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Abstract—The incorporation of quantum ansatz with machine
learning classification models demonstrates the ability to extract
patterns from data for classification tasks. However, taking
advantage of the enhanced computational power of quantum
machine learning necessitates dealing with various constraints. In
this paper, we focus on constraints like finding suitable datasets
where quantum advantage is achievable and evaluating the
relevance of features chosen by classical and quantum methods.
Additionally, we compare quantum and classical approaches
using benchmarks and estimate the computational complexity
of quantum circuits to assess real-world usability. For our exper-
imental validation, we selected the gene expression dataset, given
the critical role of genetic variations in regulating physiological
behavior and disease susceptibility. Through this study, we aim
to contribute to the advancement of quantum machine learning
methodologies, offering valuable insights into their potential for
addressing complex classification challenges in various domains.

Index Terms—Empirical Quantum Advantage, Kernel Trick,
Quantum Machine Learning, Quantum Annealers.

I. INTRODUCTION

In the face of rapid mutations and variations in diseases,
the ever-expanding volume of biological data presents unpar-
alleled opportunities for unraveling intricate biological phe-
nomena. Among these, gene expression analysis emerges as a
cornerstone tool for comprehending the molecular mechanisms
underlying diverse physiological and pathological processes.
This comprehension leads to the accurate classification of
cancer subtypes, which is essential for guiding individualized
treatment strategies [1]. In this endeavor, the Golub et al.
gene expression dataset has been serving as an instrumen-
tal resource facilitating numerous studies aimed at precisely
categorizing different subtypes of leukemia based on their
distinctive gene expression profiles.

However, the sheer magnitude and intricacy of gene expres-
sion data pose formidable challenges to extracting meaningful

insights. Traditional classification methods often face com-
putational limitations when tasked with discerning patterns
amidst the noise and high-dimensional feature spaces inherent
in gene expression data. In this context, harnessing these
principles of quantum mechanics, quantum computing offers
to exponentially accelerate data processing tasks, resulting in
a paradigm shift in computational power and efficiency [2].

In this paper, we conduct an experiment investigation on
gene expression data, exploring and evaluating the efficacy
of both classical and quantum computing approaches for
solving key challenges in gene expression classification. Our
approach integrates innovative methodologies in feature se-
lection, classification algorithms, and complexity analysis to
advance our understanding of biological systems. Specifically,
as part of our gene expression data analysis, we utilize
quantile normalization [3] to preprocess the Golub et al.
dataset, ensuring uniformity and reliability of data in our
subsequent analyses. After preprocessing, it’s significant to
filter out relevant features to simplify the model and improve
computational efficiency. To conduct a comparative study, we
adopt both quantum and classical approaches for this task. The
paper [4] highlights the effectiveness of Lasso in identifying
relevant features from high-dimensional datasets, particularly
in the field of genomics where the number of features often
exceeds the number of samples. So we have employed LASSO
Regularization (L1) [5] for classical means of feature selection.
For the quantum approach to feature selection, we utilized
D-Wave’s hybrid quantum-classical framework [6] leveraging
D-Wave’s quantum annealers [7] to formulate the Quantum
Unconstrained Binary Optimization (QUBO) problem. This
hybrid approach allows us to explore alternative solutions for
feature selection tasks in high-dimensional datasets.

We have classified the data using both quantum and classical
kernels, utilizing the features selected by both approaches. To
evaluate the performance of both the classical and quantum
kernels using multiple metrics, including the F1 score, bal-
anced accuracy, and Phase Terrain Ruggedness Index (PTRI),
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geometric difference [8]. Finally, we conduct a comparative
analysis of the computational complexity of quantum and
classical kernels to evaluate their practical feasibility in large-
scale gene expression analysis.

II. METHODOLOGY

According to a genome-wide association study (GAWS),
detecting the precise biomarker contributes vitally to diag-
nosing specific diseases. Gene expression data with large
feature space also enables the exploitation of the exponential
transformation capability of quantum embedding. The gene
expression dataset (Golub et al.) generated by a proof-of-
concept study for cancer subtyping task (AML vs ALL)
comprises 7129 gene expression profiles for each of the 38
training and 34 test samples. As gene expression values vary
in a wide range, quantile normalization [3] is performed to
make the values comparable across different samples.

