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ONE-POINT RESTRICTED CONFORMAL BLOCKS AND THE FUSION RULES

JIANQI LIU

Abstract. We investigate the one-point restriction of the conformal blocks on (P1,∞,w, 0) de-

fined by modules over a vertex operator algebra. By restricting the module attached to the point

∞ to its bottom degree, we obtain a new formula to calculate fusion rules using a module over

the degree-zero Borcherds’ Lie algebra. This formula holds under more general assumptions

than Frenkel-Zhu’s fusion rules theorem. By restricting the module attached to the point w to its

bottom degree, we obtain a more general version of Li’s nuclear democracy theorem for vertex

operator algebras.
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1. Introduction

The space of conformal blocks on the three-pointed genus-zero smooth curve defined by

modules over a vertex operator algebra (VOA) V is isomorphic to the vector space of intertwin-

ing operators among these modules, whose dimension is the fusion rule [NT05, FBZ04]. Using

the restriction technique of conformal blocks [GLZ24], we obtain a new hom-space identifica-

tion of the space of intertwining operators I
(

M3

M1 M2

)
by a module M1 ⊙ M2 over the degree-zero

Borcherds Lie algebra L(V)0 [B86] or the Zhu’s algebra A(V) [Z96].

Motivated by finding a mathematical rigorous definition of the WZNW-conformal field the-

ory, Tsuchiya, Ueno, and Yamada introduced the notions of coinvariants (vacua) and conformal
1
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blocks (covacua) on stable algebraic curves defined by highest-weight representations of affine

Kac-Moody algebras ĝ of non-generic level k ∈ Z>0 [TUY89]. From the VOA point of view, the

representation theory of affine Lie algebras is in parallel with the representation theory of affine

VOAs of the same level [FZ92]. With this key observation, the notions of coinvariants and con-

formal blocks were generalized to the VOA case by Zhu [Z94], Frenkel-Ben-Zvi [FBZ04], and

Nagatomo-Tsuchiya [NT05] for smooth curves, and by Damiolini-Gibney-Tarasca [DGT24]

for general stable curves. The space of three-pointed conformal blocks associated to the pro-

jective line (P1,∞, 1, 0, (M3)′, M1, M2) is canonically isomorphic to the space of intertwining

operators I
(

M3

M1 M2

)
among these V-modules. These spaces are the building blocks of the space

of conformal blocks on higher-genus algebraic curves via the factorization theorem [DGT24].

The dimension of these spaces, namely the fusion rules, are not only one of the central subjects

in the conformal field theory (CFT), but also carry important information about the rank of the

vector bundle on the moduli spaceMg,n, parametrizing n-pointed genus-g stable curves, defined

by the VOA-conformal blocks [DGT24, DG23].

The structure of the space I
(

M3

M1 M2

)
has been studied extensively in the theory of both VOAs

and CFTs. For instance, on the CFT side, Tsuchiya and Kanie proved that for the WZNW-model

of type A1, an intertwining operator of type
(

j3
j j2

)
can be uniquely determined by an element

Φ(u, z) ∈ HomC(Lŝl2
(k, j2), Lŝl2

(k, j3)){z} associated to u ∈ L( j) satisfying certain bracket equal-

ities with respect to the Sugawara operator L(m) and the affine Lie algebra operator a(m) ∈ ŝl2

[TK87]. This is the so-called nuclear democracy theorem, which was generalized by Li to the

rational VOA case in [Li98]. On the VOA side, Frenkel and Zhu proposed a theorem which

states that I
(

M3

M1 M2

)
� HomA(V)(A(M1) ⊗A(V) M2(0), M3(0)) [FZ92], where A(M1) is a bimodule

over Zhu’s algebra A(V). Li improved this theorem by adding the assumptions that M2 and

(M3)′ are generalized Verma modules [DLM98] associated to their bottom degrees M2(0) and

M3(0)∗, respectively [Li99]. The author proved a variant of this theorem using the technique of

three-pointed correlation functions defined by intertwining operators [Liu23], which was fur-

ther generalized to the g-twisted case by Gao, the author, and Zhu by developing the theory of

twisted correlation functions [GLZ23]. The fusion rules theorem had generalizations from vari-

ous aspects in the theory of VOAs. For instance, Dong and Ren generalized it to the higher-level

and modular representation case in [DR13,DR14] using a bimodule over the higher-level Zhu’s

algebra AN(V) [DLM98(2)]; Huang and Yang generalized it to the logarithmic intertwining

operator case in [HY12]; Huang also gave an interpretation of the space of logarithmic inter-

twining operators case using a bimodule over his associative algebra A∞(V) in [H22, H24]. All

of these generalizations were influenced by the idea of using a bimodule over certain variants

of the associative algebra A(V) to describe the space of intertwining operators. Recently, Gao,

the author, and Zhu introduced a notion of (twisted) restricted conformal blocks in [GLZ24].

With this new notion, we noticed that the hom space HomA(V)(A(M1)⊗A(V) M2(0), M3(0)) can be

identified with the space of two-pointed restricted conformal blocks defined on the projective

line (P1,∞, 1, 0, M3(0)∗, M1, M2(0)), where the V-modules (M3)′ and M2 attached to ∞ and 0

are restricted to their bottom degrees M3(0)∗ and M2(0), respectively, and the fusion rules the-

orem can be interpreted as a theorem about extending a restricted conformal block to a regular

conformal block.

In this paper, by examining the space of conformal blocks on the one-point restricted pro-

jective line (P1,∞, 1, 0, M3(0)∗, M1, M2), we give a new formula to describe the space of inter-

twining operators I
(

M3

M1 M2

)
without using the A(V)-bimodule A(M). Our formula also leads to a

sharper upper bound of the fusion rules for certain irrational VOAs.

To state our results precisely, and describe how they are proved, we set a small amount of

notation. Let (C, P•) be a stable n-pointed curve with marked points P• = (P1, . . . , Pn), and let

M1, . . . , Mn be irreducible admissible modules over a VOA V . A conformal block associated
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to the datum (C, P•, M•) is a linear functional f : M1 ⊗ . . . ⊗ Mn → C that is invariant under

the action of the chiral Lie algebra LC\P•(V) = H0(C\P•,VC ⊗ ΩC/Im∇) on the tensor product

M1 ⊗ . . . ⊗ Mn, where VC is a vertex algebra bundle on C, ∇ is a flat connection of VC , and ΩC

is the dualizing sheaf on C [FBZ04, DGT24]. In this paper, we will mainly be focusing on the

case when (C, P•) = (P1,∞, 1, 0), with (M3)′, M1, and M2 attached to the points ∞, 1, and 0,

respectively. In this case, elements in the chiral Lie algebra LP1\{∞,1,0}(V) can be represented by

a ⊗ f (z), where f (z) is a rational function in z and z − 1. The chiral Lie algebra LP1\{∞,1,0}(V)

has natural actions on the V-modules (M3)′, M1, and M2 with given by the trivialization of the

vertex algebra bundle VP1 around the points∞, 1, and 0, respectively. The space of three-pointed
conformal blocks on P1, denoted by C

(
Σ1((M3)′, M1, M2)

)
, consists of linear functionals f ∈

(M3)′ ⊗C M1⊗C M2 → C that is invariant under the action of the chiral Lie algebra LP1\{∞,1,0}(V)

on the tensor product.

We define the ∞-restricted chiral Lie algebra LP1\{0,1}(V)≤0 to be the Lie subalgebra of

LP1\{∞,1,0}(V) spanned by elements that leave the subspace M3(0)∗ ⊗C M1 ⊗C M2 invariant, then

define a∞-restricted conformal block to be a linear functional f : M3(0)∗⊗CM1⊗CM2 → C that

is invariant under the action of LP1\{0,1}(V)≤0 (see Definition 4.1). The Lie algebra LP1\{0,1}(V)≤0

has an ideal LP1\{0,1}(V)<0 consisting of elements whose action vanishes on M3(0)∗, and such

that the quotient algebra LP1\{0,1}(V)≤0/LP1\{0,1}(V)<0 is isomorphic to the degree zero Borcherds

Lie algebra L(V)0 (see Lemma 3.5). Let

M1 ⊙ M2 := M1 ⊗C M2/LP1\{0,1}(V)<0.(M1 ⊗C M2),

which is a module over the Lie algebra L(V)0. Using a set of spanning elements ofLP1\{0,1}(V)<0,

we can show that M1 ⊙M2 is spanned by the equivalent classes v1 ⊙ v2 of the elements v1 ⊗ v2 ∈

M1 ⊗C M2, subject to the following relations (see Definition 4.3):

∑

j≥0

(
wta − 1

j

)
a( j − 1)v1 ⊙ v2 = v1 ⊙

∑

j≥0

a(wta − 1 + j)v2,

∑

j≥0

(
wta − k

j

)
a( j)v1 ⊙ v2 = −v1 ⊙ a(wta − k)v2,

where a ∈ V , v1 ∈ M1, v2 ∈ M2, k ≥ 2. The following is our main theorem (see Theorem 5.6).

Theorem A. Let M1, M2, and M3 be ordinary V-modules of conformal weights h1, h2, and h3,

respectively. Suppose the contragredient module (M3)′ is isomorphic to the generalized Verma

module M̄(M3(0)∗). Then we have an isomorphism of vector spaces

I

(
M3

M1 M2

)
� HomL(V)0

(M1 ⊙ M2, M3(0)). (1.1)

In particular, N
(

M3

M1 M2

)
= dim HomL(V)0

(M1 ⊙ M2, M3(0)). If V is rational, then (1.1) holds for

any irreducible V-modules M1, M2, and M3.

One advantage of Theorem A in comparison with Frenkel-Zhu’s fusion rules theorem is that

we do not need M2 to be a generalized Verma module, which makes an essential difference

when the VOA V is not rational. Moreover, if we only assume (M3)′ is generated by its bottom

degree M3(0)∗, then we have an estimate of the fusion rule (see Lemma 5.1):

N

(
M3

M1 M2

)
≤ dim HomL(V)0

(M1 ⊙ M2, M3(0)). (1.2)

Another advantage of our hom-space description (1.1) is that the estimate (1.2) is in general

sharper than the estimate N
(

M3

M1 M2

)
≤ dim HomA(V)(A(M1) ⊗A(V) M2(0), M3(0)). We use Li’s ex-

ample of modules over the universal Virasoro VOA [Li99] to illustrate this fact in Section 5.4.2.

If the V-module M2 is generated by M2(0), we can show that M1⊙M2 is a left module over A(V),
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and it is a quotient module of A(M1)⊗A(V) M2(0) (see Theorem 4.7). In other words, M1⊙M2 in

general has more relations than A(M1)⊗A(V) M2(0), which explains why the estimate (1.2) leads

to a sharper upper bound of the fusion rules.

Instead of using the language of correlation functions, we will use the language of conformal

blocks to prove Theorem A, with the assistance of chiral Lie algebra. The proof is much shorter

than the proof of the fusion rules theorem [Liu23, GLZ23]. It is well-known that the space of

intertwining operators is isomorphic to the space of conformal blocks C

(
Σ1((M3)′, M1, M2)

)

[FBZ04, NT05]. Using some basic facts about the representation theory of Lie algebras, we

can also show that the space HomL(V)0
(M1 ⊙ M2, M3(0)) can be identified with the space of

∞-restricted conformal blocks C

(
Σ1(M3(0)∗, M1, M2)

)
(see Proposition 4.4). Then Theorem A

is equivalent to showing that C

(
Σ1((M3)′, M1, M2)

)
� C

(
Σ1(M3(0)∗, M1, M2)

)
. This can be

done using an explicit set of spanning elements of LP1\{∞,1,0}(V) (see Theorem 5.5). There is

an alternative proof of a more general version of the isomorphism between restricted and un-

restricted conformal blocks in [GLZ24] using the Riemann-Roch theorem of algebraic curves.

The method we used in this paper is purely algebraic.

The idea of restricting one module in the three-pointed conformal blocks to its bottom degree

has further applications. Instead of restricting the module (M3)′ attached to ∞ to its bottom

degree M3(0)∗ , one can also restrict the module M2 attached to a point w ∈ P1\{0,∞} to

its bottom degree M2(0) and obtain another space of one-point restricted conformal blocks

C

(
Σw((M3)′, M1(0), M2)

)
. It turns out that this space is isomorphic to the space of generalized

intertwining operators introduced by Li in [Li98] (see Proposition 6.7). The extension theorem

of restricted conformal blocks then lead to an alternative proof of Li’s generalized nuclear
democracy theorem (GNDT) [Li98] (see Theorem 6.10). We also find a hom-space description

of the GNDT using the w-restricted chiral Lie algebras (see Theorem 6.11).

This paper is organized as follows: we first recall the basics of VOAs and related construc-

tions and then recall the definition of three-pointed conformal blocks on P1 in Section 2. We

introduce the notion of ∞-restricted chiral Lie algebras in Section 3 and discuss its basic prop-

erties and spanning elements. In Section 4, we introduce the notions of∞-restricted conformal

blocks and the L(V)0-module M1 ⊙ M2 using the results in the previous Sections. We prove

Theorem A in Section 5 and discuss some of its consequences. Finally, in Section 6, we rein-

terpret Li’s generalized nuclear democracy theorem using the one-point restricted conformal

blocks and prove some of its variants.

Conventions. Throughout this paper, we adopt the following conventions:

• All vector spaces and algebraic curves are defined over C, the complex number field.

• N represents the set of all natural numbers, including 0.

2. Space of conformal blocks associated to representation of VOAs on three-pointed P1

In this Section, we first review vertex operator algebras and related constructions, then intro-

duce the notions of chiral Lie algebra ancillary to the three-pointed projective line (P1,∞, 1, 0)

and the space of three-pointed conformal blocks using an algebraic language.

2.1. Preliminaries of VOAs. We recall the definitions of vertex operator algebras (VOAs) and

the related notions like modules over VOAs, intertwining operators and fusion rules, contragre-

dient modules, Borcherds’ Lie algebra and Zhu’s algebra, and the generalized Verma modules

over VOAs. These notions will be used later in this paper. We refer to [B86, FLM88, FHL93,

FZ92, Z96, DLM98, LL04] for more details about these notions.

2.1.1. Vertex operator algebras and modules.

Definition 2.1. A vertex operator algebra (VOA) is a quadruple V = (V, Y, 1, ω), where V =⊕
n∈Z Vn is a Z-graded vector space, with dim Vn < ∞ for all n and Vn = 0 if n ≪ 0;
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1 ∈ V0 is called the vacuum element; ω ∈ V2 is called the Virasoro element; and Y : V →
End(V)[[z, z−1]], a 7→ Y(a, z) =

∑
n∈Z a(n)z−n−1 is a linear map called the state-field correspon-

dence, subject to the following axioms:

(1) (truncation property) Y(a, z)b ∈ V((z)). i.e., for any a, b ∈ V , anb = 0 for n ≫ 0.

(2) (vacuum and creation property) Y(1, z) = IdV and Y(a, z)1 = a + a−21z + a−31z2
+ . . . ,

(3) (weak commutativity) For a, b ∈ V , there exists k ∈ N such that

(z1 − z2)kY(a, z1)Y(b, z2) = (z1 − z2)kY(b, z2)Y(a, z1). (2.1)

(4) (weak associativity) For a, b, c ∈ V , there exists k ∈ N (depending on a and c) such that

(z0 + z2)kY(Y(a, z0)b, z2)c = (z0 + z2)kY(a, z0 + z2)Y(b, z2)c. (2.2)

(5) (Virasoro relation) Let Y(ω, z) =
∑
∈Z L(n)z−n−2, then [L(m), L(n)] = (m − n)L(m + n) +

(m3−m)

12
δm+n,0cIdV , for any m, n ∈ Z, where c is called the central charge of V .

(6) (L(−1)-derivative property) Y(L(−1)a, z) = d
dzY(a, z) for any a ∈ V .

(7) (L(0)-eigenspace property) For any n ∈ Z and a ∈ Vn, L(0)a = na.

We write wta = n if n ∈ Vn. We abbreviate the quadruple (V, Y, 1, ω) by V . A VOA V is said to

be of CFT-type if V = V0 ⊕ V+, where V0 = C1 and V+ =
⊕∞

n=1
Vn.

The axioms of a V-module are similar to the VOA V itself [FHL93, DLM98]:

Definition 2.2. Let V be a VOA. An admissible V-module is a N-graded vector space M =⊕∞

n=0
M(n), equipped with a linear map YM : V → End(M)[[z, z−1]], YM(a, z) =

∑
n∈Z a(n)z−n−1

called the module vertex operator, satisfying

(1) (truncation property) For any a ∈ V and u ∈ M, YM(a, z)u ∈ M((z)).

(2) (vacuum property) YM(1, z) = IdM.

(3) (Jacobi identity for YM) for any a, b ∈ V and u ∈ M,

z−1
0 δ

(
z1 − z2

z0

)
YM(a, z1)YM(b, z2)u − z−1

0 δ

(
−z2 + z1

z0

)
YM(b, z2)YM(a, z1)u

= z−1
2 δ

(
z1 − z0

z2

)
YM(Y(a, z0)b, z2)u.

(2.3)

(4) (L(−1)-derivative property) YM(L(−1)a, z) = d
dzYM(a, z) for any a ∈ V .

(5) (grading property) For any a ∈ V , m ∈ Z, and n ∈ N, a(m)M(n) ⊆ M(n + wta − m − 1).

i.e., wt(a(m)) = wta − m − 1.

We write deg v = n if v ∈ M(n), and call it the degree of v.

An admissible V-module M is called ordinary if each degree-n subspace M(n) is a finite-

dimensional eigenspace of L(0) of eigenvalue h+ n, where h ∈ C is called the conformal weight
of M. In particular, if we write L(0)v = (wtv) · v for v ∈ M(n), then wtv = deg v + h.

