update only the information

available up to that point in time, so as to reproduce the nowcasts that would have been made in

real-time. Our nowcasts origins are therefore in the months of April, July, October and January

corresponding respectively to h = 3
4 , h = 2

4 , h = 1
4 and h = 0. Figure 2 summarizes the four

updates.
10. The inverse hyperbolic sine transformation is given by

x = g(z) = ln
(

z +
√

z2 + 1
)

= sinh−1(z)
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Figure 2: Updates in the nowcasting exercise

March
Release

April
h = 3

4

July
h = 2

4

October
h = 1

4

January
h = 0

4.2 Results

The estimation sample begins in 1968, with predictions for income distribution starting from

1998 to 2023. For each period, we compute nowcasts at horizons h = 3
4 , h = 2

4 , h = 1
4 , and

h = 0. Figure 3 presents a representative example of our forecasting output for the distribution

of income in 1998. The figure compares the predictions generated by the functional MIDAS

model in the four updates, alongside one-step-ahead forecasts from the functional VAR model,

and the actual observed distribution.11

Figure 3: Comparing nowcasts for 1998

Notes: The figure shows the nowcasts for the hyperbolic-sine transformed distribution
of households’ income normalized by GDP-per capita for the year 2002.

As our pseudo-real-time nowcasting exercise is designed to produce nowcasts of the income

distribution for each year from 1998 to 2023 in four different updates, we are reporting the

results in four distinct panels in table 3 and 4. Our competitors in the forecasting race are a

simple functional VAR model for the low frequency distribution only and a functional MIDAS

model with a ridge-type prior the coefficients in the SUR-MIDAS representation. We consider

a ridge type prior both for an unrestricted MIDAS dynamics and for a restricted Almon-lag

11. Also here, the point forecast of the distribution function is obtained by averaging across the posterior
distribution draws.
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dynamics.12 The ridge-type prior assigns a distinct degree of shrinkage to the coefficients on the

lags of the low frequency factors and the high frequency indicators. While the simple functional

VAR model is updated only in April, when the release of the data on the survey of the previous

year becomes available, the other models leverage high frequency information within the year

to nowcast the low frequency distribution before its release. Overall, the Table shows that

the functional MIDAS model does a pretty good job when compared to the simple functional

single frequency VAR, with gains across all measures. In particular, including high frequency

information allows to increase the accuracy of the forecast for the entire distribution function

and some selected moments of this distribution. Notably, including high frequency information

allows to reduced the RMSE associated to the two measures of inequality, being the Gini index

and the coefficient of variation. This is true in all the updates considered. The spike-and-slab

group lasso prior often outperforms the ridge prior in predicting the entire distribution function

of income when comparing the KL distance with the true distribution; however, this superiority

does not extend to all the metrics considered in this analysis.

12. Section A.4 in the appendix provides the details on this prior and setting the hyper-parameters in this model.
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Table 3: Forecast accuracy from 1998 to 2023

h = 3
4

Avg KL Avg HD Avg QS5 Avg QS20 Avg QS50 Avg QS80 Avg QS95

FLAT VAR 0.1612 0.0845 0.0053 0.0114 0.0224 4407.8732 11962.0658
BVAR 0.0242 0.0441 0.0083 0.0151 0.0187 0.0119 126.7556
RIDGE-SUR-unres-MIDAS 0.0116 0.0349 0.0069 0.0154 0.0167 0.0110 0.0069
RIDGE-SUR-MIDAS 0.0114 0.0383 0.0086 0.0171 0.0181 0.0120 0.0086
BLSS-SUR MIDAS 0.0090 0.0371 0.0069 0.0096 0.0127 0.0093 0.0058

h = 2
4

Avg KL Avg HD Avg QS5 Avg QS20 Avg QS50 Avg QS80 Avg QS95

FLAT VAR 0.1612 0.0845 0.0053 0.0114 0.0224 4407.8732 11962.0658
BVAR 0.0242 0.0441 0.0083 0.0151 0.0187 0.0119 126.7556
RIDGE-SUR-unres-MIDAS 0.0118 0.0349 0.0068 0.0149 0.0162 0.0108 0.0070
RIDGE-SUR-MIDAS 0.0115 0.0378 0.0086 0.0167 0.0177 0.0117 0.0083
BLSS-SUR MIDAS 0.0129 0.0376 0.0064 0.0106 0.0128 0.0088 0.0092

