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Abstract. We classify (multi)fusion 2-categories in terms of braided fusion categories and group
cohomological data. This classification is homotopy coherent — we provide an equivalence between
the 3-groupoid of (multi)fusion 2-categories up to monoidal equivalences and a certain 3-groupoid
of commuting squares of BZ/2-equivariant spaces. Rank finiteness and Ocneanu rigidity for fusion
2-categories are immediate corollaries of our classification.
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1. Introduction

Fusion 2-categories, first introduced in [DR18], are finite semisimple 2-categories with a monoidal
structure with duals for objects and simple monoidal unit. They categorify the notion of fusion
1-category, and have found relevance in the study of TQFTs both from the cobordism hypothesis
[Déc22a, Déc23c] and state-sum constructions [DR18], braided fusion 1-category theory [JFR24],
condensed matter physics [IO24, DT24], as well as high energy physics [BBFP24, BBSNT23, DY23b,
BP24].

One point of physical interest in fusion higher category theory is that we now understand that
many relevant physical theories in higher dimensions generally enjoy a symmetry that is given by
a higher category where the objects, morphisms, and higher morphisms are topological operators
that implement non-invertible or categorical symmetries. Most prominently, systems in (1+1)-
spacetime dimensions, such as the critical Ising model, do enjoy a fusion 1-category of symmetries
[FFRS04, VBW+18, AMF16, TW24, JSW24]. As for fusion 2-categories, they describe the fusion
of 2-spacetime-dimensional surface operators, which are prevalent for many quantum field theories,
especially those in higher dimensions. Studying categorical symmetries has given new insights on
how to study the phases of a quantum field theory [BPSN+24], and, in certain cases, how to actually
classify the theories [JFY22]. A classification of fusion 2-categories thus has many applications for
physics and improving our understanding of the general structure of symmetries.

The main result of this article is that a fusion 2-category is completely described by the braided
fusion 1-category of endomorphisms of its unit together with certain group theoretical and cohomo-
logical data. This is in sharp contrast to the situation with fusion 1-categories: While it is sometimes
possibly to classify special examples and classes of fusion categories [Ost03, EGO04, Nat18], there
are many “exotic” examples constructed from quantum groups at roots of unity [Jon83, Wen88,
Wen90, Xu98] and examples arising from the theory of subfactors [AH99, Izu01, EG14, JMS14,
GMP+23, AMP23]. In particular, while not every fusion 1-category is “group-theoretical” in the
sense of [ENO05, Section 8.8], our main result can be interpreted as the statetement that every
fusion 2-category is “braided fusion 1-category plus group” theoretical.

1.1. The Classification of Fusion 2-Categories. For any fusion 2-category C, there is a braided
fusion 1-category ΩC of endomorphisms of the monoidal unit. Its symmetric center (also called
Müger center) Z2(ΩC) is a symmetric fusion 1-category.

Definition 1.1. A fusion 2-category C is bosonic if Z2(ΩC) is Tannakian, i.e. is equivalent to the
symmetric monoidal category Rep(H) of finite-dimensional representations of a finite group H.

Theorem A (All bosons). Bosonic fusion 2-categories are parameterised by the following data:

• A nondegenerate braided fusion 1-category A;
• An inclusion of finite groups ι : H ↪→ G;
• A monoidal functor ρ : H → Autbr(A), where Autbr(A) denotes the 1-groupoid of braided
autoequivalences of A;
• A class π ∈ H4(BG,C×); and
• A homotopy between the anomaly of ρ and π|H .

Remark 1.2. The precise meaning of the words in Theorem A and Theorem B below, and the
sense in which this data “parametrizes” all fusion 2-categories is discussed in §1.3. For example,
both H and G should really be considered connected 1-groupoids instead of groups (they are the
groupoids of fiber functors of Z2(ΩC) and ΩZ(C), respectively; writing them as groups amounts
to the unique, but up to non-unique isomorphism, choice of a fiber functor). Accordingly, the
inclusion of groups H → G should really be considered a faithful functor between connected 1-
groupoids. In practice, this means that monoidal equivalences between fusion 2-categories will
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induce isomorphisms G→ G′ so that after transporting the subgroup H along this isomorphism to
a subgroup of G′, it becomes conjugate (but not necessarily equal) to the subgroup H ′.

Such a list has appeared in the physics literature in the context of topological operators in (2+1)-
dimensions [BP24]. It has also appeared in [BPSN+24] for the purpose of studying gapped (2+1)d
phases, where the authors noticed that the category A given in Theorem A appears as non-minimal
boundary conditions with H global symmetry for the topological bulk theory in (3+1)d with gauge
group G. The homotopy between the anomalies is also discussed therein.

A supergroup (H, z) is a group H with a central element z ∈ H of order 2. There are analogous
notions for higher categorical groups, introduced below. We let Rep(H, z) denote the symmetric
monoidal category with underlying monoidal category Rep(H) and braiding twisted by the action
of z. Recall from [Del02] that any symmetric fusion category which is not Tannakian is super-
Tannakian, i.e. of the form Rep(H, z) for a finite supergroup (H, z) with non-trivial z. The
simplest example of such a super-Tannakian symmetric fusion 1-category is sVect, the symmetric
fusion 1-category of super-vector spaces, corresponding to the supergroup (H, z) = (Z/2,−1).

Definition 1.3. A fusion 2-category C is said to be fermionic if Z2(ΩC) is super-Tannakian.

Theorem B (Emergent Fermions). Fermionic fusion 2-categories are parameterized by the follow-
ing data:

• An sVect-nondegenerate braided fusion 1-category A, i.e. a braided fusion 1-category A
equipped with a symmetric equivalence sVect→ Z2(A);
• An inclusion ι : (H, z) ↪→ (G, z) of finite supergroups where z is non-trivial;
• A monoidal functor of (higher) supergroups ρ : (H, z) → (AutbrsVect(A), (−1)f ), where

AutbrsVect(A) denotes the 2-group of braided automorphisms F of A equipped with a monoidal
natural isomorphism between the induced identifications of symmetric centers with sVect,
and “superelement” (−1)f (coherently) given by the identity functor equipped with the non-
trivial natural isomorphism which acts by (−1) on odd objects in sVect;
• A class ϖ in a certain torsor for the supercohomology group SH4(B(G, z)); and
• A homotopy between the anomaly of ρ and ϖ|(H,z).

While we have stated the cohomological data in the form of a torsor, this torsor can be trivialized
by a choice of minimal nondegenerate extension for A, which always exists thanks to the main
result of [JFR24].

As in Remark 1.2, we give a more precise version of Theorem B below.

Remark 1.4. Allowing trivial z in Theorem B (and leaving the rest of the data unchanged) in
fact gives the classification in the general case, i.e. of arbitrary fusion 2-categories. In particular,
the z = 1 case of Theorem B reduces (somewhat non-trivially) to Theorem A. See §4.3.

Given a fusion 2-category C, we sketch how the data appearing in Theorem A may be extracted,
the fermionic case works analogously:

• Let Z(C) denote the (2-categorical) Drinfeld center of C. We show that the canonical sym-
metric monoidal functor ΩZ(C)→ Z2(ΩC) is dominant. In particular, ΩZ(C) is Tannakian
if and only if Z2(ΩC) is and by [Del02] the functor ΩZ(C) → Z2(ΩC) is equivalent to the
restriction functor Rep(G)→ Rep(H) along an inclusion of finite groups H ↪→ G.
• The braided fusion 1-category ΩC has symmetric center Z2(ΩC) = Rep(H) and hence is by
the (de-)equivariantization theorem of [DGNO10, Theorem 4.4] classified by the nondegen-
erate braided fusion category A = ΩC⊠Z2(ΩC) Vect together with a braided H-action (and
ΩC can be recovered as the homotopy/categorical fixed points of that action on A). Thus,
the first three bullet points in Theorem A fully determine the braided fusion 1-category ΩC
and the symmetric functor ΩZ(C)→ Z2(ΩC).
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• The last two bullet points in Theorem A record more subtle cohomological information
pertaining to the higher coherences of C.

It is clarifying to understand where the most familiar examples of fusion 2-categories fit into the
above classification theorems:

Example 1.5. The case H = G corresponds to the case of connected fusion 2-categories C, i.e.
those equivalent to Mod(ΩC), see [DR18]. Indeed, in this case the class π, resp. ϖ is determined
by ρ through the homotopy and hence the last two bullet points are no data. The first three bullet
points classify ΩC via de/equivariantization as outlined above.

Example 1.6. Let us consider the case when H is the trivial group in Theorem A. Then the only
non-trivial data is a nondegenerate braided fusion 1-category A, and a class π in H4(G;C×). The
corresponding fusion 2-category is the 2-Deligne tensor product 2VectπG ⊠Mod(A).

Example 1.7. The group-theoretical fusion 2-categories of [DY23a] are recovered by taking A =
Vect, with H nontrivial, in Theorem A. In particular, if G is a categorical group, then we can
consider the fusion 2-categories 2Rep(G), of finite semisimple 2-representations of G as introduced
in [Elg07], and 2VectG , of G-graded 2-vector spaces [DR18]. Let us write H for the group of
equivalence classes of objects of G, and A for its abelian groups of morphisms, which inherit an

action by H. We can therefore consider the semidirect product Â ⋊H of the Pontrijagin dual of

A with H. Then the fusion 2-category 2VectG corresponds to the inclusion Â ↪→ Â ⋊H, a class

π in H4(Â ⋊ H;C×) derived from the Postnikov 3-cocycle for G (see [DY23a, Equation 5] for an
explicit formula at the level of cocycles), and a certain null-homotopy of the restriction π|

Â
(in

terms of the explicit cocycle-level formulas of [DY23a], the restriction is trivial on the nose and the
null-homotopy is the one given by the trivial cochain). Likewise, the fusion 2-category 2Rep(G)
corresponds to the inclusion H ↪→ Â⋊H, with the same class π and a certain null-homotopy of π|H .

1.2. Profits of the Classification. The classification immediately leads to applications for the
structure of fusion 2-categories. We obtain a rank finiteness result, whose decategorified version for
arbitrary fusion 1-categories is currently not known, as well as an analogue of Ocneanu rigidity. In
what follows, the rank of a fusion 2-category C is the product of the the number of simple objects
of the braided fusion 1-category ΩC together with the number of connected components of C.

Corollary C. (Rank finiteness) Up to monoidal equivalence, there exists only finitely many fusion
2-categories of a given rank.

Corollary D. (Ocneanu rigidity) Fusion 2-categories admit no non-trivial deformations.

Corollary E. The connected components of a fusion 2-categories whose corresponding inclusion
of finite (super)groups is H ↪→ G are in bijective correspondence with the double cosets H\G/H.
Moreover, this correspondence is compatible with the fusion rules.

These corollaries are made precise and proved in §4.5.

1.3. The Main Theorem: Relating Fusion 2-Categories and Delphic Squares. In this
section, we state our main theorem whose unpacking results in Theorems A and B.

We will freely use the language of ∞-categories (also know as (∞, 1)-categories) as developed
in [Lur09, Lur17]. In particular, below we will treat the terms “space” (thought of as a homotopy
type) and “∞-groupoid” synonymously, and similarly the terms “n-truncated space” (i.e space with
vanishing homotopy groups in degrees > n) and “n-groupoid.”

Consider the classifying space BZ/2 equipped with its group structure induced from the further
delooping B2Z/2 := K(Z/2, 2). Equivalently, this ‘2-group’ may be thought of as the monoidal
1-groupoid with a single object, automorphisms Z/2 and (unique) monoidal structure induced
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by the abelian-ness of Z/2. It is a well-known observation that this 2-group is equivalent to the
monoidal groupoid Autbr(sVect) of braided automorphisms of sVect and braided monoidal natural
isomorphisms.

Definition 1.8. A superspace is a space equipped with an action by Autbr(sVect) ≃ BZ/2. A
map of superspaces is a BZ/2-equivariant map.

Given a group G, a BZ/2-action on the classifying space BG (equivalently, the 1-groupoid with
one object and automorphisms G) amounts precisely to a central element z ∈ Z(G) of order at
most 2, i.e. a supergroup structure in the sense of §1.1.

The reason superspaces feature so prominently in this work stems from the following consequence
of a theorem of Deligne [Del02]: every symmetric multifusion 1-category is completely determined by
its 1-groupoid Spec(E) of linear symmetric monoidal functors E → sVect. This groupoid Spec(E)
admits a canonical action by Autbr(sVect) by postcomposition, and hence is a supergroupoid.
Moreover, E is fusion if and only if there is a unique — up to nonunique isomorphism — such fiber
functor, i.e. if Spec(E) is connected. In this case Spec(E) is of the form BG for some finite group G
and the superspace structure amounts to the familiar supergroup structure on G.

We briefly recall two important examples of higher superspaces: Firstly, there is the 2-groupoid
BMF1Cndeg(sVect) of sVect-nondegenerate braided fusion categories (that is braided fusion cate-
gories equipped with an equivalence between their symmetric centers and sVect), and compatible
braided equivalences between them. Secondly, there is the 4-groupoid Witt(sVect) of sVect-
nondegenerate braided fusion categories and sVect-Witt equivalences, etc., between them. The
set of isomorphism classes of objects in this latter 4-groupoid is the super-Witt group intro-
duced in [DNO13]. Both carry an Autbr(sVect)-action given by precomposing the identification
of the symmetric centers with sVect, making both into higher super-groupoids. Moreover, there
is an Autbr(sVect)-equivariant map [−] : BMF1Cndeg(sVect) → Witt(sVect) sending a sVect-
nondegenerate braided fusion category to the corresponding object in Witt(sVect).

We are now ready to state our main theorem:

Theorem F. If C is a multifusion 2-category, the canonical symmetric monoidal functor ΩZ(C)→
Z2(ΩC) is faithful and dominant and hence corresponds by Deligne’s theorem to a functor of super-
1-groupoids ι : Spec(Z2ΩC)→ Spec(ΩZ(C)) which is essentially surjective on objects and faithful1.

Moreover, for any faithful and dominant symmetric monoidal functor E ↠ F between symmetric
multifusion 1-categories, there is an equivalence of 3-groupoids between the 3-groupoid{

Multifusion 2-categories C equipped with an identification
[ΩZ(C)→ Z2(ΩC)] ∼= [E ↠ F ]

}
and the space2 of commuting squares of (unpointed!) superspaces

Spec(F) BMF1Cndeg(sVect)

Spec(E) Witt(sVect) .

ι [−]

ϖ

≃ (1.9)

(For better readability, dashed morphisms are part of the data of an object of this 3-groupoid while
solid morphisms are fixed.)

1In homotopical terms, ι is (−1)-connected, i.e. surjective on π0, and 0-truncated, i.e. injective on π1 (and an
isomorphism on all higher homotopy groups which vanish here).

2Formally, this space is the pullback

Map
(
Spec(F),BMF1Cndeg(sVect)

)BZ/2
×Map(Spec(F),Witt(sVect))BZ/2 Map (Spec(E),Witt(sVect))BZ/2 ,

where Map(−,−)BZ/2 denote spaces of BZ/2-equivariant maps.
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We will henceforth refer to a square (1.9) as a Delphic square of type ι.
In the fusion case, where Spec(ΩZ(C)) and Spec(Z2(ΩC)) are connected, the faithful functor ι

amounts to our inclusion of supergroups (H, z) ↪→ (G, z) from Theorem B. Indeed, the parametrisa-
tion data given in Theorems A and B above arise from unpacking the contents of a Delphic square;
the details are given in §4.3.

Remark 1.10. Theorem F sheds light on a subtlety in the phrasing of Theorem B: Given a fusion
2-category C, we may extract the braided fusion category ΩC with symmetric center Z2(ΩC). Only
after an (in Theorem B) implicit choice of a fiber functor Z2(ΩC) → sVect (i.e. a basepoint of
Spec(Z2(ΩC)) may we extract an actual supergroup (H, z) and an sVect-nondegenerate braided
fusion category A as appears in Theorem B. Without making this arbitrary choice, we merely have
a functor Spec(Z2(ΩC))→ BF1Cndeg(sVect) from a connected but not pointed groupoid.

1.4. From Witt squares to Delphic squares. In order to prove Theorem F, we first prove that
the 3-groupoid of multifusion 2-categories is equivalent to the 3-groupoid of Witt squares.

Definition 1.11. Let F : E ↠ F be a faithful dominant symmetric monoidal functor between two
symmetric multifusion 1-categories. A Witt square3 of type F : E ↠ F is a commuting square of
spaces of the form

pt BMF1Cndeg(F)

Witt(E) Witt(F) .

[−]
≃ (1.12)

(Dashed morphisms are part of the data of a Witt square of type F : E ↠ F , while solid morphisms
are given.)

In (1.12), BMF1Cndeg(F) denotes the 2-groupoid of F-nondegenerate braided multifusion 1-
categories, that is, braided multifusion 1-categories equipped with an identification of their sym-
metric center with F . On the other hand, Witt(F) denotes the 4-groupoid of F-nondegenerate
braided multifusion 1-categories and F-Witt equivalences between them. The right vertical functor
sends a category to its Witt class and the bottom horizontal functor is given by base change along
E → F .

Thus, roughly speaking, the data of a Witt square amounts to a choice of F-nondegenerate
braided multifusion 1-category D (up to braided equivalence!) together with the choice of an E-
Witt class [B] and an F-Witt equivalence between [B ⊠E F ] and [D].

A detailed discussion of data of this type may be found in §3.4. Furthermore, the precise
construction of the bottom horizontal map in (1.12) is given by the following result, which is
proven in Corollary 3.10.

Proposition 1.13. There is a functor Witt(−) : SMF1Cdom,faith → Spaces from the (2, 1)-
category SMF1Cdom,faith of symmetric multifusion 1-categories with dominant and faithful sym-
metric functors to the (∞, 1)-category Spaces of spaces, sending a symmetric multifusion 1-category
E to the associated Witt space Witt(E).

As a consequence of Deligne’s theorem, any symmetric multifusion 1-category E can be recon-
structed from the supergroupoid Spec(E). Explicitly, E is equivalent to the symmetric monoidal

multifusion category Fun(Spec(E), sVect)BZ/2 of BZ/2-equivariant functors from Spec(E) to sVect.
If Spec(E) is a connected supergroupoid, i.e. of the form B(G, z) (for possibly trivial z), this prescrip-
tion recovers the category Rep(G, z) of representations of G with braiding twisted by z. Recall that
a space X with a BZ/2-action may equivalently be described by the homotopy quotient X �BZ/2

3Formally, given E ↠ F , the space of Witt squares of type F is the pullback Witt(E)×Witt(F) BMF1Cndeg(F).
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with its map X�BZ/2→ B2Z/2, see §2.7. Homotopy theoretically, the symmetric multifusion cat-
egory E is then the limit of the functor Spec(E)� (BZ/2)→ B2Z/2 ≃ BAutbr(sVect) ↪→ SMF1C.
Thus, the connection between Delphic squares (involving only Witt(sVect)) and Witt squares
(involving Witt(E) for arbitrary symmetric multifusion categories E) then manifestly becomes a
statement about the functor Witt(−) preserving certain limits. We relegate this point to future
work [DHJF+].

Theorem 1.14 ([DHJF+]). The functor Witt(–) : SMF1Cdom,faith → Spaces commutes with
(homotopy) limits of finite 1-groupoids.4

Corollary 1.15. For any faithful dominant symmetric tensor functor F : E ↠ F , there is an
equivalence of spaces between the 3-groupoid of Witt squares of type F : E ↠ F and the 3-groupoid
of Delphic squares of type Spec(F ) : Spec(F) ↪→ Spec(E).

In order to finish the proof of Theorem F, it will therefore suffice to establish the following
satetement.

Theorem G. Let E ↠ F be a faithful and dominant symmetric functor. Then there is an equiva-
lence of 3-groupoids{

Multifusion 2-categories C with
[ΩZ(C)→ Z2(ΩC)] ∼= [E ↠ F ]

}
∼=
{
Witt squares
of type [E ↠ F ]

}
.

In fact, in Theorem 3.17 we make Theorem G functorial in (E → F), and hence obtain a complete
description of the 3-groupoid of all multifusion 2-categories and monoidal equivalences.

