
SPECTRAL GAP FOR PRODUCTS AND A STRONG NORMAL
SUBGROUP THEOREM

URI BADER, TSACHIK GELANDER AND ARIE LEVIT

Abstract. We establish a general spectral gap theorem for actions of products
of groups which may replace Kazhdan’s property (T) in various situations. As
a main application, we prove that a confined subgroup of an irreducible lattice
in a higher rank semisimple Lie group is of finite index. This significantly
strengthens the classical normal subgroup theorem of Margulis and removes
the property (T) assumption from the recent counterpart result of Fraczyk and
Gelander. We further show that any confined discrete subgroup of a higher
rank semisimple Lie group satisfying a certain irreducibility condition is an
irreducible lattice. This implies a variant of the Stuck–Zimmer conjecture
under a strong irreducibility assumption of the action.

Dedicated to Gregory Margulis with great admiration and affection.

1. Introduction

A subgroup Λ of a given discrete group Γ is called confined if there exists a finite
subset F ⊂ Γ \ {e} such that Λγ ∩ F ̸= ∅ holds true for every element γ ∈ Γ. One
of our main results is the following:

Theorem 1.1. Let G be a connected semisimple Lie group of real rank at least
two and with trivial center. Let Γ be an irreducible lattice in G. Then any confined
subgroup of Γ has finite index.

Note that every non-trivial normal subgroup is confined. So Theorem 1.1 vastly
extends the celebrated normal subgroup theorem of Margulis [Mar78, Mar79], which
says in turn that every non-trivial normal subgroup of a higher-rank irreducible
lattice has finite index. Loosely speaking, this theorem and its generalizations
[SZ94, BM00, Bek07, Cre17, FG23] are consequences of the conflict between two
incompatible analytic properties, namely “amenability” and “spectral gap”. Hence
these results are easier to obtain if the semisimple group G, or least one of its factors,
has Kazhdan’s property (T). The general case of the normal subgroup theorem
where the group G does not have property (T) required special attention, which
Margulis carried out in [Mar79]. In the classical context of lattices in higher rank
semisimple Lie groups, this has been the state of the art until today; no improvement
has been made in the absence of property (T). 1

Here is another way to think about Theorem 1.1. Given a discrete group Γ we
consider the space of its subgroups Sub(Γ), called its Chabauty space. Put a compact
topology on Sub(Γ) by identifying it with a closed subset of the Cantor space {0, 1}Γ.

1The works [BM00, Sha00, BS06] do not rely on property (T). However, they improve the
normal subgroup theorem in a different direction than the current paper, i.e. they extend the class
of groups to which the theorem applies, while here we obtain a stronger result in the classical case
of semisimple Lie groups.
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The group Γ acts on its Chabauty space by homeomorphisms via conjugation. In
this language, a subgroup Λ ∈ Sub(Γ) is unconfined (i.e. not confined) if and only if
the trivial subgroup of Γ belongs to the closure of the Γ-orbit of the subgroup Λ in
the Chabauty space.
Theorem 1.1 (Reformulation). Let Γ be an irreducible lattice in a connected,
center-free semisimple Lie group of real rank at least two. Then any infinite index
subgroup of Γ is unconfined, i.e. admits a sequence of conjugates converging to the
trivial subgroup in the Chabauty topology.

A uniformly recurrent subgroup (URS) of Γ is a closed minimal Γ-subsystem
of Sub(Γ) [GW15]. Note that if X ⊂ Sub(Γ) is a non-trivial uniformly recurrent
subgroup then any subgroup Λ ∈ X is confined.
Corollary 1.2. Let Γ be an irreducible lattice as in Theorem 1.1. Any non-trivial
uniformly recurrent subgroup X ⊂ Sub(Γ) is of the form X = {Λγ : γ ∈ Γ} where
Λ is some finite-index subgroup of Γ.

The above results hold true more generally for S-arithmetic subgroups of semisim-
ple algebraic groups over local fields of zero characteristic. For a rigorous statement
of the results in that generality see Theorem 8.4 below.

In the special case where G has a simple factor with Kazhdan’s property (T),
these results follow from the recent work of Fraczyk–Gelander [FG23] as well as the
work of Bader–Boutonnet–Houdayer–Peterson [BBHP22]. The breakthrough of the
current paper is that it applies to all higher rank groups regardless of Property (T).

The preceding discussion concerns subgroups which are a priori contained in a
given lattice. We now turn to consider more general discrete subgroups. A suitable
adaptation of the notion of confined subgroups is required here. A subgroup Λ of a
second countable locally compact group G is called confined if the trivial subgroup
is not in the Chabauty closure of the orbit ΛG via conjugation. When G is a
semisimple Lie group, a discrete subgroup Λ ≤ G is confined if and only if the
corresponding locally symmetric space Λ\G/K has a uniform upper bound on its
injectivity radius at all points (where K is a maximal compact subgroup of G). It is
proven in [FG23] that confined discrete subgroups of simple center-free Lie groups
of real rank at least two are lattices; see [FG23] for a more refined statements and
for analogs in the semisimple setup where property (T) is assumed.

To state our next result we will need a sharpening of the confined condition. It
is used to ensure that a discrete subgroup of a product does not degenerate into
any proper factor when taking conjugates. The term conjugate limit in Definition
1.3 stands for any subgroup in the Chabauty orbit closure under conjugation of the
given subgroup.
Definition 1.3. A subgroup Λ of a locally compact second countable group G is
strongly confined if no conjugate limit of Λ is contained in a proper normal subgroup
of G. It is irreducibly confined if it is strongly confined and the intersection Λ ∩H
is trivial for any proper normal subgroup H �G.

Certainly, every strongly confined subgroup is confined, and every confined
subgroup of a simple Lie group is strongly (and irreducibly) confined.
Theorem 1.4. Let G be a connected semisimple Lie group of real rank at least two
and with trivial center. A discrete subgroup Λ of G is irreducibly confined if and
only if Λ is an irreducible lattice.
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We refer to Theorem 10.1 below for a stronger but somewhat more involved
version of Theorem 1.4 (relying on an assumption weaker than irreducibly confined).

Moving beyond Lie groups we have fewer techniques at our disposal. However, it
is possible to get around this by requiring a stronger irreducibility condition.

Theorem 1.5. Let G = G1 × G2 be a product of two second countable locally
compact groups. Let Λ ≤ G be a discrete coamenable subgroup. Assume that G2 has
a compact abelianization and that there are no G2-invariant vectors in L2

0(G/Λ). If
every conjugate limit of Λ projects densely to the factor G2 then Λ is a lattice in G.

The novelty of the current work is to rely on the product structure of the group G
as a replacement for property (T). The main breakthrough is the following general
spectral gap result for actions of product groups, under certain assumptions on the
stabilizer structure of the action.

Theorem 1.6 (Spectral gap for actions of products). Let G1 and G2 be a pair
of locally compact second countable compactly generated groups such that G2 has
compact abelianization. Set G = G1 ×G2. Let X be a locally compact topological
G-space endowed with a G-invariant (finite or infinite) measure m. Assume that

• L2
0(X,m)G2 = 0, and

• there is a G-invariant closed subset of Sub(G) containing StabG(x) for
m-almost every point x ∈ X such that every subgroup H in this subset
satisfies G1H = G.

Then the unitary Koopman G-representation L2
0(X,m) has a spectral gap.

See Theorem 4.8 below for a more technically demanding but sharper statement.
Additionally, in the context of products of semisimple real or p-adic Lie groups we
obtain the stronger Theorem 6.10.

Recall that a probability measure preserving action of a center-free semisimple
Lie group G is irreducible if every simple factor of G acts ergodically. The rigidity
theorem of Stuck and Zimmer [SZ94] says that if G has higher rank and property
(T) then every irreducible probability measure preserving action of G is either
essentially free or essentially transitive. Hartman and Tamuz [HT16] showed that
it is enough to suppose that one of the simple factors of G has property (T). The
famous Stuck–Zimmer conjecture says that the rigidity theorem should apply to all
higher rank semisimple Lie groups regardless of property (T).

Let us say that a discrete subgroup of a semisimple Lie group G is irreducible if
it projects densely to every proper factor of G. An ergodic action of G with almost
surely irreducible stabilizers is irreducible [FG23, §7]. Let us say that a discrete
subgroup Λ ≤ G is strongly irreducible if every discrete conjugate limit of Λ is
irreducible, and that a probability measure preserving action is strongly irreducible
if almost every stabilizer is strongly irreducible.

Corollary 1.7 (A weak version of the Stuck–Zimmer conjecture). Let G be a
connected center-free semisimple Lie group of real rank at least two. Then every
strongly irreducible probability measure preserving action of G is essentially transitive.

See Theorem 10.14 below for another weak version of the Stuck–Zimmer conjecture.
It says that an irreducible invariant random subgroup of a connected center-free
higher rank semisimple Lie group is supported on lattices if and only if it is almost
surely irreducibly confined (in the sense of Definition 1.3).
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Structure of the paper. In §2 we address various preliminaries such as unitary
representations, spectral gap and asymptotically invariant vectors as well as the
Chabauty topology. In §3 we make some remarks regarding the representation
theory of direct product of groups with compact abeliazniations. The technical
heart of this paper is §4 in which we prove Theorem 1.6, as well as its generalization,
Theorem 4.8. In §5 we introduce our working notion of standard semisimple groups.
In §6 we study geometric properties of discrete subgroups of standard semisimple
groups and establish our spectral gap theorem for actions of products of semisimple
groups. In §7 we introduce confined and strongly confined subgroups. In §8 and
§10 we deal with confined subgroups of lattices and strongly confined subgroups of
semisimple Lie groups, respectively. Theorem 1.1 and Corollary 1.2 are proven in
§8 and Theorem 1.4 and Theorem 1.5 are proven in §10. Lastly, the standalone §9
takes up the notion of Margulis functions needed to ensure discreteness in a certain
argument in §10.

2. Preliminaries

We set up some basic notions and terminology to be used throughout the entire
paper.

The Chabauty space. Let G be a locally compact second countable group. The
Haar measure on G will be denoted by mG. Typically, the group G will have a
compact abelianization, and in particular it will be unimodular.

A discrete subgroup of the group G will typically be denoted by Λ. The Haar
measure on the quotient G/Λ will be denoted by mG/Λ. If the measure mG/Λ is
finite we say that Λ is a lattice in G. A lattice will typically be denoted by Γ. In
case the quotient G/Γ is compact the lattice Γ is called uniform.

We denote by Sub(G) the space of all closed subgroups of the group G endowed
with the Chabauty topology [Cha50]. Recall that the space Sub(G) is compact, and
the group G acts on it by homeomorphisms via conjugation. A non-empty minimal
closed G-invariant subset of Sub(G) is called an uniformly recurrent subgroup (URS)
of G, see [GW15]. We will use the notation

ΛG = {Λg : g ∈ G} ⊂ Sub(G)

for the G-orbit under conjugation of a given subgroup Λ ∈ Sub(G).

Definition 2.1. A conjugate limit of a subgroup Λ ≤ G is any subgroup ∆ ∈ ΛG.

We denote by Prob(Sub(G)) the space of all probability measures on Sub(G)
endowed with the weak-∗ topology. This makes Prob(Sub(G)) a compact convex
space. It is regarded with the natural G-action. A G-fixed point in this space is called
an invariant random subgroup (IRS) of G. We denote the space Prob(Sub(G))G

of all invariant random subgroups by IRS(G). See [AGV14, ABB+17, ABB+20,
Gel18a, GL18] or the surveys [Gel18c, Gel18b].

Say that Γ is a lattice in G and ν ∈ IRS(Γ) is an invariant random subgroup of Γ.
It is possible to induce ν to obtain an invariant random subgroup ν ∈ IRS(G). This
is done as follows. View Sub(Γ) as a subset of Sub(G) and regard ν as a probability
measure on the space Sub(G). Fix an arbitrary Borel fundamental domain F ⊂ G
for the lattice Γ and normalize the Haar measure so that mG(F) = 1. Finally take
ν =

∫
F g∗ν dmG(g).
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Recall that a probability measure preserving Borel G-space is called irreducible if
every non-trivial normal subgroup of G is acting ergodically. An invariant random
subgroup ν is irreducible if the Borel G-space (Sub(G), ν) is irreducible.

Let µ be probability measure on the group G. We will typically assume that
µ is absolutely continuous with respect to the Haar measure and that its support
generates the group G. A µ-stationary random subgroup of the group G is a
probability measure ν ∈ Prob(Sub(G)) satisfying µ ∗ ν = ν. For some recent works
dealing with stationary random subgroups see [GLM22, FG23, GL23].

Algebras of functions. We denote by Cc(G) the C-algebra of all compactly
supported continuous complex-valued functions on the group G with the algebra
product given by convolution. We regard Cc(G) as a normed algebra with respect
to the topology of uniform convergence on compact subsets. We also endow Cc(G)
with the supremum norm ∥ · ∥∞. For a function f on the group G we write f̌ = f ◦ ι,
where ι : G → G is the inversion. We set

A(G) = {f ∈ Cc(G) : f ≥ 0, f = f̌ and mG(f) = 1}.
A function f ∈ Cc(G) is generating if its support supp(f) generates the group G.

Note that if the group G is connected then any non-zero function is generating.

Unitary representations. Vector spaces are taken over the complex numbers.
In particular, the Banach algebra L1(G) and the Hilbert spaces L2(G/Λ) where Λ
is some discrete subgroup of G are taken with complex coefficients. It is tacitly
assumed that these spaces are taken with respect to the Haar measures mG and
mG/Λ correspondingly. The corresponding norms are denoted by ∥ · ∥1 and ∥ · ∥2.

Hilbert spaces will typically be denoted by V and assumed to be separable. An
unindexed norm ∥ · ∥ is typically associated with a Hilbert space which should be
clear from the context. We will denote by B(V ) the algebra of bounded operators
on the Hilbert space V and by ∥ · ∥op the operator norm on B(V ). We denote by
U(V ) the group of unitary operators in B(V ) endowed with the strong operator
topology. This is a Polish topological group.

By a unitary representation we mean a continuous homomorphism G → U(V ).
By an obvious abuse of notation, given such a unitary representation, an element
g ∈ G and a vector v ∈ V , we denote by gv the image of v under the unitary operator
associated with g. Such a unitary representation extends to a representation of
the algebra of complex-valued measures of bounded total variation on the group
G. In particular, probability measures on the group G act on the Hilbert space V
via averaging operators. Symmetric probability measures give rise to self-adjoint
operators of norm at most one.

Regarding elements of the Banach algebra L1(G) as densities of mG-absolutely
continuous measures on the group G, we get a representation L1(G) → B(V ). In
particular, an element f ∈ A(G) gives rise to a self-adjoint operator of norm at
most 1, which we regard as a smooth averaging operator. By an abuse of notation,
given any vector v ∈ V we denote by fv the image of v under this operator.
Lemma 2.2. Let X be a space endowed with a positive measure (either finite or
infinite). The map

{f ∈ L2(X) : ∥f∥2 = 1, f ≥ 0} → {f ∈ L1(X) : ∥f∥1 = 1, f ≥ 0}, f 7→ f2

is a uniform homeomorphism, namely this map and its inverse are uniformly
continuous.
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The domain and the range of the map f 7→ f2 are endowed with the ∥ · ∥2-metric
and the ∥ · ∥1-metric, respectively.

Proof of Lemma 2.2. Consider any pair of functions f, g ∈ L2(X) with ∥f∥2 =
∥g∥2 = 1 and f, g ≥ 0. Observe that the pair f, g satisfies

∥f2 − g2∥1 = ⟨|f + g|, |f − g|⟩ ≤ ∥f + g∥2 · ∥f − g∥2 ≤ 2∥f − g∥2.

Therefore the map f 7→ f2 is uniformly continuous. To show that its inverse is
uniformly continuous, we use the inequality |a− b|2 ≤ |a2 − b2| which is valid for any
pair of real numbers a, b ≥ 0. This implies that the pair of functions f, g satisfies

∥f − g∥2 ≤ ∥f2 − g2∥1/2
1 .

This concludes the proof. □

Asymptotically invariant vectors. Let G → U(V ) be a unitary representation
of the group G on the Hilbert space V .
Definition 2.3. A sequence of non-zero vectors vn ∈ V is called asymptotically
G-invariant if for every compact subset K ⊂ G

lim
n

sup
k∈K

∥(1 − k)vn∥/∥vn∥ = 0.

Fix a generating function ϕ ∈ A(G). It is well known that a sequence of non-zero
vectors vn ∈ V is asymptotically G-invariant if and only if

lim
n

∥(1 − ϕ)vn∥/∥vn∥ = 0.

In case such an asymptotically G-invariant sequence exists, we say that the
representation V almost has G-invariant vectors. Otherwise, we say that it has a
spectral gap. Indeed, spectral gap is equivalent to saying that ∥ϕ∥op < 1 or to the
fact that 0 is not contained in the spectrum of the positive operator 1 − ϕ.
Definition 2.4 ([Mar91, Definition IV.3.5]). A subset A ⊂ V \ {0} is said to be
G-uniform if for every ε > 0 there exists an identity neighborhood U ⊂ G such that

sup
v∈A

sup
g∈U

∥(1 − g)v∥/∥v∥ ≤ ε.

A sequence of vectors vn ∈ V is said to be G-uniform if the set {vn} is.
Another way to think about this definition is to say that orbit maps of vectors

from the subset A mapping into the Hilbert space V are uniformly equicontinuous.
It is easy to see that every asymptotically G-invariant sequence in V is G-uniform.

Here are some elementary lemmas concerning the above notions.
Lemma 2.5. Let vn, un ∈ V be two sequences of vectors with lim infn ∥vn∥ > 0 and
lim supn ∥un∥ = 0. If the sequence vn is asymptotically G-invariant (respectively
G-uniform) then the sequence vn + un has the same property.
Proof. Fix a generating function φ ∈ A(G). Assume to begin with that the sequence
vn is asymptotically G-invariant. For all n sufficiently large so that ∥un∥ ≤ 1

2 ∥vn∥
we have ∥vn + un∥ ≥ 1

2 ∥vn∥ and
∥(1 − φ)(vn + un)∥

∥vn + un∥
≤ 2∥φvn − vn∥ + ∥φun∥ + ∥un∥

∥vn∥
≤

≤ 2∥(1 − φ)vn∥ + 2∥un∥
∥vn∥

.

