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Abstract. We look at a new stringh tangential structure first introduced by Devalapurkar
and relate it to the W7 = 0 condition of Diaconescu-Moore-Witten for type IIA string theory
and M-theory. We show that a stringh structure on the target space automatically satisfies
the W7 = 0 condition and we also explain when the W7 = 0 condition gives rise to a stringh

structure. Devalapurkar initially constructed MStringh in such a way that it orients tmf 1(3), we
extend Devalapurkar’s orientation and show that MStringh orients tmf 1(n). We compute the
homotopy groups of MStringh in the dimensions relevant for physical applications, and apply
them to anomaly cancellation applications for compactifications of type IIA string theory.
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1. Introduction

Green-Schwartz in their seminal paper [GS84] showed that 10d heterotic string theory is free of
perturbative anomalies if the target space manifold comes with a trivialization of the fractional first
Pontryagin class 1

2p1. Such a condition arises due to the necessity to cancel the gauge anomaly
using the 2-form B-field, and a target space that is a consistent background for heterotic string
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theory is said to have a string structure. Later work by Witten [Wit87] showed that it was possible
to assign a modular form to a manifold with a string structure by studying the partition function
of the heterotic string worldsheet. More specifically he showed that the elliptic genus, a natural
invariant in a generalized cohomology theory called elliptic cohomology, can be reconstructed from
the index of the supercharge on the worldsheet. This gave the first hints at a link between string
theory and elliptic cohomology.

Ando-Hopkins-Rezk [AHR10] then showed that the work of Witten can be interpreted in
homotopy theory: Hopkins-Miller [HM14, Hop95, Hop02] constructed a highly structured ring
spectrum TMF , called “topological modular forms,” such that Witten’s construction factors as a
highly structured map of spectra

(1.1) σ : MString −→ TMF

together with a comparison map from π∗TMF to the ring of modular forms, which is an isomorphism
after tensoring with Z[1/6]. Hence, the Ando-Hopkins-Rezk orientation (1.1) makes the connection
between heterotic string theory and elliptic cohomology precise. Subsequently, the Ando-Hopkins-
Rezk map, as well as its physical incarnation due to Stolz-Teichner [ST11], have been used to prove
anomaly cancellation results in heterotic string theory by Tachikawa, Yamashita, Yonekura, and
Zhang [Tac22, TY23b, Yon22, TYY23, TY23a, TZ24].

One can reasonably wonder if there exist relationships between the other superstring theories and
TMF , hence strengthening the string theory and elliptic cohomology correspondence. A natural
first question to consider is if there is a different “string-like” structure which can be related to
elliptic cohomology, and which enforces specific symmetry constraints on the target space.

The goal of this work is to explore this question in the context of type IIA string theory, and
to address the homotopical questions this raises. We will propose a “string-like” structure that
enforces the Diaconescu-Moore-Witten [DMW02] symmetry constraint given by W7(TM) = 0,
where W7(TM) ∈ H7(M ;Z) is an integral Stiefel-Whitney class. This constraint is needed to
resolve a sign ambiguity in the partition function.

More specifically our solution for the “string-like” structure is a stringh structure, a variant of
string structure recently defined by Devalapurkar [Dev22].

Definition 1.2 (Devalapurkar [Dev22]). Let V → X be a spinc vector bundle with determinant
line bundle L → X. A stringh structure on V is the data of a trivialization of □ku(λ(V ⊕L)), where
λ is the spin characteristic class with 2λ = p1 and □ku : H4(X;Z) → ku7(X) is the Bockstein for
the cofiber sequence Σ2ku β→ ku → HZ.

We in fact give three definitions of stringh structures (Definitions 2.12, 2.13, and 2.15) and show
they are equivalent in Theorem 2.17. Then we show that stringh structures answer the call we
raised above.

• Stringh structures are indeed twisted string structures, and if V has a stringh structure
then W7(V ) is canonically trivialized.

• Moreover, a spinc structure and a trivialization of W7 is a good approximation of a stringh
structure in a range of dimensions relevant to string theory, as we explain further below.

• There is a map of spectra MStringh[ 1
n ] → tmf 1(n), where the latter is the spectrum of

(connective) topological modular forms with level structure for the subgroup Γ1(n) ⊂ SL2(Z).1

1For n = 3, this was first shown a different way by Devalapurkar [Dev22].
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Main Results. The first of our results makes precise the first bullet above. Namely it facilitates
the connection between stringh structures and the structure that corresponds to the W7 = 0
condition.

Theorem 4.16. If V is a stringh vector bundle, then V has a canonical spinc structure and
trivialization of W7(V ).

Theorems 4.21 and 4.23. Let X be a spinc manifold of dimension n ≤ 8. Every trivialization of
W7(X) lifts to a stringh structure. If X is closed, this is also true in dimension 9.

This means that for the purpose of studying compactifications of type IIA string theory in
dimensions 8 and below, there is no loss of generality in upgrading the spinc structure and
trivialization of W7 to a stringh structure. We will use this to study anomalies of these theories in
Examples 4.27 and 4.28.

To prove those anomaly cancellation results, we need to calculate groups of reflection-positive
invertible field theories on stringh manifolds (possibly with extra data), which by work of Freed-
Hopkins [FH21b] and Grady [Gra23] reduces to computing stringh bordism groups of spaces. The
germ of this calculation is a collection of stringh orientations of the spectra tmf 1(n), the spectra of
connective topological modular forms with level structure for Γ1(n) ⊂ SL2(Z), as constructed by
Meier [Mei23], which we explain in §3.

Theorem (Devalapurkar [Dev22, Theorem 5]). There is a map of E∞-ring spectra σD : MStringh(2) →
tmf 1(3)(2).

We lift this to arbitrary n:

Theorem 3.7. For all n ≥ 2, there are maps of E∞-ring spectra

(1.3) σ1(n) : MStringh[1/n] −→ tmf 1(n).

In Theorem 3.22, we lift the induced map MStringh[1/n] → Tmf 1(n) on mixed Tmf to a map of
Z/2-equivariant ring spectra.

These theorems partially address an open question dating back to Hill-Lawson [HL16, §1]. It is
not obvious whether σD ≃ σ1(3), and we would be interested in knowing whether this is the case.

Using Theorem 3.7, we computed stringh bordism groups in degrees relevant for physics applica-
tions.

Proposition 3.32. For n = 2, 3, the map on homotopy groups σ1(n) : ΩStringh

∗ [1/n] → tmf 1(n)[1/n]∗
is surjective.

Theorem 3.34.
(1) In degrees 15 and below, ΩStringh

∗ is additively isomorphic to the graded ring

(1.4) Z[x2, x4, x6, x8, y8, x10, x12, y12, x14, . . . ]/(· · · )

where |xi| = |yi| = i and all generators and relations not listed are in degrees 16 and above.
(2) In degrees 7 and below, this isomorphism can be chosen to be a ring isomorphism. After

inverting 2, the same is true in degrees 11 and below, and after inverting 6, the same is
true in all degrees 15 and below.

Similar to how a string structure on a manifold M induces a spin structure on its free loop
space LM , we could wonder if stringh has the analogous property for spinc structures on LM .
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Huang-Han-Duan [HHD21] showed that, because the groups Spincn are not simply connected, there
are multiple, inequivalent notions of a spinc structure on the loop space of a manifold, parametrized
by an integer k called the level. Unfortunately, a stringh structure does not induce any of these
structures!

Theorem 2.60. There is a closed stringh manifold M such that LM is not spinc for any choice
of level.

Outline. The structure of the paper is as follows: In §2 we introduce three equivalent definitions
of stringh and prove a number of properties of the spectrum MStringh. In §2.2 we explain the
relationship between stringh and an already known spectrum called MStringc. In §3 We show how
MStringh oriented tmf 1(n) and compute its homotopy groups in degree less than 16. For those
mainly interested in the relations to physics, §3 can be skipped and one can proceed to §4 where
we review the Diaconescu-Moore-Witten anomaly. In §4.1 we summarize how the W7 = 0 anomaly
cancellation is related to stringh and vice versa. We then give examples in §4.2 of how the stringh
structure can be used to more easily compute the anomalies of theories where a W7 = 0 structure is
equivalent to a stringh structure. In Appendix A, we prove Theorem A.1, which is a computation
needed for the anomaly cancellation result in Example 4.28.

2. The Stringh tangential structure

In this section we review work of Devalapurkar [Dev22] on the definitions and basic properties
of stringh structures. We first give three definitions of stringh structures (Definitions 2.12, 2.13,
and 2.15). Stringh structures are analogues of spinc structures, and we will frequently make this
comparison to provide context for a definition or construction. We will then define a canonical stringh
structure on a direct sum of stringh vector bundles in Proposition 2.27, so that MStringh has an
induced E∞-ring structure (Theorem 2.41). We will then reprove a theorem of Devalapurkar [Dev22]
that as E∞-ring spectra, MStringh ≃ MString ∧ MU (Theorem 2.43).

2.1. Stringh structures. As a lead up to the stringh definitions we start off with several equivalent
ways to define spinc structures.

Trivialization of a class: A spinc structure on an oriented vector bundle V → X is a
trivialization of □Z(w2(V )), where □Z : H2(X;Z/2) → H3(X;Z) is the Bockstein.

Lift of a class: A spinc structure on V is a class c1 ∈ H2(X;Z) and an identification of
c1 mod 2 = w2(V ).

Twisted spin structure: A spinc structure on V is data of a complex line bundle L and a
spin structure on V ⊕ L. L is called the determinant line bundle of the spinc structure.

Structure group: A spinc structure on V , where V has rank n, is a lift of the principal
SOn-bundle of frames BSO(V ) → X of V to a principal spinc bundle BSpinc(V ) → X, i.e. a
G-structure for G = Spincn with its usual map to On.

We will give stringh analogues of each of the first three definitions: trivializing a class in Defini-
tion 2.12, lifting a class in Definition 2.13, and in terms of a twisted string structure in Definition 2.15.
These definitions are equivalent, which we prove in Theorem 2.17.
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Definition 2.1. For n ≥ 5, Spinn is a compact, simple, simply connected Lie group, so there is a
canonical2 isomorphism φ : H4(BSpinn;Z)

∼=→ Z. We will let λ := φ−1(1).