We abbreviate an ordinary V-module simply by a V-module. Submodules, quotient modules,

and irreducible modules are defined in the usual categorical sense. V is called rational if the

category of V-modules is semisimple.

Remark 2.3. We remark the following well-known facts about the Jacobi identity:

(1) One can replace the weak commutativity (2.1) and the weak associativity (2.2) in the

definition of VOAs by the formal variable Jacobi identity (2.3) for Y [LL04].

(2) Using the Cauchy’s integral (or residue) theorem, one can rewrite the formal variable

Jacobi identity (2.3) into the residue form [FLM88, FZ92, Z96]:

Resz=0YM(a, z)YM(b,w)ιz,w(F(z,w)) − Resz=0YM(b,w)YM(a, z)ιw,z(F(z,w))

= Resz−w=0YM(Y(a, z − w)b,w)ιw,z−w(F(z,w)),
(2.4)
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where F(z,w) = znwm(z − w)l, with m, n, l ∈ Z, and ιz,w, ιw,z, and ιw,z−w are the expansion

operations of a rational function in complex variables z and w on the domains |z| > |w|,
|w| > |z|, and |w| > |z − w|, respectively.

(3) The Jacobi identity (2.4) has the following component form:

∞∑

i=0

(
l
i

)
a(m + l − i)b(n + i) −

∞∑

i=0

(−1)l+i

(
l
i

)
b(n + l − i)a(m + i)

=

∞∑

i=0

(a(l + i)b)(m + n − i),

(2.5)

where a, b ∈ V and m, n, l ∈ Z, which is also called the Borcherds identity [B86].

2.1.2. Intertwining operators and fusion rules. Intertwining operators among V-modules are

generalizations of intertwining operators among modules over Lie algebras [FHL93, FZ92,

Li98]:

Definition 2.4. Let M1, M2, M3 be ordinary V-modules of conformal weights h1, h2, h3 ∈ C,

respectively. Let h := h1 + h2 − h3. An intertwining operator of type
(

M3

M1 M2

)
is a linear map

I(·, z) : M1 → Hom(M2, M3)[[z, z−1]]z−h, I(v1, z) =
∑

n∈Z

v1(n)z−n−1−h,

satisfying the following axioms:

(1) (truncation property) For any v1 ∈ M1 and v2 ∈ M2, v1(n)v2 = 0 when n ≫ 0.

(2) (L(−1)-derivative property) For any v1 ∈ M1, I(L(−1)v1, z) = d
dz I(v1, z).

(3) (Jacobi identity) For any v1 ∈ M1, v2 ∈ M2, and a ∈ V , one has

z−1
0 δ

(
z1 − z2

z0

)
YM3(a, z1)I(v1, z2)v2 − z−1

0 δ

(
−z2 + z1

z0

)
I(v1, z2)YM2(a, z1)v2

= z−1
2 δ

(
z1 − z0

z2

)
I(YM1 (a, z0)v1, z2)v2.

The vector space of intertwining operators of type
(

M3

M1 M2

)
is denoted by I

(
M3

M1 M2

)
. Its dimension,

denoted by N
(

M3

M1 M2

)
, is called the fusion rule among M1, M2, and M3.

Using the Jacobi identity and the L(0)-eigenspace property for Mi(n), one can easily show

that v1(n)M2(m) ⊆ M3(deg v1 − n − 1 + m), for any v1 ∈ M1, n ∈ Z, and m ∈ N [FZ92].

2.1.3. Contragredient modules.

Definition 2.5. [FHL93] Let M be an ordinary V-module. Its contragredient module is the

graded dual space M′ =
⊕∞

n=0
(M(n))∗, with YM′ : V → End(M′)[[z, z−1]] given by

〈YM′(a, z)v′, v〉 := 〈v′, YM(ezL(1)(−z−2)L(0)a, z−1)v〉 = 〈v′, Y ′M(a, z)v〉, v′ ∈ M′, v ∈ M, (2.6)

where 〈·, ·〉 : M′ × M → C is the natural pair between graded vector spaces.

It was proved in [FHL93, Section 5] that YM′ defined by (2.6) satisfies the Jacobi identity

(2.3), and Y ′′M(a, z) = YM(a, z).

Moreover, if we write Y ′M(a, z) =
∑

n∈Z a′(n)z−n−1, then by taking the formal residue,

a′(n) =
∑

j≥0

(−1)wta

j!
(L(1) ja)(2wta − n − j − 2). (2.7)

It follows that a′(n)M(m) ⊆ M(−wta + n + 1 + m). i.e., wt(a′(n)) = −wta + n + 1.
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2.1.4. Borcherd’s Lie algebra and Zhu’s algebra associated to a VOA. The commutative unital

differential algebra (C[t, t−1], d
dt , 1) is a vertex algebra, with Y(tn, z)tm

= (ez d
dt tn) · tm. Let V be

a VOA, then V̂ = V ⊗C C[t, t−1] is the tensor product vertex algebra [FHL93], with vacuum

element 1 ⊗ 1 and differential ∇ = L(−1) ⊗ Id + Id ⊗ d
dt , see [B86] for more details.

Definition 2.6. [B86] Let V be a VOA. The Borcherds Lie algebra L(V) is defined by

L(V) = V̂/∇(V̂) = span{a[n] = a ⊗ tn
+ ∇(V̂) : a ∈ V, n ∈ Z}, (2.8)

with (L(−1)a)[n] = −na[n−1], and the Lie bracket

[a[m], b[n]] =
∑

j≥0

(
m

j

)
(a( j)b)[m+n− j], a, b ∈ V,m, n ∈ Z. (2.9)

Let deg(a[n]) := wta−n−1, then L(V) has a triangular decomposition L(V) = L(V)−⊕L(V)0⊕

L(V)+, where L(V)± = span{a[n] : deg(a[n]) ∈ Z±} and L(V)0 = span{a[wta−1] : a ∈ V} are Lie

subalgebras of L(V).

Definition 2.7. [Z96] Let V be a VOA, Zhu’s algebra A(V) is defined by A(V) = V/O(V), where

O(V) = span

{
a ◦ b = Resz=1Y(a, z − 1)bι1,z−1

(
zwta

(z − 1)2

)
: a, b ∈ V

}
. (2.10)

A(V) = span{[a] = a + O(V) : a ∈ V} is an associative algebra with respect to

[a] ∗ [b] = Resz=1[Y(a, z − 1)b]ι1,z−1

(
zwta

z − 1

)
=

∑

j≥0

(
wta

j

)
[a( j − 1)b], a, b ∈ V. (2.11)

We remark the following facts about Zhu’s algebra and Borcherd’s Lie algebra, see [B86,

Z96, DLM98] for more details.

(1) There is an anti-involution θ : A(V) → A(V) defined by θ([a]) = [eL(1)(−1)L(0)a], with

θ([a] ∗ [b]) = θ([b]) ∗ θ([a]).

(2) There is a similar anti-involution θ : L(V) → L(V) defined by θ(a[n]) = a′[n] (2.7), with

θ([a[m], b[n]]) = [θ(bn), θ(a[m])].

(3) Let M =
⊕∞

n=0
M(n) be an admissible V-module. Then the bottom-level M(0) is a left

A(V)-module via A(V) → End(M(0)), [a] 7→ o(a) := a(wta − 1). If M is an irreducible

V-module, then M(0) is an irreducible A(V)-module.

(4) For the contragredient module M′, the bottom-level M′(0) = M(0)∗ is naturally a right

A(V)-module. It is a left A(V)-module via θ. i.e.,

〈[θ(a)].v′ | v〉 := 〈v′.[a] | v〉 = 〈v′ | [a].v〉 = 〈v′ | o(a)v〉, v′ ∈ M(0)∗, v ∈ M(0). (2.12)

(5) There is an epimorphism of Lie algebras

L(V)0 → A(V)Lie, a[wta−1] 7→ [a], (2.13)

2.1.5. Generalized Verma module associated to an A(V)-module. Let U be an irreducible left

module over A(V). Then U is a module over the Lie algebra L(V)0 via (2.13), which can

be lifted to a module over L(V)0 ⊕ L(V)+ by letting (L(V)+).U := 0. Consider the following

induced module over L(V):

M(U) := U(L(V)) ⊗U(L(V)0⊕L(V)+) U = U(L(V)−) ⊗C U.

Let J be the U(L(V))-submodule of M(U) generated by the coefficients of the weak associativity

(2.2). It was proved in [DLM98] that

M̄(U) := M(U)/J

is an admissible V-module generated by U, with bottom-level M̄(U)(0) = U. The module vertex

operator is given by YM̄(U)(a, z) =
∑

n∈Z a(n)z−n−1
=

∑
n∈Z a[n]z−n−1, for any a ∈ V . Moreover, any

admissible V-module W generated by W(0) = U is a quotient module of M̄(U).
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Let M be an irreducible V-moule, then M(0)∗ is an irreducible left A(V)-module via (2.12).

The anti-involution θ : L(V) → L(V) of Lie algebras induces an isomorphism of associative

algebras

θ : U(L(V)) → U(L(V))op.

Since θ(br(nr) . . . b1(n1)) = b′1(n1) . . . b′r(nr), where b′(n) is given by (2.7), and M̄(M(0)∗) =

U(L(V)).M(0)∗ = θ(U(L(V))).M(0)∗. It follows that

M̄(M(0)∗) = span{b′1(n1) . . . b′r(nr)v
′ : r ≥ 0, bi ∈ V, ni ∈ Z,∀i, v′ ∈ M(0)∗}. (2.14)

Moreover, by carefully choosing the coefficients in the weak associativity (2.2) for the vertex

operator YM̄(U), one can also show that M̄(M(0)∗) = span{b′(n)v′ : b ∈ V, n ∈ Z, v′ ∈ M(0)∗}

[LL04]. These facts will be used in Section 5

2.2. The chiral Lie algebra ancillary to (P1,∞, 1, 0). The chiral Lie algebra LC\P•(V) ancil-

lary to a VOA V and a stable n-pointed curve (C, P•) was defined as H0(C\P•,VC ⊗ ΩC/Im∇),

see [FBZ04,BD04,DGT24]. Instead of a family of stable curves, in this paper we are only inter-

ested in one smooth curve C = P1 with three marked points P• = (∞, 1, 0). We can reinterpret

the trivialization of the vector bundle VC ⊗ ΩC/Im∇ on P1 using a purely algebraic language,

and define the chiral Lie algebra LP1\{∞,1,0}(V) ancillary to P1\{∞, 1, 0} as follows:

Consider the localization C[z±1, (z − 1)±1] of the Laurent polynomial ring C[z±1] with respect

to the element (z − 1). Since d/dz preserves the set {(z − 1)−n : n ∈ N}, it induces a differential

operator on the localization, which makes the pair (C[z±1, (z − 1)±1], d/dz, 1) a commutative

differential unital algebra. Then V ⊗ C[z±1, (z − 1)±1] is a vertex algebra.

Definition 2.8. The chiral Lie algebra LP1\{∞,1,0}(V) ancillary to P1\{∞, 1, 0} is defined by

LP1\{∞,1,0}(V) :=
(
V ⊗ C[z±1, (z − 1)±1]

)
/Im∇, (2.15)

where ∇ = L(−1) ⊗ Id + Id ⊗ d
dz . Then as a vector space we have

LP1\{∞,1,0}(V) = span

{
a ⊗

zn

(z − 1)m
: a ∈ V,m, n ∈ Z

}
, (2.16)

with (L(−1)a)⊗ zn

(z−1)m = −a⊗ d
dz

(
zn

(z−1)m

)
, where we use the same symbol for the equivalent class

of a ⊗ zn

(z−1)m ∈ V ⊗ C[z±1, (z − 1)±1] in the quotient space. The Lie bracket on L(V) is given by

[a ⊗
zn

(z − 1)m
, b ⊗

zs

(z − 1)t
] =

∑

i≥0

∑

j≥0

(
n

i

)(
−m

j

)
ai+ jb ⊗

zn+s−i

(z − 1)m+t+ j
, (2.17)

where a, b ∈ V , and m, n, s, t ∈ Z, see Section 3.9 in [GLZ24].

The following Proposition is a purely algebraic version of the chiral Lie algebra action on the

space of coinvariants [FBZ04, DGT24]. The proof is an immediate consequence of the Jacobi

identity of VOAs, together with (2.17), we omit it.

Proposition 2.9. Let M1, M2, and M3 be V-modules, and let a ⊗ zn

(z−1)m ∈ LP1\{∞,1,0}(V). Then

(1) (M3)′ is a module over the Lie algebraLP1\{∞,1,0}(V) via ρ∞ : LP1\{∞,1,0}(V)→ gl((M3)′),

ρ∞

(
a ⊗

zn

(z − 1)m

)
(v′3) = Resz=∞Y(M3)′(ϑ(a), z−1)v′3ιz,1

(
zn

(z − 1)m

)

= −
∑

j≥0

(
−m

j

)
(−1) ja′(n − m − j)v′3, v′3 ∈ (M3)′,

(2.18)

where ϑ(a) = −ezL(1)(−z−2)L(0)(a), and a′(k) is given by (2.7).
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(2) M1 is a module over the Lie algebra LP1\{∞,1,0}(V) via ρ1 : LP1\{∞,1,0}(V)→ gl(M1),

ρ1

(
a ⊗

zn

(z − 1)m

)
(v1) = Resz=1YM1(a, z − 1)v1ι1,z−1

(
zn

(z − 1)m

)

=

∑

j≥0

(
n

j

)
a( j − m)v1, v1 ∈ M1.

(2.19)

(3) M2 is a module over the Lie algebra LP1\{∞,1,0}(V) via ρ0 : LP1\{∞,1,0}(V)→ gl(M2),

ρ0

(
a ⊗

zn

(z − 1)m

)
(v2) = Resz=0YM1(a, z)v2ι1,z

(
zn

(z − 1)m

)

=

∑

j≥0

(
−m

j

)
(−1)−m− ja(n + j)v2, v2 ∈ M2.

(2.20)

In particular, (M3)′ ⊗C M1 ⊗C M2 is a tensor product module over the chiral Lie algebra
LP1\{∞,1,0}(V), with the module action given as follows:

(
a ⊗

zn

(z − 1)m

)
.(v′3 ⊗ v1 ⊗ v2)

= −
∑

j≥0

(
−m

j

)
(−1) ja′(n − m − j)v′3 ⊗ v1 ⊗ v2 +

∑

j≥0

(
n
j

)
v′3 ⊗ a( j − m)v1 ⊗ v2

+

∑

j≥0

(
−m

j

)
(−1)−m− jv′3 ⊗ v1 ⊗ a(n + j)v2,

(2.21)

where v′3 ⊗ v1 ⊗ v2 ∈ (M3)′ ⊗C M1 ⊗C M2.

2.3. Space of three-pointed conformal blocks on P1. Consider the following datum:

Σ1((M3)′, M1, M2) =
(
P

1,∞, 1, 0, 1/z, z − 1, z, (M3)′, M1, M2
)
, (2.22)

where 1/z, z−1, and z are the local coordinate around the points∞, 1, and 0 on P1, respectively.

The contragredient module (M3)′ is attached to∞, and the V-modules M1 and M2 are attached

to the points 1 and 0, respectively. Recall that (M3)′ ⊗C M1 ⊗C M2 is a module over the chiral

Lie algebra LP1\{∞,1,0}(V) via (2.21).

Definition 2.10. [NT05,FBZ04,DGT24] Let V be a VOA, and M1, M2, and M3 be V-modules.

The quotient space

V

(
Σ1((M3)′, M1, M2)

)
:=

(M3)′ ⊗C M1 ⊗C M2

LP1\{0,1,∞}(V).
(
(M3)′ ⊗C M1 ⊗C M2

) . (2.23)

is called the space of coinvariants associated to the datum Σ1((M3)′, M1, M2). The dual space

C

(
Σ1((M3)′, M1, M2)

)
:=

(
(M3)′ ⊗C M1 ⊗C M2

LP1\{0,1,∞}(V).
(
(M3)′ ⊗C M1 ⊗C M2

)
)∗

(2.24)

is called the space of conformal blocks associated to Σ1((M3)′, M1, M2). We refer to an ele-

ment ϕ ∈ C

(
Σ1((M3)′, M1, M2)

)
as a (three-pointed) conformal block associated to the datum

Σ1((M3)′, M1, M2).

One can replace the marked point 1 on P1 by another point w ∈ C× on the same chart con-

taining 0, and define the chiral Lie algebra LP1\{∞,w,0}(V) and its actions in similar ways as

Definition 2.8 and Proposition 2.9, with 1 replaced by w. In particular,

LP1\{∞,w,0}(V) = span

{
a ⊗

zn

(z − w)m
: a ∈ V,m, n ∈ Z

}
, (2.25)
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with (L(−1)a)⊗ zn

(z−w)m = −a⊗ d
dz

(
zn

(z−w)m

)
, and the module action of the Lie algebra LP1\{∞,w,0}(V)

on (M3)′ ⊗C M1 ⊗C M2 is given by
(
a ⊗

zn

(z − w)m

)
.(v′3 ⊗ v1 ⊗ v2)

= −
∑

j≥0

(
−m

j

)
(−1) jw ja′(n − m − j)v′3 ⊗ v1 ⊗ v2 +

∑

j≥0

(
n

j

)
wn− jv′3 ⊗ a( j − m)v1 ⊗ v2

+

∑

j≥0

(
−m

j

)
(−1)−m− jw−m− jv′3 ⊗ v1 ⊗ a(n + j)v2.