(2.1)
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We have used the fact that φ gives rise to a contracting operator so that ∥φ∥op ≤ 1.
Letting n → ∞ shows that the sequence vn +un is indeed asymptotically G-invariant.

Next, assume that the sequence vn is G-uniform. The verification of the fact that
the sequence vn + un is also G-uniform is very similar to the above computation,
up to considering the operator g for some sufficiently small element g ∈ G instead
of the averaging operator φ. □

Lemma 2.6. Let vn ∈ V be a G-uniform sequence of non-zero vectors. If the
sequence vn is not asymptotically G-invariant then there is some element g ∈ G
such that

lim sup
n

∥(1 − g)vn∥/∥vn∥ > 0.

Proof. Assume that the sequence vn is not asymptotically G-invariant. This means
that there is some compact subset K ⊂ G and some ε > 0 such that

lim sup
n

sup
g∈K

∥(1 − g)vn∥/∥vn∥ > ε.

Since the sequence vn is G-uniform we may find a symmetric identity neighborhood
U ⊂ G such that

sup
n

sup
g∈U

∥(1 − g)vn∥/∥vn∥ ≤ ε/2.

Let Ug1, . . . , UgN be a finite cover of the compact subset K for some choice of
elements g1, . . . , gN ∈ G. It follows that one of these elements gi is as required. □

It is useful to note that both properties of being asymptotically G-invariant as
well as that of being G-uniform are preserved under rescaling (i.e. vn 7→ cnvn for
some arbitrary scaling constants cn > 0).

Lemma 2.7. Let D ⊂ G be any subset. For each vector v ∈ V and for all n ∈ N
we have

sup
g∈Dn

∥(1 − g)v∥ ≤ n sup
g∈D

∥(1 − g)v∥.

Proof. Fix a vector v ∈ V . By the triangle inequality, any pair of elements g, h ∈ G
satisfies

∥(1 − gh)v∥ ≤ ∥(1 − g)v∥ + ∥g(1 − h)v∥ = ∥(1 − g)v∥ + ∥(1 − h)v∥.

The desired conclusion follows by induction on n. □

We will require the following lemma dealing with asymptotic invariance in the
L1-sense.

Lemma 2.8. Let G be a locally compact group admitting a measure preserving
action on a probability measure space (X,m). Assume that the representation L2

0(X)
has spectral gap. If vi ∈ L1(X) is an asymptotically G-invariant sequence of vectors
with ∥vi∥1 = 1 and vi ≥ 0 then it converges in L1(X) to the constant function 1.

In the above statement, the notion of an asymptotically G-invariant sequence is
understood in the L1-sense.

Proof. The lemma is a direct consequence of Lemma 2.2. Indeed, the sequence
v

1
2
i ∈ L2(X) is asymptotically invariant (in the L2-sense). Therefore ∥v

1
2
i − 1∥2 → 0.

Another application of Lemma 2.2 gives ∥vi − 1∥1 → 0, as required. □
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3. Unitary representations of product groups

In this section we establish the following special property of the representation
theory of product groups.

Lemma 3.1. Let G = G1 ×G2 where G1 and G2 are compactly generated locally
compact groups. Let G → U(V ) be a unitary representation without spectral gap and
with V G2 = 0. If G2 has compact abelianization then there exists a sequence of unit
vectors in V which is G-uniform, asymptotically G1-invariant and not asymptotically
G2-invariant.

This lemma is a version of [Mar91, Lemma IV.3.7]. Margulis proves this result
for groups which form a Gelfand pair with respect to a compact subgroup. He refers
to this condition as property (Q). Our version is more general, as we replace this
assumption by compact abelianization. We will call a sequence of vectors with the
peculiar properties provided by Lemma 3.1 a discordant sequence. The lemma is
proved at the end of this section.

Remark 3.2. The assumption that the representation G → U(V ) has no spectral
gap implicitly implies that the Hilbert space V is non-zero. Therefore the additional
assumption V G2 = 0 forces the group G2 to be non-trivial. We allow G1 to be trivial.

Compact abelianization and unitary representations. Let G a compactly
generated locally compact group with compact abelianization. Let K ⊂ G be a
compact, symmetric and generating identity neighborhood. The following lemma
shows that the compact abelianization property can be tracked on a compact subset.

Lemma 3.3. There is a symmetric compact subset Q ⊂ G and a constant δ > 0
with the following property — for every continuous function ϕ : Q → C satisfying
∥ϕ|K∥∞ = 1 there is a pair of elements k1 ∈ K and k2 ∈ Q with

|ϕ(k1) + ϕ(k2) − ϕ(k1k2)| ≥ δ.

Proof. We set inductively K1 = K and Kn = K1 ·Kn−1 for all n ∈ N. Assume by
contradiction that there exists a sequence of continuous functions ϕn : Kn → C
satisfying ∥ϕn|K∥∞ = 1 and such that

sup
(k1,k2)∈K×Kn−1

|ϕn(k1) + ϕn(k2) − ϕn(k1k2)| ≤ 1/n

for every n ∈ N. Fix an index i ∈ N. We claim that:
• The sequence (ϕn|Ki)n>i is uniformly bounded on Ki. Indeed for each n,

using ∥ϕn|K∥∞ = 1 and the triangle inequality we see that

∥ϕn|Ki∥∞ ≤ i+ (i− 1)/n < 2i.

• The sequence (ϕn|Ki
)n>i is equicontinuous on Ki−1. For each m ∈ N let

Um ⊂ G be a sufficiently small identity neighborhood so that Um
m ⊂ K.

Provided that n ≥ m, the triangle inequality implies that every element
h ∈ Um satisfies

|mϕn(h) − ϕn(hm)| ≤ (m− 1)/n < 1.

Thus using ∥ϕn|K∥∞ = 1 we get

|mϕn(h)| ≤ |mϕn(h) − ϕn(hm)| + |ϕn(hm)| < 2
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for every element h ∈ Um. We conclude that ∥ϕn|Um
∥∞ ≤ 2/m for all

n ≥ m. Therefore every pair of elements g ∈ Ki and h ∈ Um satisfies
|ϕn(g) − ϕn(hg)| < 1/n+ |ϕn(h)| ≤ 1/n+ 2/m ≤ 3/m

provided that n ≥ m. The desired equicontinuity follows.
We use the Arzela–Ascoli theorem to conclude that for each fixed i ∈ N, the

sequence (ϕn|Ki
)n>i has a uniformly convergent subsequence in C(Ki). Hence, by

a standard diagonal argument, the sequence ϕn admits a convergent subsequence
with respect to the topology of uniform convergence on compact subsets of G.
The triangle inequality shows that the limit of this subsequence is a continuous
homomorphism from G to the additive group of C. This homomorphism is non-trivial
as ∥ϕn|K∥∞ = 1 for all n. This is a contradiction.

To finish the proof, we may take Q = Kn and δ = 1
n for some suitable index n

where our assumption toward contradiction fails. □

The following proposition shows that in any unitary representation of a group
with compact abelianization, every non-invariant vector can be transformed in a
uniform fashion into another non-invariant vector by “differentiating”, i.e applying
an operator of the form 1 − k where the element k is taken from a compact subset.

Proposition 3.4. There exists a constant α = α(G) > 0 with the following property.
Let G → U(V ) be any unitary representation and v ∈ V any vector. If k0 ∈ K is
an element satisfying

∥(1 − k0)v∥ = sup
k∈K

∥(1 − k)v∥

then
sup
k∈K

∥(1 − k)(1 − k0)v∥ ≥ α∥(1 − k0)v∥.

Proof. Let Q ⊂ G be the compact symmetric identity neighborhood and δ > 0
be the constant provided by Lemma 3.3. Let n ∈ N be such that Q ⊂ Kn. Take
α = δ/n. Fix any element k0 ∈ K such that

c = ∥(1 − k0)v∥ = sup
k∈K

∥(1 − k)v∥.

We set
u = (1 − k0)v and d = sup

k∈K
∥(1 − k)u∥.

Note that ∥u∥ = c. Our goal is to show that d ≥ αc. We will assume as we may
that c > 0.

Consider the complex-valued continuous function
ϕ ∈ C(G), ϕ(g) = ⟨(1 − g)v, u⟩/c2 ∀g ∈ G.

Notice that ∥ϕ|K∥∞ = ϕ(k0) = 1. At this point we use the compact abelianization
assumption together with Lemma 3.3 to find a pair of elements k1 ∈ K and k2 ∈ Q
satisfying

|ϕ(k1) + ϕ(k2) − ϕ(k1k2)| ≥ δ.

Denote h1 = k−1
1 ∈ K. We get

nα = δ ≤ |ϕ(k1) + ϕ(k2) − ϕ(k1k2)| = |⟨(1 − k1)(1 − k2)v, u⟩|/c2

= |⟨(1 − k2)v, (1 − h1)u⟩|/c2 ≤ ∥(1 − k2)v∥ · ∥(1 − h1)u∥/c2.
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It follows from Lemma 2.7 that

∥(1 − k2)v∥ ≤ nc and ∥(1 − h1)u∥ ≤ d.

Putting everything together gives nα ≤ nd/c. This inequality is equivalent to the
desired conclusion. □

Constructing a discordant sequence of vectors. Let f ∈ A(G) be any function.
Denote K = supp(f) = {g ∈ G : f(g) ̸= 0}. The following lemma, which is quite
technical, will be used in the proof of Lemma 3.1 below to allow for a smoothing
procedure to be applied.

Lemma 3.5. Consider the constants αn = 1 − 2−n for all n ∈ N. Let G → U(V ) be
any unitary representation. Denote pn = P ([αn, αn+1]) where P is the projection-
valued measure associated to f regarded as a self-adjoint operator on V . Then every
vector v ∈ V satisfies for all n ≥ 4 that

sup
k∈K

∥(1 − k)pnv∥ ≤ 2 sup
k∈K

∥(1 − k)fpnv∥.

Proof. Let v ∈ V be an arbitrary vector. We assume without loss of generality
that v ∈ pnV and that v ̸= 0. Set u = fv and observe that ∥u∥ ≥ αn∥v∥ > 0. We
normalize these vectors so that ∥u∥ = 1. Note that u ∈ pnV so that

⟨fu, u⟩ ≤ ∥fu∥ ≤ αn+1 and ∥(1 − f)u∥ ≤ 1 − αn = 2−n.

Denote
c = sup

k∈K
∥(1 − k)u∥.

Every group element k ∈ K satisfies

2 Re⟨(1 − k)u, u⟩ = 2 − 2 Re⟨ku, u⟩ = ∥(1 − k)u∥2 ≤ c2.

As K = supp(f), we may act with the positive averaging operator f and obtain

2⟨(1 − f)u, u⟩ = 2 Re⟨(1 − f)u, u⟩ ≤ c2.

Putting all of the above information together gives

∥(1 − f)u∥ ≤ 2−n = 2 · (1 − αn+1) ≤ 2 · (⟨u, u⟩ − ⟨fu, u⟩) = 2 · ⟨(1 − f)u, u⟩ ≤ c2.

Provided that n ≥ 4 we certainly have ∥(1 − f)u∥ ≤ 2−n ≤ 1/16. These last two
inequalities give

∥(1 − f)u∥2 ≤ c2/16 so that 4∥(1 − f)u∥ ≤ c.

Consider the vector w = (1 − f)v ∈ pnV . We obtain

∥w∥ ≤ α−1
n ∥fw∥ ≤ 2∥fw∥ = 2∥f(1 − f)v∥ = 2∥(1 − f)u∥ ≤ c/2.

This means that every element k ∈ K satisfies

∥(1 − k)v∥ ≤ ∥(1 − k)fv∥ + ∥(1 − k)(1 − f)v∥ ≤ c+ 2∥w∥ ≤ 2c.

The above inequality is the desired conclusion. □

We are ready to construct a discordant sequence of vectors, that is, a sequence of
vectors with the particular properties demanded in Lemma 3.1, thereby extending
Lemma IV.3.7 of [Mar91] to products of groups with compact abelianization.
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Proof of Lemma 3.1. Let fi ∈ A(Gi) be a pair of continuous functions such that
their supports Ki = supp(fi) contain a neighborhood of the identity and generate
the group Gi for i ∈ {1, 2}. We take α > 0 to be the constant given in Proposition 3.4
with respect to the compact, symmetric and generating subset K2 of the group G2.

We regard f1 and f2 as a pair of commuting self-adjoint operators on the Hilbert
space V . Let P and Q be the respective projection-valued measures. We consider
the spectral projections

pn = P ([αn, 1]) and qn = Q([αn, αn+1])

defined in terms of the constants αn = 1 − 2−n introduced in Lemma 3.5. The
asymmetry is intentional. Note that all of these projections pairwise commute.
In addition, the pn’s commute with G2 and the qn’s commute with G1. By the
assumption that there are asymptotically G-invariant vectors and V G2 = 0, we find
two strictly increasing sequences ni,mi ∈ N with m1 ≥ 4 such that pniqmi ̸= 0.

We turn to constructing the desired sequence of vectors ui ∈ V . For each i ∈ N
take an arbitrary unit vector vi ∈ pni,mi

V and some element ki ∈ K2 such that

∥(1 − ki)f2vi∥ = sup
k∈K2

∥(1 − k)f2vi∥.

We set ui = (1 − ki)f2vi. Note that ui ̸= 0 for otherwise the non-zero vector f2vi

would have been G2-invariant. By Proposition 3.4 and the choice of the constant α
we get

sup
k∈K2

∥(1 − k)ui∥ ≥ α∥ui∥.

This means that the sequence ui is not asymptotically G2-invariant, as required.
As vi ∈ pniV and as f1 commutes with both f2 and ki, we see that ui ∈ pniV .
Hence the sequence ui is asymptotically G1-invariant. The fact that it is G1-uniform
follows. We are left to show that the sequence ui is G2-uniform, which we now
proceed to do.

Fix ε > 0. We will show that there exists an identity neighborhood U2 ⊂ G2
such that for every element g ∈ U2 and every i we have

∥(1 − g)ui∥ ≤ ε∥ui∥.

The uniform continuity of the function f2 together with the compactness of the
subset K2 allow us to find an identity neighborhood U2 ⊂ K2 such that every pair
of elements g ∈ U2 and k ∈ K2 satisfy

∥(1 − g)(1 − k)f2∥∞ ≤ ε/6.

Note that for every element g ∈ U2 and all i ∈ N we have

supp(1 − g)(1 − ki)f2 ⊂ K3
2 = K2 ·K2 ·K2.

For every element x ∈ K3
2 , the two Lemmas 2.7 and 3.5 respectively imply the first

and second inequality in the following equation

∥(1 − x)vi∥ ≤ 3 sup
k∈K2

∥(1 − k)vi∥ ≤ 6∥ui∥.

Since mG((1 − g)(1 − ki)f2) = 0, we have for every element g ∈ U2 and all i ∈ N

(1 − g)ui =
∫

G

(1 − g)(1 − ki)f2(x)(x− 1)vi dmG(x).
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Hence every element g ∈ U2 satisfies

∥(1 − g)ui∥ ≤ ∥(1 − g)(1 − ki)f2∥∞ · sup
x∈K3

2

∥(x− 1)vi∥ ≤ ε

6 · 6∥ui∥ = ε∥ui∥

for all i ∈ N. This means that the sequence ui is G2-uniform, as required. □

We mention one additional lemma of Margulis, showing that an averaging operator
can be applied to the “discordant sequence” constructed in Lemma 3.1 without
losing its particular properties.

Lemma 3.6. Let G = G1×G2 where G1 and G2 are second countable locally compact
groups. Let G → U(V ) be a unitary representation. Let vn ∈ H be a G-uniform,
asymptotically G1-invariant and not asymptotically G2-invariant sequence of vectors.

Then there is an open identity neighborhood U ⊂ G such that for every function
ψ ∈ A(G) with supp(ψ) ⊂ U the sequence ψvn has the same three properties and
satisfies ∥ψvn∥ > ∥vn∥/2 for all n ∈ N.

Proof. By [Mar91, Lemma IV.3.6] we may find an identity neighborhood U1 ⊂ G
such that for every function ψ ∈ A(G) with supp(ψ) ⊂ U1, the sequence ψvn has
the same above-mentioned three properties as the sequence vn. As the sequence vn

is G-uniform, there is another identity neighborhood U2 ⊂ G such that for every
function ψ ∈ A(G) with supp(ψ) ⊂ U2 we have ∥ψvn∥ > ∥vn∥/2 for all n ∈ N. The
desired conclusion follows by taking U = U1 ∩ U2. □

4. Koopman representations over actions with stabilizers

Let G be a second countable locally compact group acting continuously on a
locally compact topological space X. Let m be a G-invariant measure on the space
X, either finite or infinite. We consider the corresponding Koopman representation
L2(X), which is taken implicitly with respect to the measure m. The stabilizer map
is the Borel measurable map given by

Stab : X → Sub(G), Stab : x 7→ StabG(x) ∀x ∈ X.

The following is the main result of this section. Roughly speaking, it says that
under the right conditions, asymptotic invariance carries from one factor to the
other. See Example 4.7 below regarding the necessity of some of its assumptions.

Proposition 4.1. Assume that G = G1 × G2. Fix a function φ ∈ A(G). Let
un ∈ L2(X) be a G-uniform and asymptotically G1-invariant sequence of unit
vectors of the form un = φvn for some vn ∈ L2(X) with ∥vn∥ ≤ 2. If the sequence of
probability measures Stab∗(|un|2 ·m) converges to µ ∈ Prob(Sub(G)) and µ-almost
every subgroup has dense projections to the factor G2 then the sequence un is
asymptotically G2-invariant.

The proof of Proposition 4.1 will be given after a bit of preliminary work. It will
be very useful to introduce some notations first.