The proof of this theorem will be the technical heart of this paper. The core of the proof, which
can be found in §3.3, can be outlined as follows:

• The data of a multifusion 2-category C (up to monoidal equivalence) is equivalent to the
data of the regular module CC, seen as a 1-morphism 2Vect ↛ C in the Morita category
Morss of multifusion 2-categories.
• In Proposition 3.11, we show that this 1-morphism in Morss may be factored uniquely into
the 1-morphism Mod(ΩC)Mod(ΩC) — whose data corresponds to the braided multifusion
1-category ΩC — followed by the 1-morphism Mod(ΩC)CC.
• That latter 1-morphism is a 1-morphism D1MD2 which has the property that the induced
2-functor D1 → EndD2(M) is fully faithful and such that M is faithful as a D2-module. In
Corollary 3.16, we prove that such 1-morphisms are completely determined by the Morita
class of their target D2 together with a dominant, faithful symmetric functor out of Z2(D2)
into some symmetric multifusion category.
• Using the key result of [Déc22a] that any multifusion 2-category is Morita equivalent to
a connected one, the data in the previous step can be recast in terms of Witt classes of
braided multifusion 1-categories and their interaction with symmetric functors, resulting in
Theorem G.

1.5. Outline. In §2, we give the necessary background for the proofs of our main theorems. In
particular, in §2.2, we review the higher categorical setup for flagged and enriched higher categories,
fibrations, and (de)equivariantizations. In §2.4, we introduce the Morita 4-category of multifusion
2-categories Morss and, in §2.5, we introduce the Morita 4-category of braided multifusion 1-
categories Morss2 . In §2.6, we introduce and study the many technical classes of 1-morphisms of
the Morita 4-categories that will appear. In §2.7, we review supergroups and superspaces.

Sections 4 and 3 describe the passage between each of the items in the boxes in Figure 1:

4In fact we can do slightly better: We can also consider (homotopy) limits of finite 2-groupoids whose action is
sufficiently faithful.
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F2C data Witt squares Delphic squares Theorems A and B
$ P−− €

£

Figure 1. This figure serves to display the different ways of presenting the data
needed to define fusion 2-categories, and the fact that one can explicitly go between
them.

• The arrow labeled by ($) is explained in §4 and gives the detailed proof of Theorem G.
• The arrow labeled by (P−−) uses equivariantization to obtain Theorem F. In particular, Propo-
sition 1.13 is constructed in §3.2 and the detailed unfolding of Witt data and Witt squares
is given in §3.4 and §3.1.
• The arrow labeled by (€) represents the unpacking of the contents of Delphic squares and
is presented in §4.3.
• The arrow labeled by (£) uses the data of Theorems A and B to construct a fusion 2-
category, and is explained in §4.4.

2. Preliminaries

2.1. Glossary. Throughout, for definitiveness, we work over the field C of complex numbers. All
our results remain valid over an arbitrary algebraically closed field of characteristic zero, and we
will most often keep the field implicit in our notations. In particular, we will often suppress the
word “linear” from expressions such as “(braided) monoidal linear equivalence.” Below, we include
a glossary of the categories and groupoids which appear in this article.

• We usually write categories in bold, to distinguish them from spaces and groupoids which
we write in normal font.
• Spec(E): the super 1-groupoid of fiber functors from the symmetric multifusion 1-category
E to super vector spaces.
• BMF1C: the (2, 1)-category of braided multifusion 1-categories and braided monoidal func-
tors.
• BMF1Cadj: the (2, 1)-category of braided multifusion 1-categories with “adjectival” 1-
morphisms, where “adjectival” will be replaced by various technical adjectives.
• SMF1Cadj: the (2, 1)-category of symmetric multifusion 1-categories and with “adjectival”
1-morphisms.
• MF2C: the (3, 1)-category of multifusion 2-categories and monoidal functors.
• BMF1Cndeg(E): the 2-groupoid of E-nondegenerate braided multifusion 1-categories, that
is, braided multifusion 1-categories with symmetric center explicitly identified with the
symmetric multifusion 1-category E , and braided monoidal functors compatible with this
identification.
• Morss,adj: the Morita 4-category of multifusion 2-categories with adjectival 1-morphisms.
• Morss2 : the Morita 4-category of braided multifusion 1-categories.

• Morss,adj2 : the Morita 4-category of braided multifusion 1-categories, with adjectival 1-
morphisms.
• MF2C(E ↠ F): the 3-groupoid of multifusion 2-categories C equipped with an identification
of ΩZ(C)→ Z2(ΩC) with a given faithful dominant symmetric tensor functor E ↠ F .
• Morss: the Morita 4-category of multifusion 2-categories.
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• Witt(E): the 4-groupoid of braided multifusion 1-categories with symmetric center identified
with E and E-Witt equivalences.
• 2Kar: the presentably symmetric monoidal (3, 1)-category of small C-linear Karoubi com-
plete 2-categories.
• ob(C): the space of objects in the (∞, 1)-category C.
• ar(C): the space of arrows in the (∞, 1)-category C.
• Glob(C): the globular space associated to the (∞, 1)-category C.
• AlgEn

(C): the (∞, 1)-category of En-algebras in the symmetric monoidal (∞, 1)-category
C.
• BimodA(C): The (higher) category of bimodules for the E1-algebra A in the monoidal
(higher) category C.

2.2. Categorical Background. We will freely use the language and theorems of (∞, 1)-categories
as developed in [Lur09, Lur17]. Following standard usage, we will use the terms “∞-category” and
“(∞, 1)-category” synonymously. For notational simplicity, we will often use the words “unique,”
“fiber” and “quotient” to mean “unique up to a contractible space of choices,” “homotopy fiber”
and “homotopy quotient,” etc., as these are the only interpretation of the words that parse in the
language of ∞-categories.

2.2.1. Flagged Categories. As explained in the introduction, the Morita 4-categories Morss of mul-
tifusion 2-categories and Morss2 of braided multifusion 1-categories play essential roles in the proof
of our main theorem. In the following subsections §2.4 and §2.5, we will define them as flagged
sub-4-categories. But in order to do so, we will crucially need to appeal to Proposition 2.11 below,
which is a technical result that can be used to define subcategories of a flagged n-category. To
work up to and prove this propositon, we review the theory of flagged categories, and enriched ∞-
categories. The enrichment will allow us to give a conceptual definition for higher flagged categories
via induction.

In the remainder of this section, by “sub object,” we always mean a monic5 (aka a (−1)-truncated)
1-morphism in the appropriate∞-category. For example, a subcategory is a monic functor inCat∞,
the∞-category of∞-categories. Unpacked, a functor is monic when it is faithful and isofull, i.e. full
on isomorphisms, or equivalently if it induces a full subspace inclusion (aka (−1)-truncated map)
on spaces of objects and spaces of morphisms. We emphasize that this is not quite the notion of
“subcategory” used, for example, in [ML98] (rather it corresponds to what is classically sometimes
called a “replete subcategory” or an “isomorphism-closed subcategory”). This change of usage is
appropriate: a 1-category in the sense of [ML98] comes with a set of objects, but this set cannot
be extracted naturally when thinking of a 1-category as an object of Cat∞, because equivalent
1-categories have different sets. Rather, a 1-category in the sense of [ML98] is an example of a
flagged 1-category : a 1-category C equipped with a 1-groupoid C0, interpreted as “the 1-groupoid
of objects in C,” and an essentially surjective functor C0 → C. Specifically, a 1-category in the sense
of [ML98] is a 1-category flagged by a set. A flagged 1-category is univalent when the map C0 → C
is an equivalence on spaces of objects6, and the univalification of a flagged 1-category C0 → C is the
result of replacing C0 by the full 1-groupoid of objects in C. A subcategory in the sense of [ML98]
is an example of a sub flagged 1-category: a functor which is faithful and monic on 1-groupoids of
objects. In particular, the next result follows from the discussion above.

5A morphism f : x → y in an ∞-category C is called monic if for every object a ∈ C the induced map of spaces
MapC(a, x) → MapC(a, y) is a full subspace inclusion.

6A 1-category in the sense of [ML98] is only univalent when it is gaunt, that is, when the only isomorphisms are
the identity morphisms.

9



Lemma 2.1. Let D ↪→ C, be a sub flagged 1-category of the flagged 1-category C. Upon univalifi-
cation of both C and D, D ↪→ C is a sub category of C if and only if it is isofull.

We now review how this story is implemented for higher categories, essentially following [AF18].

Definition 2.2. A preflagged (∞, p)-category is a chain C0 → C1 → · · · → Cp of (∞, p)-categories.
A preflagged (∞, p)-category is flagged if for each k, Ck is an (∞, k)-category and the functor
Ck → Ck+1 is essentially surjective on (≤ k)-morphisms.

Definition 2.3. A flagged (∞, p)-category is univalent if, in addition, the functor Ck → Ck+1 is
fully faithful on (> k)-isomorphisms for all 0 ≤ k < p.

A univalent flagged (∞, p)-category is entirely determined by Cp, with each Ck the maximal
sub-(∞, k)-category of Cp. The full inclusion

{univalent flagged categories} ↪→ {flagged categories}

has a left adjoint called univalification. Realizing flagged categories is in general simpler than
realizing univalent ones, and there are many examples of higher categories that are naturally flagged,
see e.g. [AF18, FHJF+24].

Any flagged (∞, n)-category C supplies a unital globular space Glob(C) given by

X := X0 X1 X2 . . . Xn,
s

t

s

t

s

t

s

t

(2.4)

where Xk denotes the space of k-morphism. The maps s and t denote the source and target maps.
Given two k-morphisms m,m′ ∈ Xk we say that they are composable if t(m) = s(m′).

It is often possible, and often convenient, to recast (∞, n)-categorical notions in terms of iterated
enrichment. For example, an (∞, n)-category is precisely an ∞-category enriched (in the sense
of [GH15]) in the ∞-category of (∞, n − 1)-categories [Hau15]. We will do this style of recasting
for flagged (∞, p)-categories, recognizing them as flagged ∞-categories enriched in the ∞-category
of flagged (∞, p− 1)-categories.

We very briefly sketch the relevant definitions of enriched ∞-category theory, as developed
in [GH15], here following the equivalent approach of [Hin20, Hei23]. Let us fix V, a presentably
symmetric monoidal (∞, 1)-category. We introduce the notion of a flagged V-enriched ∞-category.

Definition 2.5. Let X0 be a space. The ∞-category of V-graphs X over X0 is the ∞-category
Fun(X0 × X0,V).

The (∞, 1)-category of V-graphs over a fixed space X0 admits a natural presentably monoidal
structure (that is however not braided), see e.g. [Hin20, Hei23]. For example, the monoidal product

X1 ⊠ X′
1 of two V-graphs X1, X

′
1 is given by the functor X1 ⊠ X

′
1 : X0 × X0 → V defined by

(s, t) 7→
∫ x∈X0

X1(s, x)⊗V X1(x, t) = colim
x∈X0

X1(s, x)⊗V X1(x, t) ,

where (s, t) ranges over X0×X0. The identity object in the space of V-graphs over X0 is the graph
(s, t) 7→ colim

x∈X0(s,t)
1 where 1 is the unit object in V.

Definition 2.6. A globular V-space consists of a space X0 and an E0-algebra X1 in the monoidal
∞-category of V-graphs over X0. A V-enriched flagged category X is a space X0 (henceforth referred
to as the space of objects of X) and an E1-algebra X1 in the monoidal ∞-category of V-graphs over
X0. For any V-enriched flagged category X, we use Glob(X) to denote taking the underlying globular
V-space.
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Example 2.7. Unfolding the definitions (and using the equivalence of (univalent) (∞, n)-categories
with (univalent) ∞-categories enriched in (∞, n− 1)-categories [Hau15]), we find that n-level glob-
ular spaces can be identified with globular spaces enriched in (n−1)-level globular spaces, and that
flagged (∞, n)-categories can be identified with flagged∞-categories enriched in flagged (∞, (n−1))-
categories.

For any ∞-category, the forgetful functor AlgE1
(C) → C from the ∞-category of E1-algebras

in C preserves and reflects monomorphisms; i.e. a morphism of E1-algebras is a monomorphism
exactly when its underlying morphism of objects is a monomorphism. In particular, a morphism
f : X → Z of flagged V-categories is a mono (i.e. gives a sub flagged V-category) exactly when it
is a mono on the spaces of objects and if for any two objects x1, x2 ∈ X0, the induced morphism
HomX(x1, x2)→ HomZ(fx1, fx2) is a monomorphism in V.

We first prove the following straightforward observation: Given a monomorphism A ↪→ B in a
monoidal ∞-category D and suppose that B is equipped with an E1-algebra structure. Then there
is a (unique) compatible E1-algebra structures on A if and only if the multiplication A ⊗ A →
B ⊗B → B factors through the subobject A ↪→ B.

To make this precise, let A2 denote the operad representing a unital binary multiplication (with-
out any associativity); this is part of the familiar An-filtration of the E1-operad E0 = A0 → A1 →
A2 → . . .→ E1. Then the above observation amounts to the following:

Lemma 2.8. For an∞-category D, let Ar(D)mono denote the full subcategory of the arrow category
Ar(D) on the monomorphisms. Then the following is a pullback square of spaces (where AlgO(−)
denotes the space of O-algebras for an operad O):

AlgE1
(Ar(D)mono) AlgE1

(D)

AlgA2
(Ar(D)mono) AlgA2

(D)

In words, an E1-structure on a monomorphism A→ B amounts to an E1-structure on B and a
compatible A2-structure on A.

Proof. The functor Ar(D)mono → D is easily seen to be faithful, i.e. induces (−1)-truncated maps
on mapping spaces. On the other hand, the map of operads A2 → E1 is surjective on colors and
(−1)-connected on multi-hom spaces, and is thus in the language of [LMGR+24, Definition 7.5.1]
0-surjective. The lemma is then an immediate consequence of the orthogonality of the 0-surjective,
0-faithful factorization system on the ∞-category of operads [LMGR+24, Proposition 7.5.3]. □

Applied to E1-algebras in categories of V-graphs, this immediately implies the following general
fact about V-enriched ∞-categories.

Corollary 2.9. Suppose that Z = (Z0,Z1) is a V-enriched flagged ∞-category, and that f : X =
(X0,X1) ↪→ Glob(Z) is a V-enriched sub globular space. If, for any a, b, c ∈ X0, the composition
X1(a, b)⊗ X1(b, c)→ Z1(a, c), as depicted in the square below

X1(a, b)⊗ X1(b, c) Z1(a, b)⊗ Z1(b, c)

X1(a, c) Z1(a, c) ,

(2.10)

factors through the subobject X1(a, c) ↪→ Z1(a, c), then X = Glob(X̃) for a unique sub flagged

V-enriched ∞-category X̃ ⊂ Z.
11



We will apply the previous result to obtain an analogous statement for flagged (∞, n)-categories
— this statement is regularly used, often implicitly, but we could not find a careful proof in the
literature and hence have supplied one here.

Proposition 2.11. Let C be a flagged (∞, n)-category with underlying globular space Glob(C).
Suppose that there exists a sub globular space f : X ↪→ Glob(C) with the property that for every
k and for any composable pair of k-morphisms x, x′ ∈ X, their composition is also in X.7 Then
X = Glob(D) for a unique sub flagged n-category D ⊆ C.
Proof. The globular space Glob(C) for a flagged (∞, n)-category C looks like

Z0 Glob(Cn−1) ,
s

t

(2.12)

where Cn−1 is some flagged (∞, (n − 1))-category. The base case of n = 1 in the proposition was
already established in Corollary 2.9. We now apply the induction step: by assumption we give

ourselves an inclusion X ↪→ Glob(C) such that X0 ↪→ Z0 and Glob(C̃n−1) ↪→ f∗
0 Glob(Cn−1), for

some other flagged (n − 1)-category C̃n−1. We are also given that compositions in Glob(C̃n−1) lift

to compositions in X, and therefore Glob(C̃n−1) enhances to a sub flagged category of f∗
0Cn−1. We

can apply Corollary 2.9 to X = (X0,Glob(C̃n−1)) because any enriched flagged category is E1 in

the category of V-graphs over its space of objects X0. Thus Glob(C̃n−1) is E1 in the category of

V-graphs over X0, and in particular is E0. Therefore we get X = Glob(C̃) for a unique flagged

n-category C̃ ⊆ C. This concludes the proof. □

The last proposition above guarantees that a sub globular space of an n-category defines a sub-
n-category, and, in particular, it inherits its coherence data from the ambient n-category, provided
that we can show that the morphisms of this sub globular space are closed under composition at
all levels.

2.2.2. Fibrations. We recall some notions from [Lur09, §2] that will appear in §3. More precisely,
we review the correspondence between sufficiently nice functors of∞-categories E → C and functors
C → Spaces. Throughout, C and D denote two ∞-categories. Recall that ob(C) denotes the space
of objects and ar(C) the space of morphisms in C.
Definition 2.13. A functor p : C → D is a left fibration if the square

ar(C) ob(C)

ar(D) ob(D)

s

s

is a pullback square, where both horizontal maps are taking the source of an arrow.

Intuitively, a left fibration is therefore a functor p : C → D such that for every arrow g : d → d′

in D, object c ∈ C and identification p(c) ≃ d, there exists a contractible space of arrows f : c→ c′

with p(f) ≃ g.
Let LFib(C) denote the full subcategory of the over-category (Cat∞)/C on the left fibrations.

It follows from the definition that the fibers of a left fibration p : C → D are spaces. Moreover,
this construction is functorial and therefore defines a functor D → Spaces. Heuristically, this
construction can in fact be reversed via the Grothendieck construction. More precisely, it was
established in [Lur09, Proposition 2.2.3.11] that

LFib(C) ≃ Fun(C,Spaces).
7When say that the “composition is in X” we mean it for all of the k different directions of composition.
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This equivalence is called the straightening/unstraightening equivalence .
Throughout we will repeatedly use the following lemma which follows immediately from the

definition:

Lemma 2.14. Given a pullback square of ∞-categories

C̃ C

D̃ D.

F̃ F
(2.15)

if p : C → D is a left (right) fibration, then so is p̃ : C̃ → D̃.

2.3. Multifusion 2-Categories. Recall from [DR18] that a finite semisimple 2-category is a C-
linear 2-category all of whose endomorphism categories are multifusion, which has 2-categorical
direct sums, and all of whose 2-idempotents split. A multifusion 2-category is a rigid monoidal
finite semisimple 2-category.

We will now give a rigorous construction of the (3, 1)-category of multifusion 2-categories and
monoidal C-linear functors.

We call a C-linear 1-category Karoubian if it has finite direct sums and if all idempotents split.
We let Kar denote the presentable (2, 1)-category of Karoubian 1-categories. Equipped with
the Karoubi-completion-of-the-enriched-tensor product, Kar is in fact a presentably symmetric
monoidal (2, 1)-category, i.e. it has a symmetric monoidal structure ⊠ so that ⊠ preserves small
colimits in both slots.

Definition 2.16. We let 2Vect ⊆ Kar denote the full subcategory on the finite semisimple linear
categories.

Note that finite semisimple linear categories are closed under the tensor product in Kar and
hence 2Vect in fact defines a symmetric monoidal subcategory.

Definition 2.17. We define the (2, 1)-category BMF1C as the full subcategory of AlgE2
(2Vect)

on the braided multifusion 1-categories. Similarly, the (2, 1)-category SMF1C is the full subcate-
gory of AlgE∞(2Vect) (and in fact a full subcategory of BMF1C) on the symmetric multifusion
1-categories.

We now move one categorical level higher.
We say that a Kar-enriched category is 2-Karoubian if it has 2-categorical direct sums and if

2-idempotents split. We now construct the (3, 1)-category 2Kar of 2-Karoubian linear 2-categories
and show that it is presentably symmetric monoidal. It was shown in [GH15] that if V is a
presentably symmetric monoidal ∞-category, then there is a presentably symmetric monoidal ∞-
category CatV of V-enriched categories and V-enriched functors. Taking V = Kar, the (2, 1)-
category of Karoubi complete C-linear 1-categories, provides the presentably symmetric monoidal
(2, 1)-category 2LocKar := CatKar.

