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Abstract 

Validating smartphone sensor-based tests to study gait and balance against reference measurement 

systems in a laboratory setting poses several technical challenges related to data quality and data 

processing. One challenge is to guarantee the correct annotation of the data, which is required to ensure 

that only data collected during the same test execution are compared across measurement systems in 

subsequent analyses. A second challenge is to accurately synchronize the data across the different 

systems. Here, we propose innovative solutions for both challenges and illustrate their use in the 

example of comparing smartphone sensor data collected with the Floodlight technology with data 

collected with a motion capture system. These solutions form important tools for guaranteeing the data 

quality and data integrity required for the validation of gait and balance characteristics measured by 

digital health technology tools such as the Floodlight technology. 
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Introduction 

Smartphone sensor-based tests are gaining increasing attention for assessing functional impairment 

related to neurologic disorders such as multiple sclerosis (MS) [1–3]. In the Floodlight GaitLab study 

(ISRCTN15993728), we aim to establish the analytical and clinical validity of the smartphone-based gait 

and balance tests included in the Floodlight technology [4]. In particular, establishing analytical validity is 

a critical step in ensuring that the measures derived from these tests are accurate and precise. This 

includes comparing the sensor data collected with the Floodlight technology against data collected 

simultaneously with reference measurement systems such as motion capture systems or ground reaction 

force (GRF) plates.  

These comparisons pose several technical challenges. One is to guarantee that the information on test 

type (i.e., test identifier and test condition) has been correctly entered on the different measurement 

systems. This ensures that subsequent analyses only compare data collected during the same test 

execution. A second challenge is to accurately synchronize the smartphone sensor data with data collected 

with reference measurement systems. Solutions for synchronizing such data are available [5, 6]. However, 

they either require the use of their application programming interface (API) [5], which may not be always 

feasible or desirable because it might make changes in proprietary technology of the reference systems 

necessary, or can result in small, persisting lags between measurement systems that are not fully 

accounted for [6]. Furthermore, the measurement systems may not always support the required network 

connectivity. Hence, alternative solutions to synchronize smartphone sensor data with data collected with 

other measurement systems are needed. 

Here we propose solutions for both verifying metadata such as test type and for synchronizing data across 

measurement systems. Their use is illustrated on data obtained with the Floodlight technology and a 

motion capture system. 
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Methods 

Study design and participants 

The prospective, observational, single-site GaitLab study (ISRCTN15993728) includes two on-site visits in 

a gait laboratory (University of Plymouth, Plymouth, UK) and an unsupervised, remote testing period in 

between for 10–14 days [4]. As the motion capture system is used only during the second on-site visit, 

data from this visit are presented here using an interim data cut. Both people with MS (PwMS) and healthy 

controls (HC) are recruited. Ethical approval has been obtained from the UK Health Research Authority 

prior to study initiation (IRAS project ID 302099), and all participants provided signed informed consent. 

During the second on-site visit, all participants performed several gait and balance tests (Fig. 1). These 

included the U-Turn Test (UTT) [7], Two-Minute Walk Test (2MWT) [1, 8], and Static Balance Test (SBT) 

battery [4]. The UTT instructs the participant to walk back and forth for 60 seconds while performing U-

turns roughly 3 or 4 meters apart. The 2MWT consist of four separate conditions, or walking tasks, each 

lasting two minutes [4]: 1) fixed speed (at 2 km/h), 2) self-pace (at normal pace for the participant), 3) fast 

pace (as fast as the participant can walk safely), and 4) dual-task (self-paced condition with a simultaneous 

 

 

 

Figure 1. All participants performed a series of gait and balance tests on a treadmill, including the UTT (purple), 2MWT (blue), 

and SBT (orange). During these tests, data were simultaneously collected from six smartphones running the Floodlight 
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technology (red), 12 infrared Vicon Vero cameras (black) that captured the position time series of reflective markers (white; 

26 markers attached to anatomical landmarks of the participant and three markers to each smartphone, respectively), 

multiaxial force plates embedded in the treadmill (gray), and five Gait Up IMU sensors (green; data not shown). Note that the 

schematic representation is not to scale. 2MWT, Two-Minute Walk Test; IMU, inertial measurement unit; SBT, Static Balance 

Test; UTT, U-Turn Test. 

 

cognitive task consisting of serial subtractions of 7 starting from 200). The SBT battery consists of five test 

conditions, each performed twice and each lasting 30 seconds: 1) eyes open (natural stance with feet apart 

and eyes open), 2) eyes closed (natural stance with feet apart and eyes closed), 3) parallel stance (parallel 

stance with feet together and eyes open, 4) tandem (full tandem stance with eyes open), and 5) single leg 

(single foot stance with eyes open). 