As usual, λ defines a characteristic class of spin vector bundles by pulling back by the classifying
map. This class is often denoted 1

2p1 (see Lemma 2.4).

Remark 2.2. For all n ≥ 5, pulling back by the inclusion Spinn → Spinn+1 sends λ 7→ λ. Therefore
we may define λ ∈ H4(BSpinn;Z) for n < 5 by pulling back from BSpin5, and by passing to the
colimit over all BSpinn, we obtain λ ∈ H4(BSpin;Z).

Lemma 2.3 ([Deb24, Lemma 1.6]). Let V1 and V2 be two vector bundles over a topological space
X each with a spin structure. Then λ(V1 ⊕ V2) = λ(V1) + λ(V2).

Lemma 2.4. If p1 ∈ H4(BSpinn;Z) denotes the first Pontrjagin class, then 2λ = p1.

If V is a real vector bundle, then V ⊗ C = V ⊕ V and λ(V ⊗ C) = 2λ(V ). In particular, if V is
a spin vector bundle then 2λ(V ) = p1(V ).

Definition 2.5 (Miller, Stolz-Teichner [ST04, §5]). A string structure on a spin vector bundle V is
a trivialization of λ(V ).

The evocative name “string” for this structure is due to Haynes Miller; to our knowledge Stolz-
Teichner were the first to use it in print. Previously, string structures were sometimes referred to
as O⟨8⟩-structures or ⟨8⟩-structures (e.g. [Gia71]).

Definition 2.6. Let V → X be a vector bundle with spinc structure s and determinant line bundle
L. We define

(2.7) λc(V, s) := λ(V ⊕ L) ∈ H4(X;Z).

Often s will be implicit, in which case we will write λc(V ) instead.

The class λc is called q2 in [Dua18] and p̂ in [CN19, §2.7]. The classes pc from [CY20, (3.10)]
and c2

1−p1
2 from [Dev22, Construction 2] both equal c1(L)2 − λc.

Remark 2.8. If the spinc structure on V is induced from a complex structure, then [CN19, Lemma
2.39]

(2.9) λc(V ) = −c2(V ) − c1(V )2.

If the spinc structure on V is induced from a spin structure, so that L is trivial, then λc(V ) = λ(V ).
Thus if V is both complex and spin, λ(V ) = −c2(V ).

Definition 2.10. Recall the Bott map β : Σ2ku → ku in connective K-theory. Its cofiber is the
Postnikov 0-truncation τ0 : ku → HZ, which is in particular a morphism of ring spectra. Thus,
associated to the cofiber sequence

(2.11) Σ2ku β−→ ku τ0−→ HZ

there is a long exact sequence in cohomology; let □ku : Hn(–;Z) → kun+3(–) denote the connecting
morphism in this long exact sequence, which is called the ku-theoretic Bockstein homomorphism.

2As Aut(Z) ∼= {±1}, we need to disambiguate 1 and −1. We choose the isomorphism H4(BSpinn;Z) → Z to be the
one such that the induced isomorphism H4(BSpinn;R) → R sends the Chern-Weil class of the Killing form to a
positive number.
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We will let □Z : Hn(–;Z/2) → Hn+1(–;Z) denote the Bockstein homomorphism associated to
the short exact sequence 0 → Z → Z → Z/2 → 0.

Definition 2.12 (Devalapurkar [Dev22]). A stringh structure on a spinc vector bundle V → X is
a trivialization of □ku(λc(V )) ∈ ku7(X).

As always, we say a manifold M is stringh if TM is stringh.

Definition 2.13. A stringh structure on a spinc vector bundle V → X is equivalent to a class
cku

2 (V ) ∈ ku4(X) and data identifying τ0(cku
2 (V )) = λc(V ).

Equivalence of these definitions follows immediately from the long exact sequence induced
from (2.11). The third definition, which we give in Definition 2.15, is not as obviously equivalent.

Definition 2.14. Let V → X be a virtual vector bundle. A (X,V )-twisted string structure on a
vector bundle E → M is data of a map f : M → X and a string structure on E ⊕ f∗V .

Given an (X,V )-twisted string structure on E, the bundle f∗V → M is called the ancillary
bundle.

Definition 2.15. Let S → BU denote the tautological bundle. A stringh structure on a vector
bundle V → X is a (BU, S)-twisted string structure.

The data of a (BU, S)-twisted string structure on a bundle E → M induces a spinc structure on
E as follows: the two-out-of-three data for spinc structures implies spinc structures on E ⊕ f∗(S)
and on f∗(S) induce one on E. But E ⊕ f∗(S) is string, hence spin, hence spinc, and S is complex,
hence spinc, so E acquires a canonical spinc structure.

Remark 2.16. Definition 2.14 is not the standard way to define twisted string structures, though it
appears implicitly in [BDDM24, §3] and is inspired by a related definition of twisted spin structure
due to Hason-Komargodski-Thorngren [HKT20, §4.1]. A more conventional definition, which
goes back to Wang [Wan08, Definition 8.4], chooses d ∈ H4(X;Z) and defines an (X, d)-twisted
string structure on a spin vector bundle E → M to be a map f : M → X and a trivialization of
λ(E) − f∗(d); see also Sati-Schreiber-Stasheff [SSS12, §2.2]. This definition cannot apply to our
situation: by construction, any (X, d)-twisted string vector bundle is spin, but the tangent bundle
to CP2 admits a stringh structure, where the ancillary bundle is −TCP2, and TCP2 is not spin.

Definition 2.14 is one way to remedy this definition, though there are twists of string bordism
according to Wang’s definition that Definition 2.14 cannot describe, including the twists studied
in [Deb24, Deb]. To include these twists and stringh structures in a single framework, one can
generalize Wang’s definition as follows. Let SH be the (restricted) supercohomology spectrum3

introduced by Freed [Fre08, §1] and Gu-Wen [GW14], which is uniquely specified up to homotopy
equivalence by π0(SH ) ∼= Z, π−2(SH ) ∼= Z/2, and the k-invariant □Z◦Sq2 : H−2(–;Z/2) → H1(–;Z).
There is a class λ̃ ∈ SH 4(BSO) which is additive in direct sums [Jen05, Corollary 4.9] and whose
pullback to BSpin is the image of the usual λ ∈ H4(BSpin;Z) under the connective cover map
Hk(–;Z) → SH k(–) [Fre08, Proposition 1.9(i)]. A string structure on an oriented vector bundle
E → M is precisely a trivialization of λ̃(E) ∈ SH 4(M) (see [JFT20, §1.4]), so given a space X
and d̃ ∈ SH 4(X), one can define an (X, d̃)-twisted string structure on an oriented vector bundle

3Different authors mean different things by “supercohomology;” we use “restricted” to contrast with extended
supercohomology as introduced by Kapustin-Thorngren [KT17] and Wang-Gu [WG18, WG20]. See also [GJF19,
§5.3, §5.4].
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E → M to be a map f : M → X and a trivialization of λ̃(E) − f∗(d̃) ∈ SH 4(M). This or closely
related definitions appear in [FHT10, JF20, TY23a, TY23b, DY23]; pulling back to BSpin recovers
Wang’s definition, but over BSO this is strictly more general.

Let r : BU → BSO be the map defined by forgetting the complex structure; then a stringh
structure is a (BU,−r∗λ̃)-twisted string structure, which follows from the equation λ̃(E ⊕ F ) =
λ̃(E) + λ̃(F ) as noted above.

Theorem 2.17. Definitions 2.12, 2.13, and 2.15 are equivalent.

Proof. Exactness of the Bockstein long exact sequence associated to (2.11) implies Definitions 2.12
and 2.13 are equivalent, so we will focus on relating Definitions 2.13 and 2.15.

For topological spaces X, there is an isomorphism ρ : [X,BSU]
∼=→ ku4(X), and the composition

(2.18) [X,BSU] ρ−→ ku4(X) τ0−→ H4(X;Z)

sends a map f : X → BSU to f∗(c2). Thus a class x ∈ H4(X;Z) lifts to ku4(X) if and only if x is
the second Chern class of an SU-structured vector bundle.

Now we show a stringh structure in the sense of Definition 2.13 induces one in the sense of
Definition 2.15. By assumption, we have lifted λc(V ) to a class cku

2 (V ) ∈ ku4(X), which as above is
equivalent data to a vector bundle Ẽ → X with SU-structure and an identification c2(Ẽ) = λc(V ).
Let L be the determinant bundle of V and let E := Ẽ ⊕ L; we will show V ⊕ E has a string
structure, which means checking that we have data of trivializations

• w1(V ⊕ E) = 0 ,
• w2(V ⊕ E) = 0 , and
• λ(V ⊕ E) = 0 .

Because Ẽ and L are oriented, E is oriented, and because V and E are oriented, V ⊕E is oriented,
and therefore w1(V ⊕ E) is trivialized.

Since V is spinc with determinant bundle L, we have data of a trivialization of w2(E) + w2(L)
coming from the spin structure on V ⊕ L, and the SU-structure on Ẽ induces a spin structure on
Ẽ (see, e.g., [Sto67]), hence also a trivialization of w2(Ẽ). The Whitney sum formula provides for
us an identification

(2.19) w2(V ⊕ E) = w2(V ) + w2(L) + 0 = 0.

On to λ. As described above, V ⊕ L and Ẽ are spin, so we have an identification

(2.20) λ(V ⊕ E) = λ(V ⊕ L⊕ Ẽ) = λ(V ⊕ L) + λ(Ẽ)

using the Whitney sum formula in Lemma 2.3. By Remark 2.8, λ(Ẽ) = −c2(Ẽ) = −λ(V ⊕ L),
providing the required trivialization of λ(V ⊕ E) and therefore a string structure.