Definition 2.18. We let 2Kar be the localization of 2LocKar along the following monomor-
phisms:8

{The walking pair of objects} ↪→ {The walking 2-direct sum} (2.19)

{The walking 2-idempotent} ↪→ {The walking 2-retract} (2.20)

8By walking we mean that the structure is defined irrespective of any additional ambient structure i.e. in its free
form.
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We now argue that the presentably symmetric monoidal structure of 2LocKar induces a pre-
sentably symmetric monoidal structure on 2Kar. In order to express this condition, we briefly
recall some concepts from the general theory of localization, see [Lur09, §5.5.4]. Let us fix an
∞-category V, let S be a subset of the ∞-category of arrows in V.
Definition 2.21. Let S be a set of morphisms in a presentable ∞-category V. An object X ∈ V
is S-local if for all 1-morphisms Y → Z in S, Hom(Z,X) → Hom(Y,X) is an isomorphism of
spaces. The localization of V with respect to S, denoted by LS(V), is the full sub-∞-category of V
consisting of the S-local objects. We let LS : V → LS(V) be the localization functor that is the
left adjoint9 to the canonical inclusion LS(V) ↪→ V. We say that a morphism f : X → Y in V is an
S-equivalence if LS(f) is an isomorphism in LS(V), or equivalently if for every S-local object Z,
Map(Y, Z)→ Map(X,Z) is an equivalence.

Definition 2.22. A set S of morphisms in a presentably symmetric monoidal ∞-category V is
idealistic if for every S-equivalence f : X → Y , also f ⊗ Z : X ⊗ Z → Y ⊗ Z is an S-equivalence
for every Z ∈ V.

By [Lur09, Proposition 5.5.4.15], the collection of S-equivalences form the smallest strongly
saturated ([Lur09, Definition 5.5.4.5]) class of morphisms containing S. It follows that it suffices
for Definition 2.22 to prove that f ⊗Z is an S-equivalence for every f ∈ S and Z ∈ V. Denote the
inner Hom in V, i.e. the right adjoint to the tensor product, by HomV(−,−). By currying, one finds
that S is idealistic if and only if, whenever C ∈ V and X ∈ LS(V), we have HomV(C,X) ∈ LS(V).

The following is a consequence of [Lur17, Example 2.2.1.7 and Proposition 2.2.1.9 ]:

Lemma 2.23. Let V be a presentably symmetric monoidal ∞-category and S be an idealistic set of
morphisms in V. Then there exists a presentably symmetric monoidal structure on LS : V → LS(V).

In this case, the tensor product in LS(V) of two S-local objectsX⊗LS(V)Y is given by LS(X⊗VY ).

Lemma 2.24. The (3, 1)-category 2Kar is presentably symmetric monoidal, as is the localization
functor LS : 2LocKar→ 2Kar.

Proof. Presentability is automatic as 2Kar is a localization of a presentable ∞-category, at a set
of morphisms [Lur09, Section 5.5.4.2 (3)]. It therefore only remains to check that the 1-morphisms
in Definition 2.18 are idealistic.

Recall from [HL13] that an ∞-category C is called (0-)semiadditive if it has both finite products
and coproducts, and the unique map from the initial object ∅ to the terminal object ∗ is an
isomorphism, and for any two objects A,B, the map A ⊔B → A×B given by the matrix

A B

A idA A→ ∗ ∼← ∅ → B

B B → ∗ ∼← ∅ → A idB

is an isomorphism. The localization of 2LocKar at (2.19) consists precisely of those Kar-enriched
2-categories that are semiadditive. This ∞-category is denoted by Cat(Kar)semiadd in [MGS24,
Appendix A.5], to which we refer the reader for a more detailed discussion. Then since Kar has
direct sums, a Kar-enriched ∞-category is semiadditive as soon as it has finite coproducts. But, if
X has finite coproducts, then so does Hom(C,X) for any C, since coproducts in functor categories
are computed pointwise. Idealism of (2.19) follows.

A similar argument establishes idealism of the map (2.20). Indeed, by [Kam24], splitting a 2-
idempotent is an example of a Kar-weighted colimit (which is moreover absolute). In other words,

9The localization functor LS exists by the adjoint functor theorem since the fully faithful inclusion LS(V) ↪→ V
preserves limits and κ-filtered colimits for some regular cardinal κ, since S is a (small) set.
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a Kar-enriched ∞-category X is local for (2.20) as soon as it has these weighted colimits. Thus, if
X is local for (2.20), then so is Hom(C,X) for any C, since weighted colimits in enriched functor
categories are computed pointwise. Further details about weighted colimits and 2-idempotents can
be found in [Kam24]. □

Definition 2.25. Denote by 3Vect, the full sub-(3, 1)-category of 2Kar on the finite semisimple
2-categories.

By [Déc22b], 3Vect is equivalent to the Morita 3-category of multifusion 1-categories studied in
[DSPS20].

Lemma 2.26. The full subcategory 3Vect ⊂ 2Kar is a symmetric monoidal subcategory.

Proof. It suffices to show that the unit object 2Vect is finite semisimple — it is — and that the
monoidal product closes — which holds only given that we are working over a perfect field, see
e.g. [Déc24a]. □

Definition 2.27. We define the (3, 1)-category MF2C of multifusion 2-categories (and linear
monoidal functors) as the full subcategory of AlgE1

(3Vect) on the multifusion 2-categories.

Finally, we construct the fully faithful functor Mod(−) : BMF1C → MF2C which sends
a braided multifusion 1-category B to the multifusion 2-category of finite semisimple B-module
categories. In the language of this section, it arises from the fully faithful functor AlgE1

(Kar) ↪→
AlgE0

(2Kar), which takes the one-object delooping and then localizes from 2LocKar to 2Kar;
one then considers the composition of fully faithful inclusions

BMF1C ↪→ AlgE2
(Kar) ≃ AlgE1

(AlgE1
(Kar)) ↪→ AlgE1

(AlgE0
(2Kar)) ≃ AlgE1

(2Kar).

It is simply an objectwise check that the image of this composition is contained in MF2C. Also
see [Déc22b].

2.4. The Morita Category of Multifusion 2-Categories. Intuitively, the Morita 4-category of
multifusion 2-categories, denoted henceforth Morss, is the 4-category with the following globular
set: objects are multifusion 2-categories, 1-morphisms are finite semisimple bimodule 2-categories,
2-morphisms are bimodule functors, 3-morphisms are bimodule natural transformations, and 4-
morphisms are bimodule modifications. Although this 4-category does have deeper-categorical
structure, such as a symmetric monoidal structure, for most of the paper we will solely use its
underlying (4, 1)-category — in other words, we will use only the invertible 2-, 3-, and 4- morphisms
— and as usual we will treat this (4, 1)-category as an (∞, 1)-category.

Various constructions of higher Morita categories have already appeared in the literature [Hau17,
JFS17, Lur17]. Specifically, it follows from [Hau17, Lur17] that, associated to any presentably
symmetric monoidal ∞-category V, there is a flagged (∞, 2)-category Mor(V) whose objects are
E1-algebras in V and 1-morphisms are bimodules in V. For our present purposes, we will take
V = 2Kar, the (3, 1)-category of small C-linear Karoubi complete 2-categories, constructed in §2.4.

We will now construct the (4, 2)-categoryMor(2Kar) following the approach in [Lur17], outlined
in detail in [LMGR+24, §4.4]. The Morita 4-categoryMorss will then be obtained fromMor(2Kar)
by restricting to the finite semisimple part, as we will explain below.

Let ModV := ModV(Pr
L) denote the ∞-category of presentable V-module ∞-categories and

cocontinuous V-module functors. There is a canonical functor AlgE1
(V) → ModV sending an

E1-algebra A to the V-module-category ModA(V) of A-modules (see [Lur17, Corollary 4.2.3.7]);
we will at times drop the V in our notation. We write Modgen

V for its full image.

Definition 2.28. We let Mor(2Kar) be the flagged (∞, 1)-category defined by

ob(AlgE1
(V))→Modgen

V , (2.29)

with functor sending an E1-algebra A to ModA(V).
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We note that ModV is presentably tensored over Cat∞, hence enriched over Cat∞, the ∞-
category of ∞-categories. In particular, ModV enhances to an (∞, 2)-category, see e.g. [BM24]; a
fact that will be employed in §2.5. Now, by construction, there is a surjective-on-objects functor [−] :
AlgE1

(V)→Mor(V) that sends an algebra to its Morita equivalence class. Further, by definition
the 1-morphisms in Mor(V) between two Morita classes [A] and [B] are given by cocontinuous
V-module functors ModA(V)→ModB(V). It is more common to think of 1-morphisms in higher
Morita categories as being given by suitable bimodules.

The next proposition, proven in [Lur17, Theorem 4.8.4.1, Remark 4.8.4.9] may be considered an
∞-categorical Eilenberg–Watts theorem and matches these two perspectives together:

Proposition 2.30 ([Lur17, Remark 4.8.4.9, Theorem 4.8.4.1]). Let V be a presentably symmetric
monoidal ∞-category. Given A,B ∈ AlgE1

(V), there is an equivalence of ∞-categories

HomMor(V)([A], [B]) ∼= BimodA−B(V),
the ∞-category of A-B-bimodule objects in V. Moreover, composition of 1-morphisms in Mor(V)
is given by the relative tensor product of bimodules.

Corollary 2.31. The globular set of Mor(2Kar) is given by

ob(AlgE1
(2Kar)) ob(Bimod(2Kar)). (2.32)

The objects are the E1-algebras in 2Kar, and the 1-morphisms are bimodules. Further, composition
of 1-morphisms is given by the balanced tensor product.

Finally, we define the finite semisimple Morita 4-category Morss.
We wish to use 3Vect ⊂ 2Kar to extract a sub flagged (∞, 2)-category of Mor(2Kar), that

contains only the objects and 1-morphisms whose underlying 2-categories are finite semisimple.
But, in order to define a sub-globular set using the description of Mor(2Kar) given in Corollary
2.31, we need to check that composition closes at all levels. This last property is only satisfied for
algebras satisfying an additional property.

Recall from Definition 2.27 that we write MF2C for the full ∞-subcategory of AlgE1
(3Vect)

on the multifusion 1-categories (i.e. those algebra objects in 3Vect that are rigid, in the sense of
having duals for objects).

Moreover, letBimodss(3Vect) denote the full subcategory ofBimod(3Vect) ↪→ Bimod(2Kar)
on those bimodules CMD for which C and D are multifusion. (Equivalently, Bimodss(3Vect) is
the full subcategory of Bimod(2Kar) on those bimodules CMD for which C and D are multifusion
and M is finite semisimple.) Given two finite semisimple bimodule 2-categories CMD and DNE

between multifusion 2-categories, their composition M⊠DN is finite semisimple by [Déc23c]. Since
the compositions close, then, by Proposition 2.11, this concludes the construction of Morss as a
sub flagged (∞, 2)-category of Mor(2Kar).

Definition 2.33. Let Morss be the sub flagged ∞-category of Mor(2Kar) with globular data
given by

ob(MF2C) ob(Bimodss(3Vect)) . (2.34)

Its objects are the multifusion 2-categories, and its 1-morphisms are bimodules in 3Vect between
them, i.e. finite semisimple bimodule 2-categories between multifusion 2-categories. Composition
of 1-morphisms is given by the relative tensor product.

In order to avoid having to think about flagged higher categories, we will replace Morss by
its univalifications as defined in §2.2.1. This does not a priori preserve the inclusion of Morss

into Mod(2Kar). To guarantee this last property, it would suffice by Lemma 2.1 to show that
Morss → Mor(2Kar) is isofull. The following conjecture, which is a categorification of [Til98],
would guarantee this property.
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Conjecture 2.35 (2-Tillmann). An object of the symmetric monoidal 3-category 2Kar is 1-
dualizable if and only if it is a finite semisimple 2-category.

Lemma 2.36. Assuming Conjecture 2.35, the inclusion of sub flagged (∞, 2)-categories Morss →
Mor(2Kar) is isofull, and hence (by Lemma 2.1) remains a subcategory inclusion after univalifi-
cation.

Proof. Let CMD be an equivalence in Mor(2Kar) with C and D two multifusion 2-categories. It is
enough to show that M = C⊠C M⊠D D is finite semisimple. But, CC and DD are adjunctible (on
both sides) 1-morphisms because C and D are finite semisimple and hence dualizable as objects of
2Kar. Thus, M is 1-dualizable in ΩMor(2Kar) = 2Kar. The last conjecture above concludes
the proof. □

We will not provide a proof for the 2-Tillman conjecture here, but rather relegate this task
to future work. We wish to point out that we will not appeal to either this conjecture nor the
subsequent lemma. These were merely included to help the reader’s intuition.

2.5. The Morita Category of Braided Multifusion 1-Categories. We will now define a 4-
category Morss2 whose objects are braided multifusion 1-categories, whose 1-morphisms B1 ↛ B2
are B1–B2–central multifusion 1-categories (i.e. multifusion 1-categories C equipped with a braided
functor B1 ⊠ Brev2 → Z(C)), whose 2-morphisms are finite semisimple bimodules between them,
compatible with the central structure, and whose 3- and 4-morphisms are compatible bimodule
equivalences and natural isomorphisms. We will define this 4-category in such a way that there
manifestly is a functor Morss2 →Morss.

Although we will only use the underlying (4, 1)-category in the reminder of the paper, it will be
convenient to construct Morss2 as a (4, 2)-category. Recall from §2.4 that Mor(2Kar) inherits by
restriction a Cat∞-enrichment, i.e. an (∞, 2)-categorical structure, from Mod2Kar. In this section,
we will underline, writing e.g. Mor(2Kar) and Mod2Kar — to remember this (∞, 2)-categorical
structure and to distinguish them from their underlying (∞, 1)-categories — still written e.g. as
Mor(2Kar) and Mod2Kar.

To build Mor2, we will equip the (∞, 2)-category Mor(2Kar) — which we will succinctly write

as Mor below — with another finer flagging as a 2-category. To this end, let Modpt
2Kar denote10

the ∞-category of presentable 2Kar-module categories equipped with a preferred object, and
cocontinuous module functors preserving this object only laxly, i.e. up to a possibly-noninvertible 2-
morphism (which is part of the data of the 1-morphism). Recall that there is a fully faithful functor
AlgE1

(2Kar) ↪→ (Mod2Kar)2Kar /, where the latter overcategory is equivalent to the subcategory

of Modpt
2Kar on those functors which strongly preserve the pointing. We let Modpt – gen

2Kar denote the

(∞, 1)-category obtained as the full image of AlgE1
(2Kar) ↪→ (Mod2Kar)2Kar / →Modpt

2Kar.

Now consider the flagged (4, 2)-category M̂or with flagging

ob(AlgE1
(2Kar))→Modpt – gen

2Kar →Modgen
2Kar , (2.37)

This is a variant of Equation (2.29), where we have included an additional layer of flagging for
1-morphisms.11

10Formally, Modpt
2Kar can be defined as follows: Let Ĉat denote the very large ∞-category of large ∞-categories

and let Ĉat
oplax-pt

∞ → Ĉat∞ denote (the large version of) the unstraightening of the equivalence (−)op : Ĉat → Ĉat,

i.e. informally Ĉat
oplax-pt

∞ is the ∞-category of pointed categories and functors F : C → D preserving the pointing

laxly, i.e. so that there is a morphism d → F (c). ThenModpt
2Kar is defined as the pullback Mod2Kar ×Ĉat∞

Ĉat
pt

∞.
11This is a pointed version of higher Morita categories as considered for instance in [JFS17, Section 8] and [Sch15].

By pointed we mean that the bimodules are equipped with distinguished objects, which are to be preserved by higher
morphisms.
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Unwinding this definition via the∞-categorical Eilenberg-Watts theorem [Lur17, Remark 4.8.4.9]

shows: The space of objects of this flagged (4, 2)-category M̂or is the space ob(AlgE1
(2Kar)) of

E1-algebras in 2Kar. The space of 1-morphisms is the space ob(BimodE0(2Kar)) of pointed
bimodules(Here, BimodE0(−) denotes the ∞-category of algebras over the operad BM ⊗ E0,
corepresenting a pair of E1-algebras with a pointed bimodule between them.). The 2-morphisms
are arrows between bimodules (ignoring the pointing). Employing the same procedure as that

utilized in §2.4, we then restrict to the “semisimple part” of M̂or denoted by M̂or
ss
, that is we

restrict the spaces of objects and 1-morphisms to the full subspaces

ob(MF2C) ↪→ ob(AlgE1
(2Kar)) ob(Bimodss

E0
(3Vect)) ↪→ ob(BimodE0(2Kar)).

The canonical map Morss → M̂or
ss
is not an equivalence of flagged (4, 2)-categories. Nevertheless,

it follows from the definitions that this map becomes an equivalence after univalification.
Let BimodE1(Kar) denote the ∞-category of algebras over the operad E1 ⊗ BM , corepre-

senting a pair of E2-algebras B1,B2, an E1-algebra C and a braided functor B1 ⊠ Brev2 → Z(C).
Let Bimodss

E1
(2Vect) denote the full subcategory where B1,B2 and C are required to be mul-

tifusion. The fully faithful functor AlgE1
(Kar) → AlgE0

(2Kar) induces a fully faithful func-
tor BimodE1(Kar) ↪→ BimodE0(2Kar) and hence a fully faithful functor Bimodss

E1
(Kar) ↪→

Bimodss
E0
(2Kar)

Definition 2.38. Using Proposition 2.11, we define Morss2 as the sub-flagged-(∞, 2)-category of

M̂or
ss
with full subspace of objects ob(BMF1C) ↪→ ob(MF2C) and full subspace of 1-morphisms

ob(Bimodss
E1
(2Vect)) ↪→ ob(Bimodss

E0
(3Vect)) (and all 2-morphisms).

We claim that this is compatible with the composition of 1-morphisms, so that the above def-
inition indeed defines a sub-(∞, 2)-category by Proposition 2.11. To see this, let B1, B2, and
B3 be braided multifusion 1-categories, and let C1 : B1 ↛ B2, and C2 : B2 ↛ B3 be objects of
Bimodss

E1
(2Vect). The corresponding objects of Bimodss

E0
(3Vect) are the pointed finite semisim-

ple bimodule 2-categories Mod(B1)Mod(C1)Mod(B2) and Mod(B2)Mod(C2)Mod(B3). But, it follows
from [Déc23c, Example 2.3.2] that

Mod(C1)⊠Mod(B2) Mod(C2) ≃Mod(C1 ⊠B2 C2),
so that the claim follows.

Remark 2.39. Our construction of the Morita 4-category Morss2 is motivated by the fact that
it admits a canonical functor to Morss. In [BJS21], using different methods, an a priori different
Morita 4-category of braided multifusion 2-category denoted byBrFus was constructed. We expect,
but will not show, that these two Morita 4-categories are equivalent.

Lemma 2.40. The inclusion of flagged (4, 2)-categories Morss2 ↪→ M̂or
ss

becomes an equivalence
after univalification. In particular, after univalification, there is an equivalence of (4, 2)-categories
Morss2 ≃Morss.

Proof. The last part follows from the fact that, after univalification, the map of flagged (4, 2)-

categories Morss ↪→ M̂or
ss

becomes an equivalence. It therefore only remains to argue that the

inclusion Morss2 ↪→ M̂or
ss
becomes an equivalence after univalification. At the level of objects, this

follows from [Déc22a, Theorem 4.2.2], and, at the level of 1-morphisms, this follows from [Déc21,
Lemma 2.2.6]. □

For the rest of the paper, we will only consider the univalification

Morss2 ≃Morss

of the underlying (∞, 1)-categories constructed here, hence removing the underline.
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2.6. Adjectives for 1-Morphisms. The purpose of this section is to set up and study various
properties of 1-morphisms in the Morita 4-categories that were introduced in §2.4 and §2.5. This
will be especially relevant in the construction of the functor Witt(−) in §3.2.

2.6.1. Adjectives for Braided and Multifusion 1-Categories. We introduce various properties for 1-
morphisms in the Morita 4-category of braided multifusion 1-categories Morss2 . Given two braided
multifusion 1-categories B1 and B2, we write C : B1 ↛ B2 for (a representative of) a 1-morphism in
Morss2 , that is, C is a multifusion 1-category equipped with a braided tensor functor F : B1⊠Brev2 →
Z(C). We also say that C is a B1⊠Brev2 -central multifusion 1-category. We will write F1 : B1 → Z(C)
and F2 : Brev2 → Z(C) for the braided tensor functors induced by F . Moreover, we use Z(C,B1) to
denote the centralizer of the image of B1 under F1 in Z(C), and we make the obvious analogous
definition for Z(C,Brev2 ).

Definition 2.41. Let C : B1 ↛ B2 be a 1-morphism in the Morita 4-category of braided multifusion
1-categories.

