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Abstract—The advancement of 5G and NextG networks
through Open Radio Access Network (O-RAN) architecture
marks a transformative shift towards more virtualized, modular,
and disaggregated configurations. A critical component within
this O-RAN architecture is the RAN Intelligent Controller
(RIC), which facilitates the management and control of the
RAN through sophisticated machine learning-driven software
microservices known as xApps. These xApps rely on accessing
a diverse range of sensitive data from RAN and User Equip-
ment (UE), stored in the near Real-Time RIC (Near-RT RIC)
database. The inherent nature of this shared, multi-vendor, and
open environment significantly raises the risk of unauthorized
sensitive RAN/UE data exposure. In response to these privacy
concerns, this paper proposes a privacy-preserving zero-trust RIC
(dubbed as, ZT-RIC) framework that preserves RAN/UE data
privacy within the RIC platform (i.e., shared RIC database,
xApp, and E2 interface). The underlying idea is to employ a
computationally efficient cryptographic technique called Inner
Product Functional Encryption (IPFE) to encrypt the RAN/UE
data at the base station, thus, preventing data leaks over the
E2 interface and shared RIC database. Furthermore, ZT-RIC
customizes the xApp’s inference model by leveraging the inner
product operations on encrypted data supported by IPFE to
enable xApp to make accurate inferences without data exposure.
For evaluation purposes, we leverage a state-of-the-art InterClass
xApp, which utilizes RAN key performance metrics (KPMs) to
identify jamming signals within the wireless network. Prototyping
on an LTE/5G O-RAN testbed demonstrates that ZT-RIC not
only ensures data privacy/confidentiality but also guarantees
a desired model accuracy, evidenced by a 97.9% accuracy in
detecting jamming signals as well as meeting stringent sub-
second timing requirement with a round-trip time (RTT) of 0.527
seconds.

Index Terms—Open RAN, Privacy preservation, RAN Intelli-
gent Controller (RIC)

I. INTRODUCTION

The Open Radio Access Network (O-RAN) architecture
heralds a transformative shift in cellular communications, fea-
turing an open, programmable, interoperable, and virtualized
RAN architecture. This novel architecture supports network
flexibility and scalability besides playing a pivotal role in
national security by reducing reliance on foreign vendors and
driving economic growth through innovation [1].

At the heart of the O-RAN paradigm is the concept of in-
telligent and data-driven closed-loop control through the RAN
Intelligent Controller (RIC) component, specifically the Near-
Real-Time RIC (Near-RT RIC) which supports telemetry and
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closed-loop control across multiple RAN sites from different
vendors through the use of third-party software microservices
known as xApps. These xApps leverage a diverse array of ma-
chine learning (ML) techniques that operate on the stored RAN
and User Equipment (UE) Key Performance Metrics (KPMs)
data such as Received Signal Strength Indicator (RSSI) and
Signal to Interference and Noise Ratio (SINR) in the shared
RIC database within the Near-RT RIC to make RAN control
decisions such as interference mitigation, scheduling, spectrum
sharing and traffic steering as demonstrated in works by
authors in [2], [3], [4], [5].

While the O-RAN framework offers flexibility, scalability,
and cost-effectiveness for cellular networks, data privacy and
confidentiality concerns are raised, particularly regarding the
data used by ML-driven xApps for RAN control within the
Near-RT RIC. The O-RAN Alliance’s Security Working Group
(WG11) [6] has conducted a comprehensive security analysis,
identifying various threat models across O-RAN components
and interfaces. This analysis underscores specific threats and
attack vectors affecting ML-based xApps in the Near-RT RIC.
Currently, researchers evaluate the vulnerabilities in O-RAN,
though concrete solutions remain sparse. A recent study de-
veloped a framework to detect protocol attacks and identified
vulnerabilities in sensitive RAN and UE data, such as IMEI
and IMSI, which can be exploited for attacks like IMSI
extraction, posing significant privacy risks [7]. Additionally,
concerns have been raised about potential ML data poisoning
attacks that could manipulate stored KPMs in the RIC database
to impair network performance [5], [8]. Authors in [9] propose
a zero-trust security system for the O-RAN environment,
featuring an access control module for packet tagging and
verification of xApps, alongside a policy management module
for control.