Finally, we will show that a stringh structure in the sense of Definition 2.15 induces a stringh
structure in the sense of Definition 2.13. Let E denote the ancillary bundle. Because V ⊕ E is
string, it is in particular spin, so w2(V ) + w2(E) is trivialized. We therefore have a spinc structure
on V with determinant bundle L := Det(E), because w2(E) = w2(Det(E)) canonically.

Let Ẽ := E − Det(E). Then we have canonical isomorphisms of complex line bundles

(2.21) Det(Ẽ) ∼= Det(E) ⊗ Det(−Det(E)) ∼= Det(E) ⊗ (Det(E))∨ ∼= C,

giving us data of an SU-structure on Ẽ, and therefore a class cku
2 ∈ ku4(X). We are done if we

can show that τ0(cku
2 ) = λc(V ), i.e. that c2(Ẽ) = λ(V ⊕ L). As in the previous part of this proof,
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the string structure on V ⊕ E furnishes an identification λ(V ⊕ L) + λ(Ẽ) = λ(V ⊕ E) = 0, so
λ(V ⊕ L) = −λ(Ẽ); applying Remark 2.8 allows us to conclude c2(Ẽ) = λ(V ⊕ L) = λc(V ). □

We now derive a few basic properties of stringh structures. We start by establishing in Proposi-
tion 2.27 the stringh analogue of the fact that a direct sum of spinc bundles is also spinc.

Lemma 2.22 (Whitney sum formula for λc). Let V,W → X be spinc vector bundles. Then in
H4(X;Z),

(2.23) λc(V ⊕W ) = λc(V ) + c1(V )c1(W ) + λc(W ).

Proof. By naturality, it suffices to prove this for V and W the tautological bundles over BSpincn1
,

resp. BSpincn2
for n1, n2 ≫ 0. Using Duan’s calculation [Dua18, Theorem D] of H∗(BSpincn;Z) and

the Künneth formula, we learn that H4(BSpincn1
×BSpincn2

;Z) lacks 2-torsion, so if we can show
2λc(V ⊕W ) = 2λc(V ) + 2c1(V )c1(W ) + 2λc(W ), that would suffice to prove the lemma. That is,
we want to prove

(2.24) p1(V ⊕W ⊕ (LV ⊗ LW )) = p1(V ⊕ LV ) + 2c1(V )c1(W ) + p1(V ⊕ LW ),

where LV , LW denote the determinant line bundles of V and W , respectively. Here we used the
fact that the determinant line bundle for a direct sum of spinc vector bundles is the tensor product
of their determinant line bundles.

The first Pontrjagin class satisfies a Whitney sum formula p1(E⊕F ) = p1(E)+p1(F ) if E and F
are oriented [Bro82, Theorem 1.6] (see also [Tho62]), and using that formula, we can reduce (2.24):
to prove the lemma, it suffices to prove that for complex line bundles L1 and L2,

(2.25) p1(L1 ⊗ L2) = p1(L1) + 2c1(L1)c1(L2) + p1(L2).

For any rank-2 oriented real vector bundle E, p1(E) = e(E)2, and the Euler class of a complex line
bundle is additive in tensor products, from which (2.25) follows, and then the lemma too. □

Lemma 2.26 (Conner-Floyd [CF66, §8]). For n ≥ 1 the classes c1, . . . , cn ∈ H∗(BUn;Z) have
canonical preimages cMU

1 , . . . , cMU
n ∈ MU ∗(BUn). Therefore the same is true with MU replaced

with any complex-oriented ring spectrum E with π0(E) ∼= Z.

These classes are called the Conner-Floyd Chern classes. To prove the part about E, it suffices
to observe that the complex orientation and isomorphism π0(E) ∼= Z give rise to maps of E∞-ring
spectra MU → E → HZ whose composition is the usual ring map MU → HZ, so the lift from ck
to cMU

k passes through some class cEk in E-cohomology.

Proposition 2.27. If V,W → X are stringh vector bundles, there is a canonical stringh structure
on V ⊕W extending the usual direct-sum spinc structure, characterized in the following equivalent
ways.

Lift of a class: The Whitney sum formula Lemma 2.22 implies that if cku
2 (V ), resp. cku

2 (W )
are lifts of λc(V ), resp. λc(W ) across τ0, then cku

2 (V ) + cku
1 (V )cku

1 (W ) + cku
2 (W ) is a lift of

λc(V ⊕W ) and thus defines a stringh structure on V ⊕W .
Trivialization of a class: We will show the equality

(2.28) □ku(λc(V ⊕W )) = □ku(λc(V )) + □ku(λc(W )),

so the trivializations of □ku(λc(V )) and □ku(λc(W )) induce a trivialization of □ku(λc(V ⊕
W )), hence a stringh structure on V ⊕W .
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Twisted string structure: Let E, resp. F be the ancillary bundles to V , resp. W . Then
V ⊕E⊕W⊕F is a direct sum of two string vector bundles, hence acquires a string structure;
switching E and W , we have produced a stringh structure on V ⊕W with ancillary bundle
E ⊕ F .

Proof. The Whitney sum formula and linearity of the Bockstein do not quite prove (2.28): they
tell us that

(2.29) □ku(λc(V ⊕W )) = □ku(λc(V )) + □ku(c1(V )c1(W )) + □ku(λc(W )).

So we will show □ku(c1(V )c1(W )) = 0. It suffices to do this for the universal case, which is a class
in ku7(BU1 ×BU1), and this is the zero group [BG10, Theorem 5.2.1]. Thus we have a canonical
trivialization of □ku(c1(V )c1(W )), or equivalently a canonical lift to ku4, namely cku

1 (V )cku
1 (W ).

Therefore the trivialization and lifting pieces of the proposition are equivalent by using exactness
like in the proof of Theorem 2.17.

Therefore we are done if we can show that under the process we described in the proof of
Theorem 2.17, the direct-sum string structure on V ⊕ E ⊕W ⊕ F produces the “obvious” lift of
λc(V ⊕W ), namely

(2.30) cku
2 (V ) + cku

1 (V )cku
1 (W ) + cku

2 (W ).

Since c1(V )c2(W ) has a canonical lift we just need to show that the direct sum string structure
provides lifts to c2(V ) and c2(W ). The lift we get from the direct-sum string structure is the
ku4-class corresponding to the virtual SU-structured vector bundle E ⊖ Det(E) ⊕ F ⊖ Det(F ).
Taking c2 of this gives c2(E−Det(E))+c2(F −Det(F )) but we have already proven in Theorem 2.17
that c2(E − Det(E)) = c2(Ẽ) = λc(V ) and the lift of this class is cku

2 (V ); a similar statement holds
for c2(F − Det(F )) where the lift is given by cku

2 (W ). □

Proposition 2.31 (String implies stringh). If V is a vector bundle with a string structure, there is
a canonical stringh structure on V characterized in the following equivalent ways.

Trivialization of a class: Since V is string, λc(V ) = λ(V ) = 0, and □ku(0) has a canonical
trivialization.

Lift of a class: There is a canonical lift of 0 ∈ H4(X;Z) to ku-cohomology, namely 0 ∈
ku4(X).

Twisted string structure: If E = 0, the string structure on V induces a string structure
on V ⊕ E, so we obtain a stringh structure with ancillary bundle 0.

Proof. This amounts to the assertion that if you take the 0 characteristic class or vector bundle
and pass it through the identifications we constructed in the proof of Theorem 2.17, you still end
up with 0, which is straightforward to verify. □

Proposition 2.32 (Complex implies stringh). If V is a complex vector bundle, there is a canonical
stringh structure on V characterized in the following equivalent ways.

Trivialization of a class: The ku-Bockstein of the universal class λc ∈ H4(BU;Z) lands in
ku7(BU), which is the zero group [BG10, Theorem 5.5.1].

Lift of a class: The map τ0 : ku4(BU) → H4(BU;Z) is surjective, and in the notation
of [BG10, Theorem 5.5.1], the class −c2 − c2

1 is a preimage of λc.
Twisted string structure: If E = −V , then V ⊕ E = 0 has a canonical string structure,

endowing V with a stringh structure with ancillary bundle −V .
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See [Dev22, Remark 7] for a fourth perpective on Proposition 2.32.

Proof. As usual, the equivalence of the first two perspectives follows from the long exact sequence
coming from (2.11). To bring in the third perspective, recall from the proof of Theorem 2.17 that
the preimage of λc in the second perspective is −cku

2 − (cku
1 )2 of the ancillary bundle (the cku

2 came
from the SU-bundle, and (cku

1 )2 from the determinant line bundle), which matches the second
perspective. □

Proposition 2.33. The construction in Proposition 2.31 sends the canonical string structure on a
direct sum of string vector bundles to the canonical stringh structure from Proposition 2.27. The
same is true for Proposition 2.32 with “string” replaced with “complex.”

Proof. Both parts of this proposition follow quickly using the twisted string structure/ancillary
bundle perspective. For example, if V and W are string, the canonical identification V ⊕ W

∼=→
V ⊕ 0 ⊕W ⊕ 0 identifies the stringh structure on V ⊕W from Proposition 2.27 with the stringh
structure induced from the direct-sum string structure on V ⊕W . The proof for complex vector
bundles is analogous. □

We denote by BStringh the space which classifies stringh bundles. We describe the properties
of BStringh by first considering it in the context of Definitions 2.12 and 2.15. Starting with
Definition 2.12, the maps [X,Σ7ku] represent classes in Σ7ku, which through suspension is equivalent
to [ΣX,Σ8ku]. By the loops-suspension adjunction, this gives [X,ΩBU⟨8⟩], and we take ΩBU⟨8⟩
as the space that classifies ku7(X).

Definition 2.34 (Devalapurkar [Dev22, Construction 2]). The space BStringh is the fiber of the
map

(2.35) □ku : BSpinc −→ ΩBU⟨8⟩.