(a) We say that C : B1 ↛ B2 is 0-dominant if Brev2 → Z(C,B1) is faithful.
(b) We say that C : B1 ↛ B2 is 1-dominant if Brev2 → Z(C,B1) is fully faithful.
(c) We say that C : B1 ↛ B2 is 2-dominant if Brev2 → Z(C,B1) is an equivalence.

Since Z(C,B1) ↪→ Z(C) is fully faithful, (a) and (b) are equivalent to the assertion that the
braided functor Brev2 → Z(C) is faithful, resp. fully faithful.

Definition 2.42. Let C : B1 ↛ B2 be a 1-morphism in the Morita 4-category of braided multifusion
1-categories.

(a) We say that C : B1 ↛ B2 is 0-faithful if B1 → Z(C,Brev2 ) is faithful.
(b) We say that C : B1 ↛ B2 is 1-faithful if B1 → Z(C,Brev2 ) is fully faithful.
(c) We say that C : B1 ↛ B2 is 2-faithful if B1 → Z(C,Brev2 ) is an equivalence.

As stated, the above definitions refer to the underlying braided multifusion categories B1 and B2
and are thus not obviously well-defined conditions on a 1-morphism in the (univalent) 4-category
Morss2 . Namely, they might a priori depend on the flagging as in §2.5, i.e. on the choice of braided
multifusion 1-category representing a given object. So as to remedy this issue, we will argue
in Theorem 2.51 that every invertible 1-morphism in Morss2 is both 2-faithful and 2-dominant.
In particular, the well-definedness of the above faithfulness and dominance conditions will then
follow from establishing that they are closed under composition. This shows in addition that
these conditions yield subcategories of the Morita 4-category of braided multifusion 1-categories.
This will be used subsequently to establish corresponding results for 1-morphisms in the Morita
4-category of multifusion 2-categories.

Proposition 2.43. Let B1, B2, and B3 be braided multifusion 1-categories and let C1 : B1 ↛ B2,
and C2 : B2 ↛ B3 be two n-faithful, resp. n-dominant, 1-morphisms for some n ∈ {0, 1, 2}. Then
the composite C1 ⊠B2 C2 : B1 ↛ B3 is n-faithful, resp. n-dominant.

Before turning to the proof, we make some general observations about decomposition of 1-
morphisms in Morss2 which will prove helpful in understanding the several dominance and faith-
fulness conditions.

Remark 2.44. Suppose that C : B1 ↛ B2 is a morphism in Morss2 . Each braided multifusion
1-category Bi is a direct sum of braided fusion categories, so we can write

B1 ∼=

 n⊕
j=1

B1,j

⊕ B1,0, B2 ∼=

(
m⊕
k=1

B2,k

)
⊕ B2,0
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where each B1,j and B2,k for j, k ̸= 0 is fusion and has a nonzero action on C, and where B1,0 and
B2,0 act as zero on C.

If D is an indecomposable multifusion summand of C, then there is a unique j such that B2,j has
a nonzero action on D. To see this, observe that for every distinct j and ℓ, we have 0 ∼= 1B2,j1B2,ℓ

,
so at least one of the two summands of B2 must act as zero on D. Since the actions of B1 and
B2 on C are unital, the multifusion category C can be written as a direct sum of indecomposable
multifusion categories

C ∼=
p⊕

ℓ=1

Cℓ

and that for each ℓ there is j(ℓ) and k(ℓ) such that Cℓ : B1,k(ℓ) ↛ B2,j(ℓ) is a nonzero indecomposable
morphism in Morss2 with fusion source and target. Moreover, since each Cℓ is indecomposable
multifusion, Cℓ is Morita equivalent to a fusion B1,k(ℓ)−B2,j(ℓ) bimodule category, meaning that up
to equivalence of 2-morphisms in Morss2 , we may always assume that each Cℓ is fusion as well.

From the definitions of 0-faithful and 0-dominant, we can see that C : B1 ↛ B2 is 0-faithful if
and only if B1,0 ∼= 0 and 0-dominant if and only if B2,0 ∼= 0. From the definitions of n-faithful and
n-dominant for n ∈ {1, 2}, we can see that C : B1 ↛ B2 is n-dominant (n-faithful) if and only if C
is 0-dominant (0-faithful) and each Cℓ : B1,k(ℓ) → B2,j(ℓ) is n-dominant (n-faithful).

We will prove Proposition 2.43 in two stages: We prove the result in the cases n = 0 and
n = 1 now, and defer the case n = 2 until we have established an equivalent characterization of
2-dominance.

Lemma 2.45. Let B1, B2, and B3 be braided multifusion 1-categories and let C1 : B1 ↛ B2,
and C2 : B2 ↛ B3 be two n-faithful, resp. n-dominant, 1-morphisms where n ∈ {0, 1}. Then the
composite C1 ⊠B2 C2 : B1 ↛ B3 is n-faithful, resp. n-dominant.

Proof. We give the proofs for n-dominance, and note that the proofs for n-faithfulness are dual,
since C : A↛ B is n-dominant if and only if Cmp : B ↛ A is n-faithful.

First, we consider n = 0. Because our actions are unital, it is clear that the composite of
nonzero 1-morphisms with fusion source and target is nonzero. Decomposing as in Remark 2.44,
let B2 ∼= ⊕kB1,k, B3 ∼= ⊕jB3,j , C2 ∼= ⊕ℓC2,ℓ, and C1 ∼= ⊕mC1,m. To show that C1 ⊠B2 C2 : B1 ↛ B3 is
2-dominant, it suffices to show that the action of each summand Bj on C1 ⊠B2 C3 is nonzero.

Thus, as a multifusion category, we have

C1 ⊠B2 C2 ∼=
⊕
j

⊕
ℓ:j(ℓ)=j

⊕
m:k(m)=k(ℓ)

C1,m ⊠B2,k(ℓ)
C2,ℓ

Since each C1,m and C2,ℓ are indecomposable multifusion, B2,k(ℓ) is fusion, and B2,k(ℓ) acts has a
nonzero action on both whenever k(ℓ) = k(m), each relative tensor product C1,m⊠B2,k(ℓ)C2,ℓ in the
direct sum is nonzero. Moreover, if j(ℓ) = j, then B3,j has a nonzero action on the indecomposable
C2,ℓ, and hence on the nonzero C1,m ⊠B2,k(ℓ)

C2,ℓ. Therefore, to show that B3,j has a nonzero action

on C1 ⊠B2 C3, it suffices to check that there is always some ℓ with j(ℓ) = j and some m with
k(m) = k(ℓ). The former follows from the fact that C2 : B2 ↛ B3 is 0-dominant, while the latter
follows from the fact that C1 : B1 ↛ B2 is 0-dominant.

Let us now consider the case n = 1. By Remark 2.44, now that the case n = 0 has been proven,
we may assume without loss of generality that all the multifusion 1-categories Bi and Ci are fusion.

By definition, we are given braided functors Brev2 → Z(C1) and Brev3 → Z(C2) that are fully
faithful, and we wish to show that the canonical functor Brev3 → Z(C1⊠B2 C2) is again fully faithful.
It suffices to see that the canonical functor Z(C2,B2) → Z(C1 ⊠B2 C2) is also fully faithful, since
Brev3 includes fully faithfully into the former.
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Let K denote the canonical étale algebra in Brev2 ⊠ B2 corresponding to the monoidal functor
Brev2 ⊠ B2 → B2. Said differently, the multifusion 1-category of K-modules in Brev2 ⊠ B2 → B2
is identified with B2. Since C1 : B1 ↛ B2 is 1-dominant, the monoidal functor Brev2 → Z(C1) is

fully faithful, so that the maximal subalgebra of K̃ in Z(C2) is 1. Let also K̃ denote the image
of K in Z(C1 ⊠ C2). Then, by [DNO13, Remark 2.8] and [DMNO13, Theorem 3.20], we have

C1 ⊠B2 C2 ∼= Mod
K̃
(C1 ⊠ C2) , and Z(C1 ⊠B2 C2) ∼= Modloc

K̃
(Z(C1) ⊠ Z(C2)) (see also [JMPP22,

§2.3]). Now, there is a canonical functor J : Z(C2,B2)→Mod
K̃
(Z(C1 ⊠ C2)) given by

Z(C2,B2)→ Z(C2)→ Z(C1 ⊠ C2)→Mod
K̃
(Z(C1 ⊠ C2))

The functor Z(C2) → Mod
K̃
(Z(C1 ⊠ C2)) is fully faithful because the maximal subalgebra of K̃

in Z(C2) is trivial, so the composite functor J is also fully faithful. Meanwhile, since K̃ is in
Brev2 ⊠ F (B2) ⊆ Z(C1) ⊠ Z(C2), every module in the image of J is local. Thus, the canonical

braided tensor functor Z(C2,B2) → Modloc
K̃

(Z(C1 ⊠ C2)) is fully faithful, as desired, verifying the

1-dominance of C1 ⊠B2 C2 : B1 ↛ B3. □

We now turn to the characterization of invertible 1-morphisms in Morss2 . First, we will prove in
Theorem 2.51 that the invertible morphisms are just Witt equivalences over a symmetric multifusion
category in the sense of [DNO13], characterizing invertibility in terms of centralizers. We then build
on this to characterize invertibility in terms of faithfulness and dominance conditions in Lemma 2.69.

The following basic facts about centralizers will prove helpful.

Lemma 2.46. Let B be a braided multifusion 1-category and C be a B central multifusion 1-category.
Then Z(C,Z(C,B)) ∼= Im(B), where Im(B) denotes the image of B in Z(C).

Proof. This follows immediately from [DGNO10, Corollary 3.11] and the fact that Z(C) is nonde-
generate. □

Corollary 2.47. Let B be a braided multifusion 1-category and C be a B central multifusion 1-
category. Then Z2(Z(C,B)) ∼= Z2(Im(B)).

Proof. Since Z2(Im(B)) ⊆ Im(B) ⊆ Z(C), we have Z2(Im(B)) ∼= Im(B) ∩ Z(C,B). Similarly,
Z2(Z(C,B)) ∼= Z(C,B)∩Z(C,Z(C,B)). Applying Lemma 2.46, we see that both symmetric centers
are the intersection of the same two subcategories of Z(C). □

We also recall the following definitions from [DNO13].

Definition 2.48. If E is a symmetric multifusion 1-category, an E-nondegenerate braided multifu-
sion 1-category is a braided multifusion 1-category B with a choice of equivalence E → Z2(B).

If B1 and B2 are two E-nondegenerate braided multifusion 1-categories, then B1 ⊠E B2 denotes
the relative tensor product using the chosen maps E ∼= Z2(Bj)→ Bj .

Definition 2.49. If B1 and B2 are E-nondegenerate braided multifusion categories, an E-Witt
equivalence from B1 to B2 is a multifusion category C together with a functor B1 ⊠ Brev2 → Z(C)
which factors through B1 ⊠E Brev2 such that Z(C,B1 ⊠ Brev2 ) ∼= Z(C,B1 ⊠E Brev2 ) ∼= E .

Remark 2.50. By Lemma 2.46, Z(C, E) ∼= B1 ⊠E Brev2 , so Definition 2.49 agrees with [DNO13,
Def. 5.1].

The next result generalizes [JMPP22, Theorem 2.18].

Theorem 2.51. Suppose C : B1 ↛ B2 is a 1-morphism in Morss2 . The following are equivalent.

(1) C is invertible.
(2) Z2(B1) ∼= Z2(B2) =: E and C is an E-Witt equivalence.
(3) C is 2-faithful and 2-dominant.
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Proof. Let C : B1 ↛ B2 be a 1-morphism inMorss2 . Recall that Z(Cmp) ≃ Z(C)rev, and we can equip
Cmp with the braided tensor functor B2 ⊠ Brev1 → Z(C)rev. There is an adjunction between these
two 1-morphisms, in which the unit and counit are both versions of “C as a C⊠B1⊠Brev

2
Cmp-module”

[GS18, Proposition 4.14]12. Now, it follows from general categorical nonsense that C is invertible if
and only if the unit and counit of this adjunction are equivalences.

(1)⇒(2): Suppose C : B1 ↛ B2 is invertible. We claim Z2(B1) ∼= Z2(B2). Invertibility implies
that C ⊠B2 Cmp ∼= B1 as 1-morphisms B1 ↛ B1, so that

Z(C ⊠B2 Cmp,B1 ⊠ Brev1 ) ∼= Z(B1,B1 ⊠ Brev1 ) ∼= Z2(B1)
Similarly, Z(Cmp ⊠B1 C,B2 ⊠ Brev2 ) ∼= Z2(B2). But by construction of the relative tensor product,

Z(C ⊠B2 Cmp,B1 ⊠ Brev1 ) ∼= Z(C ⊠ Cmp,B1 ⊠ Brev2 ⊠ B2 ⊠ Brev2 ) ∼= Z(Cmp ⊠B1 C,B2 ⊠ Brev2 )

giving a canonical equivalence Z2(B1) ∼= Z2(B2) =: E .
We may now assume that the maps E → B1 → Z(C) and E → B2 → Z(C) are equivalent. The

canonical dominant tensor functor C ⊠ Cmp → C ⊠B2 Cmp factors through C ⊠E Cmp, and the image
of B2 ⊠ Brev2 in Z(C ⊠E Cmp) is canonically equivalent to B2 ⊠E Brev2 . Together with invertibility of
C, this implies that

E ∼= Z(C ⊠B2 Cmp,B1 ⊠ Brev1 ) ∼= Z(C ⊠E Cmp, (B1 ⊠ Brev1 )⊠ (Brev2 ⊠E B2))
Since the action of B1⊠B2 → Z(C) factors through B1⊠EBrev2 , the images of E in all four tensorands
are identified, so we may rewrite

E ∼= Z(C ⊠E Cmp,B1 ⊠E Brev2 ⊠E B2 ⊠E Brev1 )

By taking centralizers on both sides of [DNO13, Prop. 4.7], we factorize over E to obtain

E ∼= Z(C,B1 ⊠E Brev2 )⊠E Z(Cmp,B2 ⊠E Brev1 ) ∼= Z(C,B1 ⊠ Brev2 )⊠E Z(C,B1 ⊠ Brev2 )rev

By [DNO13, Corollary 4.4], we simply have E ∼= Z(Z(C,B1⊠Brev2 ), E). Finally, since Z(C,B1⊠Brev2 )
is E-nondegenerate, we may simplify to E ∼= Z(C,B1⊠Brev2 ). This shows that C is indeed an E-Witt
equivalence.

(2)⇒(3): Suppose C : B1 ↛ B2 is an E-Witt equivalence. Then Z(C, E) ∼= B1 ⊠E Brev2 , so

Z(C,B1) ∼= Brev2 , meaning C is 2-dominant, and Z(C,Brev2 ) ∼= B1, so C is 2-faithful.
(3)⇒(1): By the discussion before (1)⇒(2), if C is invertible, its inverse is Cmp : B2 → B1. Observe

that C carries a left action of C ⊠B2 Cmp, since the action of B2 on C is central. By construction,
EndC⊠B2

Cmp(C) ∼= Z(C,B2). Hence C is a B1-B1 Morita equivalence C⊠B2 Cmp ≃ME Z(C,Brev2 ), and

2-faithfulness is equivalent to Z(C,Brev2 ) ∼= B1.
Dualizing the above argument, we have Cmp⊠B1 C ≃ME Z(C,Brev1 ) ∼= B2, and we are finished. □

Taking Theorem 2.51 and Remark 2.50 together, we get the following result.

Corollary 2.52. Let B be a braided multifusion category and C a multifusion category with a fully
faithful braided functor B → Z(C). Then, the braided functor B ⊠ Z(C,B) → Z(C) defines an
invertible 1-morphism C : B ↛ Z(C,B)rev in Morss2 . In particular, Z(C,B) has the same symmetric
center as B. Conversely, any invertible 1-morphism in Morsss out of B is equivalent to one of this
form.

We continue by introducing a number of other properties of 1-morphisms in the Morita 4-category
that refine the above dominance conditions. Their importance will be seen later when they are used
to characterize 2-dominant 1-morphisms and furthermore in the constructions of §3 used to define

12More precisely, since [GS18] uses a different model of Morita higher categories than we do, one cannot simply
quote their result, but one can quote their proof: by [RV16], it suffices to check that such an adjunction exists in the
homotopy bicategory ho2 Morss2 , and it is a routine exercise to unpack therein the graphical arguments of [GS18].
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relevant subcategories of Morss2 . In doing so, we will repeatedly consider the symmetric centers
of the braided multifusion 1-categories under consideration. We therefore introduce the following
abridged notation:

Convention. For a braided multifusion 1-category labeled Bi, we let Ei := Z2(Bi) denote its
symmetric center, and we write ιi : Ei ↪→ Bi for the canonical inclusion.

In particular, let us record that, if C : B1 ↛ B2 is 1-dominant, so that the braided tensor functor
F2 : Brev2 → Z(C) is fully faithful, then we have that E2 is identified with Im(F2|E2), its (dominant)
image under F2.

Definition 2.53. A 1-morphism C : B1 ↛ B2 in Morss2 is extensive if it is 1-dominant and
Z(C,B1 ⊠ Brev2 ) = Im(F2|E2).

It follows from the definition that Im(F1|E1) ⊂ Im(F2|E2) in Z(C) for any extensive 1-morphism
C : B1 ↛ B2. In particular, using that E2 := Z2(B2), one can extract a strong symmetric monoidal
functor E1 → E2 from any extensive 1-morphism. For our purposes, it will be useful to single out
and give an alternative characterization of the 1-morphisms satisfying this last property.

Definition 2.54. A 1-morphism C : B1 ↛ B2 is strongly 1-dominant if it is 1-dominant and
Im(F1|E1) ⊂ Im(F2|E2) in Z(C).

Remark 2.55. Every extensive 1-morphism C : B1 ↛ B2 is strongly 1-dominant, but the converse
does not hold. For example, given any non-trivial fusion 1-category C, the 1-morphism C : Vect ↛
Vect is strongly 1-dominant but not extensive.

To a 1-morphism C : B1 ↛ B2, we associate a symmetric lax monoidal functor Z2(C) : E1 → E2:
Z2(C) := ι∗2F

∗
2F1ι1 : E1 → E2, (2.56)

where F ∗
2 and ι∗2 are the right adjoints of F2 and ι2, and are therefore symmetric lax monoidal.

We wish to understand when such a symmetric lax monoidal functor as (2.56) is strongly
monoidal. In order to do so, we will use the following technical lemma.

Lemma 2.57. Let ιC : C ↪→ D be a fully faithful monoidal functor between multifusion 1-categories,
and E ⊆ D the inclusion of a full multifusion sub-1-category. Let ι∗C : D → C denote the (lax
monoidal) right adjoint of ιC. Thenι∗C |E : E → C is strongly monoidal if and only if the functor
E ⊆ D is contained in the full image of ιC : C ↪→ D.

Proof. Since C ⊂ D is full and C,D are semisimple, we have a direct sum decomposition D ≃ C⊕R
as 1-categories with 1D = 1C ∈ C, and observe that ι∗C : D ≃ C ⊕ R → C is the corresponding
projection. In particular, if E ⊂ C, then ι∗C |E : E → C is the inclusion E ↪→ C, which is strong
monoidal.

Conversely, suppose that ι∗C |E is strong monoidal. Let E ∈ E be a simple object. It is also simple
in D given that E is a full subcategory. Since E is rigid, we have a direct summand 1C = ι∗C(1D) ⊂
ι∗C(E

∗ ⊗ E) ∼= ι∗C(E)∗ ⊗ ι∗C(E), and thus ι∗C(E) ̸= 0. This forces ι∗C(E) ∈ C, as ι∗C is the projection
onto C. □

Lemma 2.58. Let C : B1 ↛ B2 be a 1-dominant 1-morphism. If C is strongly 1-dominant then
Z2(C) : E1 → E2 is strongly monoidal.

Proof. We analyze the map

Z2(F ) := ι∗2F
∗
2F1ι1 : Z2(B1)→ Z2(B2)

where F1 : B1 → Z(C) and F2 : Brev2 → Z(C) are the action functors and ιi : Z2(Bi) → Bi are
the inclusions. The 1-morphism F is 1-dominant if and only if F2 is fully faithful, if and only if
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F ∗
2 is monoidal, if and only if F ∗

2F1ι1 is strong monoidal. By assumption F is 1-dominant and
thus F ∗

2F1ι1 is strong monoidal. Z2(F ) is strong monoidal if ι∗2|Im(F ∗
2 F1ι1) is strong monoidal, which

is true if F1(Z2(B1)) ⊆ F2(Z2(B2)). But this is the case since by assumption F is also strongly
1-dominant, so we conclude. □

In the next two results, we show that Z2 is functorial on strongly 1-dominant 1-morphisms.
We first show that strongly 1-dominant 1-morphisms compose. In fact, we will prove a stronger
statement in Proposition 3.5 below.