h = 1
4

Avg KL Avg HD Avg QS5 Avg QS20 Avg QS50 Avg QS80 Avg QS95

FLAT VAR 0.1612 0.0845 0.0053 0.0114 0.0224 4407.8732 11962.0658
BVAR 0.0242 0.0441 0.0083 0.0151 0.0187 0.0119 126.7556
RIDGE-SUR-unres-MIDAS 0.0117 0.0350 0.0069 0.0152 0.0166 0.0109 0.0069
RIDGE-SUR-MIDAS 0.0105 0.0374 0.0086 0.0162 0.0172 0.0113 0.0075
BLSS-SUR MIDAS 0.0088 0.0374 0.0067 0.0118 0.0148 0.0097 0.0058

h = 0

Avg KL Avg HD Avg QS5 Avg QS20 Avg QS50 Avg QS80 Avg QS95

FLAT VAR 0.1612 0.0845 0.0053 0.0114 0.0224 4407.8732 11962.0658
BVAR 0.0242 0.0441 0.0083 0.0151 0.0187 0.0119 126.7556
RIDGE-SUR-unres-MIDAS 0.0117 0.0347 0.0068 0.0150 0.0163 0.0109 0.0069
RIDGE-SUR-MIDAS 0.0106 0.0373 0.0084 0.0161 0.0172 0.0114 0.0076
BLSS-SUR MIDAS 0.0109 0.0360 0.0066 0.0114 0.0146 0.0102 0.0079

Notes: Please see the text for the definitions of the various evaluation measures.
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Table 4: Forecast accuracy metrics from 1998 to 2023 RMSE of selected moments

h = 3
4

RMSE Mean RMSE Variance RMSE Skewness RMSE Kurtosis RMSE IR RMSE GINI RMSE CV

FLAT VAR 0.2932 0.0553 1.0749 3.3231 27196.4246 0.3993 16.1803
BVAR 0.0842 0.0432 0.2978 0.6516 0.0334 0.0677 2.3908
RIDGE-SUR-unres-MIDAS 0.0387 0.0357 0.1398 0.2913 0.0278 0.0207 1.3575
RIDGE-SUR-MIDAS 0.0480 0.0394 0.1537 0.3189 0.0274 0.0239 1.3073
BLSS-SUR MIDAS 0.0422 0.0388 0.1332 0.2882 0.0330 0.0228 1.3976

h = 2
4

RMSE Mean RMSE Variance RMSE Skewness RMSE Kurtosis RMSE IR RMSE GINI RMSE CV

FLAT VAR 0.2932 0.0553 1.0749 3.3231 27196.4246 0.3993 16.1803
BVAR 0.0842 0.0432 0.2978 0.6516 0.0334 0.0677 2.3908
RIDGE-SUR-unres-MIDAS 0.0381 0.0356 0.1419 0.2953 0.0280 0.0212 1.3591
RIDGE-SUR-MIDAS 0.0460 0.0386 0.1535 0.3190 0.0277 0.0239 1.3099
BLSS-SUR MIDAS 0.0443 0.0372 0.1823 0.3958 0.0314 0.0303 1.6204

h = 1
4

RMSE Mean RMSE Variance RMSE Skewness RMSE Kurtosis RMSE IR RMSE GINI RMSE CV

FLAT VAR 0.2932 0.0553 1.0749 3.3231 27196.4246 0.3993 16.1803
BVAR 0.0842 0.0432 0.2978 0.6516 0.0334 0.0677 2.3908
RIDGE-SUR-unres-MIDAS 0.0389 0.0358 0.1409 0.2932 0.0278 0.0209 1.3618
RIDGE-SUR-MIDAS 0.0445 0.0385 0.1456 0.3078 0.0278 0.0227 1.2497
BLSS-SUR MIDAS 0.0430 0.0390 0.1333 0.2916 0.0295 0.0192 1.4507

h = 0

RMSE Mean RMSE Variance RMSE Skewness RMSE Kurtosis RMSE IR RMSE GINI RMSE CV

FLAT VAR 0.2932 0.0553 1.0749 3.3231 27196.4246 0.3993 16.1803
BVAR 0.0842 0.0432 0.2978 0.6516 0.0334 0.0677 2.3908
RIDGE-SUR-unres-MIDAS 0.0378 0.0354 0.1406 0.2927 0.0280 0.0209 1.3631
RIDGE-SUR-MIDAS 0.0443 0.0388 0.1455 0.3057 0.0278 0.0223 1.2314
BLSS-SUR MIDAS 0.0420 0.0374 0.1632 0.3243 0.0311 0.0259 1.5719

Notes: Please see the text for the definitions of the various evaluation measures.