This space arises from conidering all those spinc vector bundles such that λc is trivial in ku7(X).
The map BStringh → BSpinc can also be deduced from Definition 2.15; for a manifold X a

string structure on TX ⊕ Ẽ ⊕ L in particular gives a spin structure on TX ⊕ L, since Ẽ is spin
as it has an SU-structure. Therefore w2(TM) = w2(L) and X is spinc. The string structure on
TX ⊕ Ẽ ⊕ L implies λ(TX ⊕ L) = −λ(Ẽ) = c2(Ẽ) where the last equality is due to Remark 2.8.
Hence BStringh fits into the following pullback square:

(2.36)
BStringh BSU

BString K(Z, 4) .λc

c2
⌟

The diagram in Equation (2.36) then implies that a stringh structure on a spinc vector bundle V
with determinant bundle L is equivalent data to a (BSU, c2)-twisted string structure on V ⊕ L.

By Proposition 2.31 we can relate BStringh to BString, giving the following diagram whose
rows are fiber sequences [Dev22, Lemma 3].

(2.37)

BStringh BSpinc ΩBU⟨8⟩

BString BSpin K(Z, 4) .λ

□ku
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Lemma 2.38. The low-degree homotopy groups of BStringh are

(2.39)

π0(BStringh) ∼= 0 π5(BStringh) ∼= 0

π1(BStringh) ∼= 0 π6(BStringh) ∼= Z

π2(BStringh) ∼= Z π7(BStringh) ∼= 0

π3(BStringh) ∼= 0 π8(BStringh) ∼= Z2

π4(BStringh) ∼= Z π9(BStringh) ∼= Z/2,

and π10(BStringh) is an extension of Z/2 by Z.

Proof. We apply the long exact sequence in homotopy groups for the top fiber sequence in (2.37).
There is a homotopy equivalence BSpinc ≃ BSpin × BU1 (see [FH21b, §10] for this and similar

k πk(BStringh) πk(BSpinc) πk(ΩBU⟨8⟩)

2 Z Z 0

3 0 0 0

4 Z Z 0

5 0 0 0

6 Z 0 0

7 0 0 Z

8 Z ⊕ Z Z 0

9 Z/2 Z/2 Z

10 ? Z/2 0

∼=

∼=

∼=

∼= 0

Figure 1. Homotopy Long Exact Sequence for computing the homotopy groups
of BStringh in degrees up to 10.

equivalences), which allows us to compute π∗(BSpinc). The homotopy groups of ΩBU⟨8⟩ come
from Bott periodicity. Using these, we work out the long exact sequence on homotopy groups in
Figure 1, which proves the claim. □

Let MStringh denote the Thom spectrum of the map V : BStringh → BO; by the Pontrjagin-
Thom theorem, the homotopy groups of this spectrum are isomorphic to the bordism groups of
manifolds with stringh structures on their stable normal bundles.
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Remark 2.40. Sometimes in this paper, we will consider manifolds with stringh structures on
their stable tangent bundles, rather than stable normal bundles. A priori this is a different
tangential structure classified by the Madsen-Tillmann spectrum MTStringh, the Thom spectrum
of −V : BStringh → BO, but one can show using Proposition 2.27 that a stringh structure on
V → X is equivalent data to a stringh structure on −V → X, like for orientations, spin structures,
spinc structures, etc. This furnishes a canonical equivalence MStringh ≃ MTStringh. We will
therefore pass between tangential and normal stringh structures, and tangential and normal stringh
bordism and Thom spectra, without comment, and likewise for spin, spinc, string, and stably almost
complex structures.

We will show that MStringh is also complex oriented, and what the fact that string structures
leading to stringh structures implies at the level of MString and MStringh. The following omnibus
theorem summarizes the multiplicative properties of MStringh.

Theorem 2.41.
(1) MStringh has a canonical E∞-ring structure whose induced map on bordism groups is the

direct product M,N 7→ M ×N with stringh structure as in Proposition 2.27.
(2) MStringh has a canonical E∞-MString-algebra structure refining the construction in Propo-

sition 2.31.
(3) MStringh has a canonical E∞-MU -algebra structure refining the construction in Proposi-

tion 2.32; in particular, MStringh is a complex-oriented ring spectrum.
(4) Forgetting from a stringh structure to a spinc structure refines to the data of a canonical

E∞-MStringh-algebra structure on MSpinc.
(5) The algebra structures described above are compatible in the sense that the following diagram

is commutative whether one starts from MU ⟨6⟩, MString, or MU :

(2.42)
MU ⟨6⟩ MString MSpin

MU MStringh MSpinc ,

where MU ⟨6⟩ is the Thom spectrum of the 5-connected cover BU⟨6⟩ of BU.4

Parts (1) and (3) are originally due to Devalapurkar [Dev22, Construction 2, Corollary 4], proven
in a different way. The rest of Theorem 2.41 is implicit in [Dev22].

Proof. The stringh structure on a direct sum of stringh vector bundles that we introduced in
Proposition 2.27 defines a lift of the direct-sum map ⊕ : BO ×BO → BO to a map ⊕ : BStringh ×
BStringh → BStringh commuting with the forgetful maps to BO ×BO, resp. BO. This direct-sum
4U⟨6⟩ is playing the role of “tangential structure that induces both a complex structure and a string structure,”
analogous to MSU ≃ MU⟨4⟩ for complex and spin structures. In both cases it is possible to do a little better than
MU⟨n⟩, in that MU⟨n⟩ is not the final tangential structure that induces a complex structure and a spin/string structure
with compatible orientations. For complex and spin bordism, this is Stong’s “complex-spin” structure [Sto67] MΣ,
equivalent to data of a stably almost complex structure and a class ∈ H2(–;Z) with 2x = c1, so that w2 = c1 mod 2 = 0
gives a spin structure. Thus following the same line of reasoning as in [SSS12, §2.2.2] or [Deb24, Remark 1.55], this is
a (BU1, O(2))-twisted SU-structure, so MΣ ≃ MSU ∧ (BU1)O(2)−2, and this factorization can be made compatible
with the ring spectrum structures on both sides. For complex and string structures, we have this together with a
trivialization of λ = −c2, so this tangential structure is equivalent to a (BU1, O(2))-twisted U⟨6⟩-structure and its
Thom spectrum is MU⟨6⟩ ∧ (BU1)O(2)−2, once again as ring spectra. In this section, the statements expressing
compatibility of MU and MString over MStringh and under MU⟨6⟩ are true and slightly stronger if we replace
MU⟨6⟩ with MU⟨6⟩ ∧ (BU1)O(2)−2.
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map defines the structure of an E∞-space on BStringh; since it commutes with the forgetful maps,
we see that the forgetful map BStringh → BO is a map of E∞-spaces, where BO has the direct-sum
structure.

Now apply the Thom spectrum functor; it is a theorem of Lewis [LMSM86, §IX.7] that the
Thomification of an E∞-space with an E∞-map to BO is naturally an E∞-ring spectrum, and
passing this through the Pontrjagin-Thom construction, one sees that, just like in unoriented
bordism, the ring structure corresponds to the direct product on manifolds. This proves part (1).

The remaining four parts of the theorem also fall in a similar way: if ξ1 : B1 → BO and
ξ2 : B2 → BO are E∞-maps of spaces and η : B1 → B2 is an E∞-map commuting with the maps to
BO, then the Thomification of η is a map of ring spectra, making Mξ2 into an Mξ1-algebra. Thus:

• Proposition 2.33 implies parts (2) and (3).
• In Proposition 2.27, we saw that the forgetful map BStringh → BSpinc is compatible with

direct sums, which implies part (4).

For the last part of the theorem, it suffices to know that, given two U⟨6⟩-structured vector bundles
V and W , the direct-sum stringh structures on V ⊕W given by forgetting to MU , then to MStringh,
versus to MString then to MStringh, coincide; and the analogous for the spinc structure induced
on a direct sum of string vector bundles. In both cases, this can be checked by computing the
characteristic classes involved in the trivializations used to define the direct-sum stringh, resp. spinc,
structure. □

Concretely, all of this means that products of string, complex, stringh, spin, and spinc manifolds
are compatible with all of the forgetful maps between these structures.

Theorem 2.43 (Devalapurkar [Dev22]). The composition

(2.44) MString ∧ MU (2.41),#2 and 3−−−−−−−−−−→ MStringh ∧ MStringh µ−→ MStringh

is an equivalence of E∞-ring spectra.

Proof. A map X → BStringh is, up to homotopy, equivalent data to a stringh rank-zero virtual
vector bundle on X, so we will define maps to BStringh by writing down stringh vector bundles. To
do so, we will use Definition 2.15: a stringh structure on a vector bundle V → M is equivalent data
to a complex vector bundle E → M and a string structure on V ⊕E. We will therefore represent a
map M → BStringh as a pair (V,E) with E complex and V ⊕ E string. For instance:

• the map BString → BStringh giving a string vector bundle the stringh structure of
Proposition 2.31 is (V, 0) : BString → BStringh, where V → BString is the tautological
bundle; and

• the map BU → BStringh giving a complex vector bundle the stringh structure from
Proposition 2.32 is (E,−E) : BU → BStringh, where E → BU is the tautological bundle.

In a similar way we will represent a map to BString as a string vector bundle, a map to BU as a
complex vector bundle, etc. Let W → BStringh be the tautological bundle, with ancillary bumdle
F ; then with these notational conventions the maps

(W,F ) 7→ (W ⊕ F,−F ) : BStringh → BString ×BU(2.45a)

(V,E) 7→ (V ⊕ E,−E) : BString ×BU → BStringh(2.45b)
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are homotopy inverses to each other; keeping track of the effect of these maps on W we have the
following commutative diagram.

(2.46)
BStringh BString ×BU

BO

(W,F )7→(W⊕F,−F )

W

(V⊕E,−E)

V⊕E

One can verify that each of the maps in this diagram is compatible with direct sums, so (2.46) is a
commutative diagram of E∞-spaces and E∞-morphisms whose horizontal arrows are equivalences of
E∞-spaces. Thus W : BStringh → BO and V ⊕E : BString ×BU → BO are homotopy equivalent
as E∞-spaces with E∞-maps to BO, so the Thom spectrum functor produces equivalent E∞-ring
spectra from them: MStringh and MString ∧ MU .