 

Floodlight technology and reference measurement system 

The Floodlight technology consists of smartphone sensor-based tests of gait and balance as well as other 

functional domains affected by MS [1, 9]. The study participants performed the gait and balance tests 

while carrying six Samsung Galaxy A40 smartphones in six different wear locations (the right and left front 

pockets, the central front at the waist, the left and right back pockets, and the central back at the waist) 

attached to customized shorts or carried in an adjustable belt. These smartphones came with the 

Floodlight technology preinstalled (Floodlight GaitLab v1.0.6 or newer). It recorded continuous 

accelerometer, gyroscope, and magnetometer data at a sampling frequency of 50 Hz to compute a wide 

range of gait and balance characteristics. Two additional smartphones were available to the 

experimenters: the “timer” and “master” smartphones. The timer smartphone was used to record the test 

type and the timestamps marking the start and end of each test execution. This information was used to 

segment the continuous smartphone sensor data and to annotate these segments with the type of activity. 

The master smartphone was used to synchronize the smartphones both with each other and with the 

motion capture system. 

To synchronize the smartphones with each other, they were placed at the beginning of the second on-site 

visit in a half-tube. Applying mechanical perturbation to this half-tube resulted in a rocking motion that 

produces a distinct pattern, which was easily identified in the smartphones’ gyroscope signal. The lags of 

this signal across smartphones were then determined by cross-correlation of the gyroscope time series 

along one of the axes of a reference smartphone (e.g., the master smartphone) with those of all other 

smartphones. The smartphones were then synchronized with each other by subtracting these lags. This 
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mechanical perturbation process was repeated at the end of the second on-site visit. This second 

perturbation was used to determine and correct a possible clock drift between the smartphones that might 

have occured during the on-site visit. 

The reference measurement system used in our analysis was a Vicon® motion capture system consisting 

of 12 infrared cameras (Vicon Vero cameras), which captured the signals from 26 reflective markers  

(A) 

 

(B) 

 

Figure 2. (A) The mechanical solution to automatically encode and decode information on test type consisted of a start button; 

a computer controlling the motion capture system; and a vibrating motor, which was attached to the master smartphone. (B) 

The information on the test type encoded in the binary vibration pulse sequence was decoded by detecting the peaks in the 

acceleration signal recorded during this vibration sequence (see text for details). Red and blue dashed lines indicate the 

thresholds in the accelerometer magnitude used to identify the vibration peaks. These peaks correspond to the ‘1’s in the 

binary vibration pulse sequence. The green dotted lines indicate the time points at which either a ‘1’ (i.e., a peak in the 

accelerometer signal), or ‘0’ are expected. Acc, acceleration. 

  

attached to anatomical landmarks of the participant and three reflective markers attached to each of the 

six smartphones worn by the participant. These three non-collinear markers attached to each smartphone 

were used to reconstruct the smartphones’ position and orientation. The reference system also included 

a split-belt treadmill (Motek, Netherlands) with embedded multiaxial force plates (ForceLink R-Mill force 

plates, Motek, Netherlands) that recorded GRFs. The infrared camera and treadmill data were already 

intrinsically synchronized with each other with Vicon’s own solution. The sampling frequency was 100 Hz 

for the infrared cameras, and 1000 Hz for the force plates. Each motion capture recording was initiated 

and stopped by the experimenter pressing the start/ stop button (green button in Fig. 2A). The 

synchronization of the smartphones with the motion capture system is described in the following two 

sections.  
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Reference data were also collected with Gait Up inertial measurement unit (IMU) sensors (Gait Up, 

Lausanne, Switzerland), which were synchronized with the smartphones using the mechanical 

perturbation method described above (data not shown).  

 

 

 

Automatic verification of metadata and synchronization of smartphones with motion capture 

system 

The wide range of different gait and balance tests and measurement systems included in this study 

increases the risk of false annotation of the collected data. Such errors could lead to inadvertently 

comparing sensor data recorded during different test executions with each other. Hence, we implemented 

a process to verify that the same test type has been entered on the different measurement systems, i.e., 

that the test type entered on the timer smartphone matches that selected on the motion capture system 

computer. For this, we developed a fully automatized, mechanical solution, which requires only simple 

signal processing procedures and a low-cost vibrating motor. The Motek software permits customization 

such that each time a motion capture recording was initiated, it sent a short binary sequence of pulses 

consisting of ‘0’s and ‘1’s, which were spaced by 1 second, to a programmable vibrating motor (Seeed 