(2.26)

Similar to (2.24), for the datum

Σw((M3)′, M1, M2) :=
(
P

1,∞,w, 0, 1/z, z − w, z, (M3)′, M1, M2
)
,

we can define the space conformal blocks C

(
Σw((M3)′, M1, M2)

)
as the vector space of linear

functionals on (M3)′ ⊗C M1 ⊗C M2 that are invariant under the actions of the chiral Lie algebra

LP1\{∞,w,0}(V). The conformal blocks associated to Σ1((M3)′, M1, M2) and Σw((M3)′, M1, M2) are

related by the following formula, see [GLZ24, (eq. 4.11)]:

C

(
Σ1((M3)′, M1, M2)

) ≃
−→ C

(
Σw((M3)′, M1, M2)

)
, ϕ1 7→ ϕw,

〈ϕw | v
′
3 ⊗ v1 ⊗ v2〉 = 〈ϕ1 |w

L(0)−h3v′3 ⊗ w−L(0)+h1 v1 ⊗ w−L(0)+h2v2〉.
(2.27)

It is well-known that there is a one-to-one correspondence between three-pointed conformal

blocks and intertwining operators of VOAs, see [TUY89, FBZ04, NT05, GLZ24]:

Proposition 2.11. Let M1, M2, and M3 be V-modules. Then there is an isomorphism of vector
spaces C

(
Σ1((M3)′, M1, M2)

)
� I

(
M3

M1 M2

)
. In particular, the fusion rule N

(
M3

M1 M2

)
is equal to the

dimension of the space of three-pointed conformal blocks on P1.

3. Restriction of the chiral Lie algebra at ∞

In this Section, we introduce the notion of ∞-restricted chiral Lie algebra LP1\{0,1}(V)≤0 and

its augmented ideal LP1\{0,1}(V)<0. We discuss their basic properties and give a short list of

spanning elements of these Lie algebras. These properties will used to define the ∞-restricted

conformal blocks in the next Section.

3.1. Spanning elements of∞-restricted chiral Lie algebra. Observe that if g is a Lie algebra,

M is a g-module, and V ⊂ M is a subspace, then the stabilizer StabM(V) = {X ∈ g : X.V ⊆ V} is

clearly a Lie subalgebra of g. In particular,

Stab(M3)′⊗CM1⊗CM2(M3(0)∗ ⊗C M1 ⊗C M2)

= {X ∈ LP1\{∞,1,0}(V) : X.(M3(0)∗ ⊗C M1 ⊗C M2) ⊆ M3(0)∗ ⊗C M1 ⊗C M2}
(3.1)

is a Lie subalgebra of the chiral Lie algebra LP1\{∞,1,0}(V).

Definition 3.1. We call the following subspace

LP1\{0,1}(V)≤0 = span

{
a ⊗

zn

(z − 1)m
∈ LP1\{∞,1,0}(V) : a ∈ V, n − m ≤ wta − 1

}
(3.2)

of the chiral Lie algebra LP1\{∞,1,0}(V) the∞-restricted chiral Lie algebra.

Lemma 3.2. The following properties hold for LP1\{0,1}(V)≤0 given by (3.2):

(1) LP1\{0,1}(V)≤0 is a Lie subalgebra of LP1\{∞,1,0}(V).
(2) LP1\{0,1}(V)≤0 ⊆ Stab(M3)′⊗CM1⊗CM2(M3(0)∗ ⊗C M1 ⊗C M2).
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Proof. Let a⊗ zn

(z−1)m and b⊗ zs

(z−1)t ∈ LP1\{1,0}(V)≤0, with n−m ≤ wta− 1 and s− t ≤ wtb− 1. By

(2.17), [a ⊗ zn

(z−1)m , b ⊗
zs

(z−1)t ] =
∑

i≥0

∑
j≥0

(
n
i

)(
−m

j

)
ai+ jb ⊗ zn+s−i

(z−1)m+t+ j , with

(n + s − i) − (m + t + j) = (n − m) + (s − t) − i − j ≤ wta − 1 + wtb − 1 − i − j

= wt(ai+ jb) − 1,
(3.3)

for all i, j ≥ 0. Thus, [a⊗ zn

(z−1)m , b⊗
zs

(z−1)t ] ∈ LP1\{1,0}(V)≤0, and LP1\{1,0}(V)≤0 is a Lie subalgebra.

Let v′
3
⊗ v1 ⊗ v2 ∈ M3(0)∗ ⊗C M1 ⊗C M2, and a ⊗ zn

(z−1)m ∈ LP1\{1,0}(V)≤0. Since deg(a′(n −
m − j)v′

3
) = −wta + n − m − j + 1 ≤ − j ≤ 0 for any j ≥ 0, in view of (3.2), it follows that∑

j≥0

(
−m

j

)
(−1) ja′(n − m − j)v′

3
∈ M3(0)∗. Then by (2.21) we have

(
a ⊗

zn

(z − 1)m

)
.(v′3 ⊗ v1 ⊗ v2)

= −
∑

j≥0

(
−m

j

)
(−1) ja′(n − m − j)v′3 ⊗ v1 ⊗ v2 +

∑

j≥0

(
n

j

)
v′3 ⊗ a( j − m)v1 ⊗ v2

+

∑

j≥0

(
−m

j

)
(−1)−m− jv′3 ⊗ v1 ⊗ a(n + j)v2 ∈ M3(0)∗ ⊗C M1 ⊗C M2.

This shows LP1\{0,1}(V)≤0 ⊆ Stab(M3)′⊗CM1⊗CM2(M3(0)∗ ⊗C M1 ⊗C M2). �

Proposition 3.3. The Lie algebra LP1\{0,1}(V)≤0 is spanned by the following elements:

a ⊗
zwta

z − 1
, a ⊗ zwta−k, a ∈ V homogeneous, k ≥ 1. (3.4)

We make a table for the pairs (n,m) such that n − m ≤ wta − 1:

. . . (wta − 3,−2) (wta − 2,−1) (wta − 1, 0) (wta, 1) (wta + 1, 2) . . .

. . . (wta − 3,−1) (wta − 2, 0) (wta − 1, 1) (wta, 2) (wta + 1, 3) . . .

. . . (wta − 3, 0) (wta − 2, 1) (wta − 1, 2) (wta, 3) (wta + 1, 4) . . .

. . . (wta − 3, 1) (wta − 2, 2) (wta − 1, 3) (wta, 4) (wta + 1, 5) . . .

. . .
...

...
...

...
... . . .

. . . (−2) (−1) (0) (1) (2) . . . ,

(3.5)

wherein the columns are labeled by the indices (i), with i ∈ Z. The pairs (n,m) = (wta, 1), (wta−
k, 0), with k ≥ 1, corresponding to elements (3.4) are marked in red in table (3.5).

proof of Proposition 3.3. Let g be the subspace of LP1\{0,1}(V)≤0 spanned by the elements (3.4).

We need to show that a ⊗ zn

(z−1)m , with (n,m) given by non-red pairs in (3.5), are contained in

g, for any a ∈ V . By abuse of language, we also say that the pair (n,m) belongs to g if the

corresponding element a ⊗ zn

(z−1)m belongs to g.

Fix a l ≥ 0. We claim that

If a ⊗
zwta−l

z − 1
∈ g, ∀a ∈ V, then a ⊗

zwta−l

(z − 1)m
∈ g, ∀a ∈ V, m ≥ 1. (3.6)

i.e., if the pair (wta − l, 1) belongs to g, then all the pairs lying on the same column (l) that are

below (wta − l, 1) are contained in g.

Indeed, since a ⊗ zwta−l

z−1
∈ g for all a ∈ V and wt(L(−1)a) = wta + 1, by (2.15) we have

0 ≡ L(−1)a ⊗
zwta+1−l

z − 1
= −a ⊗

d

dz

(
zwta+1−l

z − 1

)
= −a ⊗

(wta − l)zwta−l

z − 1
+ a ⊗

zwta−l

(z − 1)2

≡ 0 + a ⊗
zwta−l

(z − 1)2
(mod g).



12 JIANQI LIU

Hence (wta − l, 2) belongs to g for all a ∈ V . Proceed like this, using induction on m, we can

easily show that (wta − l,m) belongs to g, for all m ≥ 2 and a ∈ V . This proves our claim (3.6).

In particular, all the pairs on the column (1) are contained in g.

On the other hand, we observe that for any a ∈ V and l,m ∈ Z, we have

a ⊗
zwta−l

(z − 1)m
+ a ⊗

zwta−l

(z − 1)m+1
= a ⊗

zwta−l+1

(z − 1)m+1
.

We use the following graph for the pairs (n,m) to illustrate this property:

(wta − l,m) (wta − l + 1,m + 1)

(wta − l,m + 1)

+
=

(3.7)

Using (3.7), it is easy to see that all the pairs on column (i), with i ≥ 2, are contained in g.

Furthermore, apply (3.7) to the triple

(wta − 1, 0) (wta, 1)

(wta − 1, 1)

We have (wta − 1, 1) ∈ g. Then by Claim (3.6), all the pairs on column (0) are contained in g.

Now apply (3.7) to the triple

(wta − 2, 0) (wta − 1, 1)

(wta − 2, 1)

We have (wta − 2, 1) ∈ g. By the Claim (3.6) again, all the pairs on column (−1) that are lying

below (wta − 2, 0) are contained in g. Proceed like this, we can show that all the pairs below

the ones marked in red in table (3.5) are contained in g. By applying (3.7) successively, starting

with the triple

(wta − 2,−1) (wta − 1, 0)

(wta − 2, 0)

we can easily show that all the pairs on top of the red ones are contained in g as well. Hence all

the pairs in (3.5) are contained in g. �

3.2. The augmented ideal of the ∞-restricted chiral Lie algebra. Inspired by the definition

of O(V) in the Zhu’s algebra A(V) [Z96], we let

AnnL
P1\{0,1}

(V)≤0
(M3(0)∗) :=

{
X ∈ LP1\{0,1}(V)≤0 : ρ∞(X)(M3(0)∗) = 0

}
, (3.8)

which is clearly an ideal of the Lie algebra LP1\{0,1}(V)≤0.

Definition 3.4. We call the subspace

LP1\{0,1}(V)<0 = span

{
a ⊗

zn

(z − 1)m
∈ LP1\{0,1}(V)≤0 : a ∈ V, n − m < wta − 1

}
(3.9)

an augmented ideal of the∞-restricted chiral Lie algebra LP1\{0,1}(V)≤0.

The fact thatLP1\{0,1}(V)<0 is an ideal ofLP1\{0,1}(V)≤0 follows from a similar estimate as (3.3),

we omit the details. In the following table, spanning elements of LP1\{0,1}(V)<0 correspond to

the pairs (n,m) that are lying below the horizontal line:

. . . (wta − 3,−2) (wta − 2,−1) (wta − 1, 0) (wta, 1) (wta + 1, 2) . . .

. . . (wta − 3,−1) (wta − 2, 0) (wta − 1, 1) (wta, 2) (wta + 1, 3) . . .

. . . (wta − 3, 0) (wta − 2, 1) (wta − 1, 2) (wta, 3) (wta + 1, 4) . . .

. . . (wta − 3, 1) (wta − 2, 2) (wta − 1, 3) (wta, 4) (wta + 1, 5) . . .

. . .
...

...
...

...
... . . .

(3.10)

Lemma 3.5. The ideal LP1\{0,1}(V)<0 satisfies the following properties:
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(1) LP1\{0,1}(V)<0 ⊆ AnnL
P1\{0,1}

(V)≤0
(M3(0)∗). In particular, we have

LP1\{0,1}(V)<0.
(
M3(0)∗ ⊗C M1 ⊗C M2

)
= M3(0)∗ ⊗C

(
LP1\{0,1}(V)<0.(M1 ⊗ M2)

)
. (3.11)

(2) The quotient Lie algebra LP1\{0,1}(V)≤0/LP1\{0,1}(V)<0 is isomorphic to the subalgebra
L(V)0 of the Borcherd’s Lie algebra in Definition 2.6.

Proof. Let a ⊗ zn

(z−1)m , ∈ LP1\{0,1}(V)<0. By (2.18), for any v′
3
∈ M3(0)∗,

ρ∞

(
a ⊗

zn

(z − 1)m

)
(v′3) = −

∑

j≥0

(
−m

j

)
(−1) ja′(n − m − j)v′3 = 0,

since deg(a′(n − m − j)v′
3
) = −wta + n − m − j + 1 < − j ≤ 0 for any j ≥ 0. Thus, LP1\{0,1}(V)<0

annihilates M3(0)∗.

Next, we show that LP1\{0,1}(V)≤0/LP1\{0,1}(V)<0 = span{a ⊗ zwta−1
+ LP1\{0,1}(V)<0 : a ∈ V}.

The pair (wta− 1, 0) that corresponds to a⊗ zwta−1 is marked in red in (3.10). Apply (3.7) to the

following triple in table (3.10):
(wta − 1, 0) (wta, 1)

(wta − 1, 1)

we see that a ⊗ zwta

z−1
≡ a ⊗ zwta−1 (mod LP1\{0,1}(V)<0) since the pair (wta − 1, 1) belongs to

LP1\{0,1}(V)<0. Then apply (3.7) to the triple:

(wta, 1) (wta + 1, 2)

(wta, 2)

we have a ⊗ zwta+1

(z−1)2 ≡ a ⊗ zwta

z−1
≡ a ⊗ zwta−1 (mod LP1\{0,1}(V)<0) since the pair (wta, 2) belongs to

LP1\{0,1}(V)<0. Proceed like this, we can show that the elements a ⊗ zn

(z−1)m corresponding to all

the pairs lying on the first line of (3.10) are congruent to a ⊗ zwta−1 modulo LP1\{0,1}(V)<0.

Furthermore, by (2.15) we have L(−1)a⊗zwta
+LP1\{0,1}(V)<0 = −(wta)a⊗zwta−1

+LP1\{0,1}(V)<0,

and it follows from (2.17) that

[a ⊗ zwta−1
+ LP1\{0,1}(V)<0, b ⊗ zwtb−1

+ LP1\{0,1}(V)<0]

=

∑

i≥0

(
wta − 1

i

)
aib ⊗ zwta−1+wtb−1−i

+ +LP1\{0,1}(V)<0.
(3.12)

On the other hand, by Definition 2.6, the Lie algebra L(V)0 = span{a[wta−1] : a ∈ V}, subject

to the relations (L(−1)a)[wta] = −(wta)a[wta−1] and

[a[wta−1], b[wtb−1]] =
∑

j≥0

(
wta − 1

j

)
(a jb)[wta−1+wtb−1− j]. (3.13)

Comparing (3.12) and (3.13), it is easy to see that LP1\{0,1}(V)≤0/LP1\{0,1}(V)<0 � L(V)0 as Lie

algebras. �

By adopting a similar argument as the proof of Proposition 3.3, we can easily prove the

following fact about the spanning elements of LP1\{0,1}(V)<0.

Lemma 3.6. The augmented ideal LP1\{0,1}(V)<0 is spanned by the following elements

a ⊗
zwta−1

z − 1
, a ⊗ zwta−k, a ∈ V homogeneous, k ≥ 2 (3.14)

. . . (wta − 3,−2) (wta − 2,−1) (wta − 1, 0) (wta, 1) (wta + 1, 2) . . .

. . . (wta − 3,−1) (wta − 2, 0) (wta − 1, 1) (wta, 2) (wta + 1, 3) . . .

. . . (wta − 3, 0) (wta − 2, 1) (wta − 1, 2) (wta, 3) (wta + 1, 4) . . .

. . . (wta − 3, 1) (wta − 2, 2) (wta − 1, 3) (wta, 4) (wta + 1, 5) . . .

. . .
...

...
...

...
... . . .

(3.15)
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The pairs (n,m) corresponding to the spanning elements (3.14) are marked in red in table (3.15).

4. Space of∞-restricted three-pointed conformal blocks

We introduce the notion of∞-restricted three-pointed conformal blocks on P1 in this Section

using the ∞-restricted chiral Lie algebra LP1\{0,1}(V)≤0. We then use the ideal LP1\{0,1}(V)<0 to

define the contracted tensor product M1 ⊙ M2. This space is closely related to the left A(V)-

module A(M1) ⊗A(V) M2(0) [FZ92], we discuss their relations by the end of this Section.

4.1. ∞-restricted three-pointed conformal blocks on P1. We restrict the module (M3)′ in the

datum (2.22) to its bottom degree and obtain the following datum:

Σ1(M3(0)∗, M1, M2) =
(
P

1,∞, 1, 0, 1/z, z − 1, z, M3(0)∗, M1, M2
)
. (4.1)

Note that M3(0)∗ is naturally a right module over the Zhu’s algebra A(V) and a left module over

A(V) via the involution θ : A(V)→ A(V), [a] 7→ [eL(1)(−1)L(0)a].

Consider the ∞-restricted chiral Lie algebra LP1\{0,1}(V)≤0 in the previous Section. It follows

from Lemma 3.2 that LP1\{0,1}(V)≤0.(M3(0)∗ ⊗C M1 ⊗C M2) ⊆ (M3(0)∗ ⊗C M1 ⊗C M2)

Definition 4.1. The vector space

C

(
Σ1(M3(0)∗, M1, M2)

)
:=

(
M3(0)∗ ⊗C M1 ⊗C M2

LP1\{0,1}(V)≤0.
(
M3(0)∗ ⊗C M1 ⊗C M2

)
)∗

(4.2)

is called the space of (three-pointed) ∞-restricted conformal blocks on P1. An element ϕ ∈

C

(
Σ1(M3(0)∗, M1, M2)

)
is called a (three-pointed) ∞-restricted conformal block associated

to the datum Σ1(M3(0)∗, M1, M2).