Lastly, we need that the specific map in the theorem statement implements this equivalence.
This follows because the map (V,E) 7→ (V ⊕ E,−E) from (2.45b) factors, as an E∞-map, as the
composition of the maps putting canonical stringh structures on the string, resp. complex vector
bundles V , resp. E, followed by direct sum. The Thom spectrum functor turns direct sum into
multiplication, and now we are done. □

2.2. Relation between stringh structures and spinc structures on loop spaces. Thus far
we have seen in multiple ways that stringh structures are to string structures as spinc structures
are to spin structures. How far does the analogy go? In this subsection, we give an example where
the analogy fails to hold: string structures are closely related to spin structures on loop spaces, but
this is not true for stringh structures and spinc structures on loop spaces – instead, spinc structures
on loop spaces are governed by a different structure called a stringc structure (see [HHD21]). We
will review the definitions of stringc structures and show that stringc structures induce stringh
structures, but not vice versa.

Remark 2.47. We studied this question with applications to string theory in mind. Witten [Wit88]
showed at a physics level of rigor that the index of the supercharge in a (1+1)d nonlinear sigma
model with target space a string manifold M equals Ochanine’s elliptic genus [Och87]. This elliptic
genus can be recovered as the S1-equivariant index of a Dirac operator on LM , using the string
structure on M to define a spin structure on LM . The results in this subsection suggest that
stringc structures, rather than stringh structures are the right way to generalize this for the spinc
Dirac operator.

Definition 2.48 ([HHD21]). Let k ∈ Z. A strong stringc structure of level (2k + 1) is a
(BU1, L

⊗(2k+1))-twisted string structure, where L → BU1 denotes the tautological bundle.

Remark 2.49. The definition in [HHD21] is phrased differently, as a spinc structure and a trivializa-
tion of a characteristic class, but one can show the two are equivalent by an argument similar to
that of Theorem 2.17.

Remark 2.50. Definition 2.48 for k = 0 was introduced earlier, by Chen-Han-Zhang [CHZ11,
Definition 3.1], and is sometimes just called a stringc structure. On a spinc vector bundle V → X,
this structure is obstructed by λc from Definition 2.6. Thus at least a priori this structure is
stronger than a stringh structure, which only requires □ku(λc) to vanish. In particular, a stringc
structure induces a stringh structure.

See Sati [Sat11a, Sat11b] for some applications of this structure in physics.
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Remark 2.51. There exist spinc vector bundles V → X such that λc(−V ) ̸= −λc(V ), which means
that a stringc structure on V is not equivalent data to a stringc structure on −V . Thus tangential
and normal stringc structures are not equivalent. This in particular implies the Thom spectra
classifying tangential and normal stringc structures do not have E∞-ring spectrum structures
corresponding on bordism groups to direct product.

We will compare Definition 2.48 with notions of spinc structures on loop spaces. Before doing so,
we recall from [McL92] the analogous story for string manifolds and spin structures on their loop
spaces.

Let G be a Fréchet Lie group – that is, a group that is a Fréchet manifold, such that multiplication
and inversion are smooth. Brylinski [Bry00, Proposition 1.6] showed that the group of Fréchet Lie
group central extensions

(2.52) 1 U1 G̃ G 1,

such that G̃ → G is a principal U1-bundle, is naturally isomorphic to the Segal-Mitchison coho-
mology group [Seg70, Seg75] H2

SM(G; U1). If G is a (finite-dimensional) Lie group, then LG is a
Fréchet Lie group, and if G is compact, then there is a canonical isomorphism due to Brylinski-
McLaughlin [BM94]

(2.53) H2
SM(LG; U1)

∼=−→ H4(BG;Z).

See also [ADH21, Chapter 23].
In particular, if G is connected, simple, and simply connected, there is a canonical isomorphism

H4(BG;Z)
∼=→ Z. The central extension of LG classified by 1 ∈ Z is denoted L̂G, and is the

universal central extension: for any abelian Lie group A, any Fréchet Lie group central A-extension
G̃ → LG which is a principal A-bundle is isomorphic to an associated bundle

(2.54) G̃ ∼= L̂G×U1 A

for some Lie group homomorphism U1 → A [PS86, Chapter 4].
Now let G = Spinn, and assume n ≥ 3 so that G is simply connected and we have the universal

central extension L̂Spinn of LSpinn by U1. For any spin manifold M , the frame bundle of LM lifts
canonically to an LSpinn-bundle LP → LM .

Definition 2.55 (McLaughlin [McL92, §1]). A spin structure on LM is a lift of LP to a principal
L̂Spinn-bundle L̂P → LM .

See also Killingback [Kil87] and Witten [Wit88, §3].

Theorem 2.56 (McLaughlin [McL92]). If M has a string structure, then LM has a spin structure.

Remark 2.57. Pilch-Warner [PW88, §3] showed the converse to Theorem 2.56 is not true, but versions
of the converse with additional hypotheses do hold; see McLaughlin (ibid.), Kuribayashi [Kur96],
Kuribayashi-Yamaguchi [KY98], Stolz-Teichner [ST04, ST05], Waldorf [Wal10, Wal12a, Wal12b,
Wal15, Wal16a, Wal16b], Kottke-Melrose [KM13], Capotosti [Cap16], and Ludewig [Lud23]. See
also Waldorf [Wal23] for an overview.

In a parallel manner, we would expect that for M a stringh manifold, there is a spinc structure
on LM . Since Spincn is neither simple nor simply connected, the story is more complicated – there
is not a universal central extension by U1, and we will have to care about a Z worth of central
extensions, corresponding to the level of the stringc structure in Definition 2.48.
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Definition 2.58. Let k ∈ Z. The Fréchet Lie group ̂LkSpincn is the central extension of LSpincn
by U1 which, under the isomorphism H2

SM(LSpincn; U1) ∼= H4(BSpincn;Z) from (2.53), is identified
with the class λc − kc2

1.

Huang-Han-Duan [HHD21] define these groups in a different but equivalent way.
Naturality of (2.53) implies that the pullback of the central extension ̂LkSpincn → LSpincn along

the inclusion LSpinn → LSpincn is the universal central extension of LSpinn. So even though we
do not have a universal central extension in the spinc setting, we favor these central extensions out
of the Z2 of all possible central extensions.

For any spinc manifold M , the frame bundle on LM canonically lifts to an LSpincn-bundle
LQ → LM .

Definition 2.59. Let M be a spinc manifold. A level (2k + 1) spinc structure on the loop space
LM is a lift of LQ → LM to a principal ̂LkSpincn-bundle L̂Q → LM .

Again, this definition is different but equivalent to Huang-Han-Duan’s notion of a weak stringc
structure of level (2k + 1) [HHD21, Definition 4.1].

Now we can refine our earlier question: if stringh is to string as spinc is to spin, does the loop
space of a stringh manifold have a level 2k + 1 spinc structure for some k? We were surprised to
obtain a negative answer.

Theorem 2.60. There are closed stringh manifolds M such that LM is not spinc for any choice
of level.

To prove this we will use a characteristic-class criterion for a loop space having a spinc structure
of a given level.

Lemma 2.61. Let A be an E1-space. Then there is a natural homotopy equivalence LA ≃ A× ΩA.

Here ΩA is the space of loops in A based at the identity. See [Zil77, Agu81, Hai21] for proofs
and generalizations of Lemma 2.61.

Definition 2.62. Recall that the Serre spectral sequence for the fibration G → EG → BG defines
a transgression map τ : H4(BG;Z) → H3(G;Z).

(1) Let c := τ(c1) ∈ H1(Spinc;Z).
(2) Let µc := τ(λc) ∈ H3(Spinc;Z).

Lemma 2.61 implies a homotopy equivalence

(2.63) BLSpinc ≃ BSpinc ×BΩSpinc ≃ BSpinc × Spinc,

so the Künneth formula tells us that the classes c and µc, as well as their products with classes in
H∗(BSpinc;Z), define integer-valued cohomology classes for BLSpinc, and therefore by pullback
for BLSpincn for all n.

Proposition 2.64 (Huang-Han-Duan [HHD21, Remark 4.3]). Let M be a spinc manifold. Then
LM has a spinc structure of level 2k+1 if and only if µc(LM)−2kc(LM)c1(LM) = 0 in H3(LM ;Z).

Definition 2.65. The loop transgression map ν : H∗(M ;Z) → H∗−1(LM ;Z) is the composition
π! ◦ ev∗, where ev : S1 × LM → M is the evaluation (x, γ) 7→ γ(x) and π! is integration over S1.

This is different from the map τ from Definition 2.62!
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Proposition 2.66 (Huang-Han-Duan [HHD21, §2.4]). In H∗(BLSpinc;Z), ν(λc) = µc and ν(c1) =
c. Moreover, ν(xy) = ν(x)y + (−1)|x|ν(y)x.

Corollary 2.67 (Huang-Han-Duan [HHD21, Theorem 5.1]). If M is strong stringc of level 2k + 1,
then LM has a spinc structure of level 2k + 1.

Proof. Since M is strong stringc of level 2k + 1, λc(M) − kc1(L)2 = 0, where L → M is the deter-
minant line bundle of the associated spinc structure. Thus ν(λc(M) − kc1(L)2) = 0 in H3(LM ;Z).
By Proposition 2.66, this means µc(LM) − 2c(LM)c1(LM) = 0, which by Proposition 2.64 implies
LM has a spinc structure of level 2k + 1. □

Proof of Theorem 2.60. Let M := CPm × CPn for m,n ≥ 3; since M is complex, then by
Proposition 2.32 M has a stringh structure. We will show that there is no k ∈ Z such that
µc(LM) − 2kc(LM)c1(LM) = 0, so that by Proposition 2.64 LM does not have a spinc structure
for any level. Let x ∈ H1(M ;Z) be the first Chern class of the first projective space factor and y

be the first Chern class of the second projective space factor, so that

(2.68) p1(M) = (m+ 1)x2 + (n+ 1)y2

by the Whitney sum formula for p1.5 The determinant line bundle L for this complex structure
satisfies c1(L) = c1(M) = (m+ 1)x+ (n+ 1)y, so

(2.69)
p1(M) − (2k + 1)c1(L)2 = (m+ 1)2x2 + (n+ 1)y2 − (3k + 1)((m+ 1)x+ (n1)y)

= 2k(m+ 1)x2 − 2k(n+ 1)y2 − (4k + 2)(m+ 1)(n+ 1)xy.

