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Abstract 

Determining the atomic-level structure of crystalline solids is critically important 

across a wide array of scientific disciplines. The challenges associated with 

obtaining samples suitable for single-crystal diffraction, coupled with the 

limitations inherent in classical structure determination methods that primarily 

utilize powder diffraction for most polycrystalline materials, underscore an 

urgent need to develop alternative approaches for elucidating the structures of 

commonly encountered crystalline compounds. In this work, we present an 

artificial intelligence-directed leapfrog model capable of accurately determining 

the structures of both organic and inorganic-organic hybrid crystalline solids 

through direct analysis of powder X-ray diffraction data. This model not only 

offers a comprehensive solution that effectively circumvents issues related to 

insoluble challenges in conventional structure solution methodologies but also 

demonstrates applicability to crystal structures across all conceivable space 

groups. Furthermore, it exhibits notable compatibility with routine powder 

diffraction data typically generated by standard instruments, featuring rapid 

data collection and normal resolution levels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



The elucidation of crystalline solid structures with atomic-level precision is of 

paramount importance for the advancement of science and technology across 

a multitude of disciplines, including chemistry, physics, materials science, as 

well as medical and pharmaceutical research1-3. The crystal diffraction 

technique utilizing various radiation sources is widely recognized for its 

adaptability in achieving this objective. In recent decades, single-crystal 

diffraction techniques have demonstrated remarkable efficacy in analyzing 

single-crystal samples ranging from micrometers to nanometers. This evolution 

signifies a transition from traditional X-ray diffraction to advanced electron 

diffraction methodologies4,5. However, the intrinsic limitations associated with 

certain chemicals' propensity to yield single crystals suitable for structural 

determination have significantly restricted their practical applicability. As a result, 

the use of polycrystalline (powder) diffraction data has emerged as the 

predominant alternative for most crystalline solids. This approach typically 

requires an exemplary set of diffraction data derived from a combination of high-

quality samples, sophisticated data collection techniques, and labor-intensive 

solution processes conducted by skilled crystallographers6. This requirement 

starkly contrasts with the prevailing reality characterized by numerous 

constraints—such as specimens exhibiting suboptimal crystallinity, limited 

access to state-of-the-art diffractometers, and researchers possessing minimal 

or even nonexistent expertise in structural elucidation. 

   To address this formidable challenge, a series of groundbreaking studies 

focused on the prediction and discovery of inorganic compounds have 

illuminated the notable capabilities and potential inherent in various artificial 

intelligence (AI) methodologies. These advancements have significantly 

enhanced the application of powder diffraction data in recent years7,8. Recently, 

a noteworthy breakthrough employing a deep-learning approach to tackle the 

crystallographic phase problem has begun to integrate organic and inorganic-

organic hybrid solids into this rapidly evolving research domain9. This 

innovation offers a promising solution to one of the most pressing challenges in 

elucidating crystal structures from powder diffraction data, while simultaneously 

underscoring the persistent complexities associated with deriving precise 

structural models directly from such datasets. Following conventional logic, it is 

straightforward to systematically address each pivotal stage in resolving 

crystalline structures derived from traditional powder diffraction data—

encompassing indexing, decomposition, solution determination, and refinement. 

However, this approach not only leads to a complex integration of stepwise 

intensive computational work but also encounters inevitable challenges that 

remain insurmountable due to fundamental principles6. Therefore, it becomes 

imperative to develop an innovative methodology capable of obtaining reliable 

crystal structures through direct analysis of powder diffraction data using 

unequivocal parameters while avoiding those associated with insoluble 

problems. 

   Here we present UstcUnfold, a leapfrog model capable of accurately 



determining the structures of both organic and inorganic-organic hybrid 

crystalline solids through direct analysis of powder X-ray diffraction (PXRD) 

data. A fundamental pattern-structure paired template library, derived from the 

Cambridge Crystallographic Data Centre (CCDC) database, has been 

developed to elucidate the overlapping high-dimensional information 

embedded within the input spectra. This advancement enables the generation 

of a preliminary structural model based on the input spectra and corresponding 

queried templates through a multi-task framework. Subsequently, it optimizes 

the predicted structure at an atomic level by employing an innovative chemically 

constrained residual diffusion network. Consequently, UstcUnfold provides an 

end-to-end solution that effectively circumvents parameters associated with 

insoluble challenges in conventional structure solution methodologies (Fig. 1). 

Furthermore, this model is applicable to crystal structures across all possible 

space groups, demonstrating unprecedented adaptability to diverse datasets. 