Notation 4.2. For every set W ⊂ G we define the subset Ω(W ) ⊂ X given by
Ω(W ) = {x ∈ X : Stab(x) ∩W ̸= ∅} =

= {x ∈ X : ∃g ∈ W such that gx = x}.

Here are some elementary properties of the operation Ω, whose proof is immediate.
For every subset W ⊂ G, family of subsets Wi ⊂ G and element g ∈ G we have
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• Ω(W ) = Ω(W−1),
• Ω(

⋃
Wi) =

⋃
Ω(Wi),

• Ω(
⋂
Wi) ⊂

⋂
i Ω(Wi),

• gΩ(W ) = Ω(gWg−1), and
• if e ∈ W then Ω(W ) = X.

Notation 4.3. For each measurable subset Y ⊂ X and f ∈ L2(X) we denote

∥f∥2
Y =

∫
Y

|f(x)|2 dm(x).

Lemma 4.4. For every φ ∈ Cc(G) and for every ε > 0 there exist an identity
neighborhood U ⊂ G and a function ψ ∈ L1(G) satisfying ψ ≥ 0 and ∥ψ∥1 = ε with
the following property — every vector f ∈ L2(X) and element g ∈ G satisfy

|(1 − g)φf(x)| ≤ ψ |f |(x).
at m-almost every point x ∈ Ω(Ug−1), and in particular, for every Y ⊂ Ω(Ug−1),
we have

∥(1 − g)φf∥Y ≤ ∥ψ|f | ∥Y .

Proof. Fix a function φ ∈ Cc(G) and a constant ε > 0. Fix an arbitrary relatively
compact identity neighborhood U0 ⊂ G and set W = U0 · supp(φ). By the uniform
continuity of the function φ, it is possible to fix an identity neighborhood U contained
in U0 such that for every pair of elements h, h′ ∈ G with h′h−1 ∈ U ,

|φ(h′) − φ(h)| < ε/mG(W ).
Set ψ = ε

mG(W ) · χW and note that ∥ψ∥1 = ε. For every u ∈ U , since the function
(1 − u)φ vanishes outside U · supp(φ) ⊂ W , we get

|(1 − u)φ| ≤ ψ.

To conclude the proof, consider some vector f ∈ L2(X) and some group element
g ∈ G. For every point x ∈ Ω(Ug−1) there exists an element u ∈ U such that
g−1x = u−1x. Therefore

|(1 − g)φf(x)| = |(1 − u)φf(x)| ≤ |(1 − u)φ| |f |(x) ≤ ψ |f |(x).
The last conclusion follows by integration over Y . □

The following lemma is essentially an immediate consequence of the Portmanteau
theorem on weak-∗ convergence of probability measures.

Lemma 4.5. Assume that G = G1 ×G2. Let un ∈ L2(X) be any sequence of unit
vectors. Assume that the sequence of probability measures Stab∗(|un|2 ·m) converges
to µ ∈ Prob(Sub(G)) and µ-almost every subgroup has dense projections to G2.
Then for every open subset U ⊂ G2 and every ε > 0 there is an open relatively
compact subset V ⊂ G1 such that the subset V × U satisfies

∥un∥2
Ω(V ×U) ≥ 1 − ε

for all n sufficiently large.

Proof. Let U ⊂ G2 be any open subset and let ε > 0. Since µ-almost every subgroup
projects densely to G2, there is some open relatively compact subset V ⊂ G1 such
that the Chabauty open subset

Ω̃(V × U) = {Γ ≤ G : Γ ∩ (V × U) ̸= ∅} ⊂ Sub(G)



14 URI BADER, TSACHIK GELANDER AND ARIE LEVIT

satisfies
µ(Ω̃(V × U)) ≥ 1 − ε

2 .

By the Portmanteau theorem

Stab∗(|un|2 ·m)(Ω̃(V × U)) ≥ 1 − ε

for all n sufficiently large. This is equivalent to the desired conclusion. □

We are ready to complete the main technical result of the current section §4.

Proof of Proposition 4.1. Assume towards contradiction that the sequence un is not
asymptotically G2-invariant. Using Lemma 2.6 we fix an element g2 ∈ G2 such that

c = lim sup
n

∥(1 − g2)un∥ > 0.

We will arrive at a contradiction by showing that for every n large enough

(4.1) ∥(1 − g2)un∥2 ≤ c

2 .

We apply Lemma 4.4 with respect to the constant ε =
√
c/32 to get an identity

neighborhood U = U1 × U2 ⊂ G1 ×G2 and a function ψ ∈ L1(G) such that

(4.2) ∥ψ∥1 =
√
c/32

and such that for every function f ∈ L2(X), element g ∈ G and measurable subset
Y ⊂ Ω((U1 × U2) · g−1),
(4.3) ∥(1 − g)φf∥Y ≤ ∥ψ |f | ∥Y .

Set V2 = g2U2 ∩U2g2. This is an open neighborhood of g2 in G2. By Lemma 4.5,
applied to the sequence un and the open set V2 ⊂ G2, there exists an open relatively
compact subset V1 ⊂ G1 such that the subset Ω(V1 × V2) satisfies

∥un∥2
Ω(V1×V2) ≥ 1 − c

16
for all n sufficiently large. Note that both subsets Ω(V1 × g2U2) and Ω(V1 × U2g2)
contain the subset Ω(V1 × V2). Thus we have

∥un∥2
Ω(V1×g2U2) ≥ 1 − c

16 .

Using the left-invariance of the Haar measure and the equation
g−1

2 Ω(V1 × g2U2) = Ω(V1 × U2g2)
we also have

∥g2un∥2
Ω(V1×g2U2) = ∥un∥2

Ω(V1×U2g2) ≥ 1 − c

16 .

Denote by F the complement of Ω(V1 ×g2U2) in X. We conclude that ∥un∥2
F ≤ c/16

as well as ∥gun∥2
F ≤ c/16 for all n sufficiently large. Therefore

∥(1 − g2)un∥2
F = ∥un − g2un∥2

F ≤ (∥un∥F + ∥g2un∥F )2 ≤ (2
√

c

16)2 = c

4
for all n sufficiently large. Note that

∥(1 − g2)un∥2 = ∥(1 − g2)un∥2
Ω(V1×g2U2) + ∥(1 − g2)un∥2

F

≤ ∥(1 − g2)un∥2
Ω(V1×g2U2) + c

4 .
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Towards establishing Equation (4.1), we are therefore left to deal with the remaining
summand and show that
(4.4) ∥(1 − g2)un∥2

Ω(V1×g2U2) ≤ c

4
for all n large enough. This is what we proceed to do.

We use the relative compactness of V1 to find a finite collection of elements
h1, . . . , hm ∈ G1 for some m ∈ N such that V1 ⊂

⋃m
i=1 U1hi. Using the inclusion

Ω(V1 × g2U2) ⊂ Ω(
m⋃

i=1
U1hi × g2U2) =

m⋃
i=1

Ω(U1hi × g2U2),

we fix an arbitrary measurable partition

Ω(V1 × g2U2) =
m∐

i=1
Ai, Ai ⊂ Ω(U1hi × g2U2).

For every i ∈ {1, . . . ,m} there is the inclusion
g−1

2 Ai ⊂ g−1
2 Ω(U1hi × g2U2) = Ω(U1hi × U2g2) = Ω((U1 × U2) · (hig2)).

We apply Equation (4.3) for f = vn, g = (hig2)−1 and Y = g−1
2 Ai. This gives

∥(h−1
i − g2)un∥Ai

= ∥(g−1
2 h−1

i − 1)un∥g−1
2 Ai

= ∥((hig2)−1 − 1)φvn∥g−1
2 Ai

≤ ∥ψ |vn| ∥g−1
2 Ai

.

Combining this with Equation (4.2) and the assumption that ∥vn∥ ≤ 2 gives
m∑

i=1
∥(h−1

i − g2)un∥2
Ai

≤
m∑

i=1
∥ψ |vn| ∥2

g−1
2 Ai

≤ ∥ψ |vn| ∥2

≤ ∥ψ∥2
1 · ∥vn∥2 ≤ c

32 · 4 = c

8 .
(4.5)

Making use of the elementary Lemma 4.6 for each i ∈ {1, . . . ,m} with respect to
the vectors s = (1 − h−1

i )un|Ai and t = (h−1
i − g2)un|Ai we get the estimates

∥(1 − g2)un∥2
Ai

= ∥(1 − h−1
i )un + (h−1

i − g2)un∥2
Ai

≤ 6 · ∥(1 − h−1
i )un∥Ai + ∥(h−1

i − g2)un∥2
Ai
.

(4.6)

Finally, we use the asymptotic G1-invariance of the sequence un to deduce that
for every n large enough

∥(1 − h−1
i )un∥Ai ≤ ∥(1 − h−1

i )un∥ ≤ c

48m
holds true for every i ∈ {1, . . . ,m}. Combining Equations (4.6) and (4.5) we deduce
that for sufficiently large n we have

∥(1 − g2)un∥2
Ω(V1×g2U2) =

m∑
i=1

∥(1 − g2)un∥2
Ai

≤
m∑

i=1

(
6 · ∥(1 − h−1

i )un∥Ai
+ ∥(h−1

i − g2)un∥2
Ai

)
≤

m∑
i=1

6 · c

48m +
m∑

i=1
∥(h−1

i − g2)un∥2
Ai

≤ c

8 + c

8 = c

4 .

This gives Equation (4.4). The proof of the proposition is complete. □
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Lemma 4.6. Let V be a Hilbert space. If s, t ∈ V is a pair of vectors with
∥s∥, ∥t∥ ≤ 2 then ∥s+ t∥2 ≤ 6∥s∥ + ∥t∥2.

Proof. Indeed,
∥s+ t∥2 ≤ (∥s∥ + ∥t∥)2 = (∥s∥ + 2∥t∥) · ∥s∥ + ∥t∥2 ≤ 6∥s∥ + ∥t∥2.

□

On the necessity of the assumptions. Proposition 4.1 has several technical
assumptions. Ignoring these, it is tempting think of it loosely as the statement “an
asymptotically G1-invariant sequence that converges (in the sense of measures) to
one with dense projections to G2 is also asymptotically G2-invariant”. However, this
would be an oversimplification, as the following example shows.

Example 4.7. Take G1 = Z. Let G2 = Ẑ be the profinite completion of G1 and
set G = G1 × G2. Consider the group Γ ∼= Z diagonally embedded in G. Thus Γ
is a uniform lattice in G admitting dense projections to G2. Let m be the Haar
probability measure on G/Γ. Consider the Hilbert space V = L2

0(G/Γ) ∼= L2
0(Ẑ). As

the group Z has no property (τ) it acts on its profinite completion without spectral
gap [LZ05]. Hence there exists an asymptotically G1-invariant sequence of unit
vectors un ∈ V . As the group G is abelian, we have Stab∗(|un|2 ·m) = δΓ for all n.
However, the sequence un is not asymptotically G2-invariant, as the group G2 is
compact, and as such has property (T).

The group Z in Example 4.7 can be replaced with any other group not having
property (τ).

Spectral gap for actions of products. By putting together our results on unitary
representations of product groups, we obtain a quite general spectral gap theorem.
Recall that G is a second countable locally compact group. Suppose in addition
that G is compactly generated.

Theorem 4.8 (Spectral gap for actions of products). Assume that G = G1 ×G2
and that G2 has a compact abelianization. Let X be a locally compact topological
G-space endowed with a G-invariant measure m, either finite or infinite. Assume
that

• L2
0(X,m)G2 = 0, and

• For any asymptotically G1-invariant sequence of unit vectors fn ∈ L2(X,m),
every accumulation point µ ∈ Prob(Sub(G)) of the sequence of probability
measures Stab∗(|fn|2 ·m) satisfies G1H = G for µ-almost every subgroup
H ∈ Sub(G).

Then the Koopman G-representation L2
0(X,m) has spectral gap.

In a nutshell, Theorem 4.8 follows from the tension between Lemma 3.1 and
Proposition 4.1. But of course, there are details to provide.

Proof of Theorem 4.8. Assume towards contradiction that the Koopman representa-
tion L2

0(X,m) has no spectral gap. This representation has no G2-invariant vectors
by assumption. According to Lemma 3.1 we may find a “discordant” sequence
of non-zero vectors fi ∈ L2

0(X,m), namely, a sequence with the following three
properties:

(1) The sequence is G-uniform.
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(2) The sequence is asymptotically G1-invariant.
(3) The sequence is not asymptotically G2-invariant.

We fix a smoothing operator ψ ∈ A(G) as provided by Lemma 3.6 with respect
to the sequence fi. Consider the sequence gi = ψfi which we may suppose (by
scaling fi) to be unit vectors. It continues to satisfy the above properties (1)-(3).
Moreover it has the following two properties:

(4) The sequence gi consists of unit vectors.
(5) For each i we have gi = ψfi and ∥fi∥2 ≤ 2.

Consider the sequence of probability measures µi = Stab∗(|gi|2 · m) on the
Chabauty space Sub(G). Up to passing to a subsequence, we may maintain all of
the properties (1)-(5) and further assume that the probability measures µi converge
in the weak-∗ topology to some probability measure µ ∈ Prob(Sub(G)) satisfying:

(6) The probability measure µ is G1-invariant.
(7) µ-almost every subgroup has dense projections to G2.

Finally, relying on the above properties, we are in a position to apply Proposi-
tion 4.1 and deduce that the sequence gi must be asymptotically G2-invariant. This
is a contradiction. □

Proof of Theorem 1.6 of the introduction. The statement in the introduction is a
special case of Theorem 4.8. □

Remark 4.9. Strictly speaking, a representation on the zero Hilbert space has no
asymptotically invariant vectors, and as such has spectral gap. For this reason,
Theorem 4.8 is non-void only provided that the Hilbert space L2

0(X,m) is non-zero.
In which case, it follows implicitly from the assumptions that both groups G1 and
G2 are not trivial (so that G is a direct product in a non-trivial manner).

5. Standard semisimple groups and irreducible lattices

In this section we set up our terminology, conventions and notations regarding
semisimple groups and their lattices. For brevity, we will use the non-standard
notion of “standard semisimple groups”, which we now introduce.

A standard simple group is a topological group G of the form G(k)+, where k is
a local field of zero characteristic and G is an isotropic adjoint connected absolutely
simple k-algebraic group. The topology on G is the one induced from its k-analytic
structure. Such groups are discussed in [Mar91, Chapter I, §1.5, §1.8 and §2.3].
In particular, the group G is compactly generated, non-compact, and simple as
an abstract group. Moreover, the local field k as well as the algebraic group G
are canonically associated to G, in the sense that they can be recovered from its
topological group structure.

Remark 5.1. The requirement that G is absolutely simple can be relaxed to simple,
via a restriction of scalars. In particular, letting k = R or k = Qp for some prime
number p, and letting G be an isotropic adjoint connected simple k-algebraic group,
we have that G(k)+ is a standard simple group. Every simple real Lie group with
trivial center is a standard simple group [Zim13, 3.1.6]. However, we emphasise that
upon allowing this relaxation, we lose the possibility to recover k and G from G,
and also we will need to make several unpleasant adjustments to the discussion of
arithmeticity and spectral gap below. So we keep with absolutely simple.
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The closure of the subfield Q in k is a local field isomorphic to Qp for some prime
number p or for p = ∞ (we use the convention Q∞ = R). We will say that G is a
standard simple group of type p. We denote rank(G) = rankk(G). This is a positive
integer, by the assumption saying that G is isotropic.

A standard semisimple group is a topological group of the form
∏n

i=1 Gi for some
n ∈ N, where each Gi is a standard simple group. The groups Gi are said to be the
simple factors of G. We denote

rank(G) =
n∑

i=1
rank(Gi).

If rank(G) = 1 then G it is said to be of rank one. Otherwise G is said to be of
higher rank. For each prime number p and for p = ∞, we define G(p) to be the
subgroup of G consisting of the product of all simple factors of type p. This is the
p-component of G. It is said to be a standard semisimple group of type p. We view
G(p) as a subgroup of a Qp-algebraic group, by restricting the scalars of Gi for each
simple factor Gi of G(p) and taking the corresponding direct product. We restrict
to G(p) the corresponding Zariski topology and denote it the p-Zariski topology of
G(p). In this way, we may also endow G(p) with a Qp-analytic structure, arising
from it being a closed subgroup of the group of Qp-points of a Qp-algebraic group.

Definition 5.2. A subgroup H ≤ G is fully Zariski dense if the projection of H to
each p-component G(p) is p-Zariski dense, for each prime number p and for p = ∞.

Lattices and invariant random subgroups. Recall that any lattice in a standard
semisimple group G is fully Zariski dense by the Borel density theorem. This classical
fact has been extended to invariant random subgroups, first for real Lie groups
in [ABB+17], and then for standard semisimple groups over a single local field in
[GL18]. Relying on those results and ideas, we provide a statement applicable to
any standard semisimple group.

Proposition 5.3. Let G be a standard semisimple group and ν an ergodic invariant
random subgroup of G. Then there are two semisimple factors (i.e. two normal
subgroups) M and N of G with N ∩M = {e} such that ν-almost every subgroup

(1) projects densely to each p-component N (p),
(2) projects discretely and fully Zariski densely to M , and
(3) is contained in N ×M (i.e. projects trivially to G/(N ×M)).

Proof. Consider the p-component G(p) of the standard semisimple group G for each
prime number p as well as for p = ∞. Let ν(p) the the invariant random subgroup of
the p-component G(p) obtained by considering the natural projection π(p) : G → G(p)

and pushing forward ν via the map H 7→ π(p)(H). We may apply the Borel density
theorem for invariant random subgroups of standard semisimple groups over a single
local field [GL18, Theorem 1.9] to find a pair of normal subgroups N (p),M (p) ≤ G(p)

with N (p) ∩ M (p) = {e} and such that ν(p)-almost every subgroup contains N (p),
projects discretely and p-Zariski densely to M (p) and is contained in N (p) ×M (p).
The two desired normal subgroups are constructed by taking N =

∏
p N

(p) and
M =

∏
p M

(p) where p runs over p = ∞ and all prime numbers involved in G. □

It will be useful for us to know the following property of lattices in standard
semisimple groups.
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Lemma 5.4. Let G be a standard semisimple group and Γ a lattice in G. Then the
conjugacy class of every non-trivial element γ ∈ Γ is infinite.