We can exploit the posterior estimates from the SUR-MIDAS model with spike and slab

prior to investigate the set of relevant regressors, and understand whether the relevance of the

predictors has changed over time. Figure 4 reports the posterior mean inclusion probabilities

of the regressors in the five equations of the spike and slab lasso SUR-MIDAS model for the

factors used for the approximation of the households’ income distribution. The model is the

one corresponding to h = 0, with high-frequency information fully matching the low frequency.

The figure shows that some predictors have been historically relevant for predicting households’

income distribution. More specifically, the lags of the unemployment rate, the number of civilians

unemployed for 27 weeks and over, personal consumption expenditure, the number of non-farm

employees, federal consumption expenditure and the SP500 are the most relevant predictors.

Some groups, like those consisting of the lags of GDP and exports, were considered relevant and

selected in certain periods, but their significance has diminished in recent years. Furthermore,
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the groups corresponding to the own lags of the first, second and fourth factors are almost

always selected and considered relevant, meaning that these factors exhibit a significant degree

of persistence. The figure also shows that the first, fourth and fifth factors are predicted by a

small, sparse set of predictors, indicating that only a limited number of predictors contribute

significantly to their prediction. In contrast, the second and third factor exhibits less sparsity,

meaning that a broader range of predictors are included and contribute to their prediction.

Figure 4: Inclusion probabilities in the SUR-MIDAS for h = 0

Notes: The heat-map reports the posterior mean probability of inclusion of each group.

5 Conclusions

In this paper, we propose a functional MIDAS model to leverage high-frequency information

for nowcasting a distribution observed at a lower frequency. First, we approximate the low-

frequency distribution using functional principal component analysis. Then, we specify a spike

and slab prior for the parameters of the SUR-MIDAS approximation of the functional MIDAS
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model. Through a simulation exercise, we demonstrate that this prior is particularly useful

for selecting relevant predictors from a potentially large set of high-frequency indicators, even

in small samples, as is typically the case when forecasting distributions from yearly household

surveys. The simulation also highlights the importance of exploiting high-frequency indicators

to accurately predict the entire distribution observed at low frequency, as well as key moments

and features that can inform changes in inequality.

In general, although it does not enable high-frequency predictions for the micro-level distri-

bution, the MIDAS framework is particularly promising for forecasting distributions by lever-

aging high-frequency information. It allows for imposing less structure when approximating

the micro-level variable distribution, which would otherwise be required in the mixed-frequency

framework of Schorfheide et al. 2015. For example, when the observed low-frequency variable

of interest is a flow variable that accumulates high-frequency streams, aggregating the unob-

served high-frequency distributions is non-trivial and may require parametric assumptions for

tractability.

In the application, we aim nowcasting the March ASEC households’ income data from the

Current Population Survey leveraging on quarterly macroeconomic indicators available before

the release. We find that our model enhances the accuracy of the forecasts for the distribution of

households income and of key features of this distribution that signal changes in inequality. This

enhanced predictive capability can help policymakers intervene more effectively with policies

aimed at tackling inequality and promoting economic stability and growth.
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A Appendix

A.1 SUR-MIDAS approximation of the functional MIDAS model

The functional MIDAS model is given by:

qt(τ) = cq(τ) +
px−1∑
l=0

Bqx,l(τ)L(l/m)x(m)
t +

pq∑
l=1

∫ 1

0
Bqq,l(τ, τ ′)L(l)qt(τ ′)dτ ′ + uq,t(τ) (26)

Thanks to the finite dimensional approximation (4) and assuming µ(τ) = 0 for ease of exposition,

we can rewrite the function MIDAS expanding the unknown functions of τ as follows

cq(τ) = hK(τ)′c̃q,t Bqx,l(τ) = hK(τ)′Bqx,l

Bqq,l(τ, τ ′) = hK(τ)′Bqq,lsK(τ ′) u(τ) = hK(τ)′ũq,t

(27)

where sK(τ ′) is a K-dimensional vector of functional basis such that

∫
sK(τ)hK(τ)′dτ = Cf (28)

Plugging in (26) we get

hK(τ)′f t;K = hK(τ)′c̃q,t +
px∑

l=1
hK(τ)′Bqx,lL(l/m)x(m)

t + hK(τ)′
pq∑

l=1
Bqq,lL(l)f t;K + hK(τ)′ũq,t

(29)

that becomes

f t;K = c̃q,t +
p∑

l=1
Bqx,lL(l/m)x(m)

t +
P∑

l=1
Bl,qqCfL(l)f t;K + ũq,t (30)