We want to express the right hand side of (4.2) in terms of a hom space. We observe the

following facts in the representation theory of Lie algebras. The proof is standard argument, we

omit it. See also the proof of Theorem 6.11.

Lemma 4.2. Let g be a Lie algebra, W and M be g-modules, V be a finite-dimensional g-module,
and V∗ be the dual module of V. Then

(1) There is an isomorphism of vector spaces:

HomC(V∗ ⊗C W/g.(V∗ ⊗C W),C) � Homg(W,V), (4.3)

where V∗ ⊗W is the tensor product of g-modules.
(2) Let O(g) ≤ g be an ideal of g. Then M/O(g).M is a g/O(g)-module, and we have an

isomorphism of vector spaces:

M/g.M � (M/O(g).M)/(g/O(g)).(M/O(g).M) (4.4)

We will apply Lemma 4.2 to the following datum:

g = LP1\{0,1}(V)≤0, W = M1 ⊗C M2, M = M3(0)∗ ⊗C M1 ⊗C M2,

V = M3(0), O(g) = LP1\{0,1}(V)<0.
(4.5)

First, we introduce the following notion based on Lemma 3.5:

Definition 4.3. Let M1 and M2 be V-modules. Define

M1 ⊙ M2 : = (M1 ⊗C M2)/LP1\{0,1}(V)<0.(M1 ⊗C M2). (4.6)

We call it the contracted tensor product of M1 and M2.

We remark the following facts for the contracted tensor product M1 ⊙ M2:
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(1) By Lemma 3.6, together with (2.21), M1 ⊙M2 is spanned by the symbols v1 ⊙ v2 which

is bilinear in v1 and v2, with v1 ∈ M1 and v2 ∈ M2, subject to the following relations:

∑

j≥0

(
wta − 1

j

)
a( j − 1)v1 ⊙ v2 = v1 ⊙

∑

j≥0

a(wta − 1 + j)v2, (4.7)

∑

j≥0

(
wta − k

j

)
a( j)v1 ⊙ v2 = −v1 ⊙ a(wta − k)v2, k ≥ 2, (4.8)

for any a ∈ V , v1 ∈ M1 and v2 ∈ M2.

(2) By Lemmas 3.5 and 4.2, M1 ⊙ M2 is a module over the Lie algebra L(V)0, with the

module action given by

a[wta−1].(v1 ⊙ v2) =
∑

j≥0

(
wta − 1

j

)
a( j)v1 ⊙ v2 + v1 ⊙ o(a)v2, (4.9)

for any a[wta−1] ∈ L(V)0, v1 ∈ M1 and v2 ∈ M2, where o(a) = a(wta − 1).

(3) Since a ⊗ zwta−1

z−1
and a ⊗ zwta−k, with k ≥ 2, are spanning elements of LP1\{0,1}(V)<0,

it follows that the relations (4.7) and (4.8) lead to the following general relations in

M1 ⊙ M2, which corresponds to the action of a ⊗ zwta−s

(z−1)t ∈ LP1\{0,1}(V)<0 on v1 ⊗ v2:

∑

j≥0

(
wta − s

j

)
a( j − t)v1 ⊙ v2 = −v1 ⊙

∑

j≥0

(
−t

j

)
(−1)t+ ja(wta − s + j)v2, (4.10)

where s, t ∈ Z such that s + t > 1, in view of (3.9).

Note that the left A(V)-module M3(0) is a also module over the Lie algebra L(V)0 via the Lie

algebra homomorphism L(V)0 → A(V)Lie, a[wta−1] 7→ [a], see [DLM98].

Proposition 4.4. There is an isomorphism of vector spaces:

C

(
Σ1(M3(0)∗, M1, M2)

)
� HomL(V)0

(
M1 ⊙ M2, M3(0)

)
. (4.11)

Proof. Apply Lemma 4.2 to the datum (4.5), we have

C

(
Σ1(M3(0)∗, M1, M2)

)
=

(
M3(0)∗ ⊗C M1 ⊗C M2

LP1\{0,1}(V)≤0.
(
M3(0)∗ ⊗C M1 ⊗C M2

)
)∗

� HomC

(
(M3(0)∗ ⊗C M1 ⊗C M2)/LP1\{0,1}(V)<0.(M3(0)∗ ⊗C M1 ⊗C M2)

(LP1\{0,1}(V)≤0/LP1\{0,1}(V)<0).(The Numerator)
,C

)
(by (4.4))

� HomC


(M3(0)∗ ⊗C M1 ⊗C M2)/

(
M3(0)∗ ⊗C LP1\{0,1}(V)<0.(M1 ⊗ M2)

)

(L(V)0).(The Numerator)
,C

 (by (3.11))

� HomC


M3(0)∗ ⊗C

(
M1 ⊙ M2

)

(L(V)0).
(
M3(0)∗ ⊗C

(
M1 ⊙ M2

)) ,C
 (by (4.6))

� HomL(V)0

(
M1 ⊙ M2, M3(0)

)
(by (4.3)),

where we used the isomorphism LP1\{0,1}(V)≤0/LP1\{0,1}(V)<0 � L(V)0 in Lemma 3.5. �

4.2. The L(V)0-module M1 ⊙ M2 and the A(V)-action. We discuss some basic properties of

the L(V)0-module M1 ⊙ M2 in Definition 4.3. In particular, we show that M1 ⊙ M2 is also a left

A(V)-module when M2 is generated by M2(0).

Proposition 4.5. Assume the V-module M2 is generated by M2(0). Then we have

M1 ⊙ M2
= span{v1 ⊙ v2 : v1 ∈ M1, v2 ∈ M2(0)}. (4.12)

In particular, (4.12) holds if M2 is an irreducible V-module.
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Proof. By assumption, we can write M2
= span{a1(n1) . . . ar(nr)v2 : ai ∈ V, ni ∈ Z, v2 ∈ M2(0)}.

Note that ai(wtai − ki)v2 ∈ M2(ki − 1) = M2(0) or 0 if ki ≤ 1. It follows that M2 is spanned by

the following elements:

a1(wta1 − k1) . . . ar(wtar − kr)v
2, r ≥ 0, ai ∈ V, ki ≥ 2, v2 ∈ M2(0). (4.13)

Then by (4.8) we have

v1 ⊙ a1(wta1 − k1)a2(wta2 − k2) . . . ar(wtar − kr)v
2

= −
∑

j1≥0

(
wta1 − k1

j1

)
a1( j1)v1 ⊙ a2(wta2 − k2) . . . ar(wtar − kr)v

2

...

= (−1)r
∑

j1≥0

· · ·
∑

jr≥0

(
wta1 − k1

j1

)
. . .

(
wtar − kr

jr

)
ar( jr) . . . a

1( j1)v1 ⊙ v2,

where v1 ∈ M1, ai ∈ V and ki ≥ 2 for all i, v2 ∈ M2(0). This proves (4.12). �

Let M be an admissible V-module. We recall the construction of A(V)-bimodule A(M) in

[FZ92]. By [FZ92, Definition 1.5.2], there are left and right ∗-actions of V on M:

V × M → M, (a, v) 7→ a ∗ v := Resz=1YM(a, z − 1)v
zwta

z − 1
=

∑

j≥0

(
wta

j

)
a( j − 1)v, (4.14)

M × V → M, (v, a) 7→ v ∗ a = Resz=1YM(a, z − 1)v
zwta−1

z − 1
=

∑

j≥0

(
wta − 1

j

)
a( j − 1)v. (4.15)

Using the notations in (4.14) and (4.15), we can rewrite formulas (4.7) and (4.9) as follows:

(v1 ∗ a) ⊙ v2 = v1 ⊙
∑

j≥0

a(wta − 1 + j)v2, (4.16)

a[wta−1].(v1 ⊙ v2) = (a ∗ v1 − v1 ∗ a) ⊙ v2 + v1 ⊙ o(a)v2. (4.17)

The following formulas are (1.5.11)− (1.5.15) in [FZ92], which shows that A(M) = M/O(M)

is a bimodule over A(V) 2.7:

O(V) ∗ v ⊆ O(M), v ∗ O(V) ⊆ O(M),

a ∗ O(M) ⊆ O(M), O(M) ∗ a ⊆ O(M), (4.18)

(a ∗ b) ∗ v − a ∗ (b ∗ v) ∈ O(M), (v ∗ a) ∗ b − v ∗ (a ∗ b) ∈ O(M),

(a ∗ v) ∗ b − a ∗ (v ∗ b) ∈ O(M).

Now we define an ∗-action of V on M1 ⊗C M2 as follows:

V ×
(
M1 ⊗C M2

)
→ M1 ⊗C M2, a ∗ (v1 ⊗ v2) := (a ∗ v1 − v1 ∗ a) ⊗ v2 + v1 ⊗ o(a)v2, (4.19)

where a ∗ v1 and v1 ∗ a are given by (4.14) and (4.15), respectively, with v1 ∈ M1 and a ∈ V .

Lemma 4.6. The action (4.19) satisfies

a ∗
(
LP1\{0,1}(V)<0.(M1 ⊗C M2)

)
⊆ LP1\{0,1}(V)<0.(M1 ⊗C M2).

In particular, the ∗-action induces an action of V on M1 ⊙ M2:

V ×
(
M1 ⊙ M2

)
→ M1 ⊙ M2, a ∗ (v1 ⊙ v2) = (a ∗ v1 − v1 ∗ a) ⊙ v2 + v1 ⊙ o(a)v2. (4.20)

i.e., a ∗ (v1 ⊙ v2) = a[wta−1].(v1 ⊙ v2), in view of (4.17).
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Proof. Let X ∈ LP1\{0,1}(V)<0. Using the notations in Proposition 2.9, we have ρ0(a⊗zwta−1)(v2) =

o(a)v2 for any v2 ∈ M2. Then by (4.20) and (4.17) we have

a ∗ (X.(v1 ⊗ v2)) = a ∗ (ρ1(X)(v1) ⊗ v2 + v1 ⊗ ρ0(X)(v2))

= ρ1(a ⊗ zwta−1) (ρ1(X)(v1)) ⊗ v2 + ρ1(X)(v1) ⊗ o(a)v2

+ ρ1(a ⊗ zwta−1)(v1) ⊗ ρ0(X)(v2) + v1 ⊗ o(a) (ρ0(X)v2)

= ρ1(X)
(
ρ1(a ⊗ zwta−1)(v1)

)
⊗ v2 + ρ1([a ⊗ zwta−1, X])(v1) ⊗ v2

+ ρ1(a ⊗ zwta−1)(v1) ⊗ ρ0(X)(v2) + ρ1(X)(v1) ⊗ o(a)v2

+ v1 ⊗ ρ0(X) (o(a)v2) + v1 ⊗ ρ0([a ⊗ zwta−1, X])(v2).

It follows from (2.21) that

ρ1(X)
(
ρ1(a ⊗ zwta−1)(v1)

)
⊗ v2 + ρ1(a ⊗ zwta−1)(v1) ⊗ ρ0(X)(v2) ∈ LP1\{0,1}(V)<0.(M1 ⊗C M2),

ρ1(X)(v1) ⊗ o(a)v2 + v1 ⊗ ρ0(X) (o(a)v2) ∈ LP1\{0,1}(V)<0.(M1 ⊗C M2).

SinceLP1\{0,1}(V)<0 is an ideal of the∞-restricted chiral Lie algebraLP1\{0,1}(V)≤0 and a⊗zwta−1 ∈

LP1\{0,1}(V)≤0, we have [a ⊗ zwta−1, X] ∈ LP1\{0,1}(V)<0, and so

ρ1([a ⊗ zwta−1, X])(v1) ⊗ v2 + v1 ⊗ ρ0([a ⊗ zwta−1, X])(v2) ∈ LP1\{0,1}(V)<0.(M1 ⊗C M2).

Hence we have a ∗ (X.(v1 ⊗ v2)) ∈ LP1\{0,1}(V)<0.(M1 ⊗C M2). Finally, since M1 ⊙ M2
= (M1 ⊗C

M2)/LP1\{0,1}(V)<0.(M1 ⊗C M2) in view of (4.6), the action (4.19) induces an action (4.20). �

We have the following Theorem by Proposition 4.5 and Lemma 4.6.

Theorem 4.7. Assume the V-module M2 is generated by M2(0), then (4.20) induces an action

A(V) ×
(
M1 ⊙ M2

)
→ M1 ⊙ M2, [a].(v1 ⊙ v2) = (a ∗ v1) ⊙ v2, (4.21)

where [a] ∈ A(V), v1 ∈ M1 and v2 ∈ M2(0), which makes M1 ⊙ M2 a left A(V)-module.

Proof. Let v2 ∈ M2(0). We claim that

O(M1) ⊙ v2
= 0. (4.22)

Indeed, recall that O(M1) = span{a ◦ v1 =
∑

j≥0

(
wta

j

)
a( j − 2)v1 : a ∈ V, v1 ∈ M1} [FZ92]. Since

a ⊗ zwta

(z−1)2 ∈ LP1\{0,1}(V)<0 in view of table (3.15), we have

(a ◦ v1) ⊙ v2
= Resz=1YM1(a, z − 1)v1ι1,z−1

(
zwta−1

(z − 1)2

)
⊙ v2
= ρ1

(
a ⊗

zwta

(z − 1)2

)
(v1) ⊙ v2

= −v1 ⊙ ρ0

(
a ⊗

zwta

(z − 1)2

)
v2
= −v1 ⊙


∑

j≥0

ja(wta + j − 1)v2

 = 0.

This proves (4.22). We want to show that O(V) ∗ (M1 ⊙ M2) = 0, where the ∗-action of V is

given by (4.20). By Lemma 4.5, it suffices to show O(V) ∗ (v1 ⊙ v2) = 0 for any v2 ∈ M2(0) and

v1 ∈ M1. Recall that o(O(V))M2(0) = 0 [Z96], then by (4.22) and (4.18), we have

O(V) ∗ (v1 ⊗ v2) = (O(V) ∗ v1 − v1 ∗ O(V)) ⊙ v2
+ v1 ⊙ o(O(V))v2 ⊆ O(M1) ⊙ v2

+ 0 = 0.

Hence (4.20) descends to a well-defined bilinear map

A(V) ×
(
M1 ⊙ M2

)
→ M1 ⊙ M2, [a].(v1 ⊙ v2) = (a ∗ v1 − v1 ∗ a) ⊙ v2 + v1 ⊙ o(a)v2, (4.23)

where [a] ∈ A(V), v1 ∈ M1 and v2 ∈ M2.
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In particular, for v1 ∈ M1 and v2 ∈ M2(0), by (4.16) we have [a].(v1 ⊙ v2) = (a ∗ v1 − v1 ∗ a)⊙

v2
+ v1 ⊙ o(a)v2

= (a ∗ v1) ⊙ v2 − v1 ⊙ o(a)v2
+ v1 ⊙ o(a)v2

= (a ∗ v1) ⊙ v2. This proves (4.21).

Moreover, for any a, b ∈ V , by (4.18) and (4.22) we have

([a] ∗ [b]).(v1 ⊙ v2) − [a].
(
[b].(v1 ⊙ v2)

)

= ((a ∗ b) ∗ v1 − a ∗ (b ∗ v1)) ⊙ v2 ∈ O(M1) ⊙ v2
= 0

Thus, (4.21) makes M1 ⊙ M2 a left A(V)-module. �

Remark 4.8. Note that (4.23) agrees with the Lie algebra L(V)0-action (4.17), which makes

M1 ⊙ M2 an A(V)Lie-module. Since the A(V)-action (4.21) is a specialization of the action

(4.23) on the bottom level of M2(0), it follows that if M2 is generated by M2(0), then the L(V)0-

module homomorphism ρ : L(V)0 → gl(M1 ⊙M2) factors through the Lie algebra epimorphism

L(V)0 → A(V)Lie, a[wta−1] 7→ [a]. i.e., we have a commutative diagram:

L(V)0 gl(M1 ⊙ M2),

A(V)Lie

ρ

ϕ

where ρ is given by (4.9) and ϕ is given by (4.21). In particular, we have

HomL(V)0
(M1 ⊙ M2, M3(0)) = HomA(V)(M1 ⊙ M2, M3(0)), (4.24)

where M1, M2, M3 are V-modules, and M2 is generated by M2(0).

Corollary 4.9. Assume that the V-module M2 is generated by M2(0). The following is an
epimorphism of left A(V)-modules or L(V)0-modules:

π : A(M1) ⊗A(V) M2(0)։ M1 ⊙ M2, [v1] ⊗ v2 7→ v1 ⊙ v2. (4.25)

In particular, we have an estimate:

dim HomL(V)0
(M1 ⊙ M2, M3(0)) ≤ dim HomA(V)(A(M1) ⊗A(V) M2(0), M3(0)). (4.26)

Proof. To show π is well-defined, we need to show π([O(M1)]⊗ v2) = 0 and π([v1] ∗ [a]⊗ v2) =

π(v1 ⊗ o(a)v2). Indeed, by (4.22) we have π([O(M1)] ⊗ v2) = O(M1) ⊙ v2
= 0. Moreover, by

(4.16) and (4.21) we have

π([v1] ∗ [a] ⊗ v2) = π([v1 ∗ a] ⊗ v2) = v1 ∗ a ⊙ v2
= v1 ⊙ o(a)v2

= π(v1 ⊗ o(a)v2),

π([a].([v1] ⊗ v2)) = π([a ∗ v1] ⊗ v2) = (a ∗ v1) ⊙ v2
= [a].(v1 ⊙ v2) = [a].π([v1] ⊗ v2).