Since 2(λc − kc2
1) = p1 − (2k + 1)c2

1, this implies

(2.70) λc(M) − kc1(L)2 = k(m+ 1)x2 − k(n+ 1)y2 − (2k + 1)(m+ 1)(n+ 1)xy.

By Proposition 2.66, we want to show that the loop transgression of (2.70) does not vanish for any
k ∈ Z, as this will imply that LM does not have a spinc structure of any level.

First assume k ̸= 0. In this case, it suffices to pull back across the standard inclusion CPm ↪→
CPm ×CPn, which on cohomology sends x 7→ x and y 7→ 0. That is, because the loop transgression
map is natural, showing that ν(k(m+ 1)x2) ̸= 0 in H3(LCPm;Z) implies that the transgression
of (2.70) does not vanish.

We will compare the loop transgression maps on CPm and CP∞. Since m ≥ 3, the inclusion
CPm ↪→ CP∞ is at least 7-connected. The natural isomorphism πk(X) ≃ πk−1(ΩX) thus tells
us that ΩCPm → ΩBU1 is at least 6-connected. For any space X, there is a natural fibration
ΩX → LX → X; combining these two connectedness estimates with the long exact sequence of the
fibration, we learn LCPm → LBU1 is also at least 6-connected. Naturality of the loop transgression
map gives us a commutative diagram

(2.71)
H4(CP∞;Z) H4(CPm;Z)

H3(LCP∞;Z) H3(LCPm;Z),

∼=

ν ν

∼=

and since the maps CPm → CP∞ and LCPm → LCP∞ are at least 6-connected, the maps on H4

and H3 are isomorphisms. Since k ̸= 0, then to show ν(k(m+ 1)x2) ̸= 0 in H3(LCPm;Z), it suffices

5As we noted during the proof of Lemma 2.22, the first Pontrjagin class satisfies the Whitney sum formula for
oriented vector bundles.
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to show that the transgression map H4(CP∞;Z) → H3(LCP∞;Z) is injective. This we know: by
Proposition 2.66 (then pulling back along U1 ↪→ Spinc), ν(c2

1) = 2cc1 ̸= 0.
It remains to rule out k = 0. For this, let ℓ := min(m,n) ≥ 2 and consider the diagonal

embedding ∆: CPℓ ↪→ CPℓ × CPℓ ↪→ CPm × CPn. Under this map, both x and y pull back to
z := c1(CPℓ) ∈ H2(CPℓ;Z), so setting k = 0 in (2.70) and pulling back, we want to show that
ν(−(m+ 1)(n+ 1)z2) ̸= 0 in H3(LCPℓ;Z). Since ℓ ≥ 2, the rest of this argument is the same as
that of the previous paragraph. □

3. Orienting tmf 1(n)

In this section we produce stringh orientations of tmf 1(n) in Theorem 3.7. We start by introducing
TMF and Tmf with level structure, and from this introduce tmf 1(n).

The spectrum of (periodic) topological modular forms TMF is the global sections of a sheaf
of E∞-ring spectra Otop on the étale site of the moduli stack of elliptic curves Mell , that is
TMF = Otop(Mell). The homotopy ring π2∗(TMF) (i.e. the same ring with degrees doubled) is
rationally6 isomorphic to the ring

(3.1) M̃F[SL2(Z),Z] ∼= Z[c4, c6,∆±]/(c3
4 − c2

6 − 1728∆), |c4| = 9, |c6| = 12, |∆| = 12

of weakly holomorphic integral modular forms. The homotopy groups of TMF are periodic with
period 576.

The sheaf Otop extends to define a sheaf on the étale site of the Deligne-Mumford compactification
Mell of Mell , and the global sections of Otop → Mell are a spectrum Tmf which is neither periodic
nor connective, called non-periodic nonconnective topological modular forms or mixed Tmf . The
homotopy ring of Tmf is closely related to the ring of holomorphic integral modular forms

(3.2) MF(SL2(Z),Z) ∼= Z[c4, c6,∆]/(c3
4 − c2

6 − 1728∆) .

There is a map π2∗(Tmf ) → MF(SL2(Z),Z), and after inverting 6, this is an isomorphism but only
in nonnegative degrees. Therefore one defines the connective cover tmf := τ≥0Tmf , so that there is
an isomorphism π2∗(tmf ) ∼= MF(SL2(Z),Z) ⊗ Z[1/6] in all degrees.

By considering moduli spaces with a little extra structure, one obtains interesting variants of
TMF and Tmf .

Definition 3.3 (Hill-Lawson [HL16]). Let n ≥ 1, M1(n) denote the moduli stack of elliptic curves
with a chosen point of order n, and M1(n) be the Deligne-Mumford compactification of M1(n).
The global sections of the pullback of Otop to M1(n)[1/n], resp. to the log-étale site of M1(n)[1/n]
are denoted TMF1(n), resp. Tmf 1(n).

Hill-Lawson also define analogous series of spectra TMF(n) and TMF0(n), and Tmf (n) and
Tmf 0(n). Prior to their work, various examples of these families of spectra were introduced by
Behrens [Beh06, Beh07], Mahowald-Rezk [MR09], and Stojanoska [Sto12].

Both TMF1(n) and Tmf 1(n) are E∞-ring spectra by construction (in fact, E∞ TMF -, resp.
Tmf -algebra spectra), and there is a ring spectrum map Tmf 1(n) → TMF1(n). There is a rational
isomorphism from π2∗(TMF1(n)) to the ring MF(Γ1(n),Z[ 1

n ]) of weakly holomorphic modular
forms for the congruence subgroup Γ1(n) ⊂ SL2(Z), also called integral modular forms at level n.

However, this analogy does not continue to mixed Tmf 1(n): the ring π∗(Tmf 1(n)) ⊗ Q and the
ring of holomorphic modular forms for Γ1(n) tensored with Q are not always isomorphic, even

6In fact, these two rings are isomorphic after inverting 6.
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restricted to nonnegative degrees. This means that the connective cover of Tmf 1(n) is not always
the right analogue of tmf .

Fortunately, the discrepancy is not huge: the sole discrepancy is that π1(Tmf 1(n)) may be
nonzero, and frequently it is 0, including for all n ≤ 22 (see, for example, [Mei22, Remark 3.14]).
Meier [Mei23], following a general procedure of Lawson [Law15] to remove π1, constructs for all
n ≥ 2 an E∞-ring spectrum tmf 1(n) with π1(tmf 1(n)) = 0 and a map tmf 1(n) → Tmf 1(n) which
is an isomorphism for n = 0 and n ≥ 2, implying π2∗(tmf 1(n)) is rationally isomorphic to the ring
of holomorphic modular forms of level n in all degrees. For this paper, tmf 1(n) always refers to
Meier’s construction, whether or not this is the connective cover of Tmf 1(n).

Remark 3.4. Lawson-Naumann [LN14] constructed tmf 1(3) 2-locally as an E∞-ring spectrum
before Meier’s work, and identified it with BP⟨2⟩; in this case, π1(Tmf 1(3)) vanishes. See also
Hill-Meier [HM17].

Since topological modular forms with level structure were first systematically studied by Hill-
Lawson [HL16], it has been an open question to orient them by a Thom spectrum which is a better
approximation than MU or MString: see, for example [HL16, §1]. Recently, Devalapurkar [Dev22]
answered this for n = 3 using forthcoming work of Hahn-Senger:

Theorem 3.5 (Devalapurkar [Dev22, Theorem 5]). There is a map of E∞-ring spectra σD : MStringh(2) →
tmf 1(3)(2) such that the following diagram commutes:

(3.6)

MString(2) tmf (2)

MStringh(2) tmf 1(3)(2).

σ

σD

We will lift this to arbitrary n:

Theorem 3.7. For all n ≥ 2, there are maps of E∞-ring spectra

(3.8) σ1(n) : MStringh[1/n] −→ tmf 1(n)

such that the composition of σ1(n) with the complex orientation on MStringh constructed in
Theorem 2.41, Item 3, is the complex orientation of tmf 1(n) constructed in Senger [Sen23, Theorem
1.7], and there is a commutative square

(3.9)
MString[1/n] tmf [1/n]

MStringh[1/n] tmf 1(n) .

σ

σ1(n)

Remark 3.10. Our proof uses completely different methods than Devalapurkar’s, and it would be
interesting to know whether there is a 2-local equivalence σD ≃ σ1(3).

The E∞-ring map MString → MStringh is the one from Theorem 2.41, and the map tmf [1/n] →
tmf 1(n) is induced by the inclusion of the moduli stack of elliptic curves with a chosen point of
order 3 into the moduli stack of all elliptic curves. We prove Theorem 3.7 by first showing it for
neither-connective-nor-periodic Tmf 1(n), then lifting to tmf 1(n).

Proposition 3.11. The analogue of Theorem 3.7, but with Tmf 1(n) in place of tmf 1(n), is true.
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Proof of Proposition 3.11. Throughout this proof we invert n.
We will repeatedly use the fact that if A, B, C, and D are E∞-ring spectra, and f : A → C and

g : B → D are E∞-ring homomorphisms, then f ∧ g : A ∧ B → C ∧ D has a canonical E∞-ring
homomorphism structure.