The most significant feature of this model is its notable compatibility with routine 

PXRD patterns commonly produced by standard instruments, allowing for rapid 

data collection and normal resolution levels. 

 

Fig. 1│ UstcUnfold precisely determines organic and coordination crystal structures 

from PXRD data. The upper section addresses the issue of overlapping PXRD peaks, along 

with the processes and challenges associated with conventional structure determination based 

on PXRD data. The lower section offers an overview of UstcUnfold, which encompasses 

template extraction and the use of a template library to enhance information for structural 

generation, followed by subsequent structure optimization. 



 

Fig. 2 | Workflow of USTCunfold. a Template library construction. PXRD patterns are 

categorized into 900 distinct groups based on peak intervals, followed by K-means clustering 

to create representative structural templates. These templates include both detailed local 

structures and global framework types, each linked with their corresponding PXRD patterns to 

illustrate the relationship between structure and diffraction accurately. b PXRD Embedding 

Module. This module captures high-dimensional representations by comparing input PXRD 

patterns with the template library to identify the four most similar templates. Both the input and 

selected templates are processed in a PXRD embedding sub-module, while structural and 

ligand templates are embedded concurrently. The data is concatenated into a matrix format, 

with zeroed-out missing elements ensuring proper alignment for analysis. c Structure 

initialization module. A preliminary coarse structure is generated from the embedded matrix 

using a stacked residual deep network, which integrates outputs from the template block to 

capture crystallographic invariances and the flash-transformer to link PXRD data with structural 

features. The output is processed through three sub-networks to predict crystal space groups, 

unit-cell parameters, and atomic coordinates, creating a coarse structural model for further 

refinement. d Structure optimization module. This module utilizes multiple layers of the DiT and 

Score & Bond Check Net to refine coarse structures. It processes unit-cell parameters, space 

group, atomic coordinates, and PXRD embeddings, retaining structures with scores above 0.9; 

if none qualify, refinement iterates for improved accuracy in crystal structure predictions. 



End-to-end network architecture and training 

   The comprehensive workflow of UstcUnfold is depicted in Fig. 2. UstcUnfold 

represents a sophisticated end-to-end neural network that seamlessly 

integrates a PXRD-pattern-structure template library with crystal geometry and 

chemical constraints, enabling precise predictions of crystal structures derived 

from PXRD data. The principal contributions of UstcUnfold are two-fold: i) We 

developed a comprehensive pre-processing template library that systematically 

links PXRD patterns to their corresponding substructures. These spectrum-

structure pairs were then employed to enrich the low-dimensional input spectra 

through a multi-sequence alignment process. ii) We introduced a two-stage 

neural network, where the first stage utilizes a multi-task learning framework to 

generate an initial coarse crystal structure based on the input spectrum and 

matched templates. The second stage applies a diffusion-based residual 

network24,25 to refine the structure at the atomic level, incorporating crystal 

geometry and chemical constraints. 

   To construct the template library, we assembled and utilized over 1.1 million 

theoretical structure-PXRD pairs (within the two-theta range of 0–90°) across 

225 commonly observed space groups from the CCDC database10. This 

process ultimately yielded a curated set of more than 2,000 templates, each 

corresponding to specific substructures and their associated PXRD patterns. 

Fig. 2a illustrates the complete workflow for generating the template library. The 

integrated PXRD data were segmented into 900 intervals, each spanning 0.1°, 

and categorized based on the locations of their highest-intensity peaks. For 

each interval category, we employed k-means clustering11,12 using data from all 

remaining intervals (excluding that of the highest peak). From each cluster, we 

selected the Top- 𝑁  (𝑁 ∈ [4,+∞])  PXRD patterns closest to the cluster 

centroid as representative candidate pattern for analyzing and extracting 

structure templates. The structural templates consist of two primary types: (i) 

Local detailed templates, which capture common metal-ligand bonding patterns 

and typical coordination environments; and (ii) Global framework templates, 

which record the distribution of crystal structures across an entire unit-cell. 

Notably, template extraction focused on metal atom positions, with organic 

crystal data treated using benzene rings as pseudo-metal atoms for 

consistency (see details in Methods). Following the template extraction, we 

verified structural similarity by comparing atomic classifications and relative 

coordinates, considering only metals and non-metals. Only structurally similar 

templates with corresponding PXRD patterns were linked and included in the 

final template library, ensuring accurate pairings of structure and diffraction data.  