Proof. Let γ ∈ Γ be some non-trivial element and assume towards contradiction
that its centralizer ∆ = CΓ(γ) has a finite index in Γ. It follows that ∆ is a lattice
in G. Therefore the projection of ∆ to each p-component G(p) is p-Zariski-dense by
the Borel density theorem. It follows that the projection of the element γ to each
p-component G(p) must be central. We arrive at a contradiction to the fact that
the standard semisimple group G is center-free. □

Lastly, we briefly recall the notion of irreducible lattices.

Definition 5.5. A lattice Γ in a standard semisimple group G is said to be irreducible
if the projection of Γ to G/H has a dense image for each simple factor H of G.

Indeed, a lattice Γ in a standard semisimple group G is irreducible if and only if
the Borel G-space G/Γ with the normalized probability measure is irreducible in the
sense of §2. If G is a standard simple group, then all lattices in G are irreducible, as
the condition in the above Definition 5.5 is satisfied trivially. The classical notion of
an irreducible lattice corresponds with the notion of an irreducible subgroup defined
in the introduction.

Arithmetic groups. We now describe the construction of the standard semisimple
group associated with a given algebraic group defined over a number field.

Example 5.6. Fix a number field K and an adjoint connected absolutely simple
K-group H. Recall that a place s : K → ks is a dense embedding of the field K
in a local field ks, defined up to a natural equivalence. Corresponding to s we get
the ks-group Hs obtained by an extension of scalars. This is an adjoint connected
absolutely simple ks-algebraic group. We say that the place s is isotropic if the
group Hs is ks-isotropic, and in this case we denote Hs = Hs(ks)+. This is the
standard simple group associated with H at the isotropic place s. Fixing a finite
set S of isotropic places, we obtain the standard semisimple group associated with
H at S, namely HS =

∏
s∈S Hs. Note that the group H(K) embeds diagonally

in
∏

s∈S Hs(ks). Accordingly, as Hs has finite index in Hs(ks) for each s ∈ S, an
appropriate finite-index subgroup of H(K) is embedded in the finite-index subgroup
HS of

∏
s∈S Hs(ks). This embedding is dense by the strong approximation theorem.

Recall that a pair of subgroups ∆1 and ∆2 of a standard semisimple group G
are called commensurable if their intersection ∆1 ∩ ∆2 has finite index in both ∆1
and ∆2. Commensurability is an equivalence relation. Being a lattice is obviously
a commensurability invariant. Likewise, being an irreducible lattice in a standard
semisimple group is also a commensurability invariant.

The groups discussed in Example 5.6 admit a canonical commensurability class
of irreducible lattices, described in the following paragraph.

Example 5.7. Fix a number field K and an adjoint connected absolutely simple
K-group H. A place s : K → ks is called Archimedean (or non-Archimedean) if the
local field ks is. Let O < K be the ring of integers. For every non-Archimedean
place s denote by πs � O the corresponding prime ideal, that is, the preimage of
unique maximal ideal in the closure of s(O). Fix a finite set of isotropic places
S which includes all Archimedean isotropic places. Let OS be the localization of
O by the ideals πs ranging over all the non-Archimedean places s ∈ S. Consider
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the standard semisimple group HS discussed in Example 5.6. Upon choosing a
non-trivial K-representation ρ : H → GLn, we set ΛS = ρ−1(GLn(OS)). Note that
the commensurability class of ΛS does not depend on the choice of ρ. We consider
the finite-index subgroup of H(K) which embeds densely in HS , as discussed at the
end of Example 5.6, and let Λ+

S be its intersection with ΛS . This is a finite-index
subgroup of ΛS which embeds in HS . We let ΓS be the corresponding image of Λ+

S

is HS . Then ΓS is an irreducible lattice in the standard semisimple group HS . Its
commensurability class is independent on the chosen representation ρ.

Definition 5.8. An irreducible lattice Γ in a standard semisimple group G is said to
be arithmetic if there exist a number field K, an adjoint connected absolutely simple
K-group H and a finite set of isotropic places S which includes all Archimedean
isotropic places, such that G is isomorphic as a topological group to the group
HS discussed in Example 5.6 and the image of Γ under this isomorphism can be
conjugated to a lattice in the commensurability class of the lattice ΓS described in
Example 5.7.

The following is a fundamental theorem due to Margulis.

Theorem 5.9 (Margulis Arithmeticity, [Mar91, Chapter IX, Theorem 1.11]). Let
G be a standard semisimple group of higher rank and Γ < G be an irreducible lattice.
Then Γ is arithmetic.

Spectral gap. We end this section by stating an important corollary of Clozel’s
theorem on spectral gap, namely [Clo03, Theorem 3.1].

Theorem 5.10. Let G be a standard semisimple group and Γ < G be an irreducible
lattice. Then for each simple factor F of G, the unitary F -representation L2

0(G/Γ)
has a spectral gap.

Proof. If the standard semisimple group G is simple then it certainly has no proper
simple factors. Therefore the desired conclusion follows from [Bek98, Lemma 3] for
Lie groups, [BL11, Theorem 1] for standard simple groups over non-Archimedean
local fields, [Mar91, Chapter III, Corollary 1.10] for uniform lattices and [GLM22,
Theorem 1.8] in general.

From now on, assume that the standard semisimple group G is not simple, and
fix a simple factor F . In particular G is of higher rank. By Margulis Arithmeticity
(Theorem 5.9) the lattice Γ is arithmetic. We adopt below the notation introduced
in Example 5.7. In particular, there is a number field K, an adjoint connected
absolutely simple K-group H and a finite set S of isotropic places containing all
the Archimedean isotropic ones. We view Γ as a lattice in the standard semisimple
group HS . A conjugate of Γ is commensurable to the lattice ΓS . The simple factor
F corresponds to the factor Hs for some place s ∈ S, as discussed in Example 5.6.
Up to replacing Γ by its conjugate, we will assume that Γ is actually commensurable
to ΓS . This does not change the unitary Hs-representation L2

0(HS/Γ) (up to
an isomorphism). By [KM99, Lemma 3.1], we know that the Hs-representation
L2

0(HS/Γ) has spectral gap if and only if the Hs-representation L2
0(HS/ΓS) does.

It remains for us to prove the latter statement.
Let H̃ be the simply connected covering of H and π : H̃ → H be the asso-

ciated K-central isogeny. By [Clo03, Theorem 3.1] the trivial representation is
isolated in the automorphic dual of H̃s = H̃s(ks). This means that the unitary
H̃s-representation L2

0(H̃(AK)/H̃(K)) has a spectral gap, where AK is the K-adele
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ring. Write H̃(AK) = H̃S × H̃Sc , where H̃S is the product of groups corresponding
to the places in S and H̃Sc the restricted product of groups corresponding to the
complement set of S. Since S contains all isotropic Archimedean factors, we can
find a compact open subgroup C < H̃Sc . Then H̃S × C is an open subgroup of
H̃(AK) and Λ = H̃(K) ∩ (H̃S ×C) is a lattice in H̃S ×C. We identify (H̃S ×C)/Λ
with an H̃s-invariant open subset of H̃(AK)/H̃(K), and view L2

0((H̃S ×C)/Λ) as an
H̃s-subrepresentation of L2

0(H̃(AK)/H̃(K)). We conclude that L2
0((H̃S ×C)/Λ) has

a spectral gap regarded as a H̃s-representation, and so does the H̃s-subrepresentation
of C-invariants, denoted L2

0((H̃S × C)/Λ)C . We identify this representation with
L2

0(H̃S/Λ1), where Λ1 denotes the image of Λ under the proper projection map
H̃S × C → H̃S .

Next, by [Mar91, Chapter I, Proposition 1.5.5 and Theorem 2.3.1] the central
isogeny π gives a surjective map H̃S → HS with a finite central kernel, which we
denote by Z = kerπ. Let Λ2 < HS be the image of Λ1 under this map and identify
the unitary representation L2

0(HS/Λ2) with the space of Z-invariants in L2
0(H̃S/Λ1).

We conclude that the Hs-representation L2
0(HS/Λ2) has a spectral gap. Since, by

construction, Λ2 is commensurable with ΓS , and using [KM99, Lemma 3.1] once
more, we conclude that the Hs-representation L2

0(HS/ΓS) has a spectral gap. This
finishes the proof. □

6. Discrete subgroups of standard semisimple groups

Throughout this section G will be a standard semisimple group, a notion intro-
duced and discussed in detail in §5. Terminology and notation from §5 will be used
freely in the current §6.

Deformations and Zariski density. Recall that Qp stands either for the field of
p-adic numbers when p is a prime number or for the field R when p is ∞. We use
Ad to denote the adjoint representation.

Lemma 6.1. Let G be a standard semisimple group of type p, where p is either ∞
or a prime number. A closed subgroup H ≤ G is p-Zariski-dense if and only if the
projection of H to each simple factor of G is infinite and

spanQp
Ad(H) = spanQp

Ad(G).

Proof. To ease our notation denote k = Qp. Let g denote the semisimple k-Lie
algebra of G regarded as a k-analytic group. Set A = spankAd(G), which is an
associative k-subalgebra of Endk(g). Consider a closed subgroup H ≤ G such that
Ad(H) spans the k-algebra A and such that H has an infinite projection to each
simple factor of G. Let h denote the Lie algebra of the p-Zariski closure of H.
Certainly h is an Ad(H)-invariant subalgebra of g. The projection of the subalgebra
h to each simple subalgebra of g is non-zero. Hence h = g and so the p-Zariski
closure of the subgroup H is open (in the Hausdorff topology arising from the
k-analytic structure). Therefore H is p-Zariski dense by [PR93, Lemma 3.2], as
required. The converse direction of the lemma is immediate. □

Lemma 6.2. Let G be a standard semisimple group of type p, where p is either ∞
or a prime number. The subset of Sub(G) consisting of p-Zariski-dense subgroups is
open in the Chabauty topology.
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Proof. Denote k = Qp and set A = spankAd(G) as in the proof of Lemma 6.1.
Let H ≤ G be a closed p-Zariski-dense subgroup. We know by Lemma 6.1 that
Ad(H) spans A over k. Thus we may find a finite set of elements h1, . . . , hm ∈ H
for some m ∈ N such that spank{Ad(hi)} = A. It follows that there is some
Chabauty neighborhood of H such that any group H ′ in that neighborhood has
spankAd(H ′) = A.

In order to deduce that every such subgroup H ′ is p-Zariski-dense, it is enough
by Lemma 6.1 to show that the projection of H ′ to any simple factor of G is infinite.
In doing so, we may pass to smaller Chabauty neighborhood of the subgroup H,
and assume that H ′ lies in that neighborhood.

In the Archimedean case one may argue as follows. By the Jordan–Schur theorem
[Jor78], there is some n ∈ N such that every finite subgroup of G admits a normal
abelian subgroup of index at most n (for a more recent treatment see e.g. [Rag72,
Theorem 8.29]). Since H is real-Zariski-dense, there are elements α, β ∈ H such
that the projection of [αn!, βn!] to every simple factor of G is non-trivial. This
property is preserved in a small Chabauty neighborhood of H, and guarantees that
the projection to each factor is infinite.

In the non-Archimedean case the above claim is straightforward, since there is
an upper bound on the order of finite subgroups [Ser09, Theorem 1 on p. 124]. □

Using the above Lemma 6.2 combined with the definition of the Chabauty
topology we obtain the following.

Corollary 6.3. Let G be a standard semisimple group. The subset of Sub(G)
consisting of fully Zariski dense subgroups (in the sense of Definition 5.2) is open
in the Chabauty topology.

Subgroups of product groups. We assume for the remainder of §6 that the
group G is of the form G = G1 ×G2 where G1 and G2 are both non-trivial standard
semisimple subgroups. Let πi : G → Gi for i ∈ {1, 2} denote the natural projections.

Lemma 6.4. Let ∆ be a discrete subgroup of G. If Λ ∈ ∆G is a discrete conjugate
limit whose intersection with G2 is fully Zariski dense then Λ ∩G1 is a subgroup of
some conjugate limit of ∆ ∩G1.

The terminology conjugate limit was introduced in Definition 2.1.

Proof of Lemma 6.4. Let Λ be a discrete conjugate limit of ∆, say Λ = limj ∆gj in
the Chabauty topology for some sequence of elements gj ∈ G. Since Λ is discrete
there is some identity neighborhood U ⊂ G such that ∆gj ∩ U = {e} for all j ∈ N.

Assume that the subgroup Λ2 = Λ ∩G2 is fully Zariski dense in G2. Corollary 6.3
allows us to find a finite subset S ⊂ Λ2 such that any sufficiently small deformation
of the set S inside G2 generates a subgroup which is still fully Zariski dense in G2.
For all sufficiently large j we find finite subsets Rj ⊂ ∆gj such that the projection
to G2 of the group generated by Rj is fully Zariski-dense and Rj converge to S in
the obvious sense.

Consider any particular element h ∈ Λ ∩G1. There are elements hj ∈ ∆gj such
that the sequence hj converges to the element h. Note that for all j sufficiently
large we have [Rj , hj ] ⊂ U ∩ ∆gj = {e}. This implies that hj ∈ CG(⟨Rj⟩). Since
the projection of the subgroup ⟨Rj⟩ to G2 is fully Zariski-dense, it follows that
hj ∈ (∆gj ∩ G1) = (∆ ∩ G1)gj for all j sufficiently large. This shows that the
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intersection Λ ∩G1 is contained in any conjugate limit of the intersection ∆ ∩G1
obtained as an accumulation point of the sequence (∆ ∩G1)gj , as required. □

Corollary 6.5. Let ∆ be a discrete subgroup of G. Let Λ ∈ ∆G be a discrete
conjugate limit of ∆ whose intersection with G2 is fully Zariski dense.

(1) If ∆ ∩G1 is trivial then Λ ∩G1 is trivial.
(2) If ∆ ∩G1 is not fully Zariski dense in G1 then Λ ∩G1 is not fully Zariski

dense in G1.

Proof. Both parts of the statement follow from the previous Lemma 6.4. Indeed,
part (1) follows immediately. To deduce part (2) we need to further rely on the fact
that being fully Zariski dense is a Chabauty open condition; see Corollary 6.3. □

Random subgroups invariant for a single factor. Recall that G is a standard
semisimple group which is assumed to be a direct product G = G1 × G2 of two
standard semisimple factors with projections πi : G → Gi.

Lemma 6.6. Let ∆1 ≤ G1 be a closed, not relatively compact and fully Zariski
dense subgroup. Let ν be a ∆1-invariant probability measure on Sub(G) such that
ν-almost every subgroup intersects G1 trivially and projects to G2 discretely. Then
ν-almost every subgroup is contained in G2.

This is a variant of [FG23, Lemma 3.14]. The proof is very short and we reproduce
it here.

Proof of Lemma 6.6. We may suppose without loss generality that the measure ν
is ∆1-ergodic. Recall that πi denotes the projection from the group G to each
semisimple factor Gi. Assume towards contradiction that not ν-almost every
subgroup is contained in G2. Then one can find an open subset O2 ⊂ G2 \ {e2}
with respect to which

ν({H ≤ G : |π1(H ∩ π−1
2 (O2)) \ {e1}| = 1}) > 0.

This set is ν-conull by ∆1-ergodicity. The push forward of ν via the map taking a
subgroup H to the unique point in π1(H ∩ π−1

2 (O2)) gives a probability measure on
G1 \ {e1} which is invariant under conjugation by ∆1. By projecting to one of the
simple factors of the group G1, we may assume without loss of generality that G1
is simple. The existence of such a probability measure stands in contradiction to
[BDL17, Proposition 1.9] (see also the main result of [Sha99]). □

In the context of semisimple Lie groups, another way to arrive at a contradiction
would be to borrow the argument from [Fur01, p. 38]. Yet another such way is the
closely related to [FG23, Corollary 3.11] dealing with stationary random subgroups.

Remark 6.7. The assumption that a Zariski-dense subgroup is not relatively
compact is only relevant in the non-Archimedean case. Indeed, in the real case, any
Zariski-dense subgroup of an isotropic simple algebraic group is automatically not
relatively compact.

Proposition 6.8. Let G be a standard semisimple group of the form G = G1 ×G2
where G1 is standard semisimple and G2 is standard simple of type p0 for p0 = ∞
or for some prime number p0. Let ν be a G1-invariant Borel probability measure on
Sub(G). If ν-almost every subgroup Γ satisfies that

(1) Γ is discrete,
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(2) Γ is not contained in the factor G2,
(3) Γ has p0-Zariski-dense and not relatively compact projection to G2, and
(4) if Γ ∩G2 is p0-Zariski-dense then Γ ∩G1 is trivial

then ν-almost every subgroup Γ has a dense projection to G2.

Proof. By passing to ergodic components we may assume without loss of generality
that the measure ν is G1-ergodic. The G1-invariant map Sub(G) → Sub(G2) given
by Γ 7→ pr2(Γ) is therefore ν-essentially constant. We denote its essential image by
∆2 ∈ Sub(G2). Note that ∆2 is closed, non-compact and p0-Zariski-dense subgroup
of G2. Since the group G2 is simple, it must either be the case that ∆2 = G2 or
that ∆2 is discrete; see e.g. [GM13, §3]. In the first case we are done. In what
follows we assume towards contradiction that the subgroup ∆2 is discrete.

We apply the Borel density theorem for invariant random subgroups (Proposition
5.3) with respect to the pushforward of ν via the map Sub(G) → Sub(G1) given
by Γ 7→ pr1(Γ). This provides a pair of normal subgroups N,M ≤ G1 such that
N ∩M = {e} and such that ν-almost every subgroup Γ projects densely to each p-
component N (p), projects discretely and fully Zariski-densely to M and is contained
in N ×M . From this point onward, we assume as we may that G1 = M ×N .