Lemma 2.59. The composite of two strongly 1-dominant 1-morphisms C1 : B1 ↛ B2 and C2 : B2 ↛
B3 is strongly 1-dominant.

Proof. By Lemma 2.45, the composite of strongly 1-dominant 1-morphisms is 1-dominant. It
remains to show that the image of E1 in Z(C1 ⊠B2 C2) is contained in the image of E3. Since C1
is strongly 1-dominant, Im(E1) ⊆ Im(E2) in Z(C1), and since C2 is strongly 1-dominant, Im(E2) ⊆
Im(E3) ⊆ Z(C2). The map Z(C1)⊠Z(C2) ∼= Z(C1⊠C2)→ Z(C1⊠B2 C2) identifies the images of E2 in
each factor, so within Z(C1 ⊠B2 C2), we have Im(E1) ⊆ Im(E2) ⊆ Im(E3), completing the proof. □

Now we check the functoriality of Z2.

Lemma 2.60. Given strongly 1-dominant 1-morphisms C1 : B1 ↛ B2 and C2 : B2 ↛ B3 the
composite of the associated symmetric monoidal functors Z2(C1) and Z2(C2) defined in (2.56) agrees
with the symmetric monoidal functor Z2(C1 ⊠B2 C2) associated to their composite 1-morphism.

Proof. We write F : B1 ⊠ Brev2 → Z(C1), G : B2 ⊠ Brev3 → Z(C2) for the two braided tensor functors
providing C1 and C2 with their central structures. We use F1, F2 to denote the two restrictions of
F as above, and G1, G2 to denote the two restrictions of G. Let K be the canonical commutative
separable algebra in Brev2 ⊠ B2, i.e. ModK(Brev2 ⊠ B2) ≃ B2 as multifusion 1-categories. Let K̃ be
the image of K in Z(C1)⊠ Z(C2). Thenwe have

Modloc
K̃

(Z(C1)⊠ Z(C2)) ≃ Z(Modloc
K̃

(C1 ⊠ C2))

as braided multifusion 1-categories by [DNO13, Theorem 3.20]. The multifusion 1-category D :=

Modloc
K̃

(C1 ⊠ C2) equipped with the canonical braided functor H : B1 ⊠ Brev3 → Z(D) given by

X ⊠ Z 7→ K̃ ⊗ (F1(X) ⊠ G2(Z)) represents the composite of C1 : B1 ↛ B2 and C2 : B2 ↛ B3 in
Morss2 . We write H1, H2 for the two restrictions of H. Then, given any objects X in B1 and Z in
B3, we have natural isomorphisms

HomZ(D)(H1(X), H2(Z)) ∼= HomK̃(K̃ ⊗ (F1(X)⊠ 1), K̃ ⊗ (1⊠G2(Z)))

∼= HomZ(C1)⊠Z(C2)(F1(X)⊠ 1, K̃ ⊗ (1⊠G2(Z)))

∼= HomZ(C1)⊠Z(C2)(F1(X)⊠G2(Z
∗), K̃)

∼= HomZ(C1)⊠Z(C2)(F1(X)⊠G2(Z
∗), (F2 ⊠G1)(K))

∼= HomBrev
2 ⊠B2(F

∗
2F1(X)⊠G∗

1G2(Z
∗), K)

∼= HomK((F ∗
2F1(X)⊠ 1)⊗K, (1⊠G∗

1G2(Z))⊗K)
∼= HomB2(F

∗
2F1(X), G∗

1G2(Z)).

By Yoneda’s lemma this shows that

H∗
2H1

∼= G∗
2G1F

∗
2F1

as lax tensor functors B1 → B3. It then follows that

Z2(C2)Z2(C1) = ι∗3G
∗
3G2ι2ι

∗
2F

∗
2F1ι1 = ι∗3G

∗
3G2F

∗
2F1ι1 ∼= ι∗3H

∗
2H1ι1 = Z2(D).
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is an isomorphism of symmetric lax monoidal functors, where we used that the strong 1-dominance
implies that F ∗

2F1 maps E1 to E2 and that ι2ι
∗
2 is the identity on E2. □

Definition 2.61. A 1-morphism C : B1 ↛ B2 in Morss2 is factorizable if it is 1-dominant and
Im(F1|E1) = Im(F2|E2) in Z(C).

Remark 2.62. Every factorizable 1-morphisms is strongly 1-dominant. The term factorizable
is motivated by the fact that, given C : B1 ↛ B2 a factorizable 1-morphism, the canonical map
Brev2 → Im(F ) ⊆ Z(C) (which is an inclusion by 1-dominance) is the inclusion of a tensor factor,
i.e. Im(F ) ∼= Im(F1)⊠E2 Brev2 , which follows from [DNO13, Prop. 4.3].

Lemma 2.63. The composite of two factorizable 1-morphisms is factorizable.

Proof. Let C1 : B1 ↛ B2 and C2 : B2 ↛ B3 be two factorizable 1-morphisms. By Lemma 2.59, the
composite of two strongly 1-dominant morphisms is strongly 1-dominant, so C1⊠B2 C2 : B1 ↛ B3 is
strongly 1-dominant. By construction, the images of E2 under both Brev2 → Z(C1) and B2 → Z(C2)
are identified in Z(C1 ⊠B2 C2). But, due to the fact that we have assumed that both 1-morphisms
are strongly 1-dominant, the image of E2 under Brev2 → Z(C1) coincides with the image of E1
under B1 → Z(C1) and the image of E3 under Brev3 → Z(C2) coincides with the image of E2 under
B2 → Z(C2). This concludes the proof. □

Lemma 2.64. A 1-morphism C : B1 ↛ B2 is factorizable if and only if Z2(C) : Z2(B1) → Z2(B2)
is strong monoidal and dominant.

Proof. As C : B1 ↛ B2 is strongly 1-dominant, we have a strongly symmetric monoidal functor
Z2(C) : Z2(B1) → Z2(B2). Since Z2(B2) is equivalent to its image in Z(C), factorizability is
equivalent to requiring that Z2(C) is dominant. □

We now explore the relation between factorizability, extensiveness, and 2-dominance.

Lemma 2.65. A 1-morphism is factorizable and extensive if and only if it is 2-dominant.

Proof. We begin by noting that the conditions of 2-dominance, factorizability, and extensiveness
all imply 1-dominance, so that it is enough to prove the result in the case when all the multifusion
1-categories under consideration are in fact fusion.

We next show that 2-dominance implies extensiveness. By definition, a 1-morphism C : B1 ↛ B2
is 2-dominant if and only if the braided functor F2 : Brev2 → Z(C,B1) is an equivalence. Thus, if
C : B1 ↛ B2 is 2-dominant, then Z(C,B1⊠Brev2 ) is the centralizer of B2 in itself, i.e. E2, establishing
that the 1-morphism under consideration is indeed extensive. It also follows from the fact that
Z2(Im(B1)) ∼= Im(E1), which holds by inspection (see also [DMNO13, Cor. 3.24]), that a 2-dominant
1-morphism is factorizable.

To finish the proof, it is enough to show that a 1-morphism C : B1 ↛ B2 that is both extensive
and factorizable is 2-dominant. It follows from factorizability (see Remark 2.62) that there is an
equivalence Z(C,B1) ∼= Brev2 ⊠E2 Z(C,B1 ⊠ Brev2 ). Extensiveness implies that the latter factor is
just E2, so that Z(C,B1) ∼= Brev2 , showing that the 1-morphism C : B1 ↛ B2 is 2-dominant. This
concludes the proof. □

With the result of the previous lemma at our disposal, we are now in a position to prove that the
composite of two 2-dominant, resp. 2-faithful, 1-morphisms is again 2-dominant, resp. 2-faithful.

Lemma 2.66. Let C1 : B1 ↛ B2 and C2 : B2 ↛ B3 be two 2-dominant, resp. 2-faithful, 1-morphisms,
then the composite C1 ⊠B2 C2 : B1 ↛ B3 is 2-faithful, resp. 2-dominant.

Proof. Suppose that C1 : B1 ↛ B2 and C2 : B2 ↛ B3 are 2-dominant 1-morphisms between braided
multifusion 1-categories, or equivalently by Lemma 2.65, that they are extensive and factorizable.
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As before, since 2-dominant morphisms are 1-dominant, we may reduce to the case where each Bi
and Cj is fusion, rather than multifusion.

By Lemma 2.65, in order to show that C1 ⊠B2 C2 : B1 ↛ B3 is 2-dominant, it suffices to show
that it is also extensive and factorizable. The composite is factorizable by Lemma 2.63, so that we
only need to verify extensiveness. Observe that

Z(C1 ⊠ C2,B1 ⊠ Brev3 ) ∼= Z(C1,B1)⊠ Z(C2,Brev3 ).

Moreover, by 2-dominance, we have Z(C1,B1) ∼= Brev2 and Z(C2,B2) ∼= Brev3 . By Lemma 2.46, we
find Z(C2,Brev3 ) ∼= Z(C2,Z(C2,B2)) ∼= Im(F2). As a consequence, we have

Z(C1 ⊠ C2,B1 ⊠ Brev3 ) ∼= Brev2 ⊠ Im(B2).

The image K̃ of the canonical étale algebra K in Brev2 ⊠ B2 introduced in the proof of Lemma 2.45
centralizes B1 ⊠ Brev3 inside Z(C1 ⊠ C2). We therefore have that the centralizer of B1 ⊠ Brev3 inside

Modloc
K̃

(Z(C1 ⊠ C2)) is equivalent to the category of local modules in the centralizer:

Z(C1 ⊠B2 C2,B1 ⊠ Brev3 ) ∼= Modloc
K̃

(Z(C1 ⊠ C2,B1 ⊠ Brev3 ))

∼= Modloc
K̃

(Brev2 ⊠ Im(F2)) .

Now, recall that
Mod

K̃
(Brev2 ⊠ Im(F2)) ∼= Brev2 ⊠B2 Im(F2) ∼= Im(F2).

Furthemore, as the maximal subalgebra of K̃ contained in Brev2 is trivial, local modules of K̃ are

all in the image of E2 ⊆ Brev2 under the free K̃-module functor, which yields

Z(C1 ⊠B2 C2,B1 ⊠ Brev3 ) ∼= Modloc
K̃

(Brev2 ⊠ Im(F2)) ∼= Im(F2|E2).

LetG : B2⊠Brev3 → Z(C2), andGi for i = 2, 3 denotes its restriction. Finally, since C2 : B2 ↛ B3 is
factorizable, we have Im(F2|E2) ∼= Im(G3|E3). But, C2 : B2 ↛ B3 is 2-dominant, so that Im(G3) ∼= B3
and, in particular, Im(G3|E3) ∼= E3. Putting the above discussion together, we find that

Z(C1 ⊠B2 C2,B1 ⊠ Brev3 ) ∼= E3,
which shows that the composite C1 ⊠B2 C2 : B1 ↛ B3 is extensive, concluding the proof.

The proof that the composite of 2-faithful morphisms is 2-faithful is entirely dual. □

2.6.2. Adjectives for Multifusion 2-Categories. We now move to multifusion 2-categories, and give
the corresponding definitions of dominance and faithfulness for 1-morphisms in the Morita 4-
category Morss.

Definition 2.67. Let C andD be two multifusion 2-categories, and letM : C ↛ D be a 1-morphism
in the Morita 4-category Morss.

(a) The 1-morphism M is 0-dominant if M is faithful as a right D-module 2-category, i.e. the
canonical 2-functor Dmop → EndC(M) is faithful on 2-morphisms.13

(b) The 1-morphism M is 1-dominant if the canonical 2-functor Dmop → EndC(M) is faithful
as a 2-functor, i.e. it is fully faithful on 2-morphisms.

(c) The 1-morphism M is 2-dominant if the canonical 2-functor Dmop → EndC(M) is fully
faithful as a 2-functor, i.e. it induces equivalences on Hom-1-categories.

Definition 2.68. Let C andD be two multifusion 2-categories, and letM : C ↛ D be a 1-morphism
in the Morita 4-category Morss.

(a) The 1-morphism M is 0-faithful if M is faithful as a left C-module 2-category, i.e. the
canonical 2-functor C→ EndD(M) is faithful on 2-morphisms.14

13This is also equivalent to asking that the canonical 2-functor Dmop → End(M) be faithful on 2-morphisms.
14This is also equivalent to asking that the canonical 2-functor C → End(M) be faithful on 2-morphisms.
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(b) M is 1-faithful if the canonical 2-functor C→ EndD(M) is faithful as a 2-functor, i.e. it is
fully faithful on 2-morphisms.

(c) M is 2-faithful if the canonical 2-functor C→ EndD(M) is fully faithful as a 2-functor, i.e.
it induces equivalences on Hom-1-categories.

As stated, the above definitions refer to the underlying multifusion 2-categories C and D and are
thus not obviously well-defined conditions on a 1-morphism in the (univalent) 4-category Morss.
As a counterpart to Theorem 2.51, we also have the following lemma, which follows from [Déc23b,
Theorem 5.4.3].

Lemma 2.69. Any invertible 1-morphism in Morss is both 2-faithful and 2-dominant.

As in the previous subsection, the well-definedness of the above faithfulness and dominance
conditions will now follow once we have proven that they are closed under composition. But, we
have proven in §2.6.1 that n-dominant and n-faithful 1-morphisms in Morss2 compose. We now
make use of these results to establish the corresponding statements about 1-morphisms of Morss,
and note that this also allows us to define subcategories Morss.

Proposition 2.70. A 1-morphism C : B1 ↛ B2 in Morss2 is n-faithful/n-dominant in the sense
of Definitions 2.41 and 2.42 if and only if the corresponding 1-morphism Mod(C) : Mod(B1) ↛
Mod(B2) in Morss is n-faithful/n-dominant in the sense of Definitions 2.67 and 2.68.

Proof. Recall from [Déc22a, Lemma 3.2.1] that ΩEndMod(B1)(Mod(C)) ≃ Z(C,B1)rev. Thus, if
Mod(C) is n-dominant as a 1-morphism in Morss, then so is C as a 1-morphism in Morss2 . The
converse follows since by connectivity a monoidal 2-functor Mod(B1) → D into a multifusion 2-
category D is faithful on 2-morphisms/fully faithful on 2-morphisms/fully faithful if and only if
the corresponding braided functor B1 → ΩD is faithful/fully faithful/an equivalence. The proof for
n-faithfulness works dually. □

Throughout this paper, we will (often implicitly) use this result.

Theorem 2.71. Let C1, C2, and C3 be multifusion 2-categories, and let M1 : C1 ↛ C2 and
M2 : C2 ↛ C3 be two n-dominant, resp n-faithful, 1-morphisms for some n ∈ {0, 1, 2}. Then
the composite M1 ⊠C2 M2 : C1 ↛ C3 is n-dominant, resp. n-faithful.

Proof. As before, we only consider the case of dominant 1-morphisms, the case of faithful 1-
morphisms being entirely dual. Our strategy will be as follows: We begin by showing that each
dominance property is preserved by composition with Morita equivalences. Then, as every fusion
2-category is Morita equivalent to a connected one [Déc22a], we can reduce ourselves to the case
where each Ci is connected, i.e. Ci = Mod(Bi), where Bi is a braided multifusion 1-category. Then,
the finite semisimple bimodule 2-categories M1 : C1 ↛ C2 and M2 : C2 ↛ C3 must be of the form
Mod(C1) and Mod(C2), where C1 : B1 ↛ B2 and C2 : B2 ↛ B3 are 1-morphisms in Morss2 . By
Proposition 2.70, the result then follows readily from Proposition 2.43.

We claim that the condition of being n-dominant for M : C ↛ D is invariant upon tensoring with
a Morita invertible bimodule 2-category L : B ↛ C on the left. Namely, the canonical monoidal
2-functor

EndC(M)→ EndB(L⊠C M)

is an equivalence by [Déc23c, Proposition 3.3.1] (see also [Déc23b, Theorem 5.4.3]). Now, let
N : D ↛ E be an invertible bimodule 2-category. Said differently, there is a separable algebra
B in D, an equivalence N ≃ ModB(D) of left D-module 2-categories, and an equivalence E ≃
BimodD(B) of multifusion 2-categories [Déc23b]. There is also a separable algebra A in C such that
the equivalence M ≃ModA(C) is an equivalence of left C-module 2-categories [Déc21, Déc22a]. Let
F : Dmop → EndC(M) ≃ BimodC(A)mop be the monoidal 2-functor supplying the left C-module
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M with its compatible right D-module structure. We have that F (B) is a separable algebra in
BimodA(C), i.e. F (B) is a separable algebra in C equipped with an algebra 1-homomorphism
A→ F (B). Thenit follows from [Déc23b] that there are equivalences of multifusion 2-categories

EndC(M⊠D N) ≃ EndC(ModB(M)) ≃ EndC(ModF (B)(C)) ≃ BimodF (B)(C)
mop.

Moreover, the monoidal 2-functor Emop → EndC(M⊠DN) providing M⊠DN with its right action
is identified with the monoidal 2-functor

BimodB(F ) : BimodB(D)→ BimodF (B)(BimodA(C)) ≃ BimodF (B)(C).

It is therefore enough to check that if F is faithful on 2-morphisms, resp. fully faithful on 2-
morphisms, resp. induces equivalences on Hom-1-categories, then so is BimodB(F ). But, if F
has any of these three properties, then BimodB(F ) has the corresponding property between free
bimodules. But, BimodB(D) is the Cauchy completion of its full sub-2-category on the free
bimodules (this is a consequence of the proof of [Déc23d, Proposition 3.1.3]) and all the above
three properties are preserved by taking the Cauchy completion (this follows by inspecting the
explicit definition of the Cauchy completion given in [Déc22b, Appendix A]), so that BimodB(F )
indeed has the desired property. This concludes the proof. □

Remark 2.72. As a consequence of Theorem 2.71, we see that a 1-morphism in Mor2 it is n-
faithful, resp. n-dominant, iff its image under Mod in Morss is n-faithful, resp. n-dominant.

2.7. Passing to the Super World. The formulation of our classification result in the case of
emergent fermions necessitates passing to the super world for groups, spaces, and cohomology. We
presently compile relevant facts for completeness and convenience of the reader.

Definition 2.73. A finite supergroup is a finite group G equipped with a central element z of order
at most 2, i.e. a group homomorphism Z/2→ Z(G).

Throughout, we let BZ/2 denote the 2-group whose underlying groupoid has a single object with
automorphisms Z/2 and with its unique monoidal structure induced by the fact that Z/2 is abelian.
The following well-known observation was already mentioned in the introduction:

Lemma 2.74. The 2-group Autbr(sVect) is equivalent to the 2-group BZ/2.

Proof. Every braided autoequivalence of sVect is equivalent to the identity and the group of
monoidal natural automorphisms of the identity functor is Z/2. □

Lemma 2.75. Let G be a finite group. Then the data of a BZ/2-action on the groupoid BG is
equivalently a homomorphism Z/2→ Z(G), i.e. a supergroup structure on G.

Proof. A BZ/2-action on BG unpacks to a pointed map B2Z/2 → BAut(BG), i.e. equivalently to
a group homomorphism Z/2→ ΩAut(BG) = Z(G). □

Generalizing Lemma 2.75, we may therefore define:

Definition 2.76. A superspace is a space X together with a BZ/2-action. We let sSpaces :=
Fun(B2Z/2,Spaces) denote the∞-category of superspaces. We say that a superspace is k-truncated
if its underlying space X is k-truncated15, i.e. has vanishing homotopy groups in degrees > k.

Example 2.77. A supergroup is precisely the data of a pointed connected 1-truncated superspace.

For most superspaces we consider, the BZ/2-action arises as an action by Autbr(sVect), whence
the name.