   Next, we present the backbone architecture of UstcUnfold, which consists 

of three essential modules: the PXRD embedding module (Fig. 2b), the 

structure initialization module (Fig. 2c), and the structure optimization module 

(Fig. 2d). The inputs to UstcUnfold include PXRD data, metal types, and ligand 



structures, aligning with conventional methods for unfolding PXRD data. Each 

module serves a distinct function in the overall process of structure 

determination. The PXRD embedding module is specifically designed to 

capture the high-dimensional semantic representations of the input data (Fig. 

2b). It initiates by comparing the input PXRD patterns against a template library, 

identifying the top four templates that exhibit the highest similarity to the input 

PXRD data. These top-four PXRD patterns, in conjunction with the input PXRD 

data, are subsequently processed through a dedicated PXRD embedding sub-

module. Concurrently, both the corresponding structure templates and the input 

ligand structure undergo embedding via a structure embedding26 sub-module. 

The embedded PXRD and structural data are then concatenated and organized 

into a matrix format, ensuring that each row corresponds either to the input or 

to a similar template’s PXRD and structural information. To maintain alignment 

within this matrix, any missing elements in rows have been zeroed out. Based 

on the embedded matrix, the structure initialization module generates a 

preliminary coarse structure (Fig. 2c). This module employs a stacked residual 

deep network13, wherein each layer integrates a template block derived from 

variated evoformer14,15 and a flash-transformer net16. Prior to stacking, absolute 

position embedding17 is introduced into each sequence within the transformer 

to distinguish between PXRD and structural hidden features. The template 

block network identifies crystallographic invariances and variations across 

similar PXRD patterns, while the flash-transformer net captures the 

relationships between PXRD data and structural information within the same 

sequence. Through residual stacking of these networks, the model effectively 

captures both intra- and inter-sequence interactions, resulting in more accurate 

structural predictions. The final output is subsequently fed into three sub-

networks that predict crystal space groups, unit-cell parameters, and atomic 

coordinates (including types and xyz positions), respectively. Collectively, these 

predictions define a coarse structural model that also serves as input for the 

subsequent module alongside the hidden features of the original input PXRD 

data—this being a direct output of the residual network27. The final structure 

optimization module (Fig. 2d) comprises multiple layers of Diffusion 

Transformer (DiT)18 integrated with a chemically constrained network, known 

as the Score & Bond Check Net. This module accepts as input the unit-cell 

parameters, space group, atomic coordinates (including types and xyz 

positions), and PXRD embeddings obtained from the preceding stage. It refines 

the coarse structure through a diffusion-based process19 that parallels classical 

crystal structure refinement28. The chemically constrained network is pre-

trained to ensure compliance with established chemical rules regarding bond 

lengths and angles while simultaneously evaluating the congruence between 

the predicted structure and PXRD data. During the DiT refinement process, only 

those structures achieving a score exceeding 0.9 (on a scale of 1) are retained. 

In instances where no structure meets this criterion, the process re-samples the 

coarse structure and initiates another cycle of refinement. This iterative 



mechanism of scoring and adjustment enables UstcUnfold to deliver highly 

accurate crystal structures. 

   The training of UstcUnfold consists of two distinct phases: unsupervised 

pre-training of sub-modules and supervised training of the network. The 

unsupervised pre-training includes the following components: (i) a masked pre-

training approach for the flash-transformer, designed to enhance the model's 

resilience against lower-quality PXRD data, such as datasets characterized by 

missing peaks or reduced two-theta angles. Specifically, 15% of the input 

tokens are randomly masked, with unmasked sequences employed to predict 

these masked tokens29; (ii) independent training of the Score & Bond Check 

Network, which aims to ensure that bond lengths and angles conform to 

established chemical rules while correlating predicted crystal structures with 

PXRD data. This process involves generating erroneous structure-PXRD pairs 

through substitution, deletion, or modification of structural components. These 

erroneous pairs are then trained alongside authentic structure-PXRD pairs, 

enabling the network to assign high scores to accurate pairings while penalizing 

inaccurate ones. Upon the completion of the pre-training phase, we proceed to 

supervised training, which is further subdivided into two components: (i) 

independent training of the structure initialization and structure optimization 

modules. The structure initialization utilizes Mean Absolute Error (MAE) for 

crystal atomic structures and unit-cell parameters, alongside cross-entropy loss 

for space groups. This approach leverages a multi-task learning framework20 to 

jointly optimize these three outputs. The primary emphasis is placed on atomic 

coordinates to yield a more accurate coarse structure and facilitate subsequent 

refinements. In the training of the structure optimization module, the loss 

associated with atomic coordinates is defined as Root Mean Square Error 

(RMSE), while losses for unit-cell parameters and space groups adhere to 

similar criteria as in the previous module, employing Gaussian noise-

augmented data for training; (ii) end-to-end training of the entire UstcUnfold 

model, where the main focus centers on optimizing outputs from the structure 

optimization module following continuous execution of UstcUnfold. 