Hence π in (4.25) is a well-defined A(V)-module homomorphism. By Lemma 4.5, it is surjec-

tive. Moreover, A(M1) ⊗A(V) M2(0) is also a module over the Lie algebra L(V)0 via (2.13), with

the Lie algebra action given by

a[wta−1].([v1] ⊗ v2) = [a ∗ v1] ⊗ v2
= [a ∗ v1 − v1 ∗ a] ⊗ v2

+ [v1] ⊗ o(a)v2

=

∑

j≥0

(
wta − 1

j

)
[a( j)v1] ⊗ v2

+ [v1] ⊗ o(a)v2,

which agrees with the action of a[wta−1] on v1 ⊙ v2 in view of (4.9). Thus π is a homomorphism

of L(V)0-modules. Finally, the estimate (4.26) follows from (4.24). �

Remark 4.10. In Section 5.4, we will see that the epimorphism π (4.25) is not necessarily

injective, and so the estimate (4.26) is sharp for certain examples of VOAs. On the other hand,

if the VOA V is rational and C2-cofinite, then π is in fact an isomorphism of left A(V)-modules.
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5. Extension of the ∞-restricted conformal blocks

In this Section, we prove that an ∞-restricted conformal block ϕ in C

(
Σ1(M3(0)∗, M1, M2)

)

can be extended to a regular three-pointed conformal block ϕ̃ in C

(
Σ1((M3)′, M1, M2)

)
, where

(M3)′ � M̄(M3(0)∗), which leads to our hom-space description HomL(V)0
(M1 ⊙ M2, M3(0)) of

the space of intertwining operators I
(

M3

M1 M2

)
.

5.1. Construction of the extended conformal blocks. The following lemma shows that any

regular conformal block can be restricted to an ∞-restricted conformal block, which also gives

an estimate of the fusion rule generalizing the estimate in [Li99, Proposition 2.10].

Lemma 5.1. Assume the V-module (M3)′ is generated by its bottom degree M3(0)∗, then the
restriction map

G : C

(
Σ1((M3)′, M1, M2)

)
→ C

(
Σ1(M3(0)∗, M1, M2)

)
, ψ 7→ ψ|M3(0)∗⊗M1⊗M2 , (5.1)

is injective. In particular, N
(

M3

M1 M2

)
≤ dim HomL(V)0

(M1 ⊙ M2, M3(0)).

Proof. By the remark in Section 2.1.5, (M3)′ is spanned by {b′(n)v′
3

: b ∈ V, n ∈ Z, v′
3
∈ M3(0)∗},

where b′(n) =
∑

j≥0
(−1)wtb

j! (L(1) jb)(2wtb − n − j − 2). Now assume ψ ∈ C

(
Σ1((M3)′, M1, M2)

)

such that ψ|M3(0)∗⊗M1⊗M2 = 0. Then by (2.21),

ψ(b′(n)v′3 ⊗ v1 ⊗ v2)

= −ψ
(
(b ⊗ zn).(v′3 ⊗ v1 ⊗ v2)

)
+ ψ(v′3 ⊗ Resz=1YM1(a, z − 1)v1 ⊗ v2)ι1,z−1(zn)

+ ψ(v′3 ⊗ v1 ⊗ Resz=0YM2(b, z)v2)zn

= 0,

where the last equality follows from the facts that ψ is invariant under the action of b ⊗ zn, and

ψ|M3(0)∗⊗M1⊗M2 = 0. Hence ψ = 0 on (M3)′ ⊗ M1 ⊗ M2. i.e., G is injective. The estimate of the

fusion rule follows from Proposition 2.11 and Proposition 4.4. �

Let M3 be a V-module with bottom degree M3(0), and let M̄(M3(0)∗) be the generalized

Verma module associated to the left A(V)-module M3(0)∗ via the contragredient action (2.12).

Note that M̄(M3(0)∗) = span{b′(n)v′
3

: b ∈ V, n ∈ Z, v′
3
∈ M3(0)∗}.

Construction 5.2. Given an ∞-restricted conformal block ϕ ∈ C

(
Σ1(M3(0)∗, M1, M2)

)
, define

a linear map ϕ̃ : M̄(M3(0)∗) ⊗C M1 ⊗C M2 → C by letting

〈
ϕ̃
∣∣∣ b′(n)v′3 ⊗ v1 ⊗ v2

〉
: =

〈
ϕ
∣∣∣ v′3 ⊗ Resz=1YM1(b, z − 1)v1 ⊗ v2

〉
ι1,z−1(zn)

+
〈
ϕ
∣∣∣ v′3 ⊗ v1 ⊗ Resz=0YM2(b, z)v2

〉
zn,

(5.2)

where b ∈ V , n ∈ Z, and v′3 ∈ M3(0)∗.

Moreover, for a general spanning element b′
1
(n1)b′

2
(n2) . . . b′r(nr)v′3 of M̄(M3(0)∗), where bi ∈

V and ni ∈ Z, with−wtbi+ni+1 ≥ 0 for all i, we define ϕ̃ on the element b′
1
(n1)b′

2
(n2) . . . b′r(nr)v′3⊗

v1 ⊗ v2 inductively by the following formula:

〈
ϕ̃
∣∣∣ b′1(n1)b′2(n2) . . . b′r(nr)v

′
3 ⊗ v1 ⊗ v2

〉

=
〈
ϕ̃
∣∣∣ b′2(n2) . . . b′r(nr)v

′
3 ⊗ Resz=1YM1(b1, z − 1)v1 ⊗ v2

〉
ι1,z−1(zn1)

+
〈
ϕ̃
∣∣∣ b′2(n2) . . . b′r(nr)v

′
3 ⊗ v1 ⊗ Resz=0YM2(b1, z)v2

〉
zn1 .

(5.3)



20 JIANQI LIU

Remark 5.3. Observe that if ϕ is an element in C

(
Σ1(M̄(M3(0)∗), M1, M2)

)
, then it must satisfy

the following equality by (2.21):

〈
ϕ
∣∣∣ Resz=∞YM̄(M3(0)∗)(ι(b), z−1)v′3 ⊗ v1 ⊗ v2

〉
ιz,1

(
zn

(z − 1)m

)

=
〈
ϕ
∣∣∣ v′3 ⊗ Resz=1YM1(b, z − 1)v1 ⊗ v2

〉
ι1,z−1

(
zn

(z − 1)m

)

+
〈
ϕ
∣∣∣ v′3 ⊗ v1 ⊗ Resz=0YM2(b, z)v2

〉
ι1,z

(
zn

(z − 1)m

)
,

(5.4)

where b ∈ V , v′3 ∈ M̄(M3(0)∗), and m, n ∈ Z. We construct ϕ̃ in (5.2) and (5.3) in such a way to

make equality hold.

The only relations among the spanning elements b′
1
(n1)b′

2
(n2) . . . b′r(nr)v′3 of the generalized

Verma module M̄(M3(0)∗) is the Jacobi identity [DLM98]. Note that (5.4) essentially a variation

of the Jacobi identity which on the other hand defines ϕ̃ in (5.2) and (5.3). Hence ϕ̃ is a well-

defined element in
(
M̄(M3(0)∗) ⊗C M1 ⊗C M2

)∗
.

We want to show that ϕ̃ is an element in the space of conformal blocks associated to the

datum Σ1(M̄(M3(0)∗), M1, M2). i.e., it is also invariant under the action of the chiral Lie algebra

LP1\{∞,1,0}(V), see Definition 2.10. Using a similar combinatorial argument as in the proof of

Proposition 3.3, we can give a short list of spanning elements ofLP1\{∞,1,0}(V), which is essential

for the proof of the invariance of ϕ̃.

Lemma 5.4. The chiral Lie algebra LP1\{∞,1,0}(V) is spanned by the following elements:

a ⊗
zwta−1

z − 1
, a ⊗ zwta−1, a ⊗ zwta−k, a ⊗ zwta+l, (5.5)

where a ∈ V is homogeneous, k ≥ 2 and l ≥ 0.

The following table for the pairs (n,m) illustrates the spanning elements of LP1\{∞,1,0}(V):

. . .
...

...
...

...
... . . .

. . . (wta − 3,−4) (wta − 2,−3) (wta − 1,−2) (wta,−1) (wta + 1, 0) . . .

. . . (wta − 3,−3) (wta − 2,−2) (wta − 1,−1) (wta, 0) (wta + 1, 1) . . .

. . . (wta − 3,−2) (wta − 2,−1) (wta − 1, 0) (wta, 1) (wta + 1, 2) . . .

. . . (wta − 3,−1) (wta − 2, 0) (wta − 1, 1) (wta, 2) (wta + 1, 3) . . .

. . . (wta − 3, 0) (wta − 2, 1) (wta − 1, 2) (wta, 3) (wta + 1, 4) . . .

. . .
...

...
...

...
... . . .

(5.6)

5.2. The extension theorem. Now we prove our main theorem about the extension of ∞-

restricted conformal blocks. A more general twisted version was proved in [GLZ24, Theorems

5.18, 5.19] using the Riemann-Roch theorem of algebraic curves. Here we give a purely alge-

braic proof.

Theorem 5.5. Let ϕ ∈ C

(
Σ1(M3(0)∗, M1, M2)

)
, then ϕ̃ given by (5.2) and (5.3) is invariant

under the action of the three-pointed chiral Lie algebraLP1\{∞,1,0}(V). In particular, we have an
isomorphism of vector spaces

F : C

(
Σ1(M3(0)∗, M1, M2)

)
� C

(
Σ1(M̄(M3(0)∗), M1, M2)

)
, ϕ 7→ ϕ̃, (5.7)

whose inverse is the restriction map G in (5.1).
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Proof. We need to show
〈
ϕ̃
∣∣∣LP1\{∞,1,0}(V).(M̄(M3(0)∗) ⊗C M1 ⊗C M2)

〉
= 0. By Lemma 5.4, it

is suffices to show that
〈
ϕ̃

∣∣∣∣∣∣

(
a ⊗

zwta−1

z − 1

)
.(b′(n)v′3 ⊗ v1 ⊗ v2)

〉
= 0, (5.8)

〈
ϕ̃

∣∣∣∣
(
a ⊗ zwta−1

)
.(b′(n)v′3 ⊗ v1 ⊗ v2)

〉
= 0, (5.9)

〈
ϕ̃

∣∣∣∣
(
a ⊗ zwta−k

)
.(b′(n)v′3 ⊗ v1 ⊗ v2)

〉
= 0, k ≥ 2, (5.10)

〈
ϕ̃

∣∣∣∣
(
a ⊗ zwta+l

)
.(b′(n)v′3 ⊗ v1 ⊗ v2)

〉
= 0, l ≥ 0, (5.11)

for any homogeneous a ∈ V , and b′(n)v′
3
⊗ v1 ⊗ v2 ∈ M̄(M3(0)∗) ⊗C M1 ⊗C M2.

Case I. Proof of (5.8).

We state some easy facts first. For any v′
3
∈ M3(0)∗, since deg(a′(wta − j − 2)) = −wta +

wta − j − 2 + 1 = − j − 1 < 0 for any j ≥ 0, we have

Resz=∞YM̄(M3(0)∗)(ϑ(a), z−1)v′3ιz,1

(
zwta−1

z − 1

)
= −

∑

j≥0

a′(wta − j − 2)v′3 = 0.

Moreover, let M be a V-module, and M′ be the contragredient module of M. For any v′ ∈ M′,
v ∈ M, a, b ∈ V , and m, n ∈ Z, by the Jacobi identity for YM, we have

〈[b′(n), a′(m)]v′, v〉 = 〈v′, [a(m), b(n)v]〉 = −
∑

i≥0

(
n

i

)
〈v′, (b(i)a)(m + n − i)v〉

= −
∑

i≥0

〈(b(i)a)′(m + n − i)v′, v〉.
(5.12)

It follows that for any v′3 ∈ M3(0)∗,

Resz=∞YM̄(M3(0)∗)(ϑ(a), z−1
2 )b′(n)v′3ιz,1

(
zwta−1

z − 1

)

= Resz=∞

(
b′(n)YM̄(M3(0)∗)(ϑ(a), z−1

2 )v′3 − [b′(n), YM̄(M3(0)∗)(ϑ(a), z−1
2 )]v′3

)
ιz,1

(
zwta−1

z − 1

)

= Resz=∞YM̄(M3(0)∗)(ϑ(b(i)a), z−1
2 )v′3ιz,1

(
zwta−1

z − 1

)
.

Then by (5.4), (2.21), together with the equation above, we have
〈
ϕ̃

∣∣∣∣∣∣

(
a ⊗

zwta−1

z − 1

)
.(b′(n)v′3 ⊗ v1 ⊗ v2)

〉

=

〈
ϕ̃
∣∣∣ Resz=∞YM̄(M3(0)∗)(ϑ(a), z−1

2 )b′(n)v′3 ⊗ v1 ⊗ v2

〉
ιz2,1

(
zwta−1

2

z2 − 1

)

+
〈
ϕ̃
∣∣∣ b′(n)v′3 ⊗ Resz2=1YM1(a, z2 − 1)v1 ⊗ v2

〉
ι1,z2−1

(
zwta−1

2

z2 − 1

)

+
〈
ϕ̃
∣∣∣ b′(n)v′3 ⊗ v1 ⊗ Resz2=0YM2(a, z2)v2

〉
ι1,z2

(
zwta−1

2

z2 − 1

)

=

∑

i≥0

(
n
i

)〈
ϕ̃
∣∣∣ Resz=∞YM̄(M3(0)∗)(ϑ(b(i)a), z−1

2 )v′3 ⊗ v1 ⊗ v2

〉
zn−i

2 ιz2,1

(
zwta−1

2

z2 − 1

)

+
〈
ϕ
∣∣∣ v′3 ⊗ Resz1=1Resz2=1YM1(b, z1 − 1)YM1(a, z2 − 1)v1 ⊗ v2

〉
ι1,z1−1(zn

1)ι1,z2−1

(
zwta−1

2

z2 − 1

)
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+
〈
ϕ
∣∣∣ v′3 ⊗ Resz2=1YM1(a, z2 − 1)v1 ⊗ Resz1=0YM2(b, z1)v2

〉
zn

1ι1,z2−1

(
zwta−1

2

z2 − 1

)

+
〈
ϕ
∣∣∣ v′3 ⊗ Resz1=1YM1(b, z1 − 1)v1 ⊗ Resz2=0YM2(a, z2)v2

〉
ι1,z1−1(zn

1)ι1,z2

(
zwta−1

2

z2 − 1

)

+
〈
ϕ
∣∣∣ v′3 ⊗ v1 ⊗ Resz1=0Resz2=0YM2(b, z1)YM2(a, z2)v2

〉
zn

1ι1,z2

(
zwta−1

2

z2 − 1

)

= −
∑

i≥0

(
n

i

)〈
ϕ
∣∣∣ v′3 ⊗ Resz2=1YM1(b(i)a, z2 − 1)v1 ⊗ v2

〉
ι1,z2−1

(
zwta−1+n−i

2

z2 − 1

)

︸                                                                                 ︷︷                                                                                 ︸
(A)

−
∑

i≥0

(
n

i

)〈
ϕ
∣∣∣ v′3 ⊗ v1 ⊗ Resz2=0YM2(b(i)a, z2)v2

〉
ι1,z2

(
zwta−1+n−i

2

z2 − 1

)

︸                                                                         ︷︷                                                                         ︸
(B)

+
〈
ϕ
∣∣∣ v′3 ⊗ Resz1=1Resz2=1YM1(b, z1 − 1)YM1(a, z2 − 1)v1 ⊗ v2

〉
ι1,z1−1(zn

1)ι1,z2−1

(
zwta−1

2

z2 − 1

)

︸                                                                                                       ︷︷                                                                                                       ︸
(C)

−
〈
ϕ
∣∣∣ v′3 ⊗ v1 ⊗ Resz1=0Resz2=0YM2(a, z2)YM2(b, z1)v2

〉
zn

1ι1,z2

(
zwta−1

2

z2 − 1

)

︸                                                                                ︷︷                                                                                ︸
(D)

−
〈
ϕ
∣∣∣ v′3 ⊗ Resz2=1Resz1=1YM1(a, z2 − 1)YM1(b, z1 − 1)v1 ⊗ v2

〉
ι1,z1−1(zn

1)ι1,z2−1

(
zwta−1

2

z2 − 1

)

︸                                                                                                       ︷︷                                                                                                       ︸
(E)

+
〈
ϕ
∣∣∣ v′3 ⊗ v1 ⊗ Resz1=0Resz2=0YM2(b, z1)YM2(a, z2)v2

〉
zn

1ι1,z2

(
zwta−1

2

z2 − 1

)

︸                                                                                ︷︷                                                                                ︸
(F)

= −(A) − (B) + (C) − (D) − (E) + (F),

where the last equality follows from the fact that ϕ ∈ C

(
Σ1(M3(0)∗, M1, M2)

)
is invariant under

the action of a ⊗ zwta−1

z−1
∈ LP1\{0,1}(V)≤0. Using the Jacobi identity for YM1 , we have

(C) − (E)

=
〈
ϕ
∣∣∣ v′3 ⊗ Resz1=1Resz2=1YM1(b, z1 − 1)YM1(a, z2 − 1)v1 ⊗ v2

〉
ι1,z1−1(zn

1)ι1,z2−1

(
zwta−1

2

z2 − 1

)

−
〈
ϕ
∣∣∣ v′3 ⊗ Resz2=1Resz1=1YM1(a, z2 − 1)YM1(b, z1 − 1)v1 ⊗ v2

〉
ι1,z1−1(zn

1)ι1,z2−1

(
zwta−1

2

z2 − 1

)

=
〈
ϕ
∣∣∣ v′3 ⊗ Resz2=1Resz1−z2=0YM1(Y(b, z1 − z2)a, z2 − 1)v1 ⊗ v2

〉
ιz2 ,z1−z2

(zn
1)ι1,z2−1

(
zwta−1

2

z2 − 1

)

=

∑

i≥0

(
n

i

)〈
ϕ
∣∣∣ v′3 ⊗ Resz2=1YM1(b(i)a, z2 − 1)v1 ⊗ v2

〉
ι1,z2−1

(
zwta−1+n−i

2

z2 − 1

)

= (A).