Now define Φfx,l, Φff,l and uf,t+h = ũq,t and we obtain the SUR MIDAS model

f t;K = ϕ0 +
px∑

l=1
Φfx,lL(l/m)x(m)

t +
pq∑

l=1
Φff,lL(l)f t;K + uf,t (31)
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A.2 Conditional posterior distributions in the Gibbs Sampler

Exploiting the direct representation of the Almon lag polynomial we can rewrite the SUR-MIDAS

model as

f1t = z′
tθ1 + ε1t ε1t ∼ N (0, σ2

1)
...

f2t = z′
tθ2 + α21u1t + ε2t ε2t ∼ N (0, σ2

2)
...

fKt = z′
tθK + αK,1u1t + . . .+ αK,K−1uK−1t + εKt εKt ∼ N (0, σ2

K)

(32)

where the vector θi = [θi,1
′, . . . ,θi,G

′]′ collects all the parameters of the Almon lag polynomial

for all the G = (nx + K) groups in the ith equation for i = 1, . . . ,K. Note that each vector

θij is of dimension (pa + 1 − ra) × 1. Define F as the T × K matrix with the T × 1 vector

f i = [fi1, . . . , fiT ]′ stacked on its columns and define Θ the G(pa + 1 − ra) ×K matrix stacking

the θi on its columns. In compact form the model is

(F − ZΘ)Ã′ = ε (33)

where Ã is the lower triangular matrix with unit elements on the main diagonal and rows given

by α̃i,. = [−αi,1, . . . ,−αii−1]. Exploiting the triangularization in Carriero et al. (2022) to rewrite

the equations that involve the coefficients in the ith equation i.e. θi as

vec((F − ZΘ[i=0])Ã(i:K,1:K)′
) =

(
Ã

(i:K,i) ⊗ Z
)

θi + vec
(
ε(i:K)

)
(34)

where the notation Θ[i=0] denotes the matrix Θ with the ith column set equal to zero, while the

notation Ã
(i:K,i) denotes the elements from row i to row K in the ith column of Ã. Define

Z̃ = (Ã(j:K,j) ⊗ Z) (35)

and Z̃j the jth column of Z̃ while Z̃\j the matrix Z̃ without the jth column. Now rewrite it as

vec((F − ZΘ[i=0])Ã(i:K,1:K)′
) = Z̃jθij + Z̃\jθi\j + vec

(
ε(i:K)

)
(36)
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then consider

vec((F − ZΘ[i=0])Ã(i:K,1:K)′
) − Z̃\jθi\j = Z̃jθij + vec

(
ε(i:K)

)
(37)

Defining f̃ ij = vec((F − ZΘ[i=0])Ã(i:K,1:K)′
) − Z̃\jθi\j becomes

f̃ ij = Z̃jθij + vec
(
ε(i:K)

)
(38)

To obtain the conditional posterior of the θij ’s just combine this equation with the prior for θij

in equation (18). In particular we get

θij | θi\j ,θ1:i−1,, τij , λ, π1i, π0i,f ,Z ∼ (1 − π1ij)N
(
P −1

ij Cij , σ
2
i P −1

ij

)
+ π1ijδ0(θij)

P ij = τ2
ijIgj + Z̃

′
jΣ(i:K)−1

Z̃
′
j

Cij = Z̃
′
jΣ(i:K)−1

f̃ ij

(39)

To write the conditional posterior of the elements in Ã we define

ui = fi − Zθi (40)

where fi is T × 1 and Z is the T × (pa + 1 − ra)G design matrix. Furthermore for i = 2, . . . ,K

define Si = diag(s2
1, . . . , s

2
i ). Define also

Ũi = [u1, . . . ,ui−1]′ for 2 = 1, ,K (41)

and A the lower triangular matrix with unit elements on the main diagonal, such that the free

elements in each row i are given by αi,. = [αi,1, . . . , αii−1] for i = 1, . . . ,K.