The measure ν is ∆2-invariant by [FG23, Lemma 7.2]. We fix a generic ∆2-ergodic
component ν0 of the measure ν. By ∆2-ergodicty, there is some fixed non-trivial
closed subgroup ∆1 ≤ G1 such that pr1(Γ) = ∆1 for ν0-almost every subgroup Γ.
As ν0 is generic, we have that ∆1 is fully Zariski-dense in G1 and not relatively
compact (for it is infinite and discrete). The measure ν0 is ∆1-invariant by [FG23,
Lemma 7.2] and ∆1-ergodic by [FG23, Corollary 7.3]. Thus, ν0 can be regarded as
a discrete ∆1-ergodic and ∆2-ergodic invariant random subgroup of the product
group ∆1 × ∆2.

We now claim that the factor N must be trivial, so that G1 = M and the subgroup
∆1 is discrete. We consider the map Sub(G) → Sub(N) given by Γ 7→ Γ ∩N . By
∆2-ergodicity this map is ν0-essentially constant. Its essential image is a certain
discrete subgroup of N normalized by ∆1, as the measure ν0 is ∆1-invariant. Since
∆1 projects densely to each p-component N (p), this discrete subgroup must be
trivial. Consider the product decomposition G = N × (M × G2). We have that
ν0-almost every subgroup intersects N trivially and projects to M ×G2 discretely.
Since ν0 is ∆1-invariant, we may apply Lemma 6.6 with respect to this product
decomposition, and deduce that ν0-almost every subgroup is contained in M ×G2.
This proves the claim.

We consider the map Sub(G) → Sub(G1) given by Γ 7→ Γ ∩G1. By ∆2-ergodicity
this map is ν0-essentially constant and we denote its essential image by Λ1. Note
that Λ1 �∆1 as the measure ν0 is ∆1-invariant. By Lemma 6.6 applied with respect
to the product decomposition G = G1 ×G2 = M×G2 we have that Λ1 is non-trivial.

Now we invert the roles of the two factors G1 and G2 and consider the map
Sub(G) → Sub(G2) given by Γ 7→ Γ ∩G2. This map ν0-essentially constant and its
essential image is some non-trivial normal subgroup Λ2 � ∆2. The subgroup Λ2 is
p0-Zariski dense in G2, being normal in the p0-Zariski dense subgroup ∆2. This
contradicts assumption (4). □

Corollary 6.9. Let ν be a non-trivial discrete ergodic invariant random subgroup
of G. If ν-almost every subgroup intersects trivially each proper semisimple factor
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of G then ν is irreducible. Furthermore, any ergodic probability measure preserving
G-space (X, ν) satisfying (StabG)∗ν = ν is irreducible as well.

Proof. We claim that ν-almost every subgroup projects densely to any proper
semisimple factor H of the standard semisimple group G. The claim will be
established by induction on the number of types (i.e. either ∞ or prime numbers)
involved in the factor H.

For the base of the induction, assume that H is a proper semisimple factor of
a single type p (where p is either ∞ or some prime number). Write G = H × L
for some non-trivial factor L. Let νH denote the pushforward of ν via the map
Sub(G) → Sub(H) given by Λ 7→ prH(Λ) so that νH is an invariant random subgroup
of the group H. By Proposition 5.3 applied to νH there is a pair of normal subgroups
N,M ≤ H with N ∩M = {e} such that νH -almost every subgroup projects densely
to N , discretely and p-Zariski-densely to M and is contained in N ×M . Lemma
6.6 applied with respect to the direct product decomposition G = (N × L) × M
implies that the subgroup M is trivial so that N = H. This means that νH = δH .
The claim in the base of the induction is established.

For the induction step, assume that H is a proper semisimple factor involving
more than a single type, and that the claim has already been established with respect
to factors with fewer types. Write G = H ×L for some non-trivial factor L. Let νH

denote the pushforward of ν via the map Sub(G) → Sub(H) given by Λ 7→ prH(Λ)
so that νH is an invariant random subgroup of the group H. Let p be any finite
prime such that H(p) is non-trivial, and write H = H(p) ×R where R =

∏
q ̸=p H

(q)

is the complement to H(p) in H. As the local field Qp is non-Archimedean the
standard semisimple group H(p) admits some compact open subgroup O. Consider
the map

Sub(G) → Sub(L×R), Γ 7→ prL×R(Γ ∩ pr−1
H(p)(O)) ∀Γ ∈ Sub(G).

Let λ be the resulting pushforward invariant random subgroup of the standard
semisimple group L×R. By the induction hypothesis (applied to the subgroup R
of the group L×R) we know that λ-almost every subgroup projects densely to the
proper factor R. It follows that νH -almost every subgroup contains the factor R.
So, we may conclude by applying the base case of the induction to the invariant
random subgroup of the factor L × H(p) obtained by intersecting ν-almost every
subgroup with that factor.

We know that ν projects densely to each proper semisimple factor of G. Hence
ν is irreducible by [FG23, Corollary 7.3]. The additional clause in the statement
concerning the irreducibility of ν follows from the same [FG23, Corollary 7.3]. □

Spectral gap. We specialize our spectral gap result (Theorem 4.8) for actions of
standard semisimple groups.

Theorem 6.10 (Spectral gap for actions of products — semisimple group case).
Let G be a standard semisimple group with G = G1 × G2 where G1 is standard
semisimple and G2 is standard simple of type p0. Let X be a locally compact
topological G-space endowed with a G-invariant measure m, either finite or infinite.
Assume that

• L2
0(X,m)G2 = 0,

• m-almost every point x has Stab(x) ∩G1 = Stab(x) ∩G2 = {e} and
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• if fn ∈ L2(X,m) is an asymptotically G1-invariant sequence of unit vec-
tors then every accumulation point ν ∈ Prob(Sub(G)) of the sequence of
probability measures Stab∗(|fn|2 ·m) is such that ν-almost every subgroup
is discrete, not contained in the factor G2 and admits p0-Zariski-dense and
not relatively compact projections to G2.

Then the unitary Koopman G-representation L2
0(X,m) has spectral gap.

Proof. The idea is to deduce the spectral gap for the Koopman representation from
our general spectral gap theorem for products, namely Theorem 4.8. With that goal
in mind, let us verify the two assumptions of that theorem. The first assumption
that L2

0(X,m)G2 = 0 is maintained in the current statement as well. As for the
second assumption, consider some asymptotically G1-invariant sequence of unit
vectors fn ∈ L2

0(X,m). Denote νn = Stab∗(|fn|2 · m) ∈ Prob(Sub(G)) and let
ν ∈ Prob(Sub(G)) be any weak-∗ accumulation point of the sequence of probability
measures νn. We are required to show that ν-almost every subgroup has dense
projections to the factor G2. Note that the probability measure ν is G1-invariant.
By our assumptions, ν-almost every subgroup Γ satisfies

(1) Γ is discrete,
(2) Γ is not contained in the factor G2, and
(3) Γ has p0-Zariski-dense and not relatively compact projections to G2.

Moreover, by applying part (1) of Corollary 6.5 for the subgroup ∆ = StabG(x)
with respect to a m-generic point x ∈ X we get that

(4) if Γ ∩G2 is p0-Zariski-dense then Γ ∩G1 is trivial.
Applying Proposition 6.8 we deduce that ν-almost every subgroup has dense pro-
jections to the factor G2. This concludes the reduction of the current proof to the
statement of Theorem 4.8. □

Remark 6.11. If the action of a standard semisimple group G = G1 × G2 on a
probability measure space (X,m) is faithful, irreducible and measure preserving then
the stabilizer of m-almost every point has trivial intersection with both factors, so
that this assumption in Theorem 6.10 becomes redundant.

Remark 6.12. Provided m is not supported on a singleton, the assumptions of
Theorem 6.10 imply that both semisimple factors G1 and G2 are not trivial.

7. Confined and strongly confined subgroups

In this section we study the notion of confined subgroups, which is a crucial
ingredient in this work.

We consider this notion for discrete groups first. Recall that a subgroup Λ of a
discrete group Γ is called confined if there is a finite subset F ⊂ Γ \ {e} such that
the condition Λγ ∩ F ̸= ∅ holds true for every element γ ∈ Γ. Here is an equivalent
definition for the negation of this notion. A subgroup Λ of a discrete group Γ is
called unconfined (i.e. not confined) if the trivial subgroup of Γ is a conjugate
limit of Λ. Thus, being unconfined and non-trivial is a vast strengthening of being
non-normal. Indeed, non-trivial normal subgroups are precisely the fixed points for
the conjugation action of Γ on the space Sub(Γ) \{{e}}, while unconfined subgroups
are those with unbounded (namely, non-relatively compact) orbits.

We shall require a generalization of this definition to the context of locally
compact groups.
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Definition 7.1. A closed subgroup H of a locally compact second countable group
G is called confined if the trivial subgroup {e} ≤ G is not a conjugate limit of H.

Equivalently, a subgroup H is confined in G if and only if there is a compact
set C ⊂ G \ {e} which intersects non-trivially every conjugate of H. It follows
immediately from the definition that any conjugate limit of a confined subgroup is
confined.

Example 7.2. Any non-trivial normal closed subgroup is confined. Any closed
subgroup containing a confined subgroup is confined. In particular, a closed subgroup
containing a non-trivial normal closed subgroup is confined.

In the general context of locally compact groups, it is natural to consider the
following variant of the definition.

Definition 7.3. Let G be a locally compact second countable group. A closed
subgroup H of G is weakly confined if there is a compact subset C ⊂ G satisfying

(C ∩Hg) \ {e} ≠ ∅
for every element g ∈ G.

Confined subgroups are obviously weakly confined. Every non-discrete subgroup of
G is weakly confined. In the p-adic Lie group SL2(Qp), the compact upper-triangular
unipotent subgroup with coefficients in Zp gives an example of a weakly confined
subgroup which is unconfined. However, for groups with NSS (no small subgroups)
property2 the two notions coincide [GL23, Proposition 10.2]. In particular, if G is
a real Lie group (possibly with infinitely many connected components) then every
weakly confined subgroup is confined.

The property of being weakly confined generalizes normal subgroups and also
lattices (just as the notion of invariant random subgroups generalizes those).

Lemma 7.4. Let G be a locally compact second countable group. Any non-trivial
lattice in G is weakly confined.

Note that the trivial subgroup is a lattice in G if and only if the group G is
compact.

Proof of Lemma 7.4. Let Γ be a non-trivial lattice in G. In view of [Rag72, Theorem
1.12] or [Gel14, Lemma 3.1], there is a compact subset K ⊂ G such that for every
element g /∈ K the intersection Γg ∩ K contains a non-trivial element. Let γ ∈ Γ
be any non-trivial element. Then the compact set C = K ∪ γK intersects every
conjugate of the lattice Γ in a non-trivial element. □

Thus, lattices in non-compact real Lie groups as well as finite-index subgroups of
infinite discrete groups are confined.

Following [Gel18a] we will say that the locally compact group G has the NDSS
property (i.e. no discrete small subgroups) if there is an identity neighborhood
U ⊂ G which contains no non-trivial finite subgroups. Obviously, if G has NDSS
then a discrete subgroup of G is confined if and only if it is weakly confined.

Corollary 7.5. Let G be a locally compact second countable group with NDSS.
Then all lattices in G are confined.

2A topological group has the NSS property (no small subgroups) it is admits an identity
neighborhood containing no non-trivial closed subgroups.
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The class of NDSS groups contains all real and p-adic Lie groups and is closed
under products. Therefore we obtain the following.

Lemma 7.6. Lattices in standard semisimple groups are confined.

In center-free semisimple real Lie groups there is a geometric criterion for a
discrete subgroup to be confined. Let G be such a Lie group with associated
symmetric space X = G/K, where K is a maximal compact subgroup of G. A
discrete subgroup Λ ≤ G is confined if and only if there is some R > 0 such that the
injectivity radius of the orbifold MΛ = Λ\X is upper bounded by R at all points of
MΛ. Such orbifolds are called uniformly slim in [FG23].

Generally speaking, being a confined subgroup is not a transitive notion. The
following example shows that even a normal subgroup Λ of a lattice Γ in a simple
Lie group G may not in itself be confined in G. Note that this normal subgroup Λ
is even co-amenable in Γ and therefore also in G.

Example 7.7 (Being confined is not transitive). Consider the simple Lie group
G = PSL(2,R) and the lattice PSL(2,Z) ≤ G. Recall that the lattice PSL(2,Z) is
isomorphic to the free product

PSL(2,Z) ∼= Z/2Z ∗ Z/3Z.
Let Γ be given by the following exact sequence

1 → Γ → PSL(2,Z) → Z/2Z × Z/3Z → 1.
We have [PSL(2,Z) : Γ] = 6 so that Γ is a lattice in G. The group Γ is isomorphic
to the free group F2. We may view Γ as the fundamental group of a three-holed
sphere. The holes are cusps in the corresponding finite-volume hyperbolic metric.
Let a, b represent the primitive loops around two of the cusps. Then Γ = ⟨a, b⟩ and
ab is a loop around the third cusp. Every unipotent element of Γ is conjugate to
either a power of a, a power of b or a power of ab.

Let Λ = [Γ,Γ] be the commutator group of Γ. Then Λ is normal in Γ and
co-amenable in G. The subgroup Λ contains no non-trivial unipotent elements.
Indeed, the images of a, b precisely generate the abelianization Γ/Λ ∼= Z2.

In this situation, if a sequence of elements gn ∈ G is such that gnΓ → ∞ in the
quotient G/Γ then the sequence of conjugates gnΛg−1

n tends to the trivial subgroup
in the Chabauty topology on Sub(G). Equivalently, if a sequence of points xn tends
to infinity in one of the cusps in the hyperbolic surface Γ\G/K then the injectivity
radius at any lift x̃n of the point xn in Λ\G/K tends to infinity. This is because
any loop through xn in Γ\G/K represented by a non-unipotent element must wind
around another hole, hence pass through the thick part.

Confined subgroups in ICC groups. Recall that a group Γ is called ICC (i.e.
infinite conjugacy classes) if the conjugacy class of every non-trivial element of Γ is
infinite. We consider the properties of confined subgroups in ICC groups.

Lemma 7.8. Let Γ be a discrete ICC group. If F is a finite subgroup of Γ then F
is not confined in Γ.

Proof. Let F be a finite subgroup of Γ. Assume that |F | > 1, for otherwise there is
nothing to prove. So the subgroup F admits some non-trivial element h ∈ F . Since
the group Γ is ICC, there is a sequence of elements γi ∈ Γ such that the conjugates
hγi are pairwise distinct. Up to passing to a subsequence, we may assume that the
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limit F ′ = limi F
γi exists in the Chabauty topology. Note that the conjuguate limit

F ′ satisfies |F ′| < |F |. We conclude that the trivial subgroup is a conjugate limit of
the given subgroup F arguing by induction on |F |. Namely F is not confined. □

Lemma 7.9. Let Γ be a discrete group without finite confined subgroups. Then the
notion of being confined for subgroups of Γ is a commensurability invariant.
Proof. It is enough to check that the property is preserved by passing to finite-index
subgroups. Let ∆ be a subgroup of Γ and ∆1 ≤ ∆ be a subgroup of finite index.
Assume towards contradiction that ∆ is confined in Γ but ∆1 is not. Let γi ∈ Γ be
a sequence of elements such that the subgroups ∆γi

1 converge to the trivial subgroup
in the Chabauty topology. Up to passing to a subsequence, we may assume that
the Chabauty limit Λ = limi ∆γi exists. We claim that Λ is finite. Consider a
pair of distinct non-trivial elements δ1, δ2 ∈ Λ. Then δ1, δ2 ∈ (∆ \ ∆1)γi for all
i sufficiently large. Note that δ1 and δ2 belong to different cosets in ∆γi/∆γi

1 for
all i sufficiently large, for otherwise δ−1

1 δ2 ∈ ∆γi

1 for arbitrarily large i, which is
impossible. Therefore |Λ| ≤ [∆ : ∆1] < ∞. On the other hand, note that the
subgroup Λ is confined, being a conjugate limit of the confined subgroup ∆. A
contradiction. □

This lemma applies in particular to torsion-free groups as well as to ICC groups
in view of Lemma 7.8. We obtain the following.
Corollary 7.10. Let Γ be a discrete group. Assume that Γ is either torsion-free
or ICC. Then the notion of being confined for subgroups of Γ is invariant under
commensurability.
Confined actions. Let G be a locally compact second countable group. For every
Borel G-space X there is a Borel map StabG : X → Sub(G) given by x 7→ StabG(x).
Definition 7.11. We introduce several notions related to confined actions.

(a) A uniformly recurrent subgroup X, or more generally a closed G-invariant
subset X of Sub(G), is called confined if {e} /∈ X.

(b) An invariant random subgroup ν ∈ IRS(G) is called confined if supp(ν) is
confined.

(c) A topological G-space X has confined stabilizers if the closed G-invariant
subset StabG(X) ⊂ Sub(G) is confined.

(d) A probability measure preserving Borel G-space (X,µ) has confined stabiliz-
ers if the invariant random subgroup (StabG)∗µ is confined.

We caution the reader that, say, the non-confined invariant random subgroup
δ{e} has confined stabilizers as a probability measure preserving space.
Example 7.12. Let H be a closed subgroup of G. The following statements are
equivalent:

(1) The closed subgroup H ≤ G is confined in the sense of Definition 7.1.
(2) The orbit closure HG is a confined subset of Sub(G) in the sense of (a) in

Definition 7.11.
(3) The topological G-space G/H has confined stabilizers in the sense of (c) in

Definition 7.11.
Lemma 7.13. Assume that the group G is discrete. Let ν be a confined invariant
random subgroup of G. Then there is a compact G-space Y with confined stabilizers
admitting a G-invariant probability measure µ such that (StabG)∗µ = ν.
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Proof. According to [AGV14, Proposition 13] there is a Borel probability measure
preserving G-space (Z, η) satisfying (StabG)∗η = ν. By Varadarajan’s compact
model theorem, there is a compact G-space (Y, µ) with supp(µ) = Y and such that
(Z, η) and (Y, µ) are isomorphic as Borel G-spaces. In particular (StabG)∗µ = ν so
that (Y, µ) has confined stabilizers as a probability measure preserving space.