Current security approaches, such as Role-Based Access
Control (RBAC), traditional encryption, and IPSec enhance-
ments recommended by WG11 [6] are considered inadequate
for ensuring robust data security and implementing the zero-
trust paradigm within O-RAN. Issues with these mecha-
nisms include documented vulnerabilities such as credential
leaks [10], besides the computational challenges posed by
traditional encryption methods conflicting with O-RAN’s strin-
gent latency requirements [9]. Furthermore, existing method-
ologies mainly focused on protocol attack [7] and ML at-
tacks [5] and fail to address data privacy leaks/attacks within
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O-RAN architecture. In conclusion, there is a pressing need
for effective data privacy-preserving solutions for the O-
RAN that go beyond access control, policy management, and
authentication approach, without compromising the real-time
operational demands of O-RAN architecture.

This paper makes the following key contributions:
• We propose ZT-RIC, a zero-trust RIC framework for en-
suring data privacy/confidentiality within O-RAN architec-
ture. ZT-RIC adapts a computationally efficient cryptographic
technique, called Inner Product Functional Encryption (IPFE),
which encrypts the RAN/UE data before storing it in the RIC
database. Next, we quantize the ML-based xApp model to sup-
port the IPFE procedure such that the model makes inferences
without decrypting the data, thus ensuring data privacy and
confidentiality, unlike the conventional cryptographic methods
that need data decryption.
• To evaluate the ZT-RIC framework, we utilize an example
ML-based InterClass xApp as designed in [5], which aims
to detect the presence of a jammer in a wireless environment
using RAN-related key performance metrics. Then, leveraging
an over-the-air LTE O-RAN testbed, we show that ZT-RIC
framework ensures data privacy while achieving quantized
accuracy of up to 97.9% for the InterClass xApp model.
Moreover, for this level of accuracy, the encryption and model
evaluation times for the InterClass xApp model summed up
to 0.474s and achieved a round trip time (RTT) of 0.527s.
We observe that the performances of ZT-RIC are at par with
that of the baseline O-RAN framework (no data privacy pro-
tection) which validates that our proposed ZT-RIC framework
addresses privacy issues without negatively impacting network
performances and latency requirements.

The rest of the paper is organized as follows. Section 2
covers O-RAN background, threat model, and design objec-
tives. Section 3 presents the ZT-RIC framework while Section
4 details the O-RAN testbed and ZT-RIC prototype. Section 5
discusses experimental results, and lastly, Section 6 concludes
the paper.

II. O-RAN BACKGROUND, THREAT MODEL, AND DESIGN
OBJECTIVES

a) O-RAN Background: Fig. 1 shows a simplified O-
RAN architecture highlighting major components and possible
internal and external adversaries. For a detailed background of
O-RAN architecture, please refer to [11]. We briefly discuss
key O-RAN components critical for our proposed work.

• RAN Intelligent Controller (RIC): The RIC is a pivotal
component of the O-RAN architecture, responsible for hosting
programmable components that process data and employ ML
algorithms to formulate control policies that optimize the
RAN. It consists of two main logical RIC controllers, each
operating at different time scales. These controllers are:

1. Non-real-time (Non-RT) RIC: The Non-RT RIC resides
within the service management and orchestration framework
(SMO) and handles control loops at a time granularity of > 1s.

2. Near-real-time (Near-RT) RIC: The Near-RT RIC op-
erates control loops between 10ms to 1s. It hosts third-
party vendor applications called xApps. These xApps act
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Fig. 1. O-RAN Architecture showing internal and external adversaries.

as intelligent components and run ML algorithms that are
used to determine control policies for optimizing the RAN
through the E2 interface. Other major components of the near-
RT RIC include the RIC database/Shared Data Layer (SDL)
and internal messaging infrastructure which helps to connect
multiple xApps and also ensures message routing.

• RIC Database: The RIC database functions as a centralized,
shared repository, playing a crucial role in storing a diverse
range of data. Its primary purpose is to store RAN/UE data
that can be shared with various coexisting xApps. The RIC
database is instrumental in storing metrics related to the
communication between RAN nodes and associated UEs.
Depending on the chosen split option in the architecture,
this data can include I/Q samples/spectrograms or KPMs
such as throughput and Signal-to-Interference-plus-Noise Ra-
tio (SINR). The current O-RAN industry-standard adopts a
functional split of 7.2, which enables access to RAN KPMs,
and thus, is primarily considered as the RAN/UE data in this
paper.

b) RIC Threat Model against Data Privacy: We take into
account threats from both internal and external adversaries in
the O-RAN system as shown in Fig. 1.