15This is equivalent to asking it to be k-truncated as an object of the ∞-category sSpaces of superspaces.
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∞-category of superspaces Spaces/B2Z/2 Spaces with BZ/2 action

Spec(sVect) pt→ B2Z/2 BZ/2BZ/2

Spec(E), E super-Tannakian BGb → B2Z/2 B(G, z)BZ/2

Spec(Vect) B2Z/2→ B2Z/2 ptBZ/2

Spec(E), E Tannakian BG× B2Z/2→ B2Z/2 BGBZ/2

Figure 2. Different models for Spec of the symmetric fusion 1-category E

Recall the straightening/unstraightening equivalence

sSpaces := Fun(B2Z/2,Spaces) ≃ Spaces/B2Z/2

to the over-category of spaces over B2Z/2 sending a superspace X with its BZ/2-action to the
homotopy quotient space X �BZ/2 with its induced map to B2Z/2 and conversely, sending a map
Y → B2Z/2 to its homotopy fiber F with induced BZ/2-action. We will frequently pass back and
forth along this equivalence. In particular, the terminal superspace pt with trivial BZ/2-action
corresponds to the map B2Z/2→ B2Z/2 while the “regular” superspace BZ/2 with its free action
corresponds to the map pt → B2Z/2. We point out that the former object is a “pointed object”
in sSpaces, i.e. admits a map from the terminal (it in fact is the terminal), while the latter object
“has no points,” i.e. no map from the terminal object.

See Figure 2 for a summary of how common superspaces can be viewed from both perspectives.

Example 2.78. Let (G, z) be a supergroup with z = 1, i.e. with associated superspace BG with
trivial BZ/2-action. Then the corresponding object in Spaces/B2Z/2 is given by the projection

BG × B2Z/2 → B2Z/2. In particular, we emphasize that 1-truncatedness of a superspace X does
not imply 1-truncatedness of the homotopy quotient X/(BZ/2).

If (G, z) is a supergroup with z ̸= 1, i.e. with associated superspace BG with non-trivial BZ/2-
action, then let Gb := G/z with central extension G determined by a 2-cocycle κ ∈ H2(Gb,Z/2).
Then the corresponding object in Spaces/B2Z/2 is given by the map BGb → B2Z/2 classifying κ.

For our present considerations, supergroups arise via (a special case of) Deligne’s theorem [Del02].
More precisely, every non-zero symmetric multifusion 1-category E admits a symmetric monoidal
functor to sVect. Further, if E is fusion, then any two such functors are naturally isomorphic.
Said differently, the 1-groupoid Spec(E) of symmetric monoidal functor E → sVect and symmetric
natural isomorphisms is non-empty if E is non-zero, and it is connected if E is fusion. Moreover,
it comes equipped with a canonical action of Autbr(sVect) = BZ/2 by postcomposition, that is,
we have a functor Spec : SMF1Cop → τ≤1sSpaces to the ∞-category of 1-truncated superspaces.
Deligne’s theorem may then be re-expressed in the following convenient form, which will be used
when unpacking Delphics squares.

Theorem 2.79 ([Del02]). The functor Spec : SMF1Cop → τ≤1sSpaces is an equivalence.

Recall the (2, 1)-category BMF1C of braided multifusion 1-categories, braided functors and
monoidal natural isomorphisms. Its underlying 2-groupoid ob(BMF1C) admits a functor Z2 :
ob(BMF1C)→ ob(SMF1C) sending a braided multifusion 1-category B to its symmetric center
and a braided equivalence to the corresponding equivalence of symmetric centers.

Definition 2.80. We define the 2-groupoid BMF1Cndeg(sVect) as the fiber of ob(BMF1C) →
ob(SMF1C) at sVect ∈ ob(SMF1C).
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Unpacked, BMF1Cndeg(sVect) is therefore the 2-groupoid of braided multifusion 1-categories B
equipped with an equivalence sVect→ Z2(B) and braided equivalences and natural isomorphisms
compatible with these equivalences.

Lemma 2.81. Let BMF1Cslightly−deg denote the full 2-groupoid of ob(BMF1C) on the slightly
degenerate braided fusion categories, i.e. those whose symmetric center happens to be equivalent to
sVect without a specified such equivalence. Then there is a fiber sequence

BMF1Cndeg(sVect)→ BMF1Cslightly−deg Z2→ SMF1CsVect

where SMF1CsVect is the full sub-2-groupoid of ob(SMF1C) on those symmetric multifusion 1-
categories which happen to be equivalent to sVect. Because SMF1CsVect ≃ BAutbr(sVect) ≃
B2Z/2, this induces an BZ/2 ≃ Autbr(sVect)-action on BMF1Cndeg(sVect)

Proof. By definition there is a fiber sequence

BMF1Cndeg(sVect)→ ob(BMF1C)→ ob(SMF1C).

Restricting the middle term to the full subspace BMF1Cslightly−deg on the image of the fiber in-
clusion and the last term to the full subspace BAutbr(sVect) of ob(SMF1C) on those symmetric
multifusion categories which happen to be equivalent to sVect results in the claim. □

Unpacked, the induced BZ/2 = Autbr(sVect)-action is given by precomposing the specified
equivalence between sVect and the symmetric center.

In particular, Lemma 2.81 identifies the homotopy quotient BMF1Cndeg(sVect)�Autbr(sVect)
with BMF1Cslightly−deg.

Lemma 2.82. The 2-groupoid of homotopy fixed points of BMF1Cndeg(sVect) under its action by
Autbr(sVect) is equivalent to the full sub-2-groupoid BMF1Cndeg of the 2-groupoid ob(BMF1C)
on the nondegenerate braided multifusion 1-categories.

Proof. By Lemma 2.81, and from the perspective of spaces over B2Z/2, the 2-groupoid of homotopy
fixed points is the 2-groupoid of lifts

BMF1Cslightly−deg

B2Z/2 SMF1CsVect

Z2

≃

.

Here, recall that BMF1Cslightly−deg denotes the full sub-2-groupoid of braided monoidal multifu-
sion 1-categories on those whose symmetric center happens to be equivalent to sVect and where
SMF1CsVect denotes the full sub-2-groupoid of the 2-groupoid of symmetric multifusion 1-categories
on those that happen to be equivalent to sVect. The horizontal equivalence is the functor selecting
sVect amongst categories which happen to be equivalent to sVect and remembers its BZ/2-action.

Explicitly, an object of this 2-groupoid is a choice of slightly degenerate braided multifusion
1-category B together with a group homomorphism ϕ : Z/2→ ΩAutbr(B), i.e. an order 2 monoidal
natural automorphism of the identity of B, (together encoding the dashed diagonal map) and a
choice of braided equivalence Z2(B) ≃ sVect such that if one restricts ϕ|Z2(B) and transports it

along this equivalence to sVect, it becomes (−1)f (this encodes the homotopy filling the triangle).
This data of ϕ is equivalent to a Z/2-grading on B whose trivial part B0 is the full subcategory
on those objects b with ϕb = idb and the data of the equivalence Z2(B) ≃ sVect (together with
the condition that ϕ becomes (−1)f under this equivalence) ensures that B0 is nondegenerate and
identifies B ≃ B0 ⊠ sVect. The 1- and 2-morphisms may be handled similarly. □
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In §3.2, we will show that the functor Z2 : ob(BMF1C) → ob(SMF1C) factors through Z2 :
ob(Morss2 )→ ob(SMF1C) (indeed, we will even extend this to a functor on a certain subcategory
of Morss2 ).

Definition 2.83. For a symmetric multifusion 1-category E , we define the 4-groupoid Witt(E) as
the fiber of Z2 : ob(Morss2 )→ ob(SMF1C) at E .

Unpacked, Witt(sVect) is the 4-groupoid of braided fusion 1-categories B equipped with an
equivalence sVect → Z2(B) and (higher) Witt equivalences compatible with these identifications
of symmetric centers.

By definition, this 4-groupoid Witt(sVect) inherits a canonical action by Autbr(sVect), and is
therefore a superspace. Its homotopy groups are given by

π0 π1 π2 π3 π4

π0(Witt(sVect)) 0 Z/2 Z/2 C×

where π0(Witt(sVect)) is the super-Witt group introduced in [DNO13] (Though the group struc-
ture does not manifest directly from our construction.).

The superspace Witt(sVect) is intimately related to the notion of supercohomology, one of the
remaining “superingredients” featured in the statement of Theorem B. We define a superspace
Σ4 SH := Witt(sVect)⟨1⟩ as the connective cover of the superspace Witt(sVect), so that Σ4 SH
inherits the homotopy groups of Witt(sVect) in degree 1 and above. Said differently, let [sVect]
denote the class of sVect in the space Witt(sVect). We have Σ3SH = AutsVect([sVect]). This
shows that supercohomology may also be defined as the double delooping of the Picard spectrum
Mod(sVect)×, and this identification is compatible with the canonical actions by Autbr(sVect).
The superspace Σ4 SH was described explicitly as a space over B2Z/2 in [Déc24b]. We wish to point
out that, in the physics literature, this also goes by the name extended supercohomology, which
was introduced in [WG18].

Definition 2.84. Let X be a superspace. We use SHn(X) to denote the group of homotopy classes
of maps of superspaces (i.e. BZ/2-equivariant maps) from X to Σn SH.

We note that supercohomology is shifted so that SH0(pt) = C×.
It remains to define the anomaly of an action of a supergroup on a slightly degenerate braided

fusion 1-category. Let A be a slightly degenerate braided fusion 1-category, (H, z) a finite su-
per group with z ̸= 1, and ρ : (H, z) → (AutbrsVect(A), (−1)f ) an action, that is, a map of

spaces BH → BAutbrsVect(A) compatible with the actions by BZ/2. The canonical map [−] :

ob(BMF1Cndeg(sVect)) → Witt(sVect) sending a slightly degenerate braided fusion 1-category
to the corresponding sVect-Witt equivalence class is a map of superspaces. In particular, there is
a corresponding map of superspaces [−] : BAutbrsVect(A)→ BAutsVect([A]).

Definition 2.85. The superanomaly of the action ρ : (H, z) → (AutbrsVect(A), (−1)f ) is the com-
posite map of superspaces

B(H, z)
ρ−→ BAutbrsVect(A)

[−]−−→ BAutsVect([A]). (2.86)

Upon choosing a minimal nondegenerate extension for A, which exists by [JFR24], there is an
equivalence of superspaces BAutsVect([A]) ≃ BAutsVect([sVect]) = Σ4 SH. Indeed, at the level
of spaces, there is a canonical equivalence BAutsVect([A]) ≃ BAutsVect([sVect]) since [A] is an
invertible object in Witt(sVect), but upgrading this to a BZ/2-equivariant equivalence, i.e. an
equivalence of superspaces, requires a choice of minimal nondegenerate extension. Having made
such a choice, the superanomaly [ρ] yields a class in SH4(H, z). Without making such a choice, the

superanomaly lives in π0 of the space of BZ/2-equivariant maps π0Map(BH,BAutsVect([A]))BZ/2,
which is a torsor over SH4(H, z).
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Remark 2.87. In the bosonic case, that is, when A is nondegenerate braided fusion 1-category
with a group action ρ : H → Autbr(A), the anomaly of ρ is the composite

BH
ρ−→ BAutbr(A) [−]−−→ BAut([A]) ≃ B4C×.

In particular, [ρ] is a class in H4(H;C×). This cohomology class was denoted by O4(ρ) in [ENO10],
where it was explained that there is a fiber sequence of ordinary spaces

BPic(A)→ BAutbr(A) [−]−−→ BAut([A]),
where Pic(A) denotes the space of invertible A-module 1-categories. In particular, the anomaly
[ρ] measures exactly the failure of the map ρ : BH → BAutbr(A) to lift to a map BH → BPic(A),
and thereby yield an H-crossed braided extension of A.

3. Witt squares

In this section, we establish Witt(−) as a functor (i.e. prove Proposition 1.13) and prove Theo-
rem G.

3.1. From Multifusion 2-Categories to Morita Categories and Back. Recall that MF2C
denotes the (3, 1)-category of multifusion 2-categories and monoidal 2-functors, and Morss denotes
the (4, 1)-category of multifusion 2-categories and semisimple bimodule 2-categories. Let us write
Morss,0-dom for the (non-full) subcategory of Morss on the 0-dominant 1-morphisms (Definition
2.67), which exists thanks to Proposition 2.43 and Lemma 2.69. The canonical functor

[−] : MF2C→Morss

sending a multifusion 2-category to the corresponding Morita class [C] factors through this subcat-
egory Morss,0-dom: Namely, given a monoidal functor F : C→ D, the associated finite semisimple
bimodule 2-category is D with the obvious C-D-bimodule structure. Such a bimodule 2-category
is always 0-dominant.

Let Morss,0-dom
1/ :=

(
Morss,0-dom

)
1/

denote the slice category of objects with a morphism from 1.

The following proposition allows us to describe the category of multifusion 2-categories and monoidal
functors in terms of Morita categories:

Proposition 3.1. The canonical functor MF2C→Morss,0-dom
1/ sending a multifusion 2-category

C to the right module CC is an equivalence of ∞-categories.

Proof. By [Lur17, Theorem 4.8.5.11], the functor AlgE1
(2Kar) → (Mod2Kar)2Kar / sending a

monoidal 2-Karoubian category C to the category ModC(2Kar) of 2-Karoubian C-modules is fully
faithful. Moreover, by definition (see §2.4), it factors through the full subcategory Mor(2Kar).
By the discussion in §2.4, the induced fully faithful functor AlgE1

(2Kar)→Mor(2Kar)1/ sends
a C to the module CC and a monoidal functor F : C → D to the bimodule CDD together with the
bimodule equivalenceD ≃ C⊠CDD. It follows from this description, that the fully faithful composite
MF2C ↪→ AlgE1

(2Kar) ↪→ Mor(2Kar)1/ factors through the (a priori non-full) subcategory

Morss,0-dom
1/ →Mor(2Kar)1/ and hence results in a fully faithful functor MF2C →Morss,0-dom

1/ .

Finally, we prove that this functor is essentially surjective on objects: Given any 0-dominant 1-
morphism MD in Morss out of 1, it suffices to construct a multifusion 1-category C, a Morita
equivalence N : C ↛ D and an equivalence C ⊠C ND ≃ MD. Taking N := M and C := EndD(M)
finishes the proof by [Déc23b, Theorem 5.4.3]. □

Proposition 3.1 also allows us to make contact with braided multifusion 1-categories. More
precisely, let Morss2 denote the (univalent) Morita 4-category of braided multifusion 1-categories,
as defined in §2.5.
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Just as every multifusion 2-category C determines, and is determined by (up to monoidal equiva-
lence), a 1-morphism C : 1 ↛ C inMorss, so too every braided multifusion 1-category B determines,
and is determined by, a 1-morphism BB : 1 ↛ B in Morss2 .

Proposition 3.2. The functor B 7→ BB defines an equivalence of ∞-categories

BMF1C→Morss,1-dom2,1/ .

Proof. Restrict the equivalence MF2C→Morss,0-dom
1/ along the fully faithful functor BMF1C ↪→

MF2C and use the equivalence Morss2 ≃ Morss to obtain a fully faithful functor BMF1C ↪→
Morss,0-dom2,1/ which sends a braided multifusion 1-category B to the B-central multifusion category B,
thought of as a 1-morphism 1 ↛ B. In particular, this fully faithful functor factors through the (a

priori non-full) subcategory Morss,1-dom2,1/ (since for any B, the functor B → Z(B) is fully faithful). It

then suffices to prove that the fully faithful functor BMF1C→Morss,1-dom2,1/ is essentially surjective

on objects. Equivalently, for any braided multifusion 1-category B and any multifusion 1-category C
with a fully faithful braided functor Brev → Z(C), there exists another braided multifusion category
B′ and a Witt equivalence D : B′ ↛ B so that B′ ⊠B′ D ≃ C. Take B′ := Z(C,Brev) and as
1-morphism B′ ↛ B the multifusion category D := C with evident B′rev ⊠ B central structure, it
follows from fully faithfulness of Brev → Z(C) that D is indeed an invertible 1-morphism in Morss2
by Corollary 2.52, finishing the proof. □

Recall from §2.5 that Mod : Morss2 →Morss defines an equivalence (after univalification); the
most interesting part of this is that every multifusion 2-category is Morita equivalent to Mod(B)
for a braided multifusion 1-category, as shown in [Déc23b].

Thus, the previous statements may be summarized in the following diagram:

BMF1C MF2C

Morss,1-dom2,1/

Mod≃ Morss,1-dom
1/ Morss,0-dom

1/

∼ ∼ (3.3)

Notice that it follows that the bottom horizontal arrow is also fully faithful, which is a priori not
obvious.

3.2. Constructing Witt as a Functor. In this section, we will construct the functor Witt(−)
taking a symmetric multifusion category to its associated Witt space.

Lemma 3.4. The following functors are left fibrations:

[−] : MF2C→Morss,0-dom

[−] : BMF1C→Morss,1-dom2

Proof. By Propositions 3.1 and 3.2, it suffices to show that the forgetful functors
(
Morss,0-dom

)
1/
→

Morss,0-dom and
(
Morss,1-dom

)
1/
→ Morss,1-dom are left fibrations, which follows from [Lur09,

Corollary 2.1.2.2]. □

We will now construct Z2 as a functor from a certain non-full subcategory of the Morita (4, 1)-
category Morss2 of braided multifusion 1-categories to the (2, 1)-category SMF1C of symmetric
multifusion 1-categories. Restricting further to a smaller subcategory, the functor Z2 will be a
left fibration onto the category of dominant and faithful symmetric functors. It therefore follows
from unstraightening that the assignment sending a symmetric multifusion 1-category E to the
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corresponding Witt space Witt(E) (i.e. the fiber of Z2 at E) is functorial with respect to dominant
and faithful symmetric tensor functors.

Proposition 3.5. There is a functor of ∞-categories Z2 : Morss,str 1-dom2 → SMF1C from the
sub-(3, 1)-category of the Morita (4,1)-category of braided multifusion 1-categories with the same
objects but only with the strongly 1-dominant 1-morphisms (Definition 2.54), to the (2, 1)-category
of symmetric multifusion 1-categories with symmetric tensor functors.

Proof. Since the target is a (2, 1)-category it suffices to construct this functor on the 2-truncation of

Morss,str 1-dom2 which we will do here “by hand” at the level of objects, 1-morphisms, and equivalence
classes of 2-morphisms. On objects, Z2 is defined in the obvious way, i.e., if B1 is a braided
multifusion 1-category, we let Z2(B1) be the symmetric center of B1. Now, recall from (2.56), that to
any strongly 1-dominant 1-morphisms C1 : B1 ↛ B2 in Morss2 , we can associate a symmetric tensor
functor Z2(C1) : Z2(B1)→ Z2(B2), and from Lemma 2.60 that these compose correctly. Finally, it
is straightforward to define the functor Z2 on isomorphism classes of invertible 2-morphisms and
check functoriality. □

Lemma 3.6. The functor Z2 : Morss,ss,2-dom,0-faith
2 → SMF1Cdom,faith sends 2-dominant and

0-faithful 1-morphisms to dominant faithful symmetric tensor functors.

Proof. Firstly, recall from section §2.6 that every 2-dominant 1-morphism in Morss2 is in particular
strongly 1-dominant. Now, let C : B1 ↛ B2 be a 2-dominant 1-morphism. The fact that C is
2-dominant implies that it is factorizable by Lemma 2.65, which means that Im(E1) = E2, so the
symmetric tensor functor Z(2)(C) : E1 → E2 is dominant as desired. Secondly, if C : B1 ↛ B2 is
0-faithful and strongly 1-dominant, then the braided tensor functor F1 : B1 → Z(C) is faithful.
As Im(E1) ⊆ E2 in Z(C) by strong 1-dominance, it follows that the symmetric tensor functor
Z(2)(C) : E1 → E2 is faithful. □

Using Lemma 3.6, we will henceforth only consider the restriction

Z2 : Morss,2-dom,0-faith
2 → SMF1Cdom,faith

of the functor Z2 to the sub-(3, 1)-category Morss,2-dom,0-faith
2 with the same objects but only with

the 2-dominant and 0-faithful 1-morphisms.
The functoriality of the Witt space follows directly from the following main theorem of this

section:

Theorem 3.7. The functor Z2 : Morss,2-dom,0-faith
2 → SMF1Cdom,faith is a left fibration.

We will establish the fibrancy asserted in Theorem 3.7 by piecing together a series of fibrancy
conditions, which we state in the following lemmas. Let BMF1Cdom,faith → BMF1C denote the
non-full subcategory on the faithful and dominant braided monoidal functors.

Lemma 3.8. The induced map [−] : BMF1Cdom,faith →Morss,2-dom,0-faith
2 is a left fibration.