To conclude the proof it remains to show that the compact G-space Y has
confined stabilizers as a topological space. Note that µ-almost every point y ∈ Y
has StabG(y) ∈ supp(ν). As the group G is discrete, map StabG : Y → Sub(G)
is upper semi-continuous, in the sense that any point x ∈ X has a neighborhood
x ∈ O ⊂ X such that any point y ∈ O satisfies StabG(y) ≤ StabG(x). Put together,
these two facts imply that StabG(Y ) is confined, as required. □

Confined subgroups of arithmetic lattices. We study confined subgroups of
irreducible lattices and their actions factoring through rank-one simple factors.

Lemma 7.14. Let G be a standard semisimple group of higher rank and Γ be an
irreducible lattice in G. Let F be a rank one simple factor of G of type p, where
p is either ∞ or a prime number. Let ∆ be a confined subgroup of Γ. Then the
projection of ∆ to the factor F is p-Zariski-dense and not relatively compact.

Proof. The irreducible lattice Γ is arithmetic by Margulis’ arithmeticity (Theo-
rem 5.9). We will use the notations introduced in Examples 5.6 and 5.7. Namely
K is a number field, H is an adjoint connected absolutely simple K-group and S
is a finite set of isotropic places on K containing all Archimedean isotropic ones.
We identify the standard semisimple group G with the group HS and the rank one
simple factor F with the factor Hs for some place s ∈ S. Let ks be the local field
associated to the place s.

The lattice Γ is ICC according to Lemma 5.4. Therefore Corollary 7.10 applies,
and we may replace Γ and ∆ by finite-index subgroups preserving the assumptions
of the lemma. Upon doing so and conjugating, we assume as we may that Γ = ΓS .
In particular, the lattice Γ is contained in the group of rational points H(K).

Let X be the rank-one symmetric space or Bruhat–Tits building associated to
the standard simple group F , depending on whether p is ∞ or a prime. In both
cases X is a proper Gromov hyperbolic metric space. Its Gromov boundary ∂X
can be identified with (Hs/P)(ks) where P is a minimal parabolic ks-subgroup of
Hs [Bor12, Propoisiton 20.5]. The variety Hs/P is in fact defined over some finite
extension L of the field s(K) [Bor12, Corollary 18.8]. We consider Γ as a subgroup
of H(L).

Let µ be any symmetric probability measure on the lattice Γ whose support
generates Γ. Let ν be any µ-stationary random subgroup supported on the conjugate
closure ∆Γ. The assumption that the subgroup ∆ is confined ensures that ν-almost
every subgroup of Γ is not trivial.

Consider the action of the lattice Γ on the Gromov boundary (Hs/P)(ks). We
conclude that the fixed point set of every element in Γ is defined over L, hence
so is the fixed point set of every subgroup of Γ. We know by [GL23, Proposotion
4.7] that ν-almost every subgroup fixes at most a single point of the boundary
∂X. Every such fixed point must belong to the countable set (Hs/P)(L) by the
preceding remarks. However, any ν-stationary probability measure on a countable
set is finitely supported and Γ-invariant [BQ11, Lemma 8.3]. We conclude that
ν-almost every subgroup fixes no point of the boundary ∂X. Therefore its projection
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to F is acting on X without proper closed convex invariant subsets [GL23, Corollary
7.6]. This implies that ν-almost every subgroup projects p-Zariski-densely to F
[CM09, Proposition 2.8]. The fact that the projection of the group ∆ itself (rather
than its conjugate limit) to the factor F is p-Zariski-dense follows from Lemma 6.2.

Similarly, we know that ν-almost every subgroup acts on X with unbounded
orbits [GL23, Proposition 4.8 or 7.8]. By this fact and by the previous paragraph,
this action cannot be bounded or horocyclic (in the sense outlined e.g. in [GL23,
§3]). Hence the action admits hyperbolic elements. Being hyperbolic is an open
condition in the group F [GL19, Proposition 3.1]. We conclude that the group ∆
itself admits an element whose projection to F is hyperbolic. As such, the projection
of the subgroup ∆ to the factor F is not relatively compact. □

Strongly confined subgroups. We require a more refined notion than just being
confined, which takes into account degeneration of conjugate limits into proper
factors.

Definition 7.15. A closed subgroup H of a locally compact second countable group
G is strongly confined if no conjugate limit of H is contained in a proper normal
subgroup.

Certainly, a strongly confined subgroup is confined. Moreover, any conjugate
limit of a strongly confined subgroup is still strongly confined.

The following observation is needed to obtain the converse (easier) direction to
one of our main results.

Lemma 7.16. Let G be a standard semisimple group and Γ be an irreducible lattice
in G. Then any subgroup of Γ which is confined regarded as a subgroup of G is
strongly confined in G.

Proof. We assume as we may that the group G is semisimple but not simple, for
otherwise the two notions of confined and strongly confined are equivalent. In
particular G is of higher rank and the lattice Γ is arithmetic (see Theorem 5.9).

We use the notation introduced in Examples 5.6 and 5.7 and identify G with the
group HS =

∏m
i=1 Hsi where S = {s1, . . . , sm} is a set of places. The lattice Γ is

ICC according to Lemma 5.4. Up to conjugating the lattice Γ and using Corollary
7.10 to replace Γ by a finite-index subgroup if necessary, we assume as we may that
Γ = ΓS . In particular Γ contained in H(K) for some number field K.

Let Λ ≤ Γ be a subgroup. Assume towards contradiction that Λ is confined
but not strongly confined regarded as a subgroup of G. Upon reordering S, we
get that there is a sequence of elements gn ∈ G such that Λgn → ∆ in the
Chabauty topology with ∆ ≤ L and L =

∏m−1
i=1 Hsi

. Note that ∆ ̸= {e} since Λ is
confined. This means that for each element h ∈ ∆ there is a sequence of elements
γn = (γ1,n, . . . , γm,n) ∈ ∆ where γi,n ∈ Hsi so that (γ1,n, . . . , γm−1,n)gn → h and
at the same time γgn

m,n → e. The coefficients of the characteristic polynomials
of the transformations Ad(γ1,n), . . . ,Ad(γm,n) are all uniformly bounded and the
characteristic polynomials of Ad(γm,n) tend to the polynomial p(x) = (x− 1)dimK H

as n tends to infinity. As the algebraic S-integers form a lattice in the product of local
fields

∏
s∈S ks, the set of all possible coefficients of such characteristic polynomials

is finite. Hence the projection of the element γn to each p-component must be
unipotent for all n sufficiently large. It follows that every element belonging to the
projection of the subgroup ∆ to each p-component is unipotent. This implies that
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the p-Zariski closure Up of the projection of ∆ to each p-component is a connected
unipotent subgroup.

In each p-component of the group L, there is some horospherical subgroup Vp

containing the unipotent subgroup Up [BT71, Corollary 3.7]. Let V be the direct
product of these horospherical subgroups. Let a(t) be a suitable one-parameter
subgroup of L which expands the subgroup V , namely va(t) t→∞−−−→ ∞ holds true for
every element v ∈ V .

For a given radius R > 0 let Be(R) denote the ball at the identity of radius R
in the group G with respect to some fixed proper and continuous metric. As the
subgroup ∆ is discrete, for each i ∈ N there is some sufficiently large ti > 0 such
that

((∆ ∩Be(i)) \ {e})a1(ti) ⊂ G \Be(2i)

as well as d(xa1(ti), e) ≥ 2d(x, e) for all x ∈ V . Let Ri > i be a sufficiently large
radius such that

(G \Be(Ri))a1(ti) ⊂ G \Be(i)

for each i. Let j = j(i) be a sufficiently large index, such that every element of the
intersection Λgj(i) ∩Be(Ri) is “sufficiently close” to some element of ∆ ∩Be(Ri) for
each i. More precisely, we require as we may for each i that

((Λgj(i) ∩Be(Ri)) \ {e})a1(ti) ⊂ G \Be(i).

It follows that the sequence of conjugates Λi = Λgj(i)a1(ti) converges to the trivial
subgroup in the Chabauty topology on Sub(G). This is a contradiction to the
assumption that Λ is confined when regarded as a subgroup of G. □

Confined discrete subgroups of rank one simple Lie groups are Zariski dense, see
[FG23, Lemma 9.14]. We show that projections of irrreducibly confined discrete
subgroups to simple rank one factors are also Zariski dense, under certain conditions.

Lemma 7.17. Let G be a standard semisimple group of type p, where p is either
∞ or a prime number. Let H be a simple factor of G with rank(H) = 1. Let ∆
be a strongly confined subgroup of G. Then the projection of ∆ to the factor H is
p-Zariski-dense and not relatively compact.

Proof. Write G = H × H ′ where H ′ is a suitable standard semisimple subgroup.
Let µ and µ′ be a pair of probability measures on the groups H and H ′ respectively,
specifically the particular ones considered in [GLM22]. Denote µ0 = µ⊗ µ′ and let
ν be any µ0-stationary limit of the subgroup ∆ (in the sense of Definition 10.4). In
particular ν is a µ-stationary random subgroup supported on the conjugate closure
∆G. In the real case, we know that ν-almost every subgroup of G is discrete by [FG23,
Theorem 1.6]. In the p-adic case, ν-almost every subgroup is certainly discrete, as
G has a compact open subgroup containing no no-trivial discrete subgroups [Ser09,
Theorem 1 on p. 124]. In any case ν-almost every subgroup is not contained in
the factor H ′ by the strongly confined assumption. The fact that ν-almost every
subgroup fixes no point in its action on the Gromov boundary of the rank one
symmetric space or Bruhat–Tits building associated to the rank one group H follows
immediately from [GL23, Theorem 6.1]. From this point onward, we conclude the
proof exactly as in Lemma 7.14. □
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The above two Lemmas 7.14 and 7.17 are very much closely related. However,
a priori a confined subgroup of the lattice Λ may not be confined regarded as a
subgroup of the enveloping group G, as was the case in Example 7.7.

8. Confined subgroups of irreducible lattices

The current section is devoted to the proof of Theorem 8.4 saying that any
confined subgroup of an irreducible lattice of a higher rank standard semisimple
group has finite index. This is the generalization of Theorem 1.1 as well as Corollary
1.2 of the introduction to the setting of standard semisimple groups over local fields
(rather than Lie groups).

If Γ is a cocompact lattice in the locally compact group G then every confined
subgroup of Γ is confined in G. However, this need not be the case if Γ is a non-
cocompact lattice, see Example 7.7. The next two lemmas are here to remedy this
failure. They are not needed in the cocompact case.

For a Borel subset M ⊂ Sub(G), we denote

MG = {Hg | H ∈ M, g ∈ G}
and

Prob(M) = {ν ∈ Prob(Sub(G)) : ν(M) = 1}.

Lemma 8.1. Let Γ be a lattice in the locally compact group G. Let X be a
topological Γ-space and Y = G ×Γ X be the induced topological G-space3 with
projection π : Y → G/Γ. Denote

CG
Γ (X) = {µ ∈ Prob(Y ) : π∗µ = mG/Γ}.

Then
(StabG)∗(CG

Γ (X)) ⊂ Prob(StabΓ(X)
G

).

Proof. We consider Sub(Γ) as a closed subset of Sub(G). Denote S = StabΓ(X) so
that S ⊂ Sub(Γ) is a Γ-invariant closed subset. For each point gΓ ∈ G/Γ consider
the space of probability measures

AgΓ = Prob (Sg)
regarded as a compact convex subset of Prob(Sub(G)). Consider the compact convex
space

Q = F (G/Γ, {AgΓ})
consisting of all mG/Γ-measurable functions f : G/Γ → Prob(Sub(G)) satisfying
mG/Γ-almost surely f(gΓ) ∈ AgΓ, see [Zim13, p. 78]. The barycenter map with
respect to the normalized Haar measure mG/Γ sets up a continuous affine map

bar : Q → Prob(SG) ⊂ Prob(Sub(G)).
To conclude the proof it will suffice to construct an affine map φ : CG

Γ (X) → Q
such that Stab∗ = bar ◦ φ on the space CG

Γ (X), which is what we proceed to do.
Given a probability measure µ ∈ CG

Γ (X) ⊂ Prob(Y ), consider its disintegration
dµ over the projection π to the probability space (G/Γ,mG/Γ), given by a mG/Γ-
measurable map

dµ : G/Γ → Prob(Y )

3For the notion of induced actions we refer e.g. to [Zim13, p. 75].
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such that mG/Γ-almost surely dµ(gΓ) gives full measure to the fiber π−1(gΓ). In
particular Stab∗dµ(gΓ) ⊂ AgΓ almost surely. The affine map

φ : CG
Γ (X) → Q, φ(µ)(gΓ) = Stab∗dµ(gΓ) ∀µ ∈ CG

Γ (X), ∀gΓ ∈ G/Γ
is as required. □

Lemma 8.2. Let G be a standard semisimple group and Γ < G an irreducible
lattice. Let X be a topological Γ-space and Y be the induced topological G-space
equipped with the projection π : Y → G/Γ. Fix a G-invariant probability measure
µ ∈ Prob(Y ) such that π∗µ = mG/Γ. Let fi ∈ L2(Y, µ) be an asymptotically H-
invariant sequence of unit vectors for some non-trivial normal subgroup H � G.
Then any accumulation point of the sequence of probability measures Stab∗(|fi|2 · µ)
in the space Prob(Sub(G)) belongs to Prob(StabΓ(X)

G
).

Proof. Consider the natural linear map T : L1(Y, µ) → L1(G/Γ) corresponding to
the projection π. It has operator norm ∥T∥op = 1. Furthermore ∥Tf∥1 = ∥f∥1 for
non-negative functions (i.e. provided f ≥ 0).

We consider the sequence of elements |fi|2 ∈ L1(Y, µ). By Lemma 2.2 this is an
asymptotically H-invariant sequence of non-negative unit vectors in L1(Y, µ). We
consider the probability measures νi = |fi|2 · µ ∈ Prob(Y ) and their push forward
to Sub(G) under the map Stab : Y → Sub(G). Up to passing to a subsequence, we
assume that the probability measures Stab∗νi converge to some probability measure
ζ ∈ Prob(Sub(G)). The asymptotic H-invariance of the sequence |fi|2 implies that
the measure ζ is H-invariant.

Consider the sequence of functions gi ∈ L1(G/Γ) given by gi = T (|fi|2). The
sequence gi is asymptotically H-invariant, as T is contracting. By Clozel’s theorem
(essentially, see Theorem 5.10 for details), the group H has spectral gap in its
representation on L2

0(G/Γ). It follows by Lemma 2.8 that ∥gi − 1G/Γ∥1 → 0.
Our strategy is to construct a sequence of probability measures ηi all satisfying

π∗ηi = mG/Γ, such that Stab∗νi and Stab∗ηi have the same asymptotic behaviour.
Here are the details. Look at the positive and negative pairs of the difference 1 − gi.
Namely

1 − gi = h+
i − h−

i

where h+
i , h

−
i ∈ L1(G/Γ), h+

i , h
−
i ≥ 0 and ∥hi∥1 = ∥h+

i ∥1 + ∥h−
i ∥1 . Let l+i ∈

L1(Y, µ) be an arbitrary lift satisfying T (l+i ) = h+
i and l+i ≥ 0. We note that

T (|fi|2 + l+i ) − h−
i = 1, thus T (|fi|2 + l+i ) ≥ h−

i . Let l−i ∈ L1(Y, µ) be an arbitrary
lift with T (l−i ) = h−

i and |fi|2 + l+i ≥ l−i ≥ 0. We set li = l+i − l−i . Observe that

∥li∥1 ≤ ∥l+i ∥1 + ∥l−i ∥1 = ∥h+
i ∥1 + ∥h−

i ∥1 = ∥1 − gi∥1
i→∞−−−→ 0.

We note that
|fi|2 + li = |fi|2 + l+i − l−i ≥ 0 and T (|fi|2 + li) = T (|fi|2) + 1 − gi = 1.

In particular, each ηi = (|fi|2 + li) · mG/Λ is a probability measure on Y . Since
T (|fi|2 + li) = 1, the measures ηi all satisfy π∗ηi = mG/Γ. In particular

lim Stab∗ηi ∈ Prob(StabΓ(X)
G

)
according to Lemma 8.1. On the other hand, the fact that ∥li∥1 → 0 implies

ζ = lim Stab∗ νi = lim Stab∗ ηi.

Since these two limits coincide, the desired conclusion follows. □
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Theorem 8.3. Let G be a standard semisimple group with rank(G) ≥ 2 and Γ an
irreducible lattice in G. Then every ergodic confined invariant random subgroup of
Γ almost surely has finite index.

Proof. Let ν be an ergodic confined invariant random subgroup of the group Γ.
According to Lemma 7.13 there is a compact confined Γ-space X and a Γ-invariant
probability measure µ ∈ Prob(X) such that (StabΓ)∗µ = ν. Let (Y, µ) be the
probability measure preserving topological G-space induced from the Γ-space (X,µ).
The invariant random subgroup ν = (StabG)∗µ coincides with the invariant random
subgroup of the group G induced from ν as defined in §2. Note that the G-space
(Y, µ) is ergodic [Zim13, Remark (1) on p. 75]. Hence the invariant random subgroup
ν is ergodic as well. Therefore the G-space (Y, µ) (as well as the invariant random
subgroup ν) is irreducible by Corollary 6.9.

We now claim that the unitary G-representation L2
0(Y, µ) has spectral gap. If

the group G has Kazhdan’s property (T) then the statement is immediate. Assume
from now on that G has no Kazhdan’s property (T). As such, the group G splits as
a non-trivial direct product of standard semisimple groups G = G1 ×G2 where G1
is a standard semisimple group and G2 is a standard simple group of type p0 and
with rank(G2) = 1.