• External adversaries: The open interface, such as E2 be-
tween the RAN and RIC, may be attacked by a malicious
intruder, e.g., an eavesdropper, who could intercept the sensi-
tive RAN and user-exchanged data to learn their data to obtain
confidential and sensitive information about them.

• Internal adversaries: In addition to providing their func-
tionalities and services honestly, the RIC components such as
xApps may attempt to access data or learn sensitive infor-
mation about users and RAN or even other xApps’ data. As
identified in the technical report by O-RAN Alliance WG11,
one of the key attack vectors is that the RIC database may
leak raw and sensitive RAN and UE-specific data to malicious
xApps or third-party software microservices co-hosted by the
RIC platform [12]. This will potentially allow an intruder to
export sensitive data from the near-RT RIC database, monitor
the database for specific information, and take adverse action.
In Fig. 1, we show a possible internal adversary in the form
of a malicious xApp.



c) Design Objectives: The aim of this work is to achieve
the following functionality and data privacy goals.

• Privacy requirements. No entity, including RIC xApps or
other microservices and O-RAN E2 interface, should be able
to access or learn the sensitive RAN/UE data (e.g., KPMs),
within the O-RAN architecture.

• Functionality requirements. In O-RAN architecture, the
proposed privacy-preserving framework should allow the be-
nign/trusted xApp to utilize the RAN and UE data (stored
in the RIC database) for the intended RAN control decision-
making. In addition, it must adhere to the O-RAN’s Near-
RT RIC timing requirements of < 1 second round-trip time
while preserving xApp’s model inference accuracy and cellular
network performance.

d) ML-based InterClass xApp: To investigate the data
privacy issues as well as evaluate the performance of the pro-
posed solution, we utilize a state-of-the-art InterClass xApp [5]
as an exemplary xApp. While we only test ZT-RIC with
InterClass xApp, the overall functionality and analysis remains
the same across any xApp that leverages ZT-RIC. InterClass
xApp aims to detect the presence of a jammer transmitting
an interference signal in the operating cellular environment.
The xApp utilizes a multi-layer perceptron (MLP) model
architecture that consists of five layers including the input
and output layers. The input layer has M neurons, and the
output layer has 2 neurons. The hidden layers have 30, 15,
and 7 neurons, respectively. These hidden layer structures are
determined after tuning the hyperparameters based on training
and validation purposes.

The xApp utilizes four KPMs, namely, bitrate, MCS, BLER,
SINR, and BSR, that represent input features to the MLP
model. We consider (m) KPMs and collect (t) different time
windows of metrics to stack together and form an extended
array of input before feeding into the MLP. Feeding multiple
time windows into the model leads to better accuracy for
jammer detection compared to feeding a single time window to
the model [5]. For training, we considered m = 5 and t = 10,
which means the number of input nodes, M is 50 (10× 5) in
total resulting in an input shape of (50, 1). The model has a
total of 2123 parameters. The hidden layer and the final output
respectively have a ReLU and softmax activation function.

III. PRIVACY-PRESERVING ZT-RIC FRAMEWORK
Fig. 2 shows an overview of the proposed privacy-

preserving ZT-RIC framework. ZT-RIC introduces three
new/modified functional blocks, namely, key distribution cen-
ter (KDC), a privacy-preserving InterClass xApp (as an exam-
ple xApp) and an encryption microservice (Notice grey boxes
in Fig. 2). The step-wise flow of the ZT-RIC framework is
outlined below.

Step 1 The KDC is responsible for generating and distribut-
ing the ZT-RIC keys, including, the encryption key to the RAN
and the functional decryption key to the xApp. The encryption
key is used to encrypt the RAN/UE data, and the functional
decryption key is used for executing the ML-based xApp on
the encrypted data and getting the classification result only.