Then from this large normalized data, 20 important features
are extracted using [9] the L1 regularization(Lasso) method.
Here are the gene accession number of the selected genes
[‘AB000466 at’, ‘D17391 at’, ‘D38524 at’, ‘D78134 at’,
‘HG3945-HT4215 at’, ‘J04990 at’, ‘J05158 at’,
‘L01664 at’, ‘M26602 at’, ‘M60047 at’, ‘M63904 at’,
‘S67156 at’, ‘S77094 at’, ‘U30828 at’, ‘U47011 cds1 at’,
‘U63289 at’, ‘U66580 at’, ‘U70981 at’, ‘M15169 at’,
‘J00268 s at’]. Simultaneously, the resultant genes from
QUBO are [‘D17391 at’, ‘HG1148-HT1148 at’, ‘HG4188-
HT4458 at’, ‘L09717 at’, ‘M77810 at’, ‘S82240 at’,
‘U14550 at’, ‘U16997 at’, ‘U19878 at’, ‘U34360 at’,
‘U49248 at’, ‘U63289 at’, ‘X07820 at’, ‘X14046 at’,
‘X17042 at’, ‘U31556 at’, ‘M27783 s at’, ‘M63438 s at’,
‘HG3731-HT4001 r at’, ‘U84388 at’].

To build a more robust model against the outliers, min-
max scaling is performed. After tuning the parameter, it’s
inferred that the range from 0 to π works well for this specific
experiment. Support vector machine(SVM) is a widely used
tool for classification tasks in supervised machine learning that
applies kernel tricks when the data is not linearly separable
in their original feature space. It transforms data into higher
dimensional feature space where the data is linearly separable.
The efficient kernel approximation is crucial for resource op-
timization and performance enhancement of a model. For this
experiment, we have adopted the quantum kernel estimation
method implemented by Havlicek et al [10] where the kernel
function is calculated using a quantum circuit and then it’s
passed to the classical SVM for drawing a decision boundary.
This model is implemented using qiskit library.

For solving certain tasks, utilizing quantum properties pro-
vides exponential speedup over the best-known classical ap-
proach, which is termed as quantum supremacy. But in near-
term quantum hardware, the quantum advantage is yet to be
attained for all kinds of operations. Due to the vulnerable
nature of Noisy intermediate-scale quantum(NISQ) devices
and the decoherence effects of qubits, the problem is critical
to the size of the feature space. To verify the feasibility of
the quantum approach, some heuristic metrics are applied.

This paper [8] introduced a novel approach for this type
of measurement named empirical quantum advantage(EQA).
It’s a framework that analyzes different performance metrics.
For instance, in this experiment, the following measures
have been used at various configuration spaces: F1 score,
balanced accuracy, and the phase space terrain ruggedness
index (PTRI). The paper [8] also suggests geometric difference
as a framework to evaluate the kernel’s efficiency where the
quantum advantage is potential. Here, the metric is applied to
determine the kernel’s capability to generate the optimized
decision boundary for a classification problem. It provides
insight into which kernel outperforms the other kernel based
on the shape of the decision boundary.

III. RESULT AND DISCUSSION

After performing all the pre-processing tasks, the dataset
is split into train and test subsets with an 80 : 20 ratio.
The configuration space of this experiment consists of 57
training samples. Nine sub-configuration spaces are chosen
for that configuration space. The sub-configuration spaces
consist of sample size [25, 41, 57] and features [2, 8, 14], each
feature denoted by a single qubit. Then F1 score and balanced
accuracy are calculated for nine configurations.

Fig. 1. F1 score of data selected by lasso.

It is observed from the Fig. 1 that, for 14 features and
25 samples, classical kernel has the highest F1 score of .93
and for 8 features and 57 samples quantum kernel has .85.
Classical and quantum surfaces intersect at (8, 57) point. And
in Fig.2 for 14 features and 25 samples, classical kernel
has the highest F1 score of .93 and for 8 features and
41 samples quantum kernel has .44. Classical and quantum
surfaces intersect at (8, 41) point.

Similarly, from Fig. 3, it is observed that for 20 features and
25 samples classical kernel has the highest balanced accuracy
of .93 and for 8 features and 57 samples quantum kernel
has balanced accuracy of .86. Classical and quantum surfaces
intersect at (8, 57) point. In Fig. 4, for 8 features and 57
samples classical kernel has the highest balanced accuracy
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Fig. 2. F1 score of data selected by QUBO.

Fig. 3. Balanced accuracy of data selected by lasso.

of .96 and for 2 features and 41 samples quantum kernel
has balanced accuracy of .64. Classical and quantum surfaces
intersect at (2, 41) point.

For different configuration spaces, the geometric difference
between classical(linear) and quantum kernel(Pauli Z feature
map) is analyzed. Fig. 5 shows that potential quantum advan-
tage is more likely in the configuration space with 2 features
and 57 samples.