Specifically, use this fact to daisy-chain together the following E∞-ring maps:
(1) the E∞ equivalence MStringh ≃ MString ∧ MU we established in Theorem 2.43,
(2) the σ-orientation σ : MString → tmf constructed by Ando-Hopkins-Rezk [AHR10, Theorem

12.3],
(3) the complex orientation M(n) : MU → tmf 1(n) → Tmf 1(n) due to Senger [Sen23, Theorem

1.7],7
(4) the unit map A(n) : tmf → Tmf 1(n) of the E∞-tmf -algebra structure on Tmf 1(n) obtained

by Hill-Lawson [HL16, Theorem 6.1].
Thus, the following composition is a homomorphism of E∞-ring spectra.
(3.12)

MStringh ≃−→
(1)

MString ∧ MU σ∧M(n)−→
(2, 3)

tmf ∧ Tmf 1(n) A(n)∧id−→
(4)

Tmf 1(n) ∧ Tmf 1(n) µ−→ Tmf 1(n),

where the final map is multiplication. □

Proposition 3.13. Let R be a connective E∞-ring spectrum with isomorphisms ψ : π0(R)
∼=→ Z

and π1(R) = 0. Given a morphism f : R → τ≥0Tmf 1(n) of E∞-ring spectra, there is a canonical
lift of f to a map f̃ : R → tmf 1(n).
Proof. Meier [Mei23, Proposition 2.9, Lemmas 2.10 and 2.11] constructs a pullback square of
E∞-ring spectra

(3.14)
tmf 1(n) Hπ0(Tmf 1(n))

τ≥0Tmf 1(n) τ0:1Tmf 1(n),
τ≤1

φ
⌟

and shows φ is the unique E∞-ring map Hπ0(Tmf 1(n)) → τ0:1Tmf 1(n) inducing a ring iso-
morphism on π0. Therefore it suffices to produce E∞-ring maps a : R → τ≥0Tmf 1(n) and
b : R → Hπ0(Tmf 1(n)) and an identification of their compositions with the maps τ≤1, resp.
φ in (3.14):

(3.15)
R Hπ0(Tmf 1(n))

τ≥0Tmf 1(n) τ0:1Tmf 1(n).
τ≤1

φa

b

Choose a = f and let b be the composition

(3.16) R
τ≥0−→ Hπ0(R) ψ−→ HZ 1−→ Hπ0Tmf 1(n),

where 1 is the unit. To provide an identification τ≤1 ◦ a ≃ φ ◦ b, first use that the target is
1-truncated, so that both compositions canonically factor through τ≤1R. Since R is connective and
π1(R) = 0, the 0-truncation map τ≤1R → τ≤0R ≃ Hπ0(R) is an equivalence of E∞-ring spectra.
Thus we without loss of generality replace R with Hπ0(R).

7Absmeier [Abs21, Theorem 1] uses different methods to construct E∞-orientations MU [ζn, 1/n] → Tmf 1(n), where
ζn is a primitive nth root of unity; we use Senger’s orientation to avoid ζn.



TYPE IIA STRING THEORY AND TMF WITH LEVEL STRUCTURE 21

For both τ≤1◦a and φ◦b, the induced map on π0 is the localization Z → Z[1/n], using the specified
isomorphism ψ : π0(R)

∼=→ Z and Meier’s identification [Mei23, Lemma 2.11] π0(Tmf 1(n)) ∼= Z[1/n].
As the ring homomorphism Z → Z[1/n] is étale,8 a theorem of Lurie [Lur17, Theorem 7.5.0.6] shows
that this map on π0 lifts uniquely to an E∞-ring map Hπ0(R) → τ0:1Tmf 1(n) with a contractible
space of automorphisms. Thus τ≤1 ◦ a and φ ◦ b are canonically equivalent up to contractible data
and we may conclude. □

Now proving Theorem 3.7 amounts to showing MStringh satisfies the hypotheses of Proposi-
tion 3.13.

Proof of Theorem 3.7. Thom spectra of rank-zero virtual vector bundles, such as MStringh, are
connective. Connectivity provides a canonical lift of the E∞-ring map MStringh → Tmf 1(n)
constructed in Proposition 3.11 to an E∞-ring map MStringh → τ≥0Tmf 1(n). Therefore to lift to
tmf 1(n), it suffices to show ΩStringh

0
∼= Z and ΩStringh

1
∼= 0, then invoke Proposition 3.13.

If M is a spinc manifold of dimension 3 or below, λc(M) = 0, because it is an element of
H4(M ;Z) ∼= 0. Therefore M admits a canonical stringh structure: lift λc(M) to 0 ∈ ku4(M). This
implies that for k ≤ 2, ΩStringh

k → ΩSpinc

k is an isomorphism, and ΩSpinc

0
∼= Z and ΩSpinc

1
∼= 0. □

3.0.1. Real-equivariance. We briefly discuss a Real-equivariant generalization of Theorem 3.7, and
as with everything, we begin with the spinc story.

Complex conjugation defines a Z/2-action on complex K-theory; the resulting Z/2-equivariant
spectrum is called Real(-equivariant) K-theory and denoted KR [Ati66]. The underlying spectrum
of KR is KU , and the Z/2-(homotopy) fixed point spectrum is KO. KR is cofree (see, e.g., [HZ20]),
meaning that its structure as a Z/2-E∞-ring spectrum is induced from a Z/2-action on the spectrum
KU by E∞-ring maps.

Landweber [Lan67, Lan68], Fujii [Fuj76], Araki [Ara79a, Ara79b], and Araki-Murayama [AM78]
constructed a Z/2-equivariant-ring spectrum MR whose underlying spectrum is MU with Z/2-action
by complex conjugation. MR also has an E∞-structure: see Hill-Hopkins-Ravenel [HHR16, §B.12].

Definition 3.17 ([AM78, Ara79a]). A Real-orientation of a Z/2-ring spectrum E is a homomor-
phism of Z/2-ring spectra MR → E.

Araki-Murayama [AM78, §7] proved KR is Real-oriented; the Real-orientation may be chosen to
be a Z/2-E∞-ring map cf R.

Nonequivariantly, the complex orientation MU → KU constructed by Conner-Floyd factors
through E∞-ring maps u : MU → MSpinc and Â : MSpinc → KU ; the former can be constructed
similar to the methods we used in Theorem 2.41 and the latter is due to Joachim [Joa04]. Halladay-
Kamel [HK24] recently generalized this to the Real-equivariant setting.

Theorem 3.18 (Halladay-Kamel [HK24]). There is a Z/2-E∞-ring spectrum MSpincR and Z/2-
E∞-ring maps uR : MR → MSpincR and ÂR : MSpincR → KR such that

(1) The underlying spectrum of MSpincR is MSpinc,
(2) forgetting to underlying spectra, ÂR, resp. uR restrict to Â, resp. u, and
(3) the Real orientations ÂR ◦ uR and cf R are equivalent.

8Meier [Mei23] works in a more general setting where a E∞-ring spectrum R has π0R an étale extension of ZS . The
étale condition is not strictly necessary for the purposes of our proof.
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That is, Halladay-Kamel answer the question, “what is to KR as MSpinc is to KU?”
We prove an analogue of Theorem 3.18 for topological forms with level structure in Theorem 3.22.

However, the version of the theorem stated there is slightly weaker than the naïve generalization of
Theorem 3.7: the orientation lands in Tmf 1(n)R, rather than tmf 1(n)R, as aspects of the lifting
argument from τ≥0Tmf 1(n) to tmf 1(n) are tricky to make equivariant. Moreover, we did not
construct an E∞ map, only a map of Z/2-ring spectra. Ultimately this is because there is not yet
a construction of a Z/2-E∞-ring map MR → tmf 1(n)R (see [Mei23, Sen23]). We predict that such
an E∞ refinement exists.

The following theorem is a combination of work of Hill-Meier [HM17] and Meier [Mei23].

Theorem 3.19. There are Z/2-E∞-ring spectra tmf 1(n)R, Tmf 1(n)R, and TMF1(n)R whose
underlying spectra are tmf 1(n), Tmf 1(n), and TMF1(n) respectively and whose Z/2-fixed point
spectra are tmf 0(n), Tmf 0(n), and TMF0(n) respectively. The E∞-ring spectrum maps

(3.20a) MU [1/n] M(n)−→ tmf 1(n) −→ Tmf 1(n) −→ TMF1(n)

lift to Z/2-ring maps,

(3.20b) MR[1/n] MR(n)−→ tmf 1(n)R −→ Tmf 1(n)R −→ TMF1(n)R,

the last two of which are E∞.

Definition 3.21. Let MStringhR := MR ∧ MString, where MString is given the cofree Z/2-E∞-ring
structure arising from the trivial action.

Thus MStringhR is a Z/2-E∞-ring spectrum whose underlying spectrum is MStringh.

Theorem 3.22. For all n ≥ 2, there is a map of Z/2-ring spectra

(3.23) σ1(n)R : MStringhR[1/n] −→ Tmf 1(n)R
which on underlying spectra is σ1(n) composed with the usual map tmf 1(n) → Tmf 1(n), and such
that the Real orientation MR(n) : MR[1/n] → Tmf 1(n) factors as a Real orientation vR : MR →
MStringhR followed by the usual orientation MStringh → Tmf 1(n). On underlying spectra, vR is v.

Proof. The proof strategy is the same as for Proposition 3.11. To adapt that proof, we need the
following data.

(1) A refinement of the complex orientation MU → Tmf 1(n) to a Real orientation MR[1/n] →
Tmf 1(n)R, which is provided by Meier [Mei22, Theorem 3.6] (here Theorem 3.19).

(2) An extension of the E∞-ring map σ : MString → tmf to a map between the respective cofree
Z/2-E∞-ring spectra associated to the trivial Z/2-actions on MString and tmf . By [BH15,
§6.2.2], it suffices to show that σ is equivariant for the trivial Z/2-actions on its domain
and codomain, which is trivially true.

(3) Lastly we need to refine the E∞-ring map tmf [1/n] → Tmf 1(n) to a Z/2-E∞-ring map
tmf [1/n] → Tmf 1(n)R, where tmf [1/n] is cofree, indued from the trivial Z/2-action. With-
out loss of generality we may replace tmf [1/n] by Tmf [1/n], then precompose with the map
tmf [1/n] → Tmf [1/n] (which refines to Z/2-spectra in the same way as in the previous
bullet point). Again by [BH15, §6.2.2], it suffices to show that Tmf [1/n] → Tmf 1(n) is
Z/2-equivariant for the trivial Z/2-action on Tmf [1/n] and the Z/2-action on Tmf 1(n)
defined in [HM17, §4.1].
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For this, we return to the moduli of elliptic curves. The Z/2-action on Tmf 1(n) is the map
induced on global sections of Otop from a Z/2-action on (the log-étale site of) M1(n)[1/n],
the Deligne-Mumford compactification of the modulo stack of elliptic curves C with a chosen
point x of order n (see Definition 3.3). This Z/2-action sends (C, x) 7→ (C,−x); therefore
the map M1(n)[1/n] → M[1/n] forgetting x is Z/2-equivariant with respect to the trivial
action on M[1/n]. Taking sections of Otop, we obtain the usual map Tmf [1/n] → Tmf 1(n),
together with the fact that it is Z/2-equivariant.