On the RAN side, a microservice is introduced which serves
the purpose of processing and encrypting the RAN/UE data
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Fig. 2. Overview of ZT-RIC Framework.

before they are forwarded to the near-RT RIC. The encryption
is done using the keys derived from the KDC. Note that our
proposed framework requires that the data processing followed
by encryption of the raw RAN/UE data are implemented at
RAN itself, thus, the raw data is never exposed to the near-RT
RIC thereby protecting against internal/external adversaries.
Step 2 After the E2 connection is established between the
near-RT RIC and the RAN, the encrypted data is sent to the
near-RT RIC via the E2-Lite interface.
Step 3 The IMI forwards the encrypted data to the RIC
database for xApps (including, our our example InterClass
xApp as well as potentially, malicious xApp) to query.
Steps 4 and 5 Our proposed privacy-preserving InterClass
xApp (with quantized ML model elaborated in Section III.b.1)
queries the database to retrieve the stored encrypted data, and
by using the functional decryption key received from the KDC,
it can execute the xApp on the encrypted data without being
able to learn or decrypt the original data to ensure that the
privacy of the data is preserved in the entire data pipeline
from the RAN to the legitimate xApp.
Step 6 The decision of the model is forwarded to the IMI
which then forwards the decision to the RAN for control to
optimize the network performance in the presence of a jammer.

a) A primer on IPFE and motivation behind its incorpo-
ration within ZT-RIC: IPFE is a type of functional encryption
(FE) based public-key cryptosystem, where the possession of a
functional decryption key enables learning a specific function
f(x) of the plaintext data vector x given its corresponding
ciphertext C(x) without compromising x [13]. Specifically,
in IPFE, given a vector y, the ciphertext of another vector
x, i.e., C(x), and a functional decryption key sky associated
with a vector y, the inner product result between vectors x
and y, i.e., ⟨x,y⟩, can be determined without compromising
or learning the individual values of x. This means that IPFE
allows an entity to perform the inner product operation on an
encrypted data vector. The following three major entities are
involved in the IPFE cryptosystem:

• Key Distribution Center (KDC): The KDC distributes the
encryption key to encryptor and the functional decryption
key sky to the decryptor.

• Encryptor: Using the encryption key provided by the
KDC, the encryptor can compute a ciphertext of the data
vector x to be sent to the decryptor.

• Decryptor: Using the ciphertext provided by the encryptor
along with the sky provided by the KDC, the decryptor



can compute only the inner product result ⟨x.y⟩.
The incorporation of IPFE within the ZT-RIC is motivated

by the primary operations in the first layer of the ML-based
xApp model being the inner product between the input KPM
data vector x and each column vector wi in the weight matrix
W of the first layer, where wi is the ith column of W and
hence, W can be represented by [w1,w2, . . . ,wn] given n
columns in W (assuming the first hidden layer comprises n
neurons). This operation can be expressed as Z = x ·W.
Therefore, upon receiving the ciphertexts of the data x, the
xApp then employs the skW = [skw1

, skw2
, . . . , skwn

] to
derive Z with n elements which are then added to the first
layer’s bias vector b to compute the output of the first hidden
layer of the ML-based xApp model. This output serves as input
for subsequent layers in the model so their operations can be
continued until reaching the output of the last layer without
having access to the original data.

In essence, the ZT-RIC framework encrypts data, such as
KPMs, before being transmitted to the shared RIC database us-
ing the encryption key. In achieving this objective, we adapted
the IPFE scheme [13] to enable the xApp to securely utilize the
encrypted data for its execution without accessing or learning
sensitive RAN/user data, compromising xApp performance,
or violating the latency requirements of the O-RAN system.
Since data only needs to be encrypted once for all xApps to
make their predictions, the computational overhead required
on the RAN and the memory footprint in the RIC database is
also reduced from that of traditional encryption systems.

b) ZT-RIC Details: We detail the three key aspects of
the ZT-RIC, namely, ZT-RIC Initialization, RAN/UE data
encryption, and Privacy-preserving xApp inference.