The Phase terrain ruggedness index (PTRI) is a metric that
helps to identify the configuration space where quantum ad-
vantage is potential for a specific problem. The flattest region
in classical landscape helps to consider quantum configuration
for that problem to attain privilege over the classical. As
the flattest region indicates stagnation of performance, the
ruggedness of the quantum landscape helps to get insights if
there is any quantum advantage possible.

The ruggedness of the PTRI landscape for the F1 score
in Fig.6 indicates a point of advantage for the quantum
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Fig. 4. Balanced accuracy of data selected by QUBO.

Fig. 5. Heatmap for the geometric difference of both kernels.

kernel in the configuration of (8, 41), where the classical
kernel performs poorly. Whereas, it can be observed from the
PTRI landscape for Balanced Accuracy that classical kernel
performs better in configuration of (8, 25) in Fig.7 than the
quantum counterpart.

It is also to be considered the PTRI values resulting
in calculations with different metrics should indicate which
performance metric is better with accuracy for a problem in
the analysis of EQA. The experiment has better performance
accuracy with F1 score metric facilitating quantum advantage
in the configuration of (8, 25). It also shows that balanced ac-
curacy may seem a reasonable metric to proceed initially with
much prediction accuracy. But, considering PTRI to evaluate
its potentiality towards quantum advantage does provide much
insight into its unlikeliness of outperforming.

IV. QUANTUM RESOURCE ESTIMATION

Proceeding toward solving a problem requires the
consideration of the efficiency of the implementation. So it
is important to analyze the complexity of an algorithm along
with enhancing its performance. For this type of evaluation,
resource estimation is vital in the quantum field. Quantum
resource estimation is a method to determine the number



Fig. 6. PTRI landscape for F1 Score of data selected by lasso.

Fig. 7. PTRI landscape for Balanced Accuracy Score of data selected by
lasso.

of qubits, unitary gates, quantum processing unit(QPU)
utilization, and other resources required for algorithmic
implementation.

In the quantum kernel estimation approach, the kernel is
estimated using quantum unitary circuit. The quantum kernel
transforms the classical state into a quantum state. Then the
classical SVM is applied to draw the separating hyperplane
among classes. Here, the classical data x⃗ ∈ Ω is converted
into a quantum state |Φ(x⃗)⟩ by applying the unitary circuit
UΦ(x⃗) , where the quantum state,

|Φ(x⃗)⟩ = UΦ(x⃗)H
⊗nUΦ(x⃗)H

⊗n|0⟩⊗n

UΦ(x⃗) = exp

(
i
∑
S⊆[n]

ϕS(x⃗)
∏
i∈S

Zi

)
Considering maps with low-degree expansions where |S| ≤ 2,
two types of feature maps are possible. For d = 2, the feature

map that results in,

Uϕ{k,l}(x⃗) = exp (iϕ{k,l}(x⃗)ZkZl)

And the circuit in Fig. 8 is drawn for this mapping for 3 qubits
and linear entanglement. This circuit is repeated 2 times.

Fig. 8. Circuit for ZZfeaturemap

Using linear entanglement, for different numbers of qubits
and repetitions, a depth analysis is shown in the following
table,

TABLE I
DEPTH ANALYSIS OF ZZFEATUREMAP WITH LINEAR ENTANGLEMENT.

n
r 1 2 3 4

2 5 10 15 20
3 8 16 24 32
4 11 19 27 35
5 14 22 30 38
6 17 25 33 41

Here, n is the number of qubits and r is the number
of repetitions. After analyzing the above table, it can be
concluded that ZZfeaturemap has O(5 × r) complexity for
n = 2, and for n ≥ 3 it is O(8 × r + 3 × (n − 1)), both are
equivalent to O(n).
For d = 1, the resulting feature map is,

Uϕ{k}(x⃗) = exp (iϕ{k}(x⃗)Zk)

And the circuit in Fig. 9 is drawn for this mapping with
two qubits and two repetitions.

Fig. 9. Circuit for Pauli Z featuremap

Observing the circuit architecture, it is evident that the
circuit has O(2 × r) which is equivalent to O(r) where r
is the number of repetitions.

Here is the summary of estimated gates for each feature
map.



TABLE II
INDIVIDUAL GATE ESTIMATION FOR EACH FEATUREMAP

Featuremap
Unitary gate Hadamard Gate Z gate CNOT gate

ZZfeaturemap O(n× r) O(r × (2× n− 1)) O(2× (n− 1)× r)
PauliZfeaturemap O(n× r) O(n× r) -
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