Proof. We claim that the square of ∞-categories

BMF1Cdom,faith BMF1C

Morss,2-dom,0-faith
2 Morss,1-dom2

is a pullback. Equivalently, it suffices to show that a braided functor F : B1 → B2 is faithful and
dominant if and only if the associated 1-morphism B1 : B1 ↛ B2 is 2-dominant and 0-faithful.
The equivalence of the faithfulness conditions is obvious. The dominance condition amounts to
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the statement that F : B1 → B2 is dominant if and only if the induced functor B2 → Z(B2,B1)
is an equivalence. Note that one can reduce to only having to check this statement when B1 and
B2 are fusion. It follows from [DGNO10, Theorem 3.14] and [EGNO15, Proposition 6.3.4] that the
composite is an equivalence if and only if Im(F ) = B2, that is, if and only if F is dominant.

Since pullbacks of left fibrations are left fibrations, the result follows from Lemma 3.4. □

The following proposition is a homotopical rephrasing of [DMNO13, Corollary 3.24], and is at
the heart of our construction of Witt:

Proposition 3.9. The composite

BMF1Cdom,faith [−]−→Morss,2-dom,0-faith
2

Z2−→ SMF1Cdom,faith

is a left fibration.

Proof. This composite sends a braided multifusion 1-category B to its Müger centre Z2(B) and
a braided functor F : B1 → B2 to the induced braided functor Z2(B1) → B1 → B2 which lands
in the full subcategory Z2(B2) ⊆ B2 since F is dominant and hence defines a symmetric functor
Z2(F ) : Z2(B1)→ Z2(B2) (which is itself dominant and faithful).

The left fibrancy unpacks to the following statement: Fix a braided multifusion 1-category

B. Then the 2-functor Z2(−) from the 2-groupoid ob(BMF1Cdom,faith
B/ ) of braided multifusion

1-categories B′ equipped with a dominant faithful braided functor B → B′ to the 2-groupoid

ob(SMF1Cdom,faith
Z2(B)/ ) of symmetric multifusion 1-categories E with a symmetric functor Z2(B)→ E

is an equivalence. It is enough to show this when B is fusion in which case an explicit inverse is

given by the functor sending an object {Z2(B) → E} of the 2-groupoid ob(SMF1Cdom,faith
Z2(B)/ ) to

{B → B ⊗Z2(B) E} ∈ ob(BMF1Cdom,faith
B/ ). That this defines an inverse follows from [DMNO13,

Corollary 3.24]. □

Proof of Theorem 3.7. Left fibrations satisfy a 2-out-of-3-property [Lur09, Proposition 2.4.1.3 (3)]:
For composable functors F,G, if F and G ◦ F are left fibrations and F is essentially surjective on
objects, then G is a left fibration. Applying this statement to the commutative triangle

BMF1Cdom,faith SMF1Cdom,faith

Morss,2-dom,0-faith
2

[−] Z2

gives the desired result. □

Straightening the left fibration Morss,2-dom,0-faith
2 → SMF1Cdom,faith then immediately gives rise

to our desired functor:

Corollary 3.10. There is a functorWitt(–) : SMF1Cdom,faith → Spaces which sends a symmetric
multifusion 1-category E to the space Witt(E) from Definition 2.83.

3.3. The Proof of Theorem G. In this section, we prove Theorem G.
The idea behind the first step of the proof is the following: We expect, but do not prove, that the

1-dominant and 2-faithful 1-morphisms from Definitions 2.67 and 2.68 form a factorization system
on Morss2 ≃ Morss (see e.g. [Lur09, Definition 5.2.8.8] for a definition of factorization system in
the world of ∞-categories). In particular, this means that it should be possible to factor any
1-morphism in Morss (contractibly) uniquely into a 1-dominant one followed by a 2-faithful one.

On the other hand, by Proposition 3.1, the data of a multifusion 2-category is equivalent to the
data of a 0-dominant 1-morphism out of the unit in Morss. Thus, we may try to factor this into
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a 1-dominant morphism out of the unit; corresponding by Proposition 3.2 to the data of a braided
multifusion 1-category, followed by a 2-faithful (and still 0-dominant) 1-morphism. Explicitly,
given a multifusion 2-category C, this braided multifusion 1-category will be ΩC and the 2-faithful
0-dominant 1-morphism will be the one induced by the inclusion Mod(ΩC)→ C. Although we do
not construct the full factorization system we now prove (contractible) uniqueness of this particular
factorization:

Proposition 3.11. There is a pullback square of spaces:

ob(MF2C) ob(BMF1C)

ar(Morss,0-dom,2-faith) ob(Morss).

C 7→[C: Mod(ΩC)↛C]

Ω

B7→[Mod(B)]

s

In words, Proposition 3.11 asserts that the data of a multifusion 2-category C (up to monoidal
equivalence) is completely captured by the data of the braided multifusion 1-category ΩC (up to
braided monoidal equivalence) together with the data of the 1-morphism {C : Mod(ΩC) ↛ C} in
Morss (up to equivalence in Morss).

Proof. We claim that the following is a pullback square of ∞-categories:

MF2Cff MF2C

Morss,0-dom,2-faith Morss,0-dom .

(3.12)

Here, MF2Cff denotes the sub-(3, 1)-category of the (3, 1)-category MF2C on the multifusion
2-category and the fully faithful monoidal 2-functors between them, i.e. those monoidal 2-functors
which induce equivalences on Hom-1-categories. The square (3.12) being a pullback is equivalent
to the assertion that a monoidal 2-functor F : C → D between multifusion 2-categories is fully
faithful if and only if its induced bimodule CDC is 2-faithful in the sense of Definition 2.68, which
is evidently true by definition.

Now, since the right vertical functor is a left fibration, so is the left vertical one. Unpacking the
definition of a left fibration, we obtain the following pullback square of spaces:

ar(MF2Cff) ob(MF2Cff) = ob(MF2C)

ar(Morss,0-dom,2-faith) ob(Morss,0-dom,2-faith) = ob(Morss2 ),

s

s

(3.13)

where ar and ob denote the spaces of morphisms and objects in an ∞-category, respectively.
Let us now consider the fully faithful functor Mod : BMF1C ↪→ MF2C sending a braided

multifusion 1-category to the multifusion 2-category of finite semisimple module 1-categories. The
image of Mod consists precisely of the full subcategory of MF2C on those objects C such that
the inclusion of the monoidal unit 1C : 2Vect→ C is surjective on connected components, i.e. the
multifusion 2-category C is connected. Hence, the map ob(BMF1C)→ ob(MF2C) is the inclusion
of a full subspace. Pulling back (3.13) along this inclusion, we obtain the pullback square

arsc(MF2Cff) ob(BMF1C)

ar(Mor0-dom,2-faith) ob(Morss) ,

s

s

(3.14)
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where arsc(MF2Cff) ↪→ arsc(MF2Cff) denotes the full subspace on those fully faithful monoidal
2-functors whose source is a connected fusion 2-category. Since any object of arsc(MF2Cff) is
necessarily the inclusion of the connected component of the monoidal unit, it follows that taking
the target

t : arsc(MF2Cff)→ ob(MF2C)

is an equivalence.
Under this equivalence, the map s : arsc(MF2Cff) → ob(BMF1C) is identified with Ω, the

functor sending a multifusion 2-category to its associated braided multifusion 1-category of endo-
morphisms. □

We have now factored the data of a multifusion 2-category into the data of a braided multifusion
2-category together with a 0-dominant, 2-faithful 1-morphism in Morss ≃ Morss2 . To conclude

our proof of Theorem G, it therefore only remains to describe this space ar(Morss,0-dom,2-faith
2 ) of

0-dominant and 2-faithful 1-morphisms in Morss2 . In order to do so, it is convenient to use the
equivalence

ar(Morss,0-dom,2-faith
2 ) ∼= ar(Morss,2-dom,0-faith

2 ) (3.15)

given by taking adjoints of 1-morphisms.

By Theorem 3.7, we understand this ∞-category Morss,2-dom,0-faith
2 well as the source of the left

fibration Z2 : Morss,2-dom,0-faith
2 → SMF1Cdom,faith. Unwinding the definition of a left fibration,

we immediately obtain:

Corollary 3.16. The following is a pullback square of spaces

ar(Morss,2-dom,0-faith
2 ) ob(Morss2 )

ar(SMF1Cdom,faith) ob(SMF1C) ,

s

Z2 Z2

s

where the horizontal maps take the source, and the vertical maps are given by applying the functor
Z2 from Proposition 3.5.

Combining the pullback squares from Proposition 3.11 and Corollary 3.16 results in our main
result: a full description of the 3-groupoid ob(MF2C) of multifusion 2-categories:

Theorem 3.17. The following is a pullback square of spaces:

ob(MF2C) ob(BMF1C)

ar(SMF1Cdom,faith) ×
ob(SMF1C)

ob(Morss2 ) ob(Morss2 )

C 7→(ΩZ(C)→Z2(ΩC),[C])

Ω

[−]

([B],F :Z2(B)→E)7→Witt(F )([B])∈Witt(E)

(3.18)

Here, the pullback at the bottom left is taken over

ar(SMF1Cdom,faith)
s→ ob(SMF1C)

Z2← ob(Morss2 ),

the left vertical map implicitly uses the equivalence Morss ≃Morss2 , and the bottom horizontal map
uses functoriality of Witt(−).

Proof. This follows directly from combining the pullback from Proposition 3.11 with the equiva-
lence Morss2 ≃Morss, the equivalence (3.15) induced from taking adjoints and the pullback from
Corollary 3.16. □
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Taking fibers at a fixed symmetric monoidal functor E → F then immediately results in Theo-
rem G.

Proof of Theorem G. Consider the commuting diagram

ar(SMF1Cdom,faith) ×
ob(SMF1C)

ob(Morss2 ) ob(Morss2 )

ar(SMF1Cdom,faith) ob(SMF1C)

Z2

t

where the top horizontal map is the bottom horizontal map from Theorem 3.17 and the left vertical
map is the projection. (Note that this is not a pullback diagram and in particular not the defining
pullback of the top left entry since neither the top horizontal map is the projection, nor the bottom
horizontal map is the “source” map.) Fibering the pullback square 3.18 at a fixed (F : E → F) ∈
ar(SMF1Cdom,faith) results in a pullback square

ob(MF2C)(E ↠ F) ob(BMF1Cndeg(F))

Witt(E) Witt(F).
[−]

Ω

[−]

Here, ob(MF2C)(E ↠ F) denotes the fiber of

ob(MF2C)
C 7→(ΩZ(C)→Z2(ΩC))−→ ar(SMF1Cdom,faith),

i.e. ob(MF2C)(E ↠ F) can be thought of as the 3-groupoid of multifusion 2-categories equipped
with an identification (ΩZ(C)→ Z2(ΩC)) ≃ (E → F). Thus ob(MF2C(E ↠ F)) can be identified
with the space of Witt squares of type E ↠ F as introduced in Equation (1.12). This completes
the proof of Theorem G. □

3.4. Unpacking Witt Squares and Witt Data. Having completed the proof of Theorem G in
the previous section, we will in this section work incoherently to give a more hands on unpacking
of the ingredient of the Witt squares. We fix a faithful dominant symmetric tensor functor F :
E → F between symmetric multifusion 1-categories. Recall from (1.12) that a Witt square of type
F : E ↠ F is a commuting square of spaces of the form

pt ob(BMF1Cndeg(F))

Witt(E) Witt(F) .

[−]
≃

We begin by unpacking the content of such squares in the form of Witt data. Subsequently, inspired
by [Déc22a], we give a down-to-earth account of the relation between multifusion 2-category data
and Witt data.

Firstly, by construction, the space Witt(E) has objects E-nondegenerate braided multifusion
1-categories given in Definition 2.48. Furthermore, given B1, B2 two E-nondegenerate braided
multifusion 1-categories, a 1-morphism between them in Witt(E) is an E-Witt equivalence given in
Definition 2.49. Said differently, an E-Witt equivalence is a 1-equivalence C : B1 ↛ B2 in Morss2
together with an identification of the two canonical braided tensor functors E → Z(C). This notion
was first considered in [DNO13], and the set of connected components of Witt(E) is precisely the
E-Witt group considered in this last reference. Then the content of the Witt squares of type
F : E ↠ F unpacks as in the next definition.
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Definition 3.19. AWitt datum of type E ↠ F is a triple (B, D, C), where B is an F-nondegenerate
braided multifusion 1-category, D is an E-nondegenerate braided multifusion 1-category, and C :
D ⊠E F ↛ B is an F-Witt equivalence.

The key structural difference between the datum B and D in Definition 3.19 is that B is considered
up to F-compatible braided monoidal equivalence while D is merely given up to E-Witt equivalence.
Indeed, this distinction becomes visible when considering higher morphisms in the groupoid of Witt
squares (or when considering isomorphism classes of Witt squares).

For the reader’s convenience, we explicitly describe 1-morphisms.

Definition 3.20. An equivalence between two Witt data (B1, D1, C1) and (B2, D2, C2) of type
E → F is a triple (F, U ,M), where F : B1 → B2 is a braided monoidal equivalence compatible
with the identification of symmetric centers with F (this is data which we suppress from notation),
U : D1 ↛ D2 is an E-Witt equivalence, and

D1 ⊠E F D2 ⊠E F

B1 B2

C1

U⊠EF

C2

FB2

M

is an equivalence between F-Witt equivalences, where the bottom horizontal arrow is the Witt
equivalence B1 ↛ B2 induced from the braided monoidal equivalence F : B1 → B2.

One can similarly give explicit descriptions of 2- and 3-morphisms in the space of Witt data of
type F : E ↠ F .

Incoherently, the relation between Witt squares and multifusion 2-categorie can be summarized
as follows, starting from [Déc22a, Remark 4.2.9]:

Remark 3.21. Since Morss ≃ Morss2 , it follows that multifusion 2-categories up to monoidal
equivalence consist of the following data:

(1) A symmetric multifusion 1-category E up to symmetric monoidal equivalence,
(2) A braided multifusion 1-category B such that Z2(B) ≃ E , up to E-Witt equivalence,
(3) A B-central multifusion 1-category C such that B → Z(C) is faithful, up to B-central Morita

equivalence.

Moreover, the corresponding multifusion 2-category is the Morita dual to Mod(B) with respect to
Mod(C) equipped with the obvious action.

We note that the faithfulness condition on the functor B → Z(C) is there to ensure that the
action of Mod(B) on Mod(C) is faithful in the sense of [Déc23b, Definition 5.4.1], so that Mod(C)
describes a Morita equivalence.

We will shortly explain how this set of data is related to Witt data. Before doing so, we need to
establish the following technical result.

Lemma 3.22. For a multifusion 2-category C parameterised according to the data of Remark 3.21,
the symmetric tensor functor ΩZ(C) → Z2(ΩC) is identified with the restriction of B → Z(C) to
E ↠ Im(E). In particular, the symmetric tensor functor ΩZ(C) → Z2(ΩC) is always faithful and
dominant.

Proof. We have that ΩZ(Mod(B)) ≃ E by [JFR24, Lemma 2.1.6]. Moreover, Morita equivalences
induce braided monoidal equivalences at the level of Drinfeld centers [Déc22a, Theorem 2.3.2].
Further, it was shown in [Déc22a, Lemma 3.2.1] that ΩC ≃ Z(C,B) as C is the Morita dual to
Mod(B) with respect to Mod(C). This shows that Z2(ΩC) ≃ Im(E). Moreover, by inspecting the
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proof of [Déc22a, Theorem 2.3.2], we find that ΩZ(C) ↠ Z2(ΩC) is identified with the canonical
map E ↠ Im(E) as claimed. □

Remark 3.23. The last part of Lemma 3.22 also follows from our previous considerations. Though
the arguments are essentially identical, we give some details for the reader’s convenience. Given a
multifusion 2-category C, Proposition 3.11 factors the canonical 1-morphism 2VectCC in Morss as
the composite of 2VectMod(ΩC)Mod(ΩC) with Mod(ΩC)CC. Then, thanks to Proposition 3.5, we can
apply the functor Z2 to the 1-morphism CCMod(ΩC) (note the change in direction), and, so doing,
obtain a faithful dominant symmetric tensor functor. But, by construction, we have

Z2(CCMod(ΩC)) : Z2([C]) ≃ ΩZ(C) ↠ ΩEndC−Mod(ΩC)(C) ≃ Z2(ΩC)
≃←− Z2([Mod(ΩC)]),

which is identified with the canonical symmetric tensor functor ΩZ(C)→ Z2(ΩC).

Starting from Remark 3.21 and Lemma 3.22 we may now sketch the equivalence between Witt
squares and multifusion 2-categories:

Proposition 3.24. Let us fix F : E ↠ F , a faithful and dominant symmetric monoidal functor
between symmetric multifusion 1-categories. Multifusion 2-categories C for which ΩZ(C) ↠ Z2(ΩF)
is identified with F are classified by triples ([B],D, [C]), where [B] is a class in Witt(E), D is an F-
nondegenerate braided multifusion 1-category, and [C] is (the Morita class of) an F-Witt equivalence
between [B ⊠E F ] and [D].

Proof. Let C be a multifusion 2-category equipped with an identification of ΩZ(C) ↠ Z2(ΩF)
with F : E ↠ F . With respect to the data in Remark 3.21, this fixes the symmetric multifusion
1-category E , but also B up to (pointed!) E-Witt equivalence. Moreover, this also prescribes the
restriction of B → Z(C) to E . We can then consider D := Z(C,B)rev, the centralizer of the image of
B in Z(C), which is an F-nondegenerate braided multifusion 1-category. Observe that this does not
depend on the representative B for the class [B] in Witt(E). In particular, we have by construction
and [DNO13, Proposition 4.3] that

Z(C,F) ≃ (B ⊠E F)⊠F Drev,

i.e. the Morita class [C] provides an F-Witt equivalence between [B⊠E F ] and [D]. This correspon-
dence is manifestly bijective, so that the result follows. □

4. (Multi)Fusion 2-Categories and their Parametrization

Having developed a coherent method for extracting a Witt square from a (multi)fusion 2-category,
we will now explain the correspondence between Witt squares and Delphic squares. (This corre-
sponds to arrow (P−−) in Figure 1.) With these relations in place we can then unpack the data of the
Delphic squares so as to obtain the statements of Theorems A and B. (This corresponds to arrow
(€) in Figure 1.) Finally, we describe how to explicitly construct a fusion 2-category given the data
in our main theorems. (This corresponds to arrow (£) in Figure 1.)

4.1. From Witt Squares to Delphic Squares. We explain how to go from Witt squares to
Delphic squares. In order to do so, we will use the language of superspaces developed in §2.7, and,
in particular, the restatement of Deligne’s theorem [Del02] given therein.

As explained in §2.7, any symmetric multifusion 1-category F arises by Deligne’s theorem [Del02]
as a limit of a certain functor to SMF1C which sends every object to sVect (but is nontrivial as
a functor if F is non-Tannakian).

It then follows from [DGNO10] that there is an equivalence of spaces

BMF1Cndeg(F) ≃ sHom(Spec(F),BMF1Cndeg(sVect)),
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given by de-equivariantization, where sHom denotes the space of supermaps, i.e. BZ/2-equivariant
maps. Moreover, it also follows from Theorem 1.14 that there is an equivalence of spaces

Witt(F) ≃ sHom(Spec(F),Witt(sVect)).

Now, if F : E ↠ F is a faithful dominant symmetric tensor functor between symmetric multifusion
1-category, there is a corresponding map of superspaces Spec(F ) : Spec(F) → Spec(E). The last
identification above is in fact functorial, so that the canonical map Witt(F) → Witt(E) induced
by F can be identified with sHom(Spec(E),Witt(sVect))→ Hom(Spec(F),Witt(sVect)) induced
by pulling back along the map of superspaces Spec(F ). Putting the above discussion together, we
find that Witt squares of type E ↠ F can be equivalently rewritten as:

pt sHom(Spec(F),BMF1Cndeg(sVect))

sHom(Spec(E),Witt(sVect)) sHom(Spec(F),Witt(sVect)) .

[−]
≃ (4.1)

Upon currying, these squares are exactly the Delphic squares of type Spec(F) ↪→ Spec(E) of The-
orem F. This shows that, upon assuming that Theorem 1.14 holds, then Theorem F follows from
Theorem G.