1. ZT-RIC initialization:The particular IPFE scheme used in
the ZT-RIC framework is inspired from [13], and is imple-
mented using the CiFER functional encryption library detailed
in [14]. For the initialization phase, we undergo two phases:
• Key Generation: A key requirement for this step is a trusted
key authority, i.e., KDC in our ZT-RIC framework. Note that,
such an authority can be operated by a national authority
such as the National Telecommunications and Information
Administration (NTIA) or a network vendor. It is responsible
for generating the system parameters. Specifically, the KDC
runs the Setup function that outputs (G, p, g), where G is
a group of order p with generator g. It uses these system
parameters to generate a master public key (mpk) and a master
secret key (msk) as follows. First, vector s with a length l is
generated, where s = [s1, . . . , sl] ← Zl

p, where Zp is finite
field of order p. Next, the mpk and msk keys can be computed
by performing the following computations.

mpk = (G,hj = gsj )j∈[l] (1)

msk = s (2)

Then, the KDC computes n functional decryption keys
corresponding to each column i of W by executing the key
derivation function KeyDer(msk,W). This function takes the
msk and W = {wi}∀i∈n, where wi = [wi[1], . . . ,wi[l]] ←

Zl
p, and returns the functional decryption key skW by per-

forming dot product operations between wi and s as follows.

skW = [skwi ]∀i∈[n] = ⟨wi.s⟩∀i∈[n] (3)

• Quantization: Recall that IPFE solely operates on integers,
not decimal numbers, both the model and input are trans-
formed into an acceptable result with an input of only integers.
Furthermore, IPFE decryption time increases exponentially
with larger numbers. Due to the strict time restraints imposed
by the specifications of the Near-RT RIC, it would be optimal
to limit these integers to a small range. To combat these
two issues, we leveraged quantization to transform our trained
model into a model that computes results with a representation
of the model [15] that operates with integers from 0–255.
For each weight, bias, and input, we performed the following
transformation [16]:

Output = [
Input
Scale

+ ZeroPoint], (4)

where [.] denotes the nearest integer operation. The scales and
zero points can be different for each weight layer, bias, and
input to each layer. Furthermore, the scales and zero points
should be calibrated to work well with the typical input data,
providing similar outputs for each layer of the model. In the
case of the InterClass xApp, this typical input data would
be a sample KPM. We found that the optimal quantization
parameters to accurately represent the sample KPM were
Scale = 0.079 and ZeroPoint = 0. By observing how the
sample KPM was processed through each layer, we also found
a proper scale and well-functioning zero point for every node
in every layer.

Quantization on its own has a weakness in that the range
of input numbers must be approximated through a much
smaller, discrete range of numbers. When the range is large,
the precision of these approximations quickly decreases. To
compensate for this, we ”fused” our linear and ReLU layers
together in the InterClass xApp model. Recall that ReLU
layers return 0 for any negative input, meaning they reduce
the range of possible represented numbers to only natural
numbers. By combining the linear and ReLU computations,
we preemptively remove any negative numbers from the range
of quantized values, thereby increasing the precision of the
quantized outputs.

After quantization, the neural network is now compatible
with the IPFE protocol. Thus, the KDC can pre-compute skW
to be sent to the InterClass xApp.

2. RAN/UE data encryption: The RAN/UE data is en-
crypted using the mpk before being sent over the E2 in-
terface and then stored in the RIC database by performing
the following operations using the Encrypt function. The
Encrypt(mpk,x) function uses mpk to encrypt the KPM data
vector x, where x = [x1, . . . ,xl] ∈ Zl

p, and outputs its
corresponding ciphertext C(x) by selecting a random number
r ← Zp, and then computing the ciphertext as follows.

C(x) = (gr, (hr
j · gxj )j∈[l]), (5)

where hj = gsj and C(x) contains two components; c0 = gr

and c = (hr
j · gxj )j∈[l] ∈ Zl

p.
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InterClass xApp within ZT-RIC framework.

3. Privacy-preserving xApp inference: Lastly, we design a
privacy-preserving ML-driven xApp by leveraging the inner
product operations of IPFE on encrypted data vectors to enable
the xApp to execute the ML-based InterClass xApp inference
model without disclosing or decrypting the data to preserve
the RAN/user privacy, as discussed in Section III-0a.

In particular, after receiving the encrypted KPM data C(x),
the InterClass xApp uses the functional decryption key skW
to make inferences (type of interference in case of considered
InterClass xApp xApp) on the encrypted KPM data. The
secure evaluation of the InterClass xApp is done as follows.