Similarly, using the Jacobi identity for YM2 , we have

− (D) + (F)
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= −
〈
ϕ
∣∣∣ v′3 ⊗ v1 ⊗ Resz1=0Resz2=0YM2(a, z2)YM2(b, z1)v2

〉
zn

1ι1,z2

(
zwta−1

2

z2 − 1

)

+
〈
ϕ
∣∣∣ v′3 ⊗ v1 ⊗ Resz1=0Resz2=0YM2(b, z1)YM2(a, z2)v2

〉
zn

1ι1,z2

(
zwta−1

2

z2 − 1

)

=
〈
ϕ
∣∣∣ v′3 ⊗ v1 ⊗ Resz2=0Resz1−z2=0YM2(Y(b, z1 − z2)a, z2)v2

〉
ιz2 ,z1−z2

(zn
1)ι1,z2

(
zwta−1

2

z2 − 1

)

=

∑

i≥0

(
n

i

)〈
ϕ
∣∣∣ v′3 ⊗ v1 ⊗ Resz2=0YM2(b(i)a, z2)v2

〉
ι1,z2

(
zwta−1+n−i

2

z2 − 1

)

= (B).

This shows (5.8) because
〈
ϕ̃

∣∣∣∣∣∣

(
a ⊗

zwta−1

z − 1

)
.(b′(n)v′3 ⊗ v1 ⊗ v2)

〉
= −(A) − (B) + (C) − (D) − (E) + (F) = 0.

Case II. Proof of (5.9). It follows from (5.2) that
〈
ϕ̃

∣∣∣∣
(
a ⊗ zwta−1

)
.(b′(n)v′3 ⊗ v1 ⊗ v2)

〉

= −
〈
ϕ̃
∣∣∣ a′(wta − 1)b′(n)v′3 ⊗ v1 ⊗ v2

〉
︸                                     ︷︷                                     ︸

(G)

+
〈
ϕ̃
∣∣∣ b′(n)v′3 ⊗ Resz2=1YM1(a, z2 − 1)v1 ⊗ v2

〉
ι1,z2−1(zwta−1

2 )
︸                                                                   ︷︷                                                                   ︸

(H)

+
〈
ϕ̃
∣∣∣ b′(n)v′3 ⊗ v1 ⊗ Resz2=0YM2(a, z2)v2

〉
zwta−1

2︸                                                    ︷︷                                                    ︸
(I)

= −(G) + (H) + (I).

Note that a′(wta − 1)v′
3
= o(a)v′

3
for v′

3
∈ M3(0)∗. Then by (5.12) and (5.2), we have

(G) =
〈
ϕ̃
∣∣∣ b′(n)o(a)v′3 ⊗ v1 ⊗ v2

〉
+

∑

i≥0

(
n

i

)〈
ϕ̃
∣∣∣ (b(i)a)′(wta − 1 + n − i)v′3 ⊗ v1 ⊗ v2

〉

=
〈
ϕ
∣∣∣ o(a)v′3 ⊗ Resz1=1YM1(b, z1 − 1)v1 ⊗ v2

〉
ι1,z1−1(zn

1)
︸                                                             ︷︷                                                             ︸

(G1)

+
〈
ϕ
∣∣∣ o(a)v′3 ⊗ v1 ⊗ Resz1=0Y(b, z1)v2

〉
zn

1︸                                           ︷︷                                           ︸
(G2)

+
〈
ϕ
∣∣∣ v′3 ⊗ Resz2=1Resz1−z2=0YM1(Y(b, z1 − z2)a, z2 − 1)v1 ⊗ v2

〉
ιz2,z1−z2

(zn
1)zwta−1

2︸                                                                                              ︷︷                                                                                              ︸
(G3)

+
〈
ϕ
∣∣∣ v′3 ⊗ v1 ⊗ Resz2=0Resz1−z2=0YM2(Y(b, z1 − z2)a, z2)v2

〉
ιz2 ,z1−z2

(zn
1)zwta−1

2︸                                                                                         ︷︷                                                                                         ︸
(G4)

= (G1) + (G2) + (G3) + (G4).

On the other hand, using the invariance of ϕ under the action of a ⊗ zwta−1 ∈ LP1\{0,1}(V)≤0,

together with (5.2), we have

(H) =
〈
ϕ
∣∣∣ v′3 ⊗ Resz1=1Resz2=1YM1(b, z1 − 1)YM1(a, z2 − 1)v1 ⊗ v2

〉
ι1,z2−1(zwta−1

2 )ι1,z1−1(zn
1)

+
〈
ϕ
∣∣∣ v′3 ⊗ Resz2=1YM1(a, z2 − 1)v1 ⊗ Resz1=0YM2(b, z1)v2

〉
ι1,z2−1(zwta−1

2 )zn
1

=
〈
ϕ
∣∣∣ v′3 ⊗ Resz1=1Resz2=1YM1(b, z1 − 1)YM1(a, z2 − 1)v1 ⊗ v2

〉
ι1,z2−1(zwta−1

2 )ι1,z1−1(zn
1)

︸                                                                                                     ︷︷                                                                                                     ︸
(H1)

+
〈
ϕ
∣∣∣ o(a)v′3 ⊗ v1 ⊗ Resz1=0YM2(b, z1)v2

〉
zn

1︸                                              ︷︷                                              ︸
(H2)
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−
〈
ϕ
∣∣∣ v′3 ⊗ v1 ⊗ Resz2=0Resz1=0YM2(a, z2)YM1(b, z1)v2

〉
zn

1zwta−1
2︸                                                                       ︷︷                                                                       ︸

(H3)

= (H1) + (H2) − (H3).

(I) =
〈
ϕ
∣∣∣ v′3 ⊗ Resz1=1YM1(b, z1 − 1)v1 ⊗ Resz2=0YM2(a, z2)v2

〉
zwta−1

2 ι1,z1−1(zn
1)

+
〈
ϕ
∣∣∣ v′3 ⊗ v1 ⊗ Resz1=0Resz2=0YM2(b, z1)YM1(a, z2)v2

〉
zwta−1

2 zn
1

=
〈
ϕ
∣∣∣ o(a)v′3 ⊗ Resz1=1YM1(b, z1 − 1)v1 ⊗ v2

〉
ι1,z1−1(zn

1)
︸                                                             ︷︷                                                             ︸

(I1)

−
〈
ϕ
∣∣∣ v′3 ⊗ Resz2=1Resz1=1YM1(a, z2 − 1)YM1(b, z1 − 1)v1 ⊗ v2

〉
ι1,z2−1(zwta−1

2 )ι1,z1−1(zn
1)

︸                                                                                                     ︷︷                                                                                                     ︸
(I2)

+
〈
ϕ
∣∣∣ v′3 ⊗ v1 ⊗ Resz1=0Resz2=0YM2(b, z1)YM1(a, z2)v2

〉
zwta−1

2 zn
1︸                                                                       ︷︷                                                                       ︸

(I3)

= (I1) − (I2) + (I3).

Note that −(G1) + (I1) = 0 and −(G2) + (H2) = 0. By the Jacobi identity for YM1 and YM2 , we

have (H1) − (I2) = (G3) and −(H3) + (I3) = (G4).
〈
ϕ̃

∣∣∣∣
(
a ⊗ zwta−1

)
.(b′(n)v′3 ⊗ v1 ⊗ v2)

〉
= −(G) + (H) + (I)

= −(G1) − (G2) − (G3) − (G4) + (H1) + (H2) − (H3) + (I1) − (I2) + (I3) = 0.

Case III. Proof of (5.10).

Let k ≥ 2. Note that a′(wta − k)v′
3
= 0 for v′

3
∈ M3(0)∗. Similar to the argument above, using

(5.12), we have
〈
ϕ̃

∣∣∣∣
(
a ⊗ zwta−k

)
.(b′(n)v′3 ⊗ v1 ⊗ v2)

〉

= −

〈
ϕ̃

∣∣∣∣∣∣∣
∑

i≥0

(
n
i

)
(b(i)a)′(wta − k + n − i)v′3 ⊗ v1 ⊗ v2

〉

+
〈
ϕ̃
∣∣∣ b′(n)v′3 ⊗ Resz2=1YM1(a, z2 − 1)v1 ⊗ v2

〉
ι1,z2−1(zwta−k

2 )

+
〈
ϕ̃
∣∣∣ b′(n)v′3 ⊗ v1 ⊗ Resz2=0YM2(a, z2)v2

〉
zwta−k

2

= −
∑

i≥0

(
n
i

)〈
ϕ
∣∣∣ v′3 ⊗ Resz2=1YM1(b(i)a, z2 − 1)v1 ⊗ v2

〉
ι1,z2−1(zwta−k+n−i

2 )

−
∑

i≥0

(
n
i

)〈
ϕ
∣∣∣ v′3 ⊗ v1 ⊗ Resz2=0YM2(b(i)a, z2)v2

〉
zwta−k+n−i

2

+
〈
ϕ
∣∣∣ v′3 ⊗ Resz1=1Resz2=1YM1(b, z1 − 1)YM1(a, z2 − 1)v1 ⊗ v2

〉
ι1,z1−1(zn

1)ι1,z2−1(zwta−k
2 )

+
〈
ϕ
∣∣∣ v′3 ⊗ Resz2=1YM1(a, z2 − 1)v1 ⊗ Resz1=0YM2(b, z1)v2

〉
zn

1ι1,z2−1(zwta−k
2 )

+
〈
ϕ
∣∣∣ v′3 ⊗ Resz1=1YM1(b, z1 − 1)v1 ⊗ Resz2=0YM2(a, z2)v2

〉
ι1,z1−1(zn

1)zwta−k
2

+
〈
ϕ
∣∣∣ v′3 ⊗ v1 ⊗ Resz1=0Resz2=0YM2(b, z1)YM2(a, z2)v2

〉
zn

1zwta−k
2

= −
〈
ϕ
∣∣∣ v′3 ⊗ Resz2=1Resz1−z2=0YM1(Y(b, z1 − z2)a, z2 − 1)v1 ⊗ v2

〉
ιz2 ,z1−z2

(zn
1)ι1,z2−1(zwta−k

2 )

−
〈
ϕ
∣∣∣ v′3 ⊗ v1 ⊗ Resz2=0Resz1−z2=0YM1(Y(b, z1 − z2)a, z2)v2

〉
ιz2,z1−z2

(zn
1)zwta−k

2

+
〈
ϕ
∣∣∣ v′3 ⊗ Resz1=1Resz2=1YM1(b, z1 − 1)YM1(a, z2 − 1)v1 ⊗ v2

〉
ι1,z1−1(zn

1)ι1,z2−1(zwta−k
2 )

−
〈
ϕ
∣∣∣ v′3 ⊗ v1 ⊗ Resz2=0Resz1=0YM2(a, z2)YM2(b, z1)v2

〉
zn

1zwta−k
2

−
〈
ϕ
∣∣∣ v′3 ⊗ Resz2=1Resz1=1YM1(a, z2 − 1)YM1(b, z2 − 1)v1 ⊗ v2

〉
ι1,z1−1(zn

1)ι1,z2−1(zwta−k
2 )

+
〈
ϕ
∣∣∣ v′3 ⊗ v1 ⊗ Resz1=0Resz2=0YM2(b, z1)YM2(a, z2)v2

〉
zn

1zwta−k
2
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= 0.

Case IV. Proof of (5.11). Since deg(a′(wta + l)) = l + 1 ≥ 1, we have a′(wta + l)b′(n)v′
3
∈

M̄(M3(0)∗). Then it follows from (5.3) that
〈
ϕ̃

∣∣∣∣
(
a ⊗ zwta+l

)
.(b′(n)v′3 ⊗ v1 ⊗ v2)

〉

= −
〈
ϕ̃
∣∣∣ a′(wta + l)b′(n)v′3 ⊗ v1 ⊗ v2

〉
+

〈
ϕ̃
∣∣∣ b′(n)v′3 ⊗ Resz2=1YM1(a, z2 − 1)v1 ⊗ v2

〉
ι1,z2−1(zwta+l

2 )

+
〈
ϕ̃
∣∣∣ b′(n)v′3 ⊗ v1 ⊗ Resz2=0YM2(a, z2)v2

〉
zwta+l

2

= 0.

Thus,
〈
ϕ̃
∣∣∣LP1\{0,1,∞}(V).(M̄(M3(0)∗) ⊗C M1 ⊗C M2)

〉
= 0 and ϕ̃ ∈ C

(
Σ1(M̄(M3(0)∗), M1, M2)

)
.

It remains to show that the induced map F in (5.7) is an isomorphism of vector spaces.

Choose b′(n) = 1′(−1) in (5.2), we have
〈
ϕ̃
∣∣∣ v′3 ⊗ v1 ⊗ v2

〉
=

〈
ϕ̃
∣∣∣ 1′(−1)v′3 ⊗ v1 ⊗ v2

〉

=

∑

j≥0

(
−1

j

)〈
ϕ
∣∣∣ v′3 ⊗ 1( j)v1 ⊗ v2

〉
+

〈
ϕ
∣∣∣ v′3 ⊗ v1 ⊗ 1(−1)v2

〉

=
〈
ϕ
∣∣∣ v′3 ⊗ v1 ⊗ v2

〉
.

Hence ϕ̃|M3(0)∗⊗M1⊗M2 = ϕ, and so G ◦ F = Id. Conversely, let ψ ∈ C

(
Σ1(M̄(M3(0)∗), M1, M2)

)
,

using the invariance of ψ under b ⊗ zn ∈ LP1\{0,1,∞}(V), with −wtb + n + 1 ≥ 0, we have

ψ(b′(n)v′3 ⊗ v1 ⊗ v2)

= −ψ
(
(b ⊗ zn).(v′3 ⊗ v1 ⊗ v2)

)
+ ψ(v′3 ⊗ Resz=1YM1(a, z − 1)v1 ⊗ v2)ι1,z−1(zn)

+ ψ(v′3 ⊗ v1 ⊗ Resz=0YM2(b, z)v2)zn

= 0 +G(ψ)(v′3 ⊗ Resz=1YM1(a, z − 1)v1 ⊗ v2)ι1,z−1(zn) +G(ψ)(v′3 ⊗ v1 ⊗ Resz=0YM2(b, z)v2)zn

= (F ◦G)(ψ)(b′(n)v′3 ⊗ v1 ⊗ v2).

Since M̄(M3(0)∗) is spanned by b′(n)v′
3
, with −wtb+n+1 ≥ 0, it follows that F ◦G = Id. Thus,

F in (5.7) is an isomorphism of vector spaces. �

5.3. Fusion rules determined by ∞-restricted conformal blocks. The following theorem

allows us to determine the fusion rule among V-modules in terms of the hom-space that involves

M1 ⊙ M2 in Definition 4.3.

Theorem 5.6. Let M1, M2, M3 be ordinary V-modules of conformal weights h1, h2, h3, respec-
tively. Suppose the contragredient module (M3)′ is isomorphic to the generalized Verma module
M̄(M3(0)∗). Then we have I

(
M3

M1 M2

)
� HomL(V)0

(M1 ⊙ M2, M3(0)) � HomA(V)(M1 ⊙ M2, M3(0)).
In particular,

N

(
M3

M1 M2

)
= dim HomL(V)0

(M1 ⊙ M2, M3(0)), (5.13)

where M1 ⊙ M2 is given by Definition 4.3. In particular, if V is rational, then (5.13) holds for
any irreducible V-modules M1, M2, and M3.

Proof. (5.13) follows from the following commutative diagram:

I
(

(M̄(M3(0)∗))′

M1 M2

)
C

(
Σ1(M̄(M3(0)∗), M1, M2)

)

HomL(V)0
(M1 ⊙ M2, M3(0)) C

(
Σ1(M3(0)∗, M1, M2)

)
.

Prop.2.11

�

Thm.5.5�

Prop.4.4

�
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If V is rational, and M3 is an irreducible V-module, then M3(0)∗ is an irreducible left A(V)-

module. Recall that the left module action is given by the involution θ : A(V) → A(V), where

〈[θ(a)].v′
3
| v3〉 := 〈v′

3
.[a] | v3〉 = 〈v′3 | [a].v3〉 = 〈v′3 | o(a)v3〉, see (2.12). On the other hand, the

bottom degree (M3)′(0) = M3(0)∗ of the V-module (M3)′ is a left A(V)-module with 〈[a] ∗

v′3 | v3〉 = 〈o(a)v′3 | v3〉 = 〈v′3 | o(θ(a))v3〉. Thus, 〈[θ(a)] ∗ v′3 | v3〉 = 〈[θ(a)].v′3 | v3〉, and so (M3)′(0)

is isomorphic to M3(0)∗ as a left A(V)-modules. But the generalized Verma module M̄(M3(0)∗)

is an irreducible V-module, see [DLM98, Theorem 7.2]. Hence M̄(M3(0)∗) � (M3)′ as V-

modules. �

Corollary 5.7. Let V be a rational VOA, and let M1, M2 be irreducible V-modules. Then

A(M1) ⊗A(V) M2(0) � M1 ⊙ M2

as both L(V)0-modules and left A(V)-modules.