   The training data employed in this study is exclusively derived from publicly 

available crystal data within CCDC10, with corresponding theoretical powder X-

ray diffraction (PXRD) patterns computed for each crystal structure. Notably, 

crystal data belonging to the P21/c and P-1 space groups account for over 59% 

of the total sample size in the CCDC, resulting in a significant imbalance in the 

distribution of training data21-23. Furthermore, atomic distributions across 

different space groups exhibit considerable variability among crystal structures. 

To enhance the model's capability to predict structures across all possible 

space groups for crystalline solids—particularly those with limited sample 

sizes—we implement a proportional sampling strategy. For space groups 

containing more than 2,000 samples, we adaptively sample between 1% and 

50% of the dataset, inversely proportional to their respective sample sizes. 

Conversely, for those with fewer than 2,000 samples, a fixed sampling rate of 



50% is applied. This methodology facilitates the construction of a 

comprehensive training and validation dataset while designating unsampled 

data as the test set. 

 

Fig. 3│Performance evaluation of UstcUnfold in predicting key crystal structures. a 

Prediction accuracy for unit-cell parameters (a, b, c, α, β, and γ), represented by the Mean 

Absolute Percentage Error (MAPE). UstcUnfold consistently achieved MAPE values below 0.05, 

with the maximum error limited to 5.7%. b Space group classification accuracy across 225 

space groups, with over 95% accuracy achieved in 154 groups, encompassing 99.7% of the 

CCDC dataset. c Mean Absolute Error (MAE) for atomic coordinates across 486 samples 

containing fewer than 600 atoms. Average prediction errors were 0.705 for organic and 0.711 

for coordinative compounds, demonstrating minimal performance variance with respect to atom 

count. d MAPE analysis of bond lengths, bond angles, dihedral angles classified into 

organic/coordinative bonds, and non-bonded atomic distances classified into metal-

metal/coordination/non-metal distances, with all metrics achieving MAPE values below 0.1. e 

Two representative examples from both organic and coordinative compounds, showing 

predicted versus actual crystal structures, alongside corresponding calculated PXRD patterns, 

highlighting UstcUnfold's high accuracy in structural reconstruction. 



Accuracy across crystalline solids in all possible space groups 

UstcUnfold demonstrates commendable accuracy in predicting crystal 

structures across all possible space groups, utilizing input data that includes 

PXRD patterns, metal types, and ligand structures. The prediction task is 

segmented into three fundamental components: unit-cell parameters, space 

group classification, and atomic coordinates (which encompass atomic types 

and xyz positions), as previously mentioned. Collectively, these elements 

delineate the overall spatial distribution, symmetry constraints within the unit-

cell, and specific atomic arrangements, thereby facilitating the reconstruction of 

detailed crystal structures. 

In Fig 3, we present the prediction results for these three structural tasks, 

showcasing examples from both organic and coordination compounds. To 

rigorously evaluate UstcUnfold’s predictive performance, a test set comprising 

500 crystal structures was randomly sampled from the CCDC library along with 

their theoretical PXRD patterns (5–90°). This test set was evenly divided into 

two categories—organic and coordinative—with 250 samples each. To ensure 

comprehensive coverage of space groups, we selected two samples from each 

of the 25 space groups containing more than 2,000 structures and one sample 

from those with fewer than 2,000 entries; this approach encompassed a total of 

225 distinct space groups. 

UstcUnfold's performance in predicting unit-cell parameters, assessed 

through the Mean Absolute Percentage Error (MAPE), yielded notably 

favorable results. Predictions for six unit-cell parameters (a, b, c, α, β, and γ) 

consistently achieved MAPE values below 0.05 (Fig. 3a). Although organic 

compounds generally exhibited slightly higher prediction errors compared to 

coordinative ones, the maximum MAPE value across all samples was 

constrained to 0.057, ensuring that the relative error for unit-cell parameters did 

not exceed 5.7%. 

In terms of space group classification, UstcUnfold demonstrated over 90% 

prediction accuracy across all 225 space groups and surpassed 95% accuracy 

for approximately 68.4% of these groups (154 groups). These 154 space 

groups encompass a total of 1,146,660 structures out of the 1,149,525 entries 

in the CCDC database—resulting in a classification accuracy of 95% for 99.7% 

of the dataset (Fig. 3b). 