• We first run Decrypt(C(x), skwi
) for i ∈ [n], which takes

the encrypted input vector C(x) = (c0, c) and the functional
decryption key skwi , the xApp can compute the inner product
between encrypted input and each column wi of the weight
matrix W by performing the following operations.∏

j∈[l]

c
wi[j]
j /c

skwi
0 = g⟨x.wi⟩ (6)

Proof of correctness:

Decrypt(C(x), skwi) =

∏
j∈[l] c

wi[j]
j

c
skwi
0

=

∏
j∈[l] g

(sjr+xj)wi[j]

gr(
∑

j∈[l] wi[j]sj)

= g
∑

j∈[l] wi[j]sjr+
∑

j∈[l] wi[j]xj−r(
∑

j∈[l] wi[j]sj)

= g
∑

j∈[l] xjwi[j] = g⟨x.wi⟩

• These operations are computed for all W’s columns, and
hence, the Decrypt function returns the inner product result
between the input KPM data x and W, i.e., ⟨x.W⟩, by
utilizing a discrete logarithm with basis g, which can be
computed using the Baby-Step Giant-Step algorithm.

• These results, i.e., ⟨x.W⟩, are in clear form and known to
the xApp to be added to the bias b of the first hidden layer
to obtain the output of the first hidden layer of the InterClass
xApp ML-based model, which can be represented as follows:

[(x ·w1) + b[1], (x ·w2) + b[2], . . . , (x ·wn) + b[n]]

Therefore, as shown in Fig. 3, only the operations of the first
layer of our model architecture are performed on encrypted
data to justify the zero trust paradigm. The result of these
inner product operations, i.e., the output of the first hidden
layer, is then used as input to the next layer of the model
with computations continuing until the output of the last layer
is reached, and then getting the classification result. Hence,
the InterClass xApp can evaluate the ML-based inference
model without disclosing or decrypting the data to preserve
the RAN/user privacy. Note that the number of nodes in the
first hidden layer must be smaller than the number of inputs.
Otherwise, the xApp may be able to obtain the input private
data by constructing and solving a system of linear equations
as the number of unknowns is equal to or greater than the
number of equations.

IV. STANDARD O-RAN TESTBED AND ZT-RIC
PROTOTYPE

a) Standard O-RAN Testbed: We leverage an open-
source Open AI Cellular (OAIC) platform [17] to build a
standard LTE O-RAN testbed. As shown in Fig. 4, the proto-
typed O-RAN testbed comprises an EPC core, one base station
(located on a single compute system), user equipment (UE),
a jammer, and a Near-RT RIC similar to the one in [5].

For the implementation of the RAN/Core and UE, we
employed the srsRAN cellular software stack (version 21.10)
for creating LTE/5G networks, as noted in [18]. Each unit
operates on Ubuntu release 20.04 OS and is powered by an
Intel Core i7-8700 processor, featuring 6 CPU cores, 16GB
RAM, 12 threads, and a clock speed of 3.2GHz. The srsRAN
stack is known for its adaptability and is ideal for Software-
Defined Radio (SDR)-based RANs and UEs. To meet our
testbed’s specific needs, we modified the srsRAN codebase.
These changes include adding a buffer for I/Q sample storage
and enhancing RAN control features, like the ability to switch
between adaptive or fixed Modulation and Coding schemes
(MCS). Both RAN and UE utilize Universal Software Radio
Peripheral (USRP) B210 SDRs for managing the radio fre-
quency (RF) front-end tasks, underlining the importance of
SDRs in O-RAN’s flexible and programmable framework.

The near-RT RIC, responsible for intelligent RAN control,
is installed on a rack server that can support multiple RANs.
This server is equipped with an AMD EPYC™ 7443P proces-
sor, comprising 24 CPU cores, 48 threads, 64GB RAM, and a
base clock speed of 2.85GHz. For ease of implementation, we
chose an E2-lite interface based on the SCTP protocol, which
functions similarly to the E2 interface1, and allows exchanging
control and report messages between RAN and RIC.

b) ZT-RIC Prototype: We prototype ZT-RIC framework
on top of the standard O-RAN testbed. Specifically, we
implement the IPFE-based encryption microservice using the
state-of-the-art CiFEr C-library [14] within the near-RT RIC
itself. This is mainly for ease of implementation and should be

1In E2 standard, RAN Functions define specifications and behavior of a
service facilitated through E2 interface, and are communicated by the RAN
to inform the RIC of its supported capabilities. In the E2-lite interface, no
RAN Functions are explicitly communicated by the RAN, which simplifies
the connection setup. There is no subscription process and no built-in
differentiation of messages between E2-lite nodes.