Proof. Let M3 be an irreducible V-module. Since V is rational, Frenkel-Zhu’s fusion rules

theorem holds [FZ92, Li99, Liu23]:

I

(
M3

M1 M2

)
� HomA(V)(A(M1) ⊗A(V) M2(0), M3(0)). (5.14)

It suffices to show A(M1) ⊗A(V) M2(0) � M1 ⊙ M2 as left A(V)-modules. Since V is rational,

A(V) is a semisimple associative algebra [Z96, DLM98]. By (4.25), there is an epimorphism of

left A(V)-modules A(M1) ⊗A(V) M2(0)։ M1 ⊙ M2. Then by Schur’s lemma, it suffices to show

that the multiplicities of an irreducible A(V)-module M3(0) in A(M1) ⊗A(V) M2(0) and M1 ⊙ M2

are the same. Indeed, let M3 be the irreducible V-module with bottom level M3(0), it follows

from Theorem 5.6 and (5.14) that

HomA(V)(M1 ⊙ M2, M3(0)) � I

(
M3

M1 M2

)
� HomA(V)(A(M1) ⊗A(V) M2(0), M3(0)).

Noting that the proof of (5.14) did not use the isomorphism A(M1)⊗A(V) M2(0) � M1 ⊙M2, see

[Li99, Liu23]. �

Corollary 5.8. Let V be a rational VOA such that the fusion rules among irreducible modules
are all finite, and let M1, M2 be irreducible V-modules. Then the generalized Verma module
M̄(M1 ⊙ M2) associated to the left A(V)-module M1 ⊙ M2 is isomorphic to the tensor product
module M1

⊠P(z) M2 in [HL95].

Proof. Let W be the set of irreducible V-modules. Then W is finite [Z96, DLM98]. Moreover,

by [HL95, Proposition 4.13], M1
⊠P(z) M2

�

⊕
W∈W N

(
W

M1 M2

)
W as a V-module. Since A(V)

is semisimple, and {W(0) : W ∈ W } is the complete list of irreducible left A(V)-modules, it

follows from (5.13) and Schur’s lemma that

M1 ⊙ M2
=

⊕

W∈W

dim HomL(V)0
(M1 ⊙ M2,W(0))W(0) =

⊕

W∈W

N

(
W

M1 M2

)
W(0).

It is clear that from the construction that the functor M̄(·) preserves direct sum and satisfies

M̄(W(0)) � W when V is rational, see [DLM98, Section 5]. Then we have M̄(M1 ⊙ M2) �⊕
W∈W N

(
W

M1 M2

)
¯W(0) � M1

⊠P(z) M2 as V-modules. �

5.4. The contracted tensor product M1 ⊙ M2 for some irrational VOAs. We examine the

contracted tensor product M1 ⊙ M2 in Definition 4.3 for some irrational VOAs. It turns out that

the left A(V)-module A(M1) ⊗A(V) M2(0) may or may not be isomorphic to M1 ⊙M2, unlike the

rational case in Corollary 5.7.
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5.4.1. Examples in the Heisenberg and vacuum module VOAs. Let V = Vĝ(k, 0) be the Heisen-

berg or vacuum module VOA of level k ∈ C, where g is an abelian or simple Lie algebra,

respectively. Recall that A(V) � U(g) [FZ92]. Let U be an irreducible A(V)-module. The

generalized Verma module associated to U [DLM98, LL04] is given by an induced module

Vĝ(k,U) = U (̂g) ⊗U (̂g+⊕̂g0) U � U (̂g−) ⊗C U, (5.15)

where K.u = ku for some fixed k ∈ C, a(0).u = a.u, and a(n).u = 0, for any a ∈ g, n > 0, and

u ∈ U. It was proved in [LL04] that Vĝ(k,U) is a V-module.

Proposition 5.9. Let V = Vĝ(k, 0) be the Heisenberg or vacuum module VOA of level k ∈ C, and
let M1

= Vĝ(k, λ) and M2
= Vĝ(k, µ). Then M1 ⊙ M2

� A(M1) ⊗A(V) M2(0) � M1(0) ⊗C M2(0).

Proof. By [FZ92, Theorem 3.2.1], A(M1)⊗A(V) M2(0) � (M1(0)⊗CA(V))⊗A(V) M2(0) � M1(0)⊗C
M2(0). First, consider the case when g = h is an abelian Lie algebra. i.e., when Vĝ(k, 0) =

M
ĥ
(k, 0) is the Heisenberg VOA. Then A(M1) ⊗A(V) M2(0) � Ceλ ⊗ Ceµ which surjects onto

M1 ⊙ M2 (4.25). Moreover, M1 ⊙ M2
, 0, since HomL(V)0

(M1 ⊙ M2,Ceλ+µ) , 0 in view of

(5.13). Hence A(M1) ⊗A(V) M2(0) � Ceλ ⊗ Ceµ � M1 ⊙ M2.

Now consider the case when g is a semi-simple Lie algebra and V = Vĝ(k, 0) is the vacuum

module VOA. Since A(M1) ⊗A(V) M2(0) is finite-dimensional and surjects onto M1 ⊙ M2 , then

by Weyl’s decomposition theorem, both A(M1) ⊗A(V) M2(0) and M1(0) ⊗C M2(0) are direct sum

of finite-dimensional irreducible g-modules.

Let M3(0)∗ = U be a finite-dimensional irreducible A(Vĝ(k, 0)) � U(g)-module. Then by

(4.24) and Theorem 5.6, we have HomU(g)(M1 ⊙ M2,U) � HomL(V)0
(M1 ⊙ M2,U) � I

(
(M̄(U∗))′

M1 M2

)
.

On the other hand, M2
= Vĝ(k, µ) is also a generalized Verma module as a module over the VOA

Vĝ(k, 0). Then by [Liu23, Theorem 4.20] and [GLZ23, Proposition 6.3], we have

HomU(g)(A(M1) ⊗A(V) M2(0),U) � I

(
(M̄(U∗))′

M1 M2

)
.

Thus the multiplicities of the irreducible g-module U in M1⊙M2 and A(M1)⊗A(V) M2(0) are the

same. Hence A(M1) ⊗A(V) M2(0) � M1(0) ⊗C M2(0). �

5.4.2. Examples in the Virasoro VOAs and Li’s example. Let V = Mc be the (universal) Vi-

rasoro VOA [FZ92] of central charge c. Li gave an example in [Li99, Section 2] that shows

Frenkel-Zhu’s fusion rules theorem 5.14 does not hold if M2 and M3 are not generalized Verma

modules.

Let M(c, h) be the Verma module over the Virasoro algebra of highest weight h and central

charge c. Recall that Mc = M(c, 0)/〈L(−1)vc,0〉, where vc,0 is the highest-weight vector. Then

M(c, h) is a module over the VOA Mc. Li noticed that if h1 , h2, then

N

(
M(c, h2)

M(c, h1) Mc

)
= 0, but dim HomA(Mc)(A(M(c, h1)) ⊗A(Mc) Mc(0), M(c, h2)(0)) = 1.

This is due to the fact that M2
= Mc as a module over itself is not a generalized Verma

module. But the formula in Theorem 5.6 holds for this example since M3
= M(c, h2) is a

generalized Verma module. We can also see it from the following Proposition.

Proposition 5.10. The contracted tensor product M(c, h1) ⊙ Mc = span{vc,h1
⊙ vc,0}, with the

L(Mc)0 module action given by

ω[wtω−1].(vc,h1
⊙ vc,0) = h1 · (vc,h1

⊙ vc,0). (5.16)

In particular, we have HomL(Mc)0
(M(c, h1) ⊙ Mc, M(c, h2)(0)) = 0 = I

(
M(c,h2)

M(c,h1) Mc

)
.
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Proof. By Proposition 4.5, M(c, h1)⊙Mc = span{L(−n1) . . . L(−nr)vc,h1
⊙vc,0 : n1 ≥ · · · ≥ nr ≥ 1}.

Given v1 ∈ M(c, h1), by (4.22) and (4.7) we have

(L(−n − 3) + 2L(−n − 2) + L(−n − 1)) v1 ⊙ vc,0 = 0, n ≥ 0,

L(−2)v1 ⊙ vc,0 + L(−1)v1 ⊙ vc,0 = v1 ⊙ L(0)vc,0 = 0.

Hence M(c, h1)⊙Mc is spanned by elements of the form L(−1)mvc,h1
⊙vc,0, with m ≥ 0. Moreover,

apply (4.8) to a = ω and k = 2, we have

L(−1)v1 ⊙ vc,0 = −v1 ⊙ L(−1)vc,0 = −v1 ⊙ L(−1)vc,0 = 0.

This shows M(c, h1) ⊙ Mc = span{vc,h1
⊙ vc,0}. Finally, by (4.9) we have

ω[wtω−1].(vc,h1
⊙ vc,0) = L(−1)vc,h1

⊙ vc,0 + L(0)vc,h1
⊙ vc,0 + vc,h1

⊙ L(0)vc,0 = h1 · (vc,h1
⊙ vc,0).

Since ω[wtω−1].vc,h2
= h2 · vc,h2

, we have HomL(Mc)0
(M(c, h1) ⊙ Mc, M(c, h2)(0)) = 0. �

Remark 5.11. It was proved by Li that A(M(c, h1))⊗A(Mc) Mc(0) � C[t1], see [Li99, Section 2].

Proposition 5.10 shows that A(M1) ⊗A(V) M2(0) is not isomorphic to M1 ⊙ M2 in general if V is

not a rational VOA. We also have a sharp estimate

dim HomL(Mc)0
(M(c, h1) ⊙ Mc,Cvc,h2

) < dim HomA(Mc)(A(M(c, h1)) ⊗A(Mc) Mc(0),Cvc,h2
),

in view of Corollary 4.9. Thus, the formula 5.13 holds under more general assumptions than

the fusion rules theorem (5.14).

6. Space of w-restricted conformal blocks and the nuclear democracy theorem

In this Section, instead of∞-restricted datum, we consider the following restricted datum:

Σw((M3)′, M1(0), M2) :=
(
P

1,∞,w, 0, 1/z, z − w, z, (M3)′, M1(0), M2
)
,

where w ∈ P1\{0,∞}, and we restrict the module M1 attached to the point w to its bottom

degree M1(0). We show that the space of conformal blocks associated to Σw((M3)′, M1(0), M2)

is isomorphic to the space of generalized intertwining operators defined by Li [Li98], and the

extension theorem of conformal blocks leads to a new proof of a variant of the generalized

nuclear democracy theorem.

6.1. w-restricted three-pointed conformal blocks on P1. Similar to the ∞-restricted chi-

ral Lie algebra (3.2), we define the w-restricted chiral Lie algebra to be the subalgebra of

LP1\{∞,w,0}(V) (2.25) spanned by elements that leave the subspace (M3)′ ⊗C M1(0) ⊗C M2 in-

variant in (M3)′ ⊗C M1 ⊗C M2.

Definition 6.1. We call the following subspace

LP1\{0,∞}(V)≤0 = span

{
a ⊗

zn

(z − w)m
∈ LP1\{∞,w,0}(V) : a ∈ V, n ∈ Z, −m ≥ wta − 1

}
(6.1)

of the chiral Lie algebraLP1\{∞,w,0}(V) the w-restricted (three-pointed) chiral Lie algebra, and

call the subspace

LP1\{0,∞}(V)<0 = span

{
a ⊗

zn

(z − w)m
∈ LP1\{0,∞}(V)≤0 : a ∈ V, −m > wta − 1

}
(6.2)

the augmented ideal of LP1\{0,∞}(V)≤0.

Similar to Lemma 3.2, Proposition 3.3, and Lemma 3.5, we have

Lemma 6.2. The following properties hold for LP1\{0,∞}(V)≤0 and LP1\{0,∞}(V)<0:

(1) LP1\{0,∞}(V)≤0 is a Lie subalgebra of the chiral Lie algebra LP1\{∞,w,0}(V), LP1\{0,∞}(V)<0

is an ideal of LP1\{0,∞}(V)≤0.
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(2) ρ0(LP1\{0,∞}(V)≤0)(M1(0)) ⊆ M1(0) and ρ0(LP1\{0,∞}(V)<0)(M1(0)) = 0. In particular, we
have LP1\{0,∞}(V)≤0.((M3)′ ⊗C M1(0) ⊗C M2) ⊆ (M3)′ ⊗C M1(0) ⊗C M2.

(3) The spanning elements of these subalgebras are given as follows:

LP1\{0,∞}(V)≺0 = span

{
a ⊗

(z − w)wta

z
, a ⊗ (z − w)wta−1+k : a ∈ V, k ≻ 0

}
, (6.3)

where ≺ represents ≤ or <.
(4) LP1\{0,∞}(V)≤0/LP1\{0,∞}(V)<0 � L(V)0.

We make the following table for the pairs (n,−m) in (6.1), the idealLP1\{0,∞}(V)<0 corresponds

to the pairs lying above the horizontal line. The spanning elements in (6.3) are marked in red.

. . .
...

...
...

...
... . . .

. . . (−2,wta + 2) (−1,wta + 2) (0,wta + 2) (1,wta + 2) (2,wta + 2) . . .

. . . (−2,wta + 1) (−1,wta + 1) (0,wta + 1) (1,wta + 1) (2,wta + 1) . . .

. . . (−2,wta) (−1,wta) (0,wta) (1,wta) (2,wta) . . .

. . . (−2,wta − 1) (−1,wta − 1) (0,wta − 1) (1,wta − 1) (2,wta − 1) . . .

(6.4)

proof of Lemma 6.2. The proof of parts (1) and (2) are similar to the proof of Lemma 3.2 and

Lemma 3.5, we omit the details.

We adopt a similar combinatorial argument as the proof of Proposition 3.3 to show part (3).

Denote the subspace on the right hand side of (6.3) by g. Again, for a given a ∈ V , we say that

the pair (n,−m) ∈ g if the corresponding term a ⊗ zn(z − w)−m ∈ g.

First, note that for any a ∈ V , n ∈ Z, and k ≥ 0, we have

a ⊗ zn(z − w)wta−1+k+1
+ a ⊗ wzn(z − w)wta−1+k

= a ⊗ zn+1(z − w)wta−1+k.

We use the following graph for the paris (n,−m) to illustrate this property:

(n,wta − 1 + (k + 1))

w · (n,wta − 1 + k) ((n + 1),wta − 1 + k).

+

=

(6.5)

Using (6.5), it is easy to see that all the pairs on the right side of the middle red column of (6.4)

are contained in g. Since (−1,wta) ∈ g, it is easy to see that the first column on the left side of

the middle red column are contained in g.

Moreover, given n , 0, suppose a ⊗ z−n(z − w)wta−1+k ∈ g for all a ∈ V , we claim that

a⊗ z−n−1(z−w)wta−1+k ∈ g for all a ∈ V . Indeed, replace a by L(−1)a in the assumption, we have

0 ≡ L(−1)a ⊗ z−n(z − w)wta+k
= −a ⊗ (−n)z−n−1(z − w)wta+k − a ⊗ z−n(wta + k)(z − w)wta+k−1

= (n − wta − k)a ⊗ z−n(z − w)wta+k−1
+ (nw)a ⊗ z−n−1(z − w)wta+k−1

≡ (nw)a ⊗ z−n−1(z − w)wta+k−1 (mod g).

Then it follows from induction on n < 0 that all the pairs on the left side of the middle red

column of (6.4) are contained in g.

Finally, from table (6.4) and (6.5), it is easy to see thatLP1\{0,∞}(V)≤0/LP1\{0,∞}(V)<0 is spanned

by the equivalent classes a ⊗ (z − w)wta−1
+LP1\{0,∞}(V)<0. Then by (2.17), we have

[a ⊗ (z − w)wta−1, b ⊗ (z − w)wtb−1] =
∑

j≥0

(
wta − 1

j

)
a( j)b ⊗ (z − w)wta−1+wtb−1− j,

for any a, b ∈ V . Hence LP1\{0,∞}(V)≤0/LP1\{0,∞}(V)<0 � L(V)0, in view of (2.9). �

Definition 6.3. We define the space of w-restricted conformal blocks associated to the datum

Σw((M3)′, M1(0), M2) :=
(
P

1,∞,w, 0, 1/z, z − w, z, (M3)′, M1(0), M2
)
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to be the following vector space:

C

(
Σw((M3)′, M1(0), M2)

)
:=

(
(M3)′ ⊗C M1(0) ⊗C M2

LP1\{0,∞}(V)≤0.((M3)′ ⊗C M1(0) ⊗C M2)

)∗
. (6.6)

By part (2) of Lemma 6.2, the space C

(
Σw((M3)′, M1(0), M2)

)
is well-defined.

Using Lemma 4.2 again, we have the following Hom-space description of the space of w-

restricted conformal blocks similar to Proposition 4.4.

Proposition 6.4. There is an isomorphism of vector spaces:

C

(
Σw((M3)′, M1(0), M2)

)
� HomL(V)0

((M3)′ ⊡ M2, M1(0)∗), (6.7)

where (M3)′ ⊡ M2 := (M3)′ ⊗C M2/LP1\{0,∞}(V)<0.((M3)′ ⊗C M2) is spanned by the elements
v′3 ⊡ v2 = v′

3
⊗ v2, subject to the following relations:

−
∑

j≥0

(
wta

j

)
(−w) ja′(wta − 1 − j)v′3 ⊡ v2 +

∑

j≥0

(
wta

j

)
(−w)−wta− jv′3 ⊡ a(−1 + j)v2, (6.8)

−
∑

j≥0

(
wta − 1 + k

j

)
(−w) ja′(wta − 1 + k − j)v′3 ⊡ v2

+

∑

j≥0

(
wta − 1 + k

j

)
(−w)−wta−1+k− jv′3 ⊡ a( j)v2,

(6.9)

where v′
3
∈ (M3)′, v2 ∈ M2, a ∈ V, and k ≥ 0.