We would like to apply our Theorem 6.10 establishing spectral gap for actions of
products with respect to the unitary representation L2

0(Y, µ). The assumptions of
that theorem are verified as follows:

• The fact that L2
0(Y, µ)G2 = 0 follows from the irreducibility of µ.

• The stabilizer of µ-almost every point is distributed according to ν, and as
such, is conjugate to a subgroup of the irreducible lattice Γ and has trivial
intersections with every proper normal subgroup of G.

• Let fn ∈ L2(Y, µ) be any asymptotically G1-invariant sequence of vectors.
Consider any weak-∗ accumulation point ζ ∈ Prob(Sub(G)) of the sequence
of probability measures Stab∗(|fn|2 · µ). Then according to Lemma 8.2
ζ ∈ Prob(StabΓ(X)

G
). This means that ζ-almost every subgroup is discrete

and not contained in any proper normal factor. Further, this implies that
ζ-almost every subgroup is conjugated in G to a confined subgroup of Γ,
thus by Lemma 7.14, ζ-almost every subgroup has p-Zariski-dense and not
relatively compact projections to G2.

Having verified all assumptions of Theorem 6.10 we conclude that L2
0(Y, µ) has

spectral gap. By relying on the methods of Stuck–Zimmer [SZ94] and Bader–Shalom
[BS06], and making use of the product structure of the group G, this implies that the
G-space (Y, µ) is essentially transitive, see e.g. [Cre17, Proposition 7.6] or [Lev20,
Theorem 3] for details. Therefore ν-almost every subgroup is a lattice in G. We
conclude that ν-almost every subgroup has finite index in Γ, as required. □

Theorem 8.4. Let G be a standard semisimple group with rank(G) ≥ 2 and Γ an
irreducible lattice in G. Then any confined subgroup of Γ has finite index. Further,
every non-trivial uniformly recurrent subgroup X of Γ is the set of conjugates of
some finite-index subgroup of Γ.

Proof. Recall that the lattice Γ is an ICC group by Lemma 5.4. In particular, we
may replace Γ by any of its finite-index subgroups without a loss of generality, see
Corollary 7.10. Specifically, using Margulis’ arithmeticity (Theorem 5.9) and the
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notation introduced in Examples 5.6 and 5.7, we thus assume that the lattice Γ is
S-arithmetic in the sense that Γ = ΓS . The significance of this fact for our purpose
is that the arithmetic lattice Γ is charmenable by [BBH23, Theorem B]. Further,
note that Γ has a trivial amenable radical.

Let Λ be any confined subgroup of the lattice Γ. Consider any uniformly recurrent
subgroup X contained in the Γ-orbit closure ΛΓ. Note that X is non-trivial by the
assumption that Λ is confined. Therefore X carries an ergodic Γ-invariant Borel
probability measure ν by [BBHP22, Proposition 3.5]. Theorem 8.3 implies that
ν-almost every subgroup has finite index in Γ. This certainly implies that some
subgroup ∆ ∈ ΛΓ has finite index in Γ. Since finite-index subgroups are isolated
points of Sub(Γ), we conclude that the subgroup Λ itself has finite index in Γ to
begin with.

The second statement of the theorem follows just as in the previous paragraph. □

Remark 8.5. Consider the special case where G is a standard simple group. Then
G has property (T), hence the lattice Γ is charfinite by [BBH23, Theorem A]. Every
uniformly recurrent subgroup of a charfinite group with trivial amenable radical
is finite [BBHP22, Proposition 3.5]. In that case, we may invoke the classical
Margulis normal subgroup theorem to conclude that X is the set of conjugates of
some finite-index subgroup.

Proof of Theorem 1.1 and Corollary 1.2. These two statements from the introduc-
tion follow as special cases of Theorem 8.4, by noting that connected center-free
semisimple Lie groups are standard semisimple groups over R [Zim13, 3.1.6]. □

9. Margulis functions on factors

The current section deals with the notion of Margulis functions [EMM98, EM22]
(also called Foster–Lyapunov functions, see e.g. [MT12]). We first discuss this idea
in the abstract. We then apply these functions to study sequences of vectors which
are asymptotically invariant with respect to a single factor of a semisimple real Lie
group, relying on methods from the work [GLM22]. This is instrumental towards
dealing with general strongly confined subgroups of products in §10.

Abstract properties of Margulis functions. All throughout this first part of §9,
let G be a second countable locally compact group admitting a continuous action on
a locally compact σ-compact topological space X. Let µ be a compactly supported
symmetric probability measure on the group G whose support generates G.

Definition 9.1. Let Φ : X → [a,∞) be a proper continuous map for some a > 0.
The map Φ is a (µ, c, b)-Margulis function for some 0 < c < 1 and b > 0 if

(9.1) µ ∗ Φ(x) =
∫

G

Φ(gx) dµ(g) < cΦ(x) + b

for every point x ∈ X.

The above Definition 9.1 coincides with the authoritative [EM22, Definition 1.1],
with an additional assumption that the Margulis function Φ is not allowed to take
the value ∞. We will sometimes drop the constants c and b from our notations and
refer to Φ as a µ-Margulis function, or simply as a Margulis function.

It is useful to note that by reiterating the convolution operator, it is possible to
“improve” a given Margulis function.
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Lemma 9.2. Let Φ be a (µ, c, b)-Margulis function. There is a sequence 0 < L1 <
L2 < L3 < · · · such that for each i ∈ N we have

(9.2) µ∗i ∗ Φ(z) <
(

1 + c

2

)i

Φ(z)

for all points z ∈ X satisfying Φ(z) ≥ Li.

Proof. We will construct the sequence Li inductively. Taking L1 = 2b
1−c handles

the base of the induction, as follows directly from Equation 9.1. Next, arguing by
induction, assume that the constant Li for some i ∈ N has been defined in such a
way that Equation 9.2 is satisfied. Consider the closed subset Xi = Φ−1([a, Li]).
The subset Xi is compact as the Margulis function Φ is proper. Take Li+1 > Li to
be any sufficiently large constant so that Φ(supp(µ)Xi) ⊂ [a, Li+1). This implies
that any point z ∈ X with Φ(z) ≥ Li+1 also satisfies µ ∗ Φ(z) ≥ Li. The validity of
Equation 9.2 with respect to i+1 readily follows from the induction assumption. □

We now consider the situation where the space X is equipped with a µ-stationary
probability measure.

Lemma 9.3. Let Φ be a (µ, c, b)-Margulis function. Assume that X admits a
µ-stationary probability measure ν.

(1) Set B = b
1−c , then

ν({x ∈ X : Φ(x) ≥ M}) < B

M

for all M > 0.
(2) The Margulis function Φ satisfies Φ 1

2 ∈ L1(X, ν).

Proof. (1) is [GLM22, Lemma 2.1]. We will now present4 a proof of (2).
Let D : [0, 1] → R≥0 be the inverse cumulative distribution function corresponding

to Φ 1
2 . It is defined as

D(t) = inf{s ∈ R≥0 : ν({x ∈ X : Φ 1
2 (x) ≤ s}) ≥ t}.

In other words, the function D satisfies

ν({x ∈ X : Φ 1
2 (x) ≤ D(t)}) = t ∀t ∈ [0, 1] .

Substituting s = M−1 in Part (1) of the current lemma, we get that for every s > 0

ν({x ∈ X : Φ 1
2 (x) ≤ s− 1

2 }) ≥ 1 −Bs

with the above constant B. It follows that D(1 −Bs) ≤ s− 1
2 for all s ∈ [0, B−1]. In

other words
D(t) ≤ B

1
2 (1 − t)− 1

2

for all t ∈ [0, 1]. It follows from Fubini’s theorem applied to the “area under the
graph" of the function Φ 1

2 regarded as a subset of X × R≥0 that

(9.3)
∫

X

Φ 1
2 (x) dν(x) =

∫
[0,1]

D(t) dλ(t)

4The proof of part (2) in Lemma 9.3 is taken from the proof of [GLM22, Proposition 9.2]. We
have chosen to reproduce it here, for the convenience of the reader and for self-containedness. The
difference in notations makes it difficult to quote that proposition from [GLM22] as-is.
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where λ is the Lebesgue measure. As the integral B 1
2

∫ 1
0 (1 − t)− 1

2 dt converges, we
conclude from Equation (9.3) that the function Φ 1

2 is indeed ν-integrable. □

The concave variant of Jensen’s inequality implies that if Φ is a (µ, c, b)-Margulis
function then Φα is a (µ, cα, bα)-Margulis function for every exponent 0 < α < 1.
This observation coupled Lemma 9.3 allows us to assume without loss of generality
that we are working with an L1 (or L2) Margulis function to begin with.

We shall now consider the more restrictive situation, where the space X admits
an invariant probability measure.

Lemma 9.4. Let ν be a G-invariant probability measure on X. Let Φ be a (µ, c, b)-
Margulis function with Φ ∈ L2(X, ν). Let 0 < L1 < L2 < · · · be the constants
provided by Lemma 9.2 and denote Ωi = Φ−1([Li,∞)) for each i ∈ N. Let Pi be the
orthogonal projection operator in L2(X, ν) given by

Pi : f 7→ f · 1Ωi ∀f ∈ L2(X, ν)

Then ∥PiµPi∥op ≤
( 1+c

2
)i for each i ∈ N.

This is a reminiscent of [GLM22, §9], see the proof of Theorem 9.3 there.

Proof of Lemma 9.4. Let an arbitrary i ∈ N be fixed. To ease our notations, set
P = Pi and C =

( 1+c
2

)i. Our goal will be to show that ∥PµP∥op ≤ C. The spectrum
of the operator PµP is a closed subset of the real interval [−1, 1]. Assume towards
contradiction that this spectrum admits a point λ ∈ [−1, 1] with |λ| > C > 0. We
can find a sequence of functions fn ∈ L2(X, ν) with ∥fn∥ = 1 and a sequence of real
numbers εn > 0 with εn → 0 such that

∥PµPfn − λfn∥ < εn.

The fact that Φ is a (µ, c, b)-Margulis function means that the inequality

PµPΦ ≤ CΦ

holds true ν-almost everywhere, see Lemma 9.2. Since the convolution operator µ
is symmetric, the composition PµP is a self-adjoint operator. For each n

C ⟨Φ, |fn|⟩ ≥ ⟨PµPΦ, |fn|⟩ = ⟨Φ,PµP|fn|⟩ ≥
≥ ⟨Φ, |PµPfn|⟩ = ⟨Φ, |λfn + (PµP − λ)fn|⟩ ≥
≥ |λ| ⟨Φ, |fn|⟩ − ⟨Φ, |(PµP − λ)fn|⟩ ≥
≥ |λ| ⟨Φ, |fn|⟩ − ∥Φ∥ · ∥(PµP − λ)fn∥ ≥ |λ| ⟨Φ, |fn|⟩ − εn∥Φ∥.

Note that ⟨Φ, |fn|⟩ > 0 for otherwise Pfn = 0. We arrive at a contradiction to the
assumption that |λ| > C. □

Lemma 9.5. Maintain all the assumptions and notations of Lemma 9.4. In addition,
let fn ∈ L2(X, ν) be an asymptotically G-invariant sequence of unit vectors. Consider
the sequence of probability measures mn = |fn|2 · ν on the space X. Then

lim sup
n

mn(Ωi+1) ≤ 4
(

1 + c

2

)2i

holds true for each i ∈ N.
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Proof. Let an arbitrary i ∈ N be fixed. To ease notation set C =
( 1+c

2
)i. Let P

and P′ denote the two orthogonal projections in L2(X, ν) given by f 7→ f · 1Ωi and
f 7→ f · 1Ωi+1 respectively. Recall that supp(µ)Ωi+1 ⊂ Ωi. Hence PµP′ = µP′ as
well as P′P = PP′ = P′. On the one hand, the asymptotic G-invariance of the
sequence fn means that ∥µ ∗ fn∥ → 1 as n → ∞. On the other hand, Lemma 9.4
implies

∥µ ∗ fn∥ = ∥µ ∗ (P′fn + (1 − P′)fn)∥ ≤
≤ ∥(PµP)P′fn∥ + ∥µ(1 − P′)fn∥ ≤ C∥P′fn∥ + ∥(1 − P′)fn∥.

Let xn = ∥P′fn∥ so that
√

1 − x2
n = ∥(1 − P′)fn∥. We get

lim inf
n

(Cxn +
√

1 − x2
n) ≥ 1.

Note that x2
n = ∥P′fn∥2 = mn(Ωi+1) for all n. Solving the above inequality for x2

n

gives

lim supx2
n ≤

(
2C

C2 + 1

)2
≤ 4C2

as required. □

Corollary 9.6. In the situation of Lemma 9.5, any accumulation point m of the
sequence of probability measures mn satisfies m(X) = 1.

In other words, the probability measures mn do not have “escape of mass at
infinity”.

A Margulis function on discrete subsets with the Zassenhaus property.
In [GLM22, Theorem 1.5] it is shown that a certain function depending on the
injectivity radius is a Margulis function on the space of discrete subgroups of a
standard semisimple algebraic group. That function is denoted I−δ and the result
is termed the key inequality. An inspection of that proof shows that the domain of
definition of the Margulis function I−δ can be slightly extended. In this subsection
we recall the setting of [GLM22] and present this extension.

In the discussion of the key inequality in [GLM22] the authors regard an algebraic
group over an arbitrary local field (of good characteristic). However, in the present
work we are only interested in characteristic zero. Moreover, since the function I−δ

is actually constant when working over a zero characteristic non-Archimedean local
field, we focus here only on the Archimedean case. By restricting scalars we may
assume that we are working over the reals.

Let G be a standard semisimple group of type ∞. Let K be a maximal compact
subgroup of G and endow the Lie algebra g = Lie(G) with an Ad(K)-invariant norm.
Denote by mK the normalized Haar probability measure on the group K. Fix a
semisimple group element s = s(G) ∈ G as defined in [GLM22, Equation (6.22)].
Let

µs = 1
2mK ∗ (δs + δs−1) ∗mK

be the corresponding probability measure on the group G. Note that µs is symmetric5

and compactly supported.

5In some sections of [GLM22] the authors work with the non-symmetric measure mK ∗ δs ∗ mK .
However, as µs = 1

2 (mK ∗ δs ∗ mK + mK ∗ δs−1 ∗ mK), the results easily carry over.
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Next, we will fix three positive real parameters (δ, R and ρ) and two identity
neighborhoods (V and V0) associated with the group G. Let δ = δ(G) be the
parameter given in [GLM22, Equation (6.20)]. Let R = R(G) be the radius given
by the Zassenhaus lemma.

Lemma 9.7 (Zassenhaus lemma [Zas37] or [KM68, Lemma 2]). There exists a
radius R = R(G) > 0 such that for every discrete subgroup Γ < G, the subset

{γ ∈ Γ : γ = exp(X) for some X ∈ g with ∥X∥ ≤ R}

is contained in some connected nilpotent Lie subgroup of G.

We consider the identity neighborhood
V = exp{X ∈ g : ∥X∥ ≤ R}

in the group G. Lastly, fix a sufficiently small radius 0 < ρ = ρ(G) < R such that
the identity neighborhood

V0 = exp{X ∈ g : ∥X∥ ≤ ρ}

satisfies
V0 ⊂ V ∩ V s ∩ V s−1

.

For all this, we refer to [GLM22, Equations (7.3), (7.4) and (7.5)].
Consider the space of discrete subgroups of the Lie group G. This space will be

denoted Subd(G) and regarded as an open subset of the Chabauty space Sub(G).
We define on the space Subd(G) the function I : Subd(G) → (0, ρ] given by

I(Γ) = sup{0 < r ≤ ρ : Γ ∩ exp{X ∈ g : ∥X∥ ≤ r} = {e}} ∀Γ ∈ Subd(G).

Theorem 9.8. I−δ : Subd(G) → [ρ−δ,∞) is a µs-Margulis function.

Proof. We will see in Theorem 9.10 below that the function I−δ is continuous and
proper (in fact, it has these properties over an extended domain of definition). The
function I−δ satisfies the inequality in Equation (9.1) with respect to the probability
measure mK ∗ δs ∗mK by [GLM22, Theorem 1.5]. The same is true with respect to
the probability measure mK ∗ δs−1 ∗mK . Therefore I−δ is a µs-Margulis function,
as the symmetric probability measure µs is a convex combination of these two
probability measures. □

We are now ready to extend the domain of definition of the Margulis function
I−δ. Consider the space Cl(G) consisting of all closed subsets of the group G. The
space Cl(G) is endowed with the Fell topology, and the Chabauty space Sub(G) is
a closed subspace of Cl(G).

Definition 9.9. A closed subset A ∈ Cl(G) has the Zassenhaus property if for
every element g ∈ G, the subset Ag ∩ V is contained in some connected nilpotent
Lie subgroup of G and satisfies
(9.4) (Ag ∩ V )2 ⊂ Ag.

We denote by ClZ(G) the subset of Cl(G) consisting of all sets with the Zassenhaus
property. This is a closed and G-invariant subset of Cl(G). We denote by ClZd (G)
the subset of ClZ(G) consisting of sets containing the identity element of the group
G as an isolated point. This is an open and G-invariant subset of ClZ(G), which
contains Subd(G) by the Zassenhaus lemma (namely Lemma 9.7). The function I
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extends naturally to the space ClZd (G). We set a function J : ClZd (G) → (0, ρ] given
by

J (A) = sup{0 < r ≤ ρ : A ∩ exp{X ∈ g : ∥X∥ ≤ r} = {e}} ∀A ∈ ClZd (G).

Theorem 9.10. J −δ : ClZd (G) → [ρ−δ,∞) is a µs-Margulis function.

Proof. The continuity of the function J follows from the definition of the Chabauty
topology, from the property given in Equation (9.4) and from the fact that the
Lie group G has no small subgroups. The fact that the function J −δ is proper is
equivalent to saying that J (An) → 0 for every sequence of subsets An ∈ ClZd (G)
converging to a subset A ∈ ClZ(G) in which the identity element is not an isolated
point. This later statement holds true.