Fig. 4. O-RAN testbed. The left image shows our base station, user
equipment, and the jammer USRPs. The right image shows the server hosting
the near-RT RIC

TABLE I
ML MODEL PERFORMANCE FOR BASELINE (STANDARD O-RAN SYSTEM)

AND QUANTIZED ML MODEL (ZT-RIC)
Time
Win-
dows

Parameters (Baseline)
Accuracy

(Baseline)
False
Alarm

(Quantized)
Accuracy

(Quantized)
False
Alarm

5 617 97.1% 2.9% 97.2% 2.9%
10 2123 98.0% 1.5% 98.0% 1.4%
20 8483 97.9% 2.0% 97.9% 2.0%

ideally hosted in the RAN stack (to secure data leakage against
external adversaries). Both the encryption microservice and
privacy-preserving InterClass xApp are developed in Python.
Thus, in order to facilitate interaction between Python and the
CiFEr library (used for IPFE), we utilize the CFFI library [19]
to create Python bindings to CiFEr.

V. PERFORMANCE EVALUATION

We evaluate the performance of the ZT-RIC framework
against the standard (no data privacy protection) O-RAN
system in terms of (i) xApp’s ML model performance, (ii)
network performance, and (iii) timing requirement.

a) xApp’s ML Model Performance:: We first evaluate the
performance of the quantized ML model utilized by ZT-RIC’s
privacy-preserving InterClass xApp against the baseline MLP
model utilized by standard O-RAN system’s InterClass xApp
(discussed in Section II.d). Recall that ZT-RIC requires a quan-
tized ML model for IPFE calculation critical for protecting
data privacy. The metrics of interest for xApp’s ML model
performance include model accuracy and false alarms.

As shown in Table I, we carry out various experiments
with different time windows (default value = 10) and model
parameters (default value = 2123 parameter) for baseline MLP
model (standard O-RAN system) and quantized MLP model
(ZT-RIC). Both accuracy and false alarm rate are comparable
for both the models, for instance 98% accuracy and ≈ 1.5%
false rate for default setting. This demonstrates that quantizing
the MLP model to support the IPFE process (for data privacy)
does not negatively impact the xApp’s ML model inference
accuracy and false alarm rate.

b) Network Performance Evaluation: For network per-
formance evaluation, measured in terms of Block Error Rate
(BLER), we use the O-RAN testbed (and ZT-RIC prototype)
discussed in Section IV. We initiate an uplink traffic session
from the UE to the RAN, lasting 180 seconds. For the first
half of this duration (90 seconds), the UE transmits uplink
traffic unimpeded by any external disruptions. In the latter half,
we introduce over-the-air (OTA) interference from a jammer,
exerting a gain of 40 dB.

Fig. 5. CDF plot showing BLER performance

Fig. 5 presents BLER cumulative distribution function
(CDF) plot for ZT-RIC against (baseline) O-RAN system. It
can be seen that privacy-preserving ZT-RIC achieves similar
network performance as that of baseline O-RAN system.

c) ZT-RIC Round Trip Time (RTT): From Table II, we
observe that the overall RTT incurred in ZT-RIC for different
quantized ML models (for xApp inference) is well below
the < 1s timing requirement of O-RAN’s Near-RT RIC.
Here, the RTT comprises time consumed in the entire closed-
loop control between RAN and RIC, i.e., encryption time (in
data encryption microservice), model evaluation time (within
xApp), KPM data collection (from RAN to RIC database
via E2 interface), and control decision (from RIC to RAN).
Note that encryption time and model evaluation time vary for
different time windows as shown in Table II.

d) Data Privacy Analysis: Our proposed ZT-RIC frame-
work ensures secure execution of the xApp’s ML-based infer-
ence model without decrypting the sensitive data to preserve
the RAN/user privacy. ZT-RIC is designed to guard against
the threats described in Section II-0b as follows.