αi,.
′ ∼ N

((
Ũi

′
Ũi + S−1

i

)−1
(Ũi

′
ui),

(
Ũi

′
Ũi + S−1

i

)−1
σ2

i

)
for 2 = 1, ,K (42)

The other conditional posteriors are given by

σ2
i | θ, τij , λij , π1i, π0i,f ,Z ∼ Inv-Gamma

(
T + G̃i − 1

2 + (i− 1)
2 + (v0i + i−K)

2 ,

1
2∥(Y − ZΘ)Ã′∥2

2 + 1
2

G∑
j=1

∥θij∥2
2

τ2
ij

+ s2
i

2

 (43)
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τ−2
ij | θ, σ2

i , λij , π1i, π0i,f ,Z ∼


Inv-Gaussian

(
λijσi

∥θij∥2
, λ2

ij

)
if θij ̸= 0

Gamma
(

gij+1
2 ,

λ2
ij

2

)
if θij = 0

(44)

π0i | θ, σ2
i , τij , λ, π1i,f ,Z ∼ Beta

 G∑
j=1

(1 − γij) + c,
G∑

j=1
γij + d

 (45)

where vi0 is set equal to 1 + i
2 , G̃i =

∑G
j=1 gijγij , d = 1, c = κ̄Gν , κ̄ = (1 +G−1) and

γij =


1 if θij ̸= 0

0 if θij = 0
(46)

π1,ij = P (θij = 0|θ\j , σ
2, τ, λ, π0i,f ,Z) = π0i

π0i + (1 − π0i)
[
(τ2

j )−
gj
2 |Pij |−

1
2 exp

(
1

2σ2 C′
ijP−1

ij Cij

)]
(47)

Assuming a conjugate Gamma prior on the penalty hyper-parameters λ2
ij parameterized by

shape parameter a2 and rate parameter b2 we get the following conditional posterior

λ2
ij | θ, σ2

i , τij , π1i, π0i,f ,Z ∼ Gamma
(
gij + 1

2 + a2,
τ2

ij

2 + b2

)
(48)

A.3 Monte Carlo simulation

Here we report the details on the parameters of the Monte Carlo exercise in section 3. We

mostly built on the Monte Carlo exercise in Mogliani et al. (2021) for what concerns setting the

value of the parameters of the DGP, extending it to a SUR framework. More in the specific, we

set Σϵ such that the correlation between x(m)
j,t and x(m)

j′,t with j′ ̸= j is 0.50. In equation (24) we
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set µ = 0.1 and ρ = 0.5. In equation (23) and we set αi = 0 and

β1 =



0

0.3

0.3

0

−0.5

0.1

0

0

0.3

021×1



β2 =



019×1

0.3

0.3

0.1

0

−0.5

−0.3

0

0.3

0.1

02×1



β3 =



0

0.3

0.5

0

−0.1

021×1

0.3

0

0

0.5



Φ1 =


0.8 0.001 0

0.02 0.5 0

−0.01 0 0.5

 Φ2 =


0.02 0 0.1

0 0.03 0.04

0 −0.02 0.05

 (49)

Conditional on these parameters, we set the diagonal elements of Ω such that the noise-to-signal

ratio of the mixed-frequency regression is 0.20. The off diagonal elements of Ω are instead set

to imply corr(u1,t, u2,t) = 0.1, corr(u1,t, u3,t) = −0.1 and corr(u2,t, u3,t) = 0.2.

A.4 Ridge type shrinkage prior for the unrestricted SUR-MIDAS

We compare the lasso-type shrinkage prior with a ridge-type shrinkage prior for the coefficients in

the SUR-MIDAS model. This prior is inspired by the shrinkage prior for a univariate unrestricted

MIDAS regression in Carriero et al. (2015). More specifically, we rewrite the SUR-MIDAS model

in compact form as

F = XΦ + U (50)

where F is the T ×K matrix of factors, X is the T × (nxpx +Kpq) design matrix of regressors,

which contains both the lags of the high frequency macroeconomic indicators and the lags of

the low frequency factors. U is a T ×N matrix of correlated errors such that E[U ′U ] = Ω. We

specify the following prior for (Φ,Ω)

vec(Φ)|Ω ∼ N (Φ,V ) (51)

Ω ∼ IW (S, v0) (52)

where Φ is centering the coefficient of the first own lag of the low frequency factors on 0.8 and

all the other coefficients to 0. Then the variance covariance matrix of the prior distribution is
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given by

V = Ω ⊗ V0 (53)

where the elements of the diagonal matrix V0 are

ωi =



θ1 intercept

θ2
s2

rlθ3 on the lags of the low frequency factors

θ4
s2

rlθ5 on the lags of the high frequency variables

(54)

The shrinkage hyper-parameters [θ1, θ2, θ3, θ4, θ5] are selected to maximize the marginal data

density of the model which is available in close form. We resort to automatic differentiation

to perform the maximization of the marginal likelihood with respect to these hyper-parameters

following Chan et al. (2020). For the model with the restricted Almon-lag dynamics we consider

the same prior with l = 1.
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