Proof. Similar to Proposition 4.4, we omit the details. �

6.2. w-restricted conformal blocks and generalized intertwining operators. The following

notion of generalized intertwining operators is a slight modification of [Li98, Definition 4.1]. It

fits better into the conformal block picture.

Definition 6.5. Let M1, M2, M3 be ordinary V-modules of conformal weights h1, h2, and h3,

respectively. Let h = h1 + h2 − h3 as in Definition 2.4. Regard M1(0) as a module over the

Borcherd’s Lie algebra L(V)0. A generalized intertwining operator is a linear map

Φ(·,w) : M1(0)→ HomC(M2, M3)[[w,w−1]]w−h, Φ(v1,w) =
∑

n∈Z

v1(n)w−n−1−h,

satisfying the following conditions:

(1) (truncation property) For any v1 ∈ M1(0) and v2 ∈ M2, we have v1(n)v2 = 0 for n ≫ 0;

(2) (L(−1)-bracket derivative property) [L(−1),Φ(v1,w)] = d
dwΦ(v1,w);

(3) (restricted Jacobi identity) [Li98, eq. (4.36)]:

(z − w)wta−1YM3(a, z)Φ(v1,w) − (−w + z)wta−1
Φ(v1,w)YM2(a, z)

= z−1δ

(w
z

)
Φ(a[wta−1]v1,w),

(6.10)

for any a ∈ V and v1 ∈ M1(0).

We denote the vector space of generalized intertwining operators by I
(

M3

M1(0) M2

)
.

Remark 6.6. For v1 ∈ M1(0), Li called the element Φ(v1,w) ∈ HomC(M2, M3))[[w,w−1]]w−h a

generalized intertwining operator. The axioms we impose on Φ(·,w) are based on the axioms

of Φ(v1,w) in [Li98, Definition 4.1].



ONE-POINT RESTRICTED CONFORMAL BLOCKS AND THE FUSION RULES 31

The isomorphism (2.27) of conformal blocks restricts to an isomorphism of restricted con-

formal blocks C

(
Σ1((M3)′, M1(0), M2)

)
� C

(
Σw((M3)′, M1(0), M2)

)
, ϕ1 7→ ϕw, with

〈ϕw | v
′
3 ⊗ v1 ⊗ v2〉 = 〈ϕ1 |w

L(0)−h3v′3 ⊗ w−L(0)+h1 v1 ⊗ w−L(0)+h2 v2〉

= 〈ϕ1 | v
′
3 ⊗ v1 ⊗ v2〉w

deg v′
3
−deg v2 ,

where v′
3
⊗ v1 ⊗ v2 ∈ (M3)′ ⊗C M1(0) ⊗C M2.

Proposition 6.7. There is an isomorphism of vector spaces:

C

(
Σw((M3)′, M1(0), M2)

)
→ I

(
M3

M1(0) M2

)
, ϕw 7→ Φ(·,w),

where Φ(v1,w) =
∑

n∈Z v1(n)w−n−1−h, with v1(n) ∈ HomC(M2, M3) defined by

〈v′3|v1(n)v2〉 :=


〈ϕ1 | v′3 ⊗ v1 ⊗ v2〉 if v′

3
∈ M3(deg v2 − n − 1)∗,

0 if v′3 ∈ M3(m)∗, m , deg v2 − n − 1.
(6.11)

Equivalently, Φ(·,w) is defined by the following formula:

〈v′3 |Φ(v1,w)v2〉 := 〈ϕw | v
′
3 ⊗ v1 ⊗ v2〉w

−h
= 〈ϕ1 | v

′
3 ⊗ v1 ⊗ v2〉w

−h+deg v′
3
−deg v2 , (6.12)

for any homogeneous elements v′
3
∈ (M3)′, v2 ∈ M2, and v1 ∈ M1(0).

Proof. We need to show Φ(·,w) defined by (6.11) and (6.12) is a generalized intertwining oper-

ator. By (6.11), v1(n)v2 ∈ M3(deg v2 − n − 1), which is 0 when n ≫ 0.

Note that ω ⊗ (z − w) ∈ LP1\{0,∞}(V)≤0 by (6.1), and ϕw is invariant under the action of

LP1\{0,∞}(V)≤0. Then by (2.26), (2.7), and (6.12), we have

0 = 〈ϕw | (ω ⊗ (z − w)).(v′3 ⊗ v1 ⊗ v2)〉w−h

= −
∑

j≥0

(
1

j

)
(−w) j〈ϕw |ω

′(1 − j)v′3 ⊗ v1 ⊗ v2〉w
−h
+ 〈ϕw | v

′
3 ⊗ ω(1)v1 ⊗ v2〉w

−h

+

∑

j≥0

(
1

j

)
(−w)1− j〈ϕw | v

′
3 ⊗ v1 ⊗ ω( j)v2〉w

−h

= −〈ϕ1 |ω(1)v′3 ⊗ v1 ⊗ v2〉w
−h+deg v′

3
−deg v2 + w〈ϕ1 |ω(2)v′3 ⊗ v1 ⊗ v2〉w

−h+deg v′
3
−1−deg v2

+ 〈ϕ1 | v
′
3 ⊗ ω(1)v1 ⊗ v2〉w

−h+deg v′
3
−deg v2

− w〈ϕ1 | v
′
3 ⊗ v1 ⊗ ω(0)v2〉w

−h+deg v′
3
−deg v2−1

+ 〈ϕ1 | v
′
3 ⊗ v1 ⊗ ω(1)v2〉w

−h+deg v′
3
−deg v2

=
(
h1 + h2 − h3 + deg v2 − deg v′3

)
〈ϕ1 | v

′
3 ⊗ v1 ⊗ v2〉w

−h+deg v′
3
−deg v2

+ 〈ϕ1 |
(
L(1)v′3 ⊗ v1 ⊗ v2 − v′3 ⊗ v1 ⊗ L(−1)v2

)
〉w−h+deg v′

3
−deg v2

= −w
d

dw
〈v′3 |Φ(v1,w)v2〉 + w〈v′3 | L(−1)Φ(v1,w)v2〉 − w〈v′3 |Φ(v1,w)L(−1)v2〉.

Thus we have [L(−1),Φ(v1,w)] = d
dwΦ(v1,w).

Furthermore, since ϕw is also invariant under the action of a ⊗ zn(z − w)wta−1 for any n ∈ Z
(6.1), then by (2.26) and (6.12), we have

0 = 〈ϕw | (a ⊗ zn(z − w)wta−1).(v′3 ⊗ v1 ⊗ v2)〉w−h

= −
∑

j≥0

(
wta − 1

j

)
(−w) j〈ϕw | a

′(n + wta − 1 − j)v′3 ⊗ v1 ⊗ v2〉w
−h

+

∑

j≥0

(
n

j

)
wn− j〈ϕw | v

′
3 ⊗ a( j + wta − 1)v1 ⊗ v2〉w

−h
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+

∑

j≥0

(
wta − 1

j

)
(−w)wta−1− j〈ϕw | v

′
3 ⊗ v1 ⊗ a(n + j)v2〉w

−h (6.13)

= −
∑

j≥0

(
wta − 1

j

)
(−w) j〈v′3 | a(n + wta − 1 − j)Φ(v1,w)v2〉 + wn〈v′3 |Φ(a(wta − 1)v1,w)v2〉

+

∑

j≥0

(
wta − 1

j

)
〈v′3 |Φ(v1,w)a(n + j)v2〉

= −Resz(z − w)wta−1zn〈v′3 | YM3(a, z)Φ(v1,w)v2〉 + Reszz
nz−1δ

(w

z

)
〈v′3 |Φ(a[wta−1]v1,w)v2〉

+ Resz(−w + z)wta−1zn〈v′3 |Φ(v1,w)YM2(a, z)v2〉.

Since v′3 and zn are chosen arbitrarily, we have an identity of formal power series:

(z − w)wta−1YM3(a, z)Φ(v1,w) − (−w + z)wta−1
Φ(v1,w)YM2(a, z)

= z−1δ

(w

z

)
Φ(a[wta−1]v1,w).

Thus, Φ(·,w) defined by (6.12) is a generalized intertwining operator 6.5.

Conversely, givenΦ(·,w) ∈ I
(

M3

M1(0) M2

)
, we define ϕw : (M3)′⊗CM1(0)⊗CM2 → C by the same

formula (6.12). Then by reversing the argument in (6.13), we can easily show that ϕw is invariant

under a⊗ zn(z−w)wta−1 ∈ LP1\{0,∞}(V)≤0 for any n ∈ Z. Hence it is also invariant under the action

of
∑

i≥0

(
k
i

)
(−w)ia⊗zn+k−i(z−w)wta−1

= a⊗zn(z−w)wta−1+k, which is a general spanning element of

LP1\{0,∞}(V)≤0, in view of Lemma 6.2. This shows C

(
Σw((M3)′, M1(0), M2)

)
� I

(
M3

M1(0) M2

)
. �

6.3. Generalized nuclear democracy theorem for VOAs. Let M̄(M1(0)) be the generalized

Verma module associated to the A(V)-module M1(0) [DLM98].

Similar to the extension process in Section 5, given a w-restricted conformal block ϕw ∈

C

(
Σw((M3)′, M1(0), M2)

)
, we may define a linear map ϕ̃w : (M3)′ ⊗C M̄(M1(0)) ⊗C M2 → C

inductively by

〈ϕ̃w | v
′
3 ⊗ b1(n1) . . . br(nr)v1 ⊗ v2〉

:= −〈ϕw |Resz=∞Y(M3)′(ϑ(b1), z−1)v′3 ⊗ b2(nw) . . . br(nr)v1 ⊗ v2〉ιz,w((z − w)n1) (6.14)

− 〈ϕw | v
′
3 ⊗ b2(n2) . . . br(nr)v1 ⊗ Resz=0YM2(b1, z)v2〉ιw,z((z − w)n1)

Proposition 6.8. Let ϕ ∈ C

(
Σw((M3)′, M1(0), M2)

)
. Then ϕ̃w given by (6.14) is invariant under

the action of the chiral Lie algebra LP1\{∞,w,0}(V). In particular, we have an isomorphism of
vector spaces:

C

(
Σw((M3)′, M1(0), M2)

)
� C

(
Σw((M3)′, M̄(M1(0)), M2)

)
, ϕw 7→ ϕ̃w.

Proof. Simiar to the proof of theorem 5.5, we omit the details. See also [GLZ24, Theorems

5.18, 5.19]. �

The following is Li’s generalized nuclear democracy theorem with our modified notion of

generalized intertwining operator in Definition 6.5, see [Li98, Theorem 4.12].

Theorem 6.9. Let U be a L(V)0-module, and let I0(·,w) ∈ I
(

M3

U M2

)
be a generalized intertwining

operator which is injective as a linear map, then there exists a lowest-weight V-module W with
U as its lowest-weight subspace generating W, and there is a unique intertwining operator
I ∈

(
M3

M1 M2

)
extending I0. In particular, if V is rational and U is an irreducible L(V)0-module,

then W is an irreducible V-module.
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The proof of Theorem 6.9 in [Li98] used a tensor product construction and an analog of the

hom-functor for modules over VOAs. With the properties of w-resricted conformal blocks, we

can give an alternative proof of a slightly different version of Li’s generalized nuclear democracy

theorem.

Theorem 6.10. Let M1, M2, M3 be ordinary V-modules of conformal weights h1, h2, and h3,
respectively. Assume that M1 is the generalized Verma module associated to an A(V)-module
M1(0) (viewed also as a L(V)0-module). Then there is isomorphism of vector spaces:

I

(
M3

M1 M2

)
� I

(
M3

M1(0) M2

)
� HomL(V)0

((M3)′ ⊡ M2, (M1(0))∗), (6.15)

where (M3)′ ⊡ M2 := (M3)′ ⊗C M2/LP1\{0,∞}(V)<0.((M3)′ ⊗C M2). In particular, if V is rational,

and M1, M2, M3 are irreducible V-modules, then we have I
(

M3

M1 M2

)
� I

(
M3

M1(0) M2

)
.

Proof. (6.15) follows from the following commutative diagram:

I
(

M3

M1 M2

)
C

(
Σ1((M3)′, M1, M2)

)

I
(

M3

U M2

)
C

(
Σw((M3)′, M1(0), M2)

)
HomL(V)0

((M3)′ ⊡ M2,U∗).

Prop.2.11

�

Prop.6.8�

Prop.6.7

�

Prop.6.4

�

(6.16)

If V is rational, and M1 is an irreducible V-module, then M1(0) is an irreducible A(V)-module,

and the generalized Verma module M̄(M1(0)) is an irreducible V-module which is isomorphic

to M1, see [DLM98, Theorem 7.2]. �

Using the w-restricted conformal blocks, we also have a variant of the generalized nuclear

democracy theorem.

Theorem 6.11. Let M1, M2, M3 be ordinary V-modules of conformal weights h1, h2, and h3,
respectively. Assume that M1 is the generalized Verma module associated to an A(V)-module
M1(0). Then there is an isomorphism of vector spaces:

I

(
M3

M1 M2

)
� I

(
M3

M1(0) M2

)
� HomL

P1\{0,∞}
(V)≤0

(M1(0) ⊗C M2, M3), (6.17)

where M3 =
∏∞

n=0 M3(n) = HomC((M3)′,C), which is a module over the w-restricted chiral Lie
algebra LP1\{0,∞}(V)≤0 via ρ0 (2.20).

Proof. In view of the diagram (6.16), we only need to show

C

(
Σw((M3)′, M1(0), M2)

)
� HomL

P1\{0,∞}
(V)≤0

(M1(0) ⊗C M2, M3), (6.18)

which is a infinite-dimensional version of (4.3). To simplify our notations, we denote M1(0)⊗C
M2 by W, and denote the w-restricted chiral Lie algebra LP1\{0,∞}(V)≤0 by g.

Let 〈·|·〉 : (M3)′ × M3 → C be the natural pair. We define the action of g on M3 by the

following formula:

〈v′3 | ρ0(X)(v3)〉 := −〈ρ∞(X)(v′3) | v3〉, v′3 ∈ (M3)′, v3 ∈ M3. (6.19)

Since (M3)′ is a module over the g via ρ∞, it follows that M3 is a module over g via ρ0. Then

we need to show HomC
(
(M3)′ ⊗C W/g.((M3)′ ⊗C W),C

)
� Homg(W, M3).

For each n ∈ N, choose a basis {v(i,n) : i = 1, . . . ,Nn} of M3(n), and a dual basis {v(i,n) : i =

1, . . . ,Nn} of M3(n)∗. Given F ∈ Homg(W, M3), we define a linear map ϕF : (M3)′ ⊗C W → C
by 〈ϕF | v′3 ⊗ w〉 := 〈v′3 | F(w)〉. For any X ∈ g, by (6.19) we have

〈ϕF | ρ∞(X)(v′3) ⊗ w + v′3 ⊗ ρ0(X)(w)〉 = −〈v′3 | ρ0(X)(F(w))〉 + 〈v′3 | F(ρ0(X)(w))〉 = 0.
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Hence ϕF reduces to an element in HomC
(
(M3)′ ⊗C W/g.((M3)′ ⊗C W),C

)
. On the other hand,

given an element ϕ ∈ HomC
(
(M3)′ ⊗C W/g.((M3)′ ⊗C W),C

)
, define

Fϕ : W → M3, Fϕ(w) :=

∞∑

n=0

Nn∑

i=1

〈ϕ | v(i,n) ⊗ w〉v(i,n), w ∈ W.

To show Fϕ is g-invariant, note that if we assume ρ0(X)(v( j,m)) =
∑∞

k=0

∑
s a( j,m),(s,k)v(s,k), then

by (6.19), 〈ρ∞(X)(v(i,n)) | v( j,m)〉 = −〈v(i,n) |
∑∞

k=0

∑
k a( j,m),(s,k)v(s,k)〉 = −a( j,m),(i,n). It follows that

ρ∞(X)(v(i,n)) = −
∑∞

l=0

∑
t a(t,l),(i,n)v(t,l). Thus we have

Fϕ(X.w) =

∞∑

n=0

∑

i

〈ϕ | v(i,n) ⊗ X.w〉v(i,n) = −

∞∑

n=0

∑

i

〈ϕ | ρ∞(X)(v(i,n)) ⊗ w〉v(i,n)

=

∞∑

n=0

∑

i

∞∑

l=0

∑

t

〈ϕ | v(t,l) ⊗ w〉a(t,l),(i,n)v(i,n) =

∞∑

l=0

∑

t

〈ϕ | v(t,l) ⊗ w〉ρ0(X)(v(t,l))

= ρ0(X)(Fϕ(w)).

Hence Fϕ ∈ Homg(W, M3). Finally, given F ∈ Homg(W, M3) and w ∈ W, we have

FϕF (w) =

∞∑

n=0

∑

i

〈ϕF | v(i,n) ⊗ w〉v(i,n) =

∞∑

n=0

∑

i

〈v(i,n) | F(w)〉v(i,n) = F(w).

On the other hand, note that v′3 =
∑∞

n=0

∑
i〈v
′
3 | v(i,n)〉v(i,n) for any v′3 ∈ (M3)′, we have

〈ϕFϕ | v
′
3
⊗ w〉 = 〈v′3 | Fϕ(w)〉 =

∞∑

n=0

∑

i

〈ϕ | v(i,n) ⊗ w〉〈v′3 | v(i,n)〉 = 〈ϕ | v′3 ⊗ w〉.

This shows HomC
(
(M3)′ ⊗C W/g.((M3)′ ⊗C W),C

)
� Homg(W, M3) and (6.18). �
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