Studio 316040001 Mini Vibration Motor, Seeed Studio, China). This motor was mechanically attached to 

the master smartphone (Fig. 2A). ach time it receives a ‘1’, the vibrating motor started to vibrate for 0.3 

seconds followed by 0.7 seconds of rest. This vibration train was subsequently detected with the master 

smartphone’s accelerometer. To mark the start and end of each vibration train, each vibration pulse 

sequence started and ended with ‘11’, respectively. The test type was encoded by the middle four bits of 

the sequence, thus allowing us to encode 16 different test types (e.g., 0000, 0001, 0010, …, 1111). For 

example, the vibration pulse sequence ‘11010111’ shown in Fig. 2B encoded the test type assigned to 

‘0101’ (i.e., ‘UTT’). 

Decoding this information involved several steps (Fig. 2B). First, the vibration signal was automatically 

segmented by localizing the vibration train in the master smartphone’s accelerometer data, i.e., when the 

accelerometer magnitude was above a preset threshold (red dashed line in Fig. 2B) but also below a second 

threshold (blue dashed line in Fig. 2B). These thresholds were experimentally selected on the basis of the 

observed signal and noise levels. Next, the peaks (blue) within this segmented signal were detected. These 
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peaks correspond to the ‘1’s in the binary vibration pulse sequence. As we know a priori at which exact 

time points a ‘1’ or ‘0’ can occur (green dashed lines in Fig. 2B spaced by 1 second), the information on 

test type can be decoded by determining at which of these time points a peak in the accelerometer 

magnitude signal occurred. 

False entries were then detected and flagged by comparing the test type information automatically 

decoded on the motion capture system with the information manually entered on the timer smartphone, 

thereby aiding in correcting any erroneous entries.  

Additionally, detection of the first peak’s onset in the vibration train was also used to mark on the master 

smartphone’s data time series the onset of the motion capture recording. As the smartphones have 

already been synchronized with each other with the perturbation-based method described above, this 

vibration-based method synchronized the two measurement systems (all smartphones running the 

Floodlight technology and the motion capture system) with each other.  

 

Post-synchronization correction 

After the initial synchronization with the vibration-based method, small and non-controlled lags may still 

be present between the smartphone and motion capture data. Such lags might be caused by the inertia of 

the vibrating motor or delays introduced by the system used for creating the vibration pulse sequence. If 

present, such lags could be estimated through cross-correlation of corresponding signals measured with 

both systems and hence corrected. We explored two methods to estimate such lags between the 

smartphone and motion capture data: the acceleration-based and the force-based lag estimation method 

[10, 11]. Both methods were applied to each test execution separately. Given the short duration of each 

test execution (two minutes or less), any potential clock drift between the measurement systems was 

considered to be negligible.  

The acceleration-based lag estimation method [10] estimated the lag by comparing the acceleration of the 

smartphone with the acceleration of one of the Vicon reflective markers attached to the smartphone 

through cross-correlation. Unlike the motion capture system, the smartphone’s accelerometer also 

measures the acceleration due to gravity. Hence, additional transformations were required to make the 

two measurements comparable. Using the three makers attached to the smartphone, which form a three-

dimensional orthogonal vector basis, the smartphone’s acceleration was transformed from its local 

reference frame to the motion capture reference frame. After removing the contribution of gravity, the 
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two accelerations can be compared (e.g., y-axis) as they are both expressed in the same reference frame. 

The marker’s acceleration was calculated using finite differences after filtering the marker positions with 

a zero-lag 6 Hz low-pass 2nd order Butterworth filter [12].  

In contrast, the force-based lag estimation method [11] took advantage of the fact that during walking or 

standing, the reaction forces applied on the feet have a direct effect on the participant’s center of mass 

(CoM) acceleration [13]. Assuming the participant’s mass is concentrated in this location, this interaction 

can be approximated by writing the CoM equation of motion (∑𝒇 = 𝑚𝒂). The forces applied to the feet 

can be virtually displaced and applied directly on the CoM (i.e., similar to an inverted pendulum model but 

simplifying the geometry). The equation of motion was thus simplified by taking the vector magnitudes, 

resulting in: 

‖𝒇1‖2 + ‖𝒇2‖2 = 𝑚 ∗ ‖𝒂‖2, (1) 

where f1 and f2 were the GRF of the left and right foot, respectively, m the participant’s mass, and a the 

acceleration of the participant’s CoM. The acceleration of the participant’s CoM was indirectly measured 

through the accelerometer readings of the central back smartphone at the waist level. By comparison, 