4.2. Examples.

Example 4.2. As an application of Theorem B we show how fermionic strongly fusion 2-categories
[JFY21] fit into the classification thereby recovering a result of [Déc24b]. Recall that, by definition, a
fermionic strongly fusion 2-category is a fusion 2-category C such that ΩC ≃ sVect. In this case, the
sVect-nondegenerate braided fusion 1-category in Theorem B is simply A = sVect. The next piece
of data is a finite supergroup (G, z) with z ̸= 1, with “minimal” supersubgroup (H, z) = (Z/2, z).
In particular, the super action ρ is necessarily trivial. The remaining piece of data is a class ϖ
in SH4(G, z), and we write 2sVectϖ(G,z) for the corresponding fermionic strongly fusion 2-category.

Namely, the homotopy between ρ and ϖ|(Z/2,z) is essentially unique as SH3(Z/2, z) = 0. This
shows that fermionic strongly fusion 2-categories up to monoidal equivalence are classified by a pair
((G, z), ϖ ∈ SH4(G, z)) of a supergroup (G, z) and a class ϖ up to isomorphism ϕ : (G, z)→ (G′, z′)
of supergroups and the relation ϕ∗ϖ′ ∼ ϖ ∈ SH4(G, z).

In other words, the set of monoidal equivalence classes of fermionic strongly fusion 2-categories
is in bijection with the set ⊔

[(G,z)]

SH4(G, z)/Aut(G, z)

where the disjoint union is over the set of all isomorphism classes of finite supergroups. This
recovers the classification of [Déc24b].

It follows from our classification that the last example above, as well as its bosonic counterpart,
can be generalized. More precisely, we have the following generalizations of [JFY21, Theorems A
& B].

Corollary 4.3. Let C be a fusion 2-category such that ΩC is either a nondegenerate or a slightly
degenerate braided fusion 1-category. Then the set of connected components π0(C) inherits a group
structure from the monoidal product. In particular, C is faithfully graded by its connected compo-
nents.

In particular, all the (necessarily bosonic) fusion 2-categories C for which ΩC is nondegenerate
are as described in Example 1.6. That is, they are of the form Mod(A) ⊠ 2VectπG, where A is
a nondegenerate braided fusion 1-category, G is a finite group, and π is a 4-cocycle for G with
coefficients in C×. For later use, we also record the fermionic version of this result.
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Example 4.4. Fix a slightly-degenerate braided fusion 1-category A.
Fermionic fusion 2-categories equipped with an identification of ΩC with A (up to monoidal

equivalence fixing A) are classified by a pair of a finite supergroup (G, z) and a class ϖ in

sHom(B(G, z),BAutsVect([A]))
up to the evident equivalence relation. In fact, upon chosing a minimal nondegenerate extension
for A, we get an identification

sHom(B(G, z),BAutsVect([A])) ∼= SH4(G, z).

In particular, the set of fusion 2-categories C with an identification ΩC ≃ A up to monoidal
equivalence which fix A is in bijection with the set⊔

[(G,z)]

SH4(G, z)/Aut(G, z)

where the disjoint union is over the set of isomorphism classes of finite supergroups.
We emphasize that unlike in the bosonic case, there is no canonical decomposition of such

fermionic fusion 2-categories into a 2-Deligne tensor product. (Though such a non-canonical de-
composition does exist up to Morita equivalence by [Déc22a] by picking a minimal nondegenerate
extension for A.) Rather, the fermionic fusion 2-categories under consideration arise via extension
theory [Déc24b]. This is more straightforward to see using spaces over K(Z/2, 2). Namely, in this
perspective, the relevant objects are Gb, equipped with the map classifying the extension (G, z),
and Aut([A]), also equipped with its canonical map. We then have

sHom(B(G, z),BAutsVect([A])) ≃ Hom/K(Z/2,2)(BGb,BAut([A])),

and the Gb-graded extension is classified by the class in Hom(BGb,BAut([A])).
Conversely, given a class ς in Hom(BGb,BAut([A])), we can consider the corresponding fermionic

fusion 2-category C, which is a faithfully Gb-graded extension of Mod(A). The extension (G, z)
of Gb can be recovered using the canonical map BAut([A]) → BAutbr(sVect). For later use, we
wish to describe the group Inv(C) of invertible objects of C. To this end, recall that there is a fiber
sequence

Pic(A)→ Autbr(A)→ Aut([A]). (4.5)

This follows, for instance, from [DN21, Proposition 5.4]. By definition, there is an equivalence
ΩAut([A]) ≃ Z(Mod(A))×. Furthermore it is shown in [DN21, Theorem 4.10] that the braided

fusion 2-category Z(Mod(A)) is identified with Modbr(A), the braided monoidal 2-category of

finite semisimple braided A-module 1-categories, and Modbr(A)× = Picbr(A). By looking at the
long exact sequence in homotopy groups for (4.5) we find:

0→ Inv(A)→ Autbr(IdA)→ Picbr(A) ϕ−→ Pic(A)→ Autbr(A),
where the map ϕ is simply forgetting the braided structure. Finally, it follows by unpacking the
construction of a graded extension given in [Déc24b] that the canonical short exact sequence

0→ Pic(A)→ Inv(C)→ Gb → 1

is classified by ϕ∗ς, a class in H2(Gb, P ic(A)).

4.3. Unfolding Delphic Squares. We now move on to unpacking the content of the Delphic
squares for fusion 2-categories. More precisely, we explain how the parametrizations in Theorem A
and B arise from the Delphic squares, and therefore explain the arrow (€) in Figure 1.

We begin by considering the all bosons case. In particular, the faithful dominant symmetric
tensor functor E ↠ F goes between two Tannakian symmetric fusion 1-categories, and there-
fore corresponds upon taking Spec to an inclusion of finite supergroups (H, z) ↪→ (G, z) with
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z = 1. In particular, it follows from Lemma 2.82 that the top horizontal map of superspaces
BH → ob(BMF1Cndeg(sVect)) corresponds to a map of spaces BH → ob(BMF1Cndeg(Vect)).
Likewise, the bottom horizontal map of superspaces B(G, 1)→Witt(sVect) corresponds to a map
of spaces BG → Witt(Vect) by Theorem 1.14. The simplified Delphic square is the following
commutative square of spaces:

BH ob(BMF1Cndeg(Vect))

BG Witt(Vect) .

ρ

ι [−]

π

≃

Moreover, as BH is a connected space, we may choose a unique (up to nonunique isomorphism!)
point in BH which then selects a point in the space ob(BMF1Cndeg(Vect)), i.e. a nondegenerate
braided fusion 1-category A. (This arbitrary choice of a basepoint of BH leads to the subtleties
encountered in Remarks 1.2 and 1.10.) Likewise, the bottom horizontal map selects a Witt class
in Witt(Vect), which is [A]. But, we have Aut([A]) ≃ B3C×, so that the last square above may
be simplified even further to

BH BAutbr(A)

BG B4C× .

ρ

ι [−]

π

≃ (4.6)

Such squares encode exactly the data of Theorem A. Recall from Remark 2.87 that the left vertical
arrow admits a description in terms of the classical extension extension theory of fusion 1-categories
developed in [ENO10]. In particular, the composite [ρ], the anomaly of the action ρ, is exactly the
obstruction to lifting ρ to a map BH → BPic(A). Finally, the commutativity of the square (4.6)
is witnessed by a homotopy between [ρ] and π|H .

Some of the data featured in the square (4.6) above can easily be extracted from a given bosonic
fusion 2-category C. More precisely, we have:

• The Tannakian symmetric fusion 1-categroy Rep(H) is Z2(ΩC).
• The nondegenerate braided fusion 1-category A is given by (ΩC)H = ΩC⊠Rep(H)Vect, the
de-equivariantization of ΩC.
• The Tannakian symmetric fusion 1-category Rep(G) is ΩZ(C), and the map ΩZ(C) →
Z2(ΩC) is identified with Rep(G) ↠ Rep(H) induced by H ⊆ G.

Remark 4.7. The data of π can be recovered from the Drinfeld center. More precisely, it is known
by [Déc22a] that, with C the bosonic fusion 2-cagegory corresponding to the square (4.6), we
have Z(C) ≃ Z(2VectπG) as braided fusion 2-categories. Conversely, given Z(C) as a plain fusion
2-category, there is a canonical Morita equivalence between Z(C) and 2VectπG ⊠ (2VectπG)

mop

supplied by the canonical separable algebra Vect in Z(C)0 ≃ 2Rep(G).

We now unpack the Delphic square in the fermionic case. In particular, the faithful dominant
symmetric tensor functor E ↠ F goes between two super-Tannakian symmetric fusion 1-categories.
Upon taking Spec, it therefore corresponds to an inclusion of finite supergroups (H, z) ⊆ (G, z)
with z ̸= 1. Because supergroups are connected as superspaces, we may again pick a basepoint of
B(H, z) (whose unique but not contractible choice again leads to the discussed subtleties). The
image of this basepoint under the top horizontal map then selects a slightly degenerate braided
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fusion 1-category A, and the corresponding Delphic square becomes:

B(H, z) BAutbrsVect(A)

B(G, z) BAutsVect([A]) .

ι

ρ

[−]

ϖ

≃ (4.8)

The bottom horizontal map of superspaces ϖ is classified by a torsor over SH4(G, z). Namely,
as explained at the end of §2.7, the superspace BAutsVect([A]) is non-canonically identified with
BAutsVect([sVect]) = Σ4 SH. The commutativity of the above square of superspaces is witnessed
by a homotopy between [ρ], the superanomaly of the action ρ as defined in (2.86), and ϖ|(H,z).

The different choices for this homotopy form a torsor over SH3(H, z). Thence, we have obtained
the statement of theorem B.

Similarly to the bosonic case, some of the above data can be effortlessly extracted from a fermionic
fusion 2-category C. More precisely, we have:

• The super-Tannakian symmetric fusion 1-category Rep(H, z) is Z2(ΩC).
• The slightly degenerate braided fusion 1-category A is (ΩC)Hb

= ΩC ⊠Rep(H,z) sVect, the
de-equivariantization of ΩC with respect to Hb = H/z.
• The faithful dominant symmetric tensor functor Rep(G, z) ↠ Rep(H, z) is given by the
inclusion (H, z) ↪→ (G, z) is ΩZ(C)→ Z2(ΩC) .

4.4. Reconstructing the Fusion 2-Category. We now explain how to use the data of Theorems
A and B to reconstruct a fusion 2-category. This is the content of the arrow (£) in Figure 1.

Firstly, consider the data from Theorem A, i.e., a nondegenerate braided fusion 1-category A,
an inclusion of finite groups H ⊂ G, an action ρ : H → Autbr(A) (identified with a monoidal
functor G →Mod(A)×), a 4-cocycle π in Z4(G, C×), and a 3-cochain µ in C3(H, C×) such that
[ρ] = π|H dµ. We construct a fusion 2-category C corresponding to this data as follows:

(1) Consider the fusion 2-category D = 2VectπG ⊠ Mod(A), and let us write Xg with g ∈ G
for the simple objects of 2VectπG.

(2) We consider the diagonal map

R : H → 2VectπG ⊠Mod(A)
h 7→ Xh ⊠ ρ(h)−1

whom the 3-cocycle µ provides with a monoidal 2-functor structure because the anomaly
[ρ−1] cancels out with the restriction of π to H. While the map ρ is defined to have the
target Aut(A), we take ρ in the above map as its lift to Mod(A)×.

(3) The direct sum A :=
⊕

h∈H R(h) is a strongly connected rigid algebra in D by construction.
The fusion 2-category C is given by BimodD(A), the fusion 2-category of A-A-bimodules
in D.

Remark 4.9. There is a “lower categorical” analogue of the data from Theorem A and the corre-
sponding reconstruction. Given a fusion 1-category A and a group homomorphism ρ : H → Inv(A)
there is an anomaly O3(ρ) ∈ H3(H, C×) lifted from the associativity constraint of the categorical
group Inv(A). Consider the data consisting of a subgroup H ⊂ G of a finite group, π ∈ Z3(G, C×),
a fusion 1-category A, a homomorphism ρ : H → Inv(A), and a 2-cochain µ ∈ Z2(H, C×) such
that O3(ρ) = π|H dµ. There is a diagonal monoidal functor

H → VectπG ⊠A
h 7→ h⊠ ρ(h)−1.
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Let A be the image of the group algebra C[H] in D = VectπG ⊠A, we can construct the fusion 1-
category BimodD(A). Let us also note that, by definition, all group-theoretical fusion 1-categories
are obtained via this construction.

We now turn our attention to the fermionic case. Instead of using the data in Theorem B directly,
we give a construction based on the closely related data given in Equation (4.8), since this has the
advantage of not requiring the choice of a minimal nondegenerate extension. Let C be a fermionic fu-
sion 2-category. The data in Equation (4.8) consists of an inclusion of supergroups (H, z) ↪→ (G, z),
a class ϖ in sHom(B(G, z),BAutsVect([A])), a superaction ρ : (H, z) → (AutbrsVect(A), (−1)f ), as
well as a homotopy µ between the superanomaly [ρ] and the restriction of ϖ|(H,z). We construct a
fusion 2-category C corresponding to this data as follows:

(1) As discussed in Example 4.4, we can consider the fusion 2-category D that is the Gb-graded
extension of Mod(A) classified by ϖ.16

(2) It follows from the existence of the homotopy µ that the class ϕ∗(ϖ|(H,z)) in H2(Hb, P ic(A))
classifying the extension of Equation (4.4) is trivial. In particular, there is a canonical
section Hb ↪→ Inv(C) to the projection map Inv(C) ↠ Gb, which we write as h 7→ Xh. We
can therefore consider the diagonal map

R : Hb → D

h 7→ Xh ⊠ ρ(h)−1

whom the 3-cocycle µ provides with a monoidal structure because the anomaly [ρ−1] cancels
out with the restriction of ϖ to H.

(3) The direct sum A :=
⊕

h∈H R(h) is a strongly connected rigid algebra in D by construction.
The fusion 2-category C is given by BimodD(A), the fusion 2-category of A-A-bimodules
in D.

4.5. Profits. The classification of fusion 2-categories allows us to state a categorified version of
rank finiteness and Ocneanu rigidity for fusion 2-categories in §1.2. We now fill in the proofs of
these results. We start with a slight elaboration on [Déc22a, Lemma 4.2.1], which will be used
throughout this subsection.

Lemma 4.10. Let C be a fusion 2-category such that G := π0(C) forms a group. (For instance
this holds if every connected component of C contains an invertible object.) Let A be a strongly
connected rigid algebra (which implies separable by [Déc22a]). Let H be the support of A in π0(C),
which is necessarily a group. Then

π0(BimodC(A)) ∼= H\G/H.

Proof. We begin by showing that H, the support of A, is a subgroup of G. Given that A is strongly
connected, it follows that the unit ηm : IdA2A → m∗ ◦m of the adjunction between m and m∗ as
A-A-bimodule 1-morphisms is the inclusion of a summand. Thus, if C and D are simple objects
of C with non-zero 1-morphisms f : C → A and g : D → A, then f2g is non-zero. Namely, if
f2g = 0, then C2D = 0, which is impossible. We therefore find that m∗ ◦m ◦ (f2g) is a non-zero
1-morphism in C. In particular, m ◦ (f2g) is non-zero as desired.

Recall that BimodC(A) is a finite semisimple 2-category (see [Déc23d] and [Déc23a]). Let C
be a simple object of C. Then A2C2A is a simple A-A-bimodule. Namely, under the canonical
equivalence

HomA−A(A2C2A,A2C2A) ≃ HomC(C,A2C2A)

16There is a canonical Morita equivalence between C and D (see [Déc22a]). This is another reason for not choosing
a minimal nondegenerate extension.
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the identity 1-morphism on A2C2A is sent to i2IdC2i. But, as C is simple and i : I ↪→ A is the
inclusion of a simple summand by hypothesis, the second 1-morphism is necessarily simple.

Now, given any simple A-A-bimodule P , pick any simple object D in C together with a non-zero
1-morphism D → P in C. Then we get an induced 1-morphism of A-A-bimodules A2D2A → P ,
which is non-zero. Moreover, D was arbitrary, so that we have shown that for any two simple
objects C and D of C, there exists a non-zero 1-morphism of A-A-bimodules between A2C2A
and A2D2A if the classes of C and D in H\G/H agree. But, if these classes are distinct, then
there is no 1-morphism in C between A2C2A and A2D2A, so that, a fortiori, there is non-zero
1-morphism of A-A-bimodules between. This finishes the proof. □

Combining the last result above together with our classification theorems yield a number of
interesting corollaries, which we now explain. Firstly, recall that given a fusion 1-category C, its
rank rk(C) is given by its number of equivalence classes of simple objects.

Definition 4.11. The rank of a fusion 2-category C is given by rk(C) := |π0(C)| · rk(ΩC).

Corollary 4.12 (Rank finiteness). Up to equivalence, there exists only finitely many fusion 2-
categories of a given fixed rank.

Proof. It was established in [JMNR21] that there are only finitely many equivalence classes of
braided fusion 1-categories of any fixed rank. In the parameterisations of Theorems A and B,
this determines A and H, or (H, z), completely. Now, given any finite (super) group G with an
embedding H ↪→ G, we have |G| ≤ |H\G/H| · |H|2. It therefore follows from the discussion in
§4.4 and Lemma 4.10 that the order of G is bounded above. Finally, the remaining data consists
of classes in positive degree in either cohomology with C× coefficients or supercohomology of finite
groups. It is well-known that the former are always finite groups, as for the latter, this follows from
the Atiyah-Hirzebruch spectral sequence. This concludes the proof. □

Corollary 4.13 (Ocneanu rigidity). Fusion 2-categories admit no non-trivial deformations. □

Finally, our classification allows one to quickly read off the inhabited fusion channels in any
fusion 2-category. We will phrase the precise result in terms of “possibilistic hypergroups”17.

Definition 4.14. Let X be a set, and P<∞(X) the set of finite subsets of X, thought of as an
abelian idempotent semigroup under + := ∪; we can identify X with the singletons in P<∞(X), so
that every element of P<∞(X) is a sum of elements of X. A possibilistic hypergroup structure on X
is an semiring structure with underlying abelian semigroup P<∞(X) such that the multiplicative
unit 1 is singleton, and such that for each x ∈ X, there is are unique (necessarily equal) y, y′ ∈ X
such that 1 ∈ x · y and 1 ∈ y′ · x.

Given a fusion 2-category C, we define its fusion possibilistic hypergroup H(C) to have underlying
set π0C, with multiplication law

[C] · [D] = {[E] s.t. HomC(C2D,E) is nonzero}.
We leave it to the reader to verify that this indeed is well-defined and does not depend on the
choices of simples C,D,E in the components [C], [D], [E].

Warning 4.15. In contrast, we point out that the set π0C does not carry in any obvious way the
structure of an ‘integral fusion ring’; for example, the number of simple objects in the semisimple
category HomC(C2D,E) does in general depend on the choice of simples C,D,E and is not well-
defined at the level of components.

17Hypergroups, which date to [Mar35], axiomatize group-like structures with multi-valued composition. The
literature contains many inequivalent definitions.
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Likewise, to any inclusion (H, z) ↪→ (G, z) of supergroups, we associate a possibilistic hypergroup
H(H\G/H) on the set of double cosets H\G/H with multiplication law

[f ] · [g] = {[k] s.t. k ∈ fHg}.

Corollary 4.16. Let C be a fusion 2-category whose associated inclusion of supergroups is (H, z) ↪→
(G, z). Then there is an isomorphism of possibilistic hypergroups

H(C) ∼= H(H\G/H).

Proof. Thanks to the discussion in §4.4, the fusion 2-category C is equivalent to BimodD(A) where
D is a fusion 2-category with enough invertible objects and such that π0(D) ∼= G/z, and A is a
strongly connected rigid algebra in D supported on H/z ⊆ G/z. Thanks to Lemma 4.10, we find
that π0(C) ∼= (H/z)\(G/z)/(H/z) = H\G/H. Moreover, if D and E are simple objects of D, then
we have established in the proof of Lemma 4.10 that both A2D2A and A2E2A are simple objects
of BimodD(A). It follows from [Déc23b] that the monoidal structure of BimodD(A) is given by
2A the relative tensor product over A. In particular, we have

(A2D2A)2A(A2E2A) ≃ A2(D2A2E)2A.

This proves the result. □
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[Déc22b] Thibault D. Décoppet. Multifusion categories and finite semisimple 2-categories. Journal of Pure and
Applied Algebra, 226(8), 2022. arXiv:2012.15774.
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