To further assess the capability of UstcUnfold in predicting atomic 

coordinates, we employed a range of evaluation metrics. The Mean Absolute 

Error (MAE) for atomic coordinates was analyzed across 486 samples 

containing fewer than 600 atoms. The average prediction errors were found to 

be 0.705 for organic compounds and 0.711 for coordinative compounds, 

indicating that the model achieves high accuracy and efficiency for crystals with 

fewer than 600 atoms. Furthermore, the number of atoms within this range had 



a negligible impact on prediction performance (Fig. 3c). 

Additionally, the predictions made by UstcUnfold regarding bond lengths, 

bond angles, dihedral angles, and non-bonded atomic distances were 

evaluated using Mean Absolute Percentage Error (MAPE) metrics (Fig. 3d). 

Given the critical structural roles that metals play in coordinative compounds, 

we further refined our evaluation criteria by categorizing bond lengths and 

angles into coordinative ones and organic ones in ligands, while classifying 

non-bonded distances into metal-metal distances, coordination distances, and 

non-metal distances. Across all 13 metrics assessed, UstcUnfold achieved 

MAPE values below 0.1, demonstrating exceptional accuracy in predicting 

essential bond and geometric parameters. 

Finally, to visually illustrate UstcUnfold’s capability to accurately reconstruct 

crystal structures, we present two randomly selected examples from both 

organic and coordinative categories (Fig. 3e). These examples display the 

predicted structures with their actual counterparts and highlight the 

discrepancies in their calculated PXRD patterns. 

 

Fig. 4│Performance evaluation of UstcUnfold on experimental PXRD data. a Structural 

prediction accuracy of UstcUnfold across various 2θ angles, demonstrating maintenance of 

structural errors (MAPE) below 0.1 at a minimum 2θ of 60°. b and c Unfolding results of 

UstcUnfold for both pure organic and organometallic compounds, showcasing accurate space 

group predictions and a mean absolute error (MAE) of approximately 0.115 for unit-cell 

parameters. The predicted structures exhibit a high degree of fidelity to the actual structures, 

as evidenced by the nearly indistinguishable comparison diagrams. 



 

Experimental pattern examples for predicting crystal structure 

Following meticulous evaluations of UstcUnfold through theoretical PXRD data, 

we advanced to the exploration of experimental PXRD. It is crucial to 

acknowledge that classical structure determination from PXRD data presents 

well-documented challenges, particularly in obtaining high-resolution PXRD 

datasets that reveal pronounced peaks at elevated 2θ ranges. This undertaking 

demands sophisticated and costly data-collection methodologies, samples of 

exceptional purity and crystallinity, and a considerable investment of time. To 

refine our model, we conducted a series of PXRD pattern analyses across 

various 2θ ranges to evaluate their influence on the model's predictive 

performance. Fig. 4a demonstrates that the optimized UstcUnfold maintains 

structural errors, as measured by MAPE, below 0.1 at a minimum 2θ of 60°, 

which corresponds to a standard data resolution achievable by most crystalline 

solids. Additionally, to address the noise and peak-missing issues commonly 

encountered in experimental PXRD data, we incorporate peak masking of 

PXRD during the pretraining of UstcUnfold’s flash-transformer to enhance the 

model’s robustness to PXRD data of varying precision. Building on this analysis, 

we further explored the efficacy of UstcUnfold in reconstructing the structures 

of both organic and coordination compounds from experimental PXRD data 

collected using standard instrumentation within a brief duration (2-hour scan). 

All patterns were pre-processed to mitigate the effects of environmental noise. 

Figures 4b30 and 4c31 present the unfolding results, demonstrating that 

UstcUnfold accurately predicts space groups for both types of compounds, with 

a mean absolute error (MAE) of approximately 0.115 for unit-cell parameters. 

The accuracies in predicting atomic coordinates, bond lengths, bond angles of 

coordination bonds, and dihedral angles are consistent with those derived from 

theoretical PXRD patterns. Notably, the nearly indistinguishable comparison 

diagrams between predicted and actual structures for two examples highlight 

UstcUnfold’s capability to effectively resolve complex crystal structures from 

standard experimental PXRD data. 

Therefore, our work not only establishes a rapid and precise AI-driven solution 

for determining the crystal structures of organic and coordination compounds 

from widely utilized powder diffraction data—an endeavor of significant 

importance for natural organic products and biological molecules with 

coordinating building units—but also has the potential to transform the 

paradigm that links low-dimensional spectral databases to high-dimensional 

structural information. Ultimately, this advancement bridges insights from 

crystal structures to molecular configurations and even electronic structures 

across various states of matter (solid, liquid, and gas). 
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