GRFs were directly measured with the force plates embedded in the treadmill. The two time series (GRFs 

and acceleration in Eq. 1) were upsampled to a common sampling frequency. The smartphone CoM 

acceleration magnitude was then cross-correlated with the magnitude of the summed GRFs to estimate 

the lag between the smartphone and motion capture data.  
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Results 

A total of 32 PwMS and 9 HC were included in the interim data cut used for this analysis. Their baseline 

demographics and disease characteristics are summarized in Table 1. Together, they contributed towards 

590 smartphone-based tests (UTT: 41 test executions, 2MWT: 159 test executions, SBT: 390 test 

executions). 

Synchronization of smartphones with motion capture system 

The vibration train initiated by the motion capture system was used to indicate on the master smartphone 

the start of each motion capture recording, which in turn was used for an initial synchronization between 

the smartphones worn by the study participants and the motion capture system (vibration-based method). 

However, even after this initial synchronization, a small lag that is independent of test type can be 

observed between the accelerometer readings of the two measurement systems (Fig. 3). Hence, 

additional, post-synchronization correction methods are needed to optimally synchronize the two 

measurement systems. 

 

Table 1. Baseline demographics and disease characteristics 

Variable PwMS (n = 32) HC (n = 9) 

Age, years, mean (SD) 59 (8) 54 (6) 

Female, n (%) 25 (78) 5 (56) 

T25FW, s, mean (SD) 6.30 (2.83) 3.74 (0.26) 

BBS, mean (SD) 11.58 (2.35) 9.47 (1.64) 

Diagnosis   

RRMS, n (%) 23 (72) — 

SPMS, n (%) 3 (9) — 

PPMS, n (%) 6 (19) — 

EDSS, mean (SD) 4.75 (1.43) — 
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Figure 3. Representative example of gravity-corrected vertical acceleration measured with a smartphone (blue) and estimated 

for a reflective Vicon marker (orange) during a 2MWT after initial synchronization with the vibration-based method. Acc, 

acceleration. 

 

 

 

Figure 4. Distributions of the lags between smartphone and Vicon motion capture system for the different test types as 

estimated through cross-correlation using (A) acceleration-based lag estimation method or (B) force-based lag estimation 

method. 2MWT, Two-Minute Walk Test; SBT, Static Balance Test; UTT, U-Turn Test 

 

Post-synchronization correction 

We explored two lag estimation methods for post-synchronization correction. With the acceleration-based 

lag estimation method, the lags between the acceleration of the central back smartphone worn at the 

waist level (note that only one smartphone is needed as all smartphones have been already synchronized 

with each other) and the acceleration calculated for the Vicon markers attached to the smartphone across 

all study participants in terms of percentiles [25%, 50%, 75%] were [0.042, 0.061, 0.077] seconds for the 

Floodlight gait tests (UTT and 2MWT) and [-0.136, 0.023, 0.089] seconds for the SBT battery (Fig. 4A). The 
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distribution of the detected lag indicates that this method was able to find a consistent lag across all UTT/ 

2MWT conditions and study participants. For the SBT battery, however, the variability of the detected lag 

was considerably larger, suggesting that this acceleration-based lag estimation method is better suited for 

correcting temporal lags in gait tests and less suited for detecting lags in static balance tasks. 

Similarly, the lags were estimated across all Floodlight gait and balance tests with the force-based lag 

estimation method (Fig. 4B). The lags in terms of percentiles [25%, 50%, 75%] were [0.053, 0.066, 0.078] 

seconds for the Floodlight gait tests (UTT and 2MWT) and [0.054, 0.067, 0.082] seconds for SBT battery. 

The detected lags were consistent with the lags detected with the acceleration-based method for the gait 

tests. However, the main difference was observed on the SBT battery, where the force-based method 

showed an important decrease in variability, and hence increased consistency, in the detected lags 

compared with the acceleration-based lag estimation method. This suggests that the force-based method 

is better suited for correcting the lags present in the SBT data.  
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Discussion 

In this paper, we present innovative solutions for addressing challenges commonly faced in studies that 

aim to validate and establish the interpretation of new smartphone sensor-based gait and balance tests. 

Such studies require complex study designs that often involve the simultaneous collection of data across 

several different measurement systems. Solutions to correctly annotate and synchronize the data across 

all measurement systems play, therefore, a critical role in these studies.  