We are left to show that the function J −δ satisfies Equation (9.1). Observe
that Equation (7.8) as well as Propositions 7.3, 7.4 and 7.5 in [GLM22], originally
formulated for the function I, all apply mutatis mutandis to our new function J .
Indeed, the arguments of [GLM22] involve studying finite collections of elements all
belonging to some connected nilpotent Lie subgroup, regardless on whether these
elements come from any given envelopping discrete subgroup. Thus, the desired
result follows by the same proof as that of the key inequality in [GLM22, §8]. □

Margulis functions on discrete subgroups of products. We let G1 and G2
be a pair of standard semisimple Lie groups of type ∞ and set G = G1 ×G2. Let
gi = Lie(Gi) be the corresponding semisimple Lie algebras. Consider the element
s1 = s(G1) ∈ G1, the probability measure µs1 ∈ Prob(G1) and the positive real
parameters δ1 = δ(G1), R1 = R(G1) and ρ1 = ρ(G1) as defined in the previous
subsection. In addition, consider the radius R2 = R(G2) and the corresponding
identity neighborhoods

Vi = exp{X ∈ gi : ∥X∥ ≤ Ri} ⊂ Gi

for i ∈ {1, 2} and V = V1 × V2 ⊂ G. Consider the map
Φ : Cl(G) → Cl(G1), Φ : A 7→ pr1(A ∩ (G1 × V2)) ∀A ∈ Cl(G).

The map Φ is G1-equivariant and Borel.
We consider the G-invariant Chabauty open subset Subd(G) of Sub(G) consisting

of all discrete subgroups, and its G1-invariant open subset
X1 = {Γ ∈ Subd(G) : Γ ∩ ({e1} × V2) = {(e1, e2)}}.

As V is an identity neighborhood of the radius provided by Lemma 9.7 (i.e. V is a
Zassenhaus neighborhood), we get that Φ(X1) ⊂ ClZd (G1). We can further apply
the function J to this image. We obtain the function

L : X1 → (0, ρ1] , L = J ◦ Φ : X1.

While the map Φ is not continuous, it turns out that the composed map L is.
Moreover, we get the following.

Theorem 9.11. L−δ1 : X1 → [ρ−δ1
1 ,∞) is a µs1-Margulis function.

Proof. The fact that the map L−δ1 is continuous and proper follows is the same
way as the proof of the same facts for the map J −δ1 in Theorem 9.10. The
integral inequality in Equation (9.1) follows from Theorem 9.10 combined with the
G1-equivariance of the map Φ. □
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Corollary 9.12. Let ν be a discrete irreducible invariant random subgroup of the
semisimple Lie group G = G1 ×G2. Let fn ∈ L2(Sub(G), ν) be an asymptotically
G1-invariant sequence of unit vectors. Then any weak-∗ accumulation point of the
probability measures |fn|2 · ν ∈ Prob(Sub(G)) is almost surely discrete.

Proof. We have that ν(X1) = 1 by the assumption that the invariant random
subgroup ν is irreducible. The desired conclusion follows immediately from Corollary
9.6 applied to L−δ1 , which is a Margulis function by Theorem 9.11. □

10. Strongly confined subgroups of semisimple groups

Throughout this section, let G be a connected semisimple Lie group of real rank
at least two, without compact factors and with trivial center. In terms of the
terminology introduced in §5, this means that G is a standard semisimple group of
type ∞ and of rank at least two. By Zariski topology on G we will refer to its real
Zariski topology. Our main goal will be to prove the following result.

Theorem 10.1. Let Λ be a discrete subgroup of G. Then Λ is an irreducible lattice
in G if and only if the following two conditions hold:

(1) the subgroup Λ is strongly confined, and
(2) no pair of non-trivial normal subgroups H1, H2 ≤ G has

H1 ∩H2 = {e}, Λ ∩H1
Z = H1 and Λ ∩H2

Z = H2.

As will be explained below, Theorem 10.1 is stronger than and immediately
implies Theorem 1.4 stated in the introduction. Note that if the Lie group G is
simple (rather semisimple) then it has Kazhdan’s property (T) so that Theorem
10.1 follows from the main result of [FG23].

Local rigidity of irreducible lattices.

Definition 10.2. A given subgroup Λ ≤ G is Chabauty locally rigid if it admits a
Chabauty neighborhood Λ ∈ Ω ⊂ Sub(G) such that any subgroup Λ ∈ Ω is in fact
conjugate to Λ in G.

This notion was introduced and studied in [GL18], where “classical” local rigidity
[Sel60, Cal61, Wei62] was leveraged to obtain the following.

Theorem 10.3 (Theorem 1.10 of [GL18]). Every irreducible lattice Γ in the semisim-
ple Lie group G is Chabauty locally rigid.

Stationary limits and random subgroups. Let µ = µs be the symmetric
compactly supported probability measure on the Lie group G considered in [GLM22]
and discussed explicitly in the above §9.

Definition 10.4. A µ-stationary limit of a given discrete subgroup Λ ≤ G is any
weak-∗ accumulation point ν of the sequence of Cesáro averages 1

n

∑n
1=1 µ

∗n ∗ δΛ in
the space Prob(Sub(G)).

It is important to note that if ν is any µ-stationary limit of a given discrete
subgroup Λ then supp(ν) ⊂ ΛG. In particular ν-almost every subgroup is a conjugate
limit of Λ.

Any µ-stationary limit of a discrete subgroup of the semisimple Lie group G is
almost surely discrete by [FG23, Theorem 2.2] (see also [GLM22, Corollary 1.6]).
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The following deep stiffness result provides a detailed classification of discrete
µ-stationary random subgroups of semisimple Lie groups. It relies on the celebrated
structure theory of Nevo and Zimmer [NZ99, NZ02].

Theorem 10.5 (Theorem 6.5 of [FG23]). Let ν be an ergodic discrete µ-stationary
random subgroup of the semisimple Lie group G. Then the group G decomposes as
a product of three semisimple factors G = GI ×GH ×GT such that

(1) ν projects to an invariant random subgroup in GI for which all the irreducible
factors are of rank at least 2,

(2) GH is a product of rank one factors and ν projects discretely to every factor
of GH, and

(3) ν projects trivially to GT .
Furthermore, the intersection of ν-almost every subgroup with every simple factor
of GH as well as with every irreducible factor of GI is Zariski-dense in that factor.

The notion of an irreducible factor of an invariant random subgroup is introduced
on [FG23, p. 401]. Namely, given an ergodic discrete invariant random subgroup
ν of G, there is a factor decomposition G = H1 × · · · × Hk such that ν-almost
every subgroup projects to each Hi discretely but projects to each proper factor
of Hi densely, see [FG23, Theorem 4.1]. These Hi’s are the irreducible factors
corresponding to ν.

Remark 10.6. Unfortunately, we are not aware of a local field version of Nevo
and Zimmer work [NZ99, NZ02] in the existing literature. While we do not expect
this to be a significant obstacle, in the current state of affairs we consider only real
Lie groups in §10.

We mention a deep result which plays a crucial role in our analysis. Recall that an
invariant random subgroup is called irreducible if every non-trivial normal subgroup
is acting ergodically.

Theorem 10.7 (Stuck–Zimmer [SZ94], Hartman–Tamuz [HT16]). Let ν be a non-
trivial irreducible invariant random subgroup of the semisimple Lie group G. Then
ν-almost every subgroup is coamenable.

Here is a closely related statement.

Corollary 10.8. Let ν be a non-trivial irreducible invariant random subgroup of
the semisimple Lie group G. Assume that the G-space (Sub(G), ν) has spectral gap.
Then ν-almost every subgroup is a lattice.

Proof. Since the action of G on (Sub(G), ν) has spectral gap it cannot be properly
ergodic. This fact is a consequence of Theorem 10.7. We refer to [Cre17, Proposition
7.6] or [Lev20, Theorem 3] for the full details concerning this implication. Therefore
the action of G on (Sub(G), ν) is essentially transitive. As such, the stabilizer (i.e.
the normalizer) of ν-almost every subgroup Λ is a lattice [SZ94, Lemma 3.5]. In
other words ν-almost every subgroup is a non-trivial normal subgroup of a lattice.
We conclude by the Margulis normal subgroup theorem (or by our Theorem 1.1). □

We remark that the standing higher rank assumption is crucial both in Theorem
10.7 and in its Corollary 10.8.
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From strongly confined to coamenable. Recall that G is a connected, center-
free semisimple Lie group without compact factors and of rank at least two. Let
us recall the following notion (introduced in Definition 1.3 of the introduction in a
more general setting).

Definition 10.9. A subgroup Λ of G is irreducibly confined if Λ is strongly confined
(in the sense of Definition 7.15) and furthermore the intersection Λ ∩H is trivial for
any non-trivial proper normal subgroup H �G.

Remark 10.10. The two notions of confined and strongly confined are clearly closed
with respect to the Chabauty topology. We do not know if the notion of irreducibly
confined is closed in general. It is closed at least in the case where the group G is a
direct product of rank one simple factors (as follows from Corollary 6.5 combined
with Lemma 7.17).

Theorem 10.11. Let ∆ ≤ G be a strongly confined discrete subgroup. Assume that
there is no pair of non-trivial normal subgroups H1, H2 ≤ G such that H1 ∩H2 = {e},
∆ ∩H1

Z = H1 and ∆ ∩H2
Z = H2. Then there is a discrete irreducible invariant

random subgroup ν of the group G with supp(ν) ⊂ ∆G. Further ν-almost every
subgroup is irreducibly confined.

Proof. Let ν be any µ-stationary limit of the subgroup ∆. We know that ν-almost
every subgroup is discrete by [FG23, Theorem 1.6]. Up to replacing ν by a generic
ergodic component, we may assume that ν itself is ergodic.

We will now use the stiffness result (Theorem 10.5) and its notation to analyze
the resulting discrete ergodic µ-stationary random subgroup ν. The fact that the
factor GT is trivial follows as the subgroup ∆ is strongly confined.

We claim that G = GI and that GI does not have proper non-trivial irreducible
factors. Indeed, in any other situation, either the factor GH will be non-trivial or the
factor GI will have more than a single irreducible factor. In both cases, the group
G itself must be semisimple but not simple, and it can we written as a non-trivial
direct product G = G1 ×G2 in such a way that ν-almost every discrete subgroup Λ
satisfies Λ ∩G1

Z = G1 as well as Λ ∩G2
Z = G2. Since ν-almost every subgroup is

a conjugate limit of the subgroup ∆, this would lead to a contradiction to part (2)
of Corollary 6.5.

To conclude, it follows from the stiffness result (Theorem 10.5) that ν is an
irreducible invariant random subgroup. The fact that ν-almost every subgroup is
strongly confined follows because ν-almost every subgroup is a conjugate limit of ∆.
Lastly ν-almost every subgroup intersects trivially every proper semisimple factor
by the irreducibility of ν, and as such is irreducibly confined. □

The above result has the following statement as an immediate special case.

Corollary 10.12. Let ∆ ≤ G be an irreducibly confined discrete subgroup. Then
there is a non-trivial discrete irreducible invariant random subgroup ν of the group
G with supp(ν) ⊂ ∆G.

Further, we obtain the following result, which allows us to go from irreducibly
confined subgroups to coamenable ones.

Corollary 10.13. Let ∆ ≤ G be an irreducibly confined discrete subgroup. Then ∆
admits a coamenable conjugate limit in Sub(G).
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Proof. According to Corollary 10.12 the group ∆ admits a non-trivial discrete
irreducible invariant random subgroup ν with supp(ν) ⊂ ∆G. We know that ν-
almost every subgroup is coamenable in G by Theorem 10.7. This concludes the
proof. □

From a coamenable subgroup to a lattice. As before, recall that G is a
connected, center-free higher rank semisimple Lie group without compact factors.
The following result can be regarded as a variant of the Stuck–Zimmer theorem for
higher rank semisimple Lie groups [SZ94] without assuming Kazhdan’s property (T)
but with the added assumption of “strongly confined”.

Theorem 10.14. Let ν be a discrete irreducible invariant random subgroup of the
semisimple Lie group G. Assume that ν-almost every subgroup is strongly confined.
Then ν-almost every subgroup is a lattice in G.

Proof. In view of Corollary 10.8 it is enough to show that the G-action on (Sub(G), ν)
has a spectral gap, namely, the unitary representation L2

0(Sub(G), ν) does not almost
have invariant vectors. We proceed to show that. If the group G has Kazhdan’s
property (T) then this is immediate, thus we assume as we may that it does not.
As such, the group G can be written as a direct product G = G1 ×G2 where G1 is
some (non-trivial) semisimple Lie group and G2 is a simple Lie group of real rank
one. We will conclude by using our spectral gap Theorem 6.10 applied with respect
to the space (Sub(G), ν). It remains to verify its conditions.

• The fact that L2
0(Sub(G), ν)G2 = 0 follows from the irreducibility of ν.

• The stabilizer in G of any subgroup Λ ∈ Sub(G) is the normalizer NG(Λ).
By irreducibility the factor G2 is ergodic. Hence NG(Λ) ∩G1 = NG1(Λ) is
ν-almost surely constant. This constant subgroup is G1-invariant, i.e. a
normal subgroup of G1. Since Λ is not contained in any proper factor of G,
it follows that NG1(Λ) = {e}. Similar reasoning shows that NG2(Λ) = {e}.

We are left to verify the assumption in the third bullet of Theorem 6.10. Consider
any asymptotically G1-invariant sequence of unit vectors fn ∈ L2

0(Sub(G), ν) and
let η ∈ Prob(Sub(G)) be an accumulation point of the sequence of probability
measures Stab∗(|fn|2 · ν) (where the stabilizer map Stab : Sub(G) → Sub(G) is just
the normalizer map). We need to show that η-almost every subgroup is discrete, not
contained in the factor G2 and admits Zariski dense6 projections to G2. These three
properties follow respectively from Corollary 9.12, the assumption that ν-almost
every subgroup is strongly confined and Lemma 7.17. To be precise, Corollary 9.12
is to be applied with respect to the invariant random subgroup ζ = Stab∗ν and a
corresponding asymptotically G1-invariant sequence of unit vectors gn ∈ L2(G, ζ)
such that |gn|2 · ζ = Stab∗(|fn|2 · ν). □

We are ready to prove the main result of §10.

Proof of Theorem 10.1. Every irreducible lattice is strongly confined by Lemma
7.16. In addition, every irreducible lattice is irreducibly confined, for it intersects
trivially all proper factors. This conclusion is stronger than that in statement of
Theorem 10.1.

6The statement of Theorem 6.10 requires these projections to G2 to be Zariski-dense and and
not relatively compact. However, Zariski density implies not relatively compact when working
with real Lie groups.
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We now show the converse direction, which is more interesting. Let Λ be a
strongly confined discrete subgroup of G satisfying the conditions in the statement
of the theorem, namely that there no pair of commuting non-trivial factors of
G both admitting Zariski dense intersections with Λ. By Theorem 10.11 there
exists a non-trivial discrete irreducible invariant random subgroup ν of the group G
with supp(ν) ⊂ ΛG. In particular ν-almost every subgroup is irreducibly confined.
According to Theorem 10.14 the invariant random subgroup ν arises from some
irreducible lattice Γ in the group G (i.e. gives full measure to its conjugates). In
particular, this irreducible lattice Γ is a conjugate limit of Λ. By the Chabauty
local rigidity of irreducible lattices (Theorem 10.3) we conclude that the subgroup
Λ itself must be an irreducible lattice, as required. □

Proof of Theorem 1.4 of the introduction. This follows immediately from Theorem
10.1. Indeed, note that any irreducibly confined discrete subgroup has trivial
intersections with all proper factors, and as such certainly satisfies the (weaker)
conditions of Theorem 10.1. □

Proof of Corollary 1.7 of the introduction. Let (X,m) be a strongly irreducible7

probability measure preserving action of the semisimple Lie group G. Up to passing
to a generic ergodic component, we may assume without loss of generality that
(X,m) is ergodic. Strong irreducibility and ergodicity implies irreducibility by
[FG23, Corollary 7.3], so that the action on (X,m) is irreducible. As in the first
paragraph of the proof of Theorem 10.14, it will suffice to prove that the action
(X,m) has spectral gap, and assume that G is written as G = G1 ×G2 where G1 is
a non-trivial semisimple Lie group and G2 is a simple Lie group of real rank one. We
will deduce spectral gap directly from Theorem 4.8. Let us verify the assumptions
of that theorem.

• The fact that L2
0(X,m)G2 = 0 follows from the irreducibility of the action.

• Consider some asymptomatically G1-invariant sequence of unit vectors
fn ∈ L2(X,m) and let µ ∈ Prob(Sub(G)) be an accumulation point of the
sequence of probability measures Stab∗(|fn|2 · m) ∈ Prob(Sub(G)). Note
that µ-almost every subgroup is discrete by Corollary 9.12. As µ-almost
every subgroup Λ is a conjugate limit of some m-generic subgroup, it satisfies
G1Λ = G by the strong irreducibility assumption.

This verifies the assumptions of Theorem 4.8 and thereby concludes the proof. □

Products of general locally compact groups. In this final subsection, we
deviate from the standing assumptions of §10, and let G = G1 × G2 be a direct
product of two locally compact second countable groups. Assume that G2 has a
compact abelianization. We prove Theorem 1.5 of the introduction. It says that
under certain irreducibility conditions, a coamenable discrete subgroup of G must
be a lattice.

Proof of Theorem 1.5. Let Λ ≤ G be a discrete coamenable subgroup, such that
there are no G2-invariant vectors in L2

0(G/Λ) and that every conjugate limit of Λ
has dense projections to the factor G2. It follows from Theorem 4.8 that the unitary
G-representation L2

0(G/Λ) has a spectral gap. Since Λ is coamenable this must

7Recall that in the introduction we defined a discrete subgroup to be irreducible if it projects
densely to each proper factor. We defined a (discrete) subgroup to be strongly irreducible if every
discrete conjugate limit of it irreducible.
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mean that Λ is a lattice (i.e. this situation is only possible provided L2
0(G/Λ) is a

proper subrepresentation of L2(G/Λ). □
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