• To ensure RAN/user data privacy, the data is first encrypted
using IPFE in such a way that no entity who may be able to
intercept this data, can decrypt it or even learn anything about
the statistics because it is encrypted using a secret key which
is needed for decryption, and the secret keys are securely kept
private only to the encryptor (i.e., UE/RAN).

• In ZT-RIC, the InterClass xApp uses the functional decryp-
tion key sky to get the output of the first layer without decrypt-
ing or learning the user/RAN data. Specifically, upon accessing
the encrypted data, ZT-RIC ensures that the InterClass xApp
gives its inference without knowing the raw data.

• Given that the number of functional decryption keys dis-
tributed (which is a function of the number of neurons in
the first hidden layer) is fewer than the number of inputs,
it would be challenging to obtain the input private data as the
number of linear equations that can be constructed using the
model weights and the results of the inner product operations
is less than the number of unknowns (input data). Also, the
solution space is sufficiently large under this condition even
after applying quantization. Specifically, given n and m are
the number of inputs to the neural network and functional
decryption keys distributed, respectively, linear algebra posits



TABLE II
ZT-RIC ROUND TRIP TIME

Time Windows (Input
Shape)

Encryption
Time

Model Evalua-
tion Time

Round Trip
Time

5 (25,1) 0.01s 0.046s 0.109s
10 (50,1) 0.024s 0.167s 0.244s
20 (100,1) 0.045s 0.429s 0.527s

that the solution space of the plaintext data is 256n−m, which
grows exponentially as the number of functional decryption
keys decreases. This complexity makes it hard for attackers to
infer the input, and to address this concern, the KDC controls
the number of functional decryption keys generated, thereby
providing a countermeasure against these attacks.

• To protect against unauthorized extraction of the input data,
the KDC must ensure that the column space of matrix W
does not include any standard basis vectors, i.e., vectors with
a single component equal to 1 and all other components equal
to 0. For example, consider the matrix W defined as:

W =

1 0
0 1
0 0


This matrix represents a neural network with 3 nodes in the
input layer and 2 nodes in the first hidden layer. If the KDC
distributes decryption keys corresponding to this matrix, a
malicious xApp could determine two elements of the inputs.
Thus, none of the standard basis vectors must lie in the column
space of W to prevent any part of the input from being
deduced through linear equations. The necessary check can be
efficiently implemented using Gaussian Elimination to ensure
that W is secure for use, preventing the malicious xApp from
extracting any individual input components.

• Although InterClass xApp has access to gr and hi = gs,
acquiring the secret key s, the random number r, or even gsr

and utilizing them to decrypt data x is highly challenging
because it requires solving a hard discrete logarithmic problem
as these values are elements in Zp with very large numbers.
Moreover, having the functional decryption key sky and ci-
phertext (gr and g(sr+x)), it is also computationally intractable
to obtain the data x due to the impracticality of solving the
discrete logarithm problem as the data is masked with gsr in
the encryption process, as seen in Eq. 5.

Observation. Based on our experiments, it is evident the
ZT-RIC framework unequivocally ensures user/RAN data pri-
vacy against diverse threat models, preserves xApp inference
accuracy, and meets stringent O-RAN timing requirements.
Consequently, we strongly endorse the adoption of ZT-RIC in
real-world O-RAN deployments, especially in DoD scenarios
where zero-trust principles are indispensable.

VI. CONCLUSION AND FUTURE WORK

This paper introduces a novel privacy-preserving ZT-RIC
framework, which is based on a robust cryptographic tech-
nique, called, utilizing inner product functional encryption
(IPFE). Our IPFE-based ZT-RIC enables efficient computa-
tion on encrypted data for ML-based xApps, ensuring the
protection of sensitive RAN and UE information without
compromising accuracy or O-RAN latency requirements. We
conducted extensive experiments on an over-the-air O-RAN

testbed, using InterClass xApp, to validate ZT-RIC’s effec-
tiveness in preserving data privacy while still enhancing xApp
performance and meeting latency thresholds. Additionally, a
potential future work involves designing a privacy-preserving
solution framework that eliminates the need for a trusted
central entity like the Key Distribution Center (KDC).
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