To annotate the collected gait and balance data, metadata such as the information on test type were 

embedded in the vibration pulse sequence generated by the motion capture system and also manually 

entered on the timer smartphone. This redundancy not only aids in spotting and correcting erroneous 

entries, but it also reduces the data loss due to missing metadata.  

The vibration pulse sequence was also used for synchronizing the smartphones running the Floodlight 

technology among them and with the motion capture system (vibration-based method). However, close 

visual inspection revealed that the data collected with the smartphones and the motion capture system 

did not align perfectly with each other (Fig. 3). The initiation of the motion capture recording by Motek 

software and the initiation of the vibration command to the vibrating motor are two separate processes 

despite being triggered by pressing the same start button (green button in Fig. 1B). The time it takes for 

them to be realized is something that we cannot control. It is, therefore, possible that small lags between 

the onsets of the two events occur. Regardless of the underlying hardware/ software cause, the lag can be 

estimated and subsequently corrected by the additionally proposed post-synchronization correction. 

To estimate the residual lags, we explored two different methods, which were both applied to each test 

execution after the initial synchronization with the vibration-based method. The acceleration-based lag 

estimation method worked particularly well for the UTT and 2MWT, leading to consistent lag values (Fig. 

4A). But it failed to systematically synchronize the SBT data collected with both measurement systems as 

indicated by the higher variability in the estimated lags. A likely explanation is that during static balance 

the participant’s sway produces only small accelerations that are dominated by measurement noise 

making the detection of similarities through cross-correlation due to low signal-to-noise ratio challenging. 

The signal-to-noise ratio could be improved by adding a small perturbation force to the participant at the 

start of the test execution [14] to increase the sway of the subject. However, this would complicate the 

experimental set-up and the subsequent analysis. Other methods that are independent of the markers’ 

acceleration are, therefore, required to synchronize smartphone and motion capture data collected during 

static balance tasks. The force-based lag estimation method, for example, involves comparing the CoM 
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acceleration estimated with the smartphones with the GRF measured with the force plates embedded in 

the treadmill. Fig. 4B demonstrates that this method can consistently estimate the lag present after the 

initial synchronization with the vibration-based method across all gait and balance test types. The success 

of this method can be attributed to the sensitivity of the force plates that enabled the identification of 

temporal patterns that are similar in both measurement systems through cross-correlation, despite data 

originating from different sources. Finally, we have observed that the two solutions can be used to 

synchronize smartphone sensor data with motion capture data in cases where the vibration-based 

approach is not available (e.g., when the vibrating motor malfunctions), making them suitable for 

standalone synchronization. 

The novelty of either solution is that they offer a seamless synchronization between any type of IMU data 

and motion capture data without needing to adapt the underlying code, introduce any API modifications, 

or perform functional calibrations, as other existing solutions often require [5, 6]. Instead, our solutions 

align the different data streams using only the time series recorded while the participants were performing 

the various gait and balance tests. Thus, it is conceivable that these solutions are equally effective when 

applied to data collected with Gait Up IMU sensors or other wearable devices.  

A limitation of the acceleration-based lag estimation method is the requirement of three reflective 

markers attached to at least one of the smartphones that are unobstructed during the measurement. In 

contrast, the force-based lag estimation method requires the use of a smartphone attached close to the 

participant’s CoM as well as the use of force plates, which may not always be available. In case overground 

force plates are used instead of instrumented treadmills, the post-synchronization correction can be still 

accomplished by limiting the cross-correlation on the interval when the subject steps on the force plates. 

Furthermore, if unmeasured forces are acting on the participant (e.g., perturbations), then the relationship 

between GRFs’ magnitude and CoM acceleration (Eq. 1) is no longer valid. In such a scenario, the devices 

can still be synchronized with the proposed solutions using data collected during a perturbation-free 

interval. 

 

Conclusions 
The comparison of data collected with different measurement systems in a gait and balance laboratory 

study poses several challenges related to data quality and data processing. We presented here innovative 

solutions for annotating information on test type and for synchronizing across different measurement 

systems. Automatic encoding and decoding of test type through a customized, binary vibration pulse 
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sequence is a helpful tool for ensuring that this information matches across measurement systems. 

Additionally, this pulse sequence coupled with post-synchronization correction allows for accurate 

synchronization of smartphone sensor data with data collected with references measurement systems. 

The choice of the post-synchronization method may depend on the test performed by the study 

participants and on the test conditions. The force-based lag estimation method work well for both walking 

and static balance tasks, but require force plates to measure GRF. If they are not available, the simpler 

acceleration-based lag estimation method is still well suited for gait tests.  
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