With these lifts in place, the construction of the map MStringhR → Tmf 1(n)R proceeds just as before.
At the time of writing, the Real orientation of Tmf 1(n) has not been refined to a Z/2-E∞-map
(see [Sen23, Question 1.10]), so this construction is just a Z/2-ring spectrum map. □

We would like to compare Theorem 3.22 with Halladay-Kamel’s Real-equivariant lift of the
Atiyah-Bott-Shapiro orientation. However, the constructions of MStringhR and MSpincR are difficult
to relate, so we leave the comparison as a conjecture.

Lemma 3.24 (Hill-Meier [HM17]). There is a Z/2-E∞-ring map Λ: (Tmf 1(3)R)(2) → KR(2).

Hill-Meier do not explicitly state Lemma 3.24 in this form, but they provide all the pieces, so we
show how to assemble those pieces into a proof.

Proof. As noted above, KR is cofree, and Tmf 1(3)R is also cofree [HM17, §4.1]. Hill-Meier (ibid.,
§4.2), using a theorem of Hill-Lawson [HL16, Theorem 6.2], show that there is an E∞-map
of nonequivariant spectra Λ̃ : Tmf 1(3)(2) → KU (2) which is equivariant for the Z/2-actions on
Tmf 1(3)(2) and KU (2). Blumberg-Hill [BH15, §6.2.2] (see also [HM17, Theorem 2.4]) show that if
ϕ : R → S is a Z/2-equivariant map of E∞-ring spectra with respect to Z/2-actions by E∞-ring
maps on R and S, then ϕ upgrades to a Z/2-E∞-ring map on the cofree Z/2-E∞-ring spectra built
from R and S. Applying this to Λ̃, we conclude. □

Question 3.25. Throughout this question, implicitly 2-localize.
Does there exist a Z/2-E∞-ring map MStringhR → MSpincR which on underlying spectra is the

map MStringh → MSpinc of Theorem 2.41 and such that the following diagram commutes?

(3.26)
MR MStringhR Tmf 1(3)R

MSpincR KR

vR

uR

σ1(n)R

∃? Λ
ÂR

If such a map exists, it would also be nice to describe it geometrically, e.g. in terms of characteristic
classes of Z/2-equivariant vector bundles.

Another potential benefit of Real-equivariance would arise by taking fixed points. Halladay-
Kamel [HK24, §4] study the fixed-point spectrum (MSpincR)Z/2; it appears to be an unwieldy object,
but it admits an E∞-ring map ũ : MSpin → (MSpincR)Z/2, so that one can form the composition

(3.27) MSpin ũ−→ (MSpincR)Z/2 (ÂR)Z/2

−→ (KR)Z/2 ≃ KO,

and (ibid., Corollary 6.14) this recovers the usual Atiyah-Bott-Shapiro orientation.
Because (Tmf 1(n)R)Z/2 ≃ Tmf 0(n) [HM17, §4], one could try to generalize Halladay-Kamel’s

approach to orient Tmf 0(n). Ultimately because MRZ/2 is complicated (though understood:
see [HK01, GM17]), we expect (MStringhR)Z/2 to not be easy to work with.



24 ARUN DEBRAY AND MATTHEW YU

Proposition 3.28. Let ξ : B → BO be a tangential structure with two-out-of-three data such that
there is an E∞-ring map ψ : M ξ → (MStringhR)Z/2. Then by forming a composition analogous
to (3.27), there is a canonical orientation M ξ[1/n] → Tmf 0(n).

The most naïve generalization of Halladay-Kamel’s construction leads to ξ = String, and the
String-orientation of Tmf 0(n) is not new information. It would be interesting to understand whether
a more careful use of Proposition 3.28 could be used to construct an orientation of Tmf 0(n) by some
nontrivial MString-algebra Thom spectrum, analogously to the Stringh-orientation of tmf 1(n). We
note that Wilson [Wil15, Corollary 4.16] has produced an orientation MSpin⟨w4⟩[1/3] → tmf 0(3)
(hence also to Tmf 0(3)), where Spin⟨w4⟩ is the tangential structure which is a spin structure and a
trivialization of the Stiefel-Whitney class w4; we do not know whether Wilson’s orientation factors
through (MStringhR)Z/2 in Proposition 3.28.

3.1. Low-degree homotopy groups of MStringh. In this subsection, we compute low-dimensional
stringh bordism groups, and also calculate the effects of some of the orientations σ1(n) of the
previous section on homotopy groups.

We will recall a few facts about the Brown-Peterson spectrum BP since many of the results
in the remainder of this section utilize BP and its siblings BP⟨n⟩ in their proofs. BP is obtained
by localizing MU at a prime p, and then MU (p) is expressible as a wedge sum of suspensions of
BP [BP66]. This direct-sum decomposition does not play especially well with the multiplication on
MU .

Theorem 3.29 (Basterra-Mandell [BM13, Theorem 1.1]). The wedge-sum decomposition of MU (p)
into a sum of shifts of BP may be chosen so that the maps MU (p) ⇆ BP splitting off the lowest-degree
summand are E4-algebra maps.

Corollary 3.30. Given an E∞-ring homomorphism f : MU → E, where E is p-local, we can
precompose with the E4-ring homomorphism BP → MU (p) to obtain an E4-ring homomorphism
f̃ : BP → E.

It is not known whether one can strengthen this result to an En-splitting for some n > 4;
Lawson [Law18, Remark 4.4.7] and Senger [Sen17, Theorem 1.3] have shown that it is not possible
to do so for n ≥ 2(p+ 3).

The homotopy rings of BP and BP⟨n⟩ are

(3.31)
BP∗ ∼= Z(p)[v1, v2, . . . ]

BP⟨n⟩∗ ∼= Z(p)[v1, v2, . . . , vn].

In both cases |vi| = 2(pi − 1). The map BP → BP⟨n⟩ sends vi 7→ vi for 1 ≤ i ≤ n and sends vi 7→ 0
for i > n.

Now we introduce the main results of this subsection. Our first result generalizes work of Hopkins-
Mahowald (unpublished) and Devalapurkar [Dev19], who showed that the Ando-Hopkins-Rezk
orientation σ : MString → tmf is surjective on homotopy groups.

Proposition 3.32. The following maps are surjective on homotopy groups.

(3.33)
σ1(3) : MStringh[1/3] −→ tmf 1(3)

σ1(2) : MStringh[1/2] −→ tmf 1(2).

We will prove this as a consequence of Corollaries 3.47 and 3.53.
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Proof. We begin with σ1(3). In Corollary 3.53, we will establish that the map σ̃1(3) : BP∧MString →
tmf 1(3)(2) obtained from Corollary 3.30 is 7-connected. Lawson-Naumann [LN12, Theorem 1.1]
show that the generators of the homotopy ring (tmf 1(3)(2))∗ are in degrees less than 7, so since
σ̃1(3) is a map of ring spectra, it is surjective on homotopy groups in all degrees.

Since σ1(3) factors through σ̃1(3), we conclude that after localizing at 2, σ1(3) is surjective on
homotopy groups. To finish, we argue we lift from Z(2) to Z[1/3] by observing that tmf 1(3)∗ is a
polynomial ring over Z[1/3] on two generators in degrees 2 and 6, and we already observed that
these generators are in the image of σ1(3) up to multiplication by a number prime to 6. Thus it
suffices to show that σ1(3)[1/6] hits the images of these generators in tmf 1(3)[1/6]∗, which can
easily be checked with the Atiyah-Hirebruch spectral sequence because MStringh ≃ MU ∧ MString
and tmf 1(3) lack torsion once 6 is inverted.

The argument for tmf 1(2) is essentially the same, except using Corollary 3.47, which says that
σ̃1(2) is 11-connected, and the fact that tmf 1(2)∗ is a polynomial ring over Z[1/2] with generators
in degrees below 9.9 □

It would be interesting to generalize this to tmf 1(n) for n > 3.

Theorem 3.34. There is an isomorphism of graded abelian groups

(3.35) ΩStringh

∗
∼=−→ Z[x2, x4, x6, x8, y8, x10, x12, y12, x14, . . . ]/(· · · )

where |xi| = |yi| = i and all generators and relations not listed are in degrees 16 and above. In
degrees 7 and below, this map is a ring homomorphism.

In degrees 8 through 15, (3.35) is an isomorphism after inverting 6.
We will prove Theorem 3.34 by first showing ΩStringh

k lacks p-torsion for k ≤ 15 for all primes p;
then the theorem reduces to a rational calculation. As we will explain, the generators can be seen
from the map from MU ∗ and MString∗:

• The map from MU ∗ hits x2 , x4, x6, x12 and x14 for which the first three generators have
descriptions as CP1, CP2, and a Milnor hypersurface H22 ⨿ CP2.

• The map from MString∗ rationally hits y8 and y12.

Proposition 3.36. Localized at a prime p ≥ 5, (ΩStringh

∗ )(p) is torsion-free.

Proof. With this assumption on p in place, both MString and MU split as sums of shifts of BP.10

Therefore

(3.37) MStringh(p) ≃
∨
i

ΣniBP ∧ BP.

Quillen [Qui69] showed π∗(BP∧BP) is torsion-free (see also [Wil82, Theorem 3.11]), so π∗(MStringh)(p)
is also torsion-free. □

Lemma 3.38. Suppose that π∗(BP ∧ tmf ) lacks p-torsion in degrees 15 and below. Then ΩStringh

∗

also lacks p-torsion in degrees 15 and below.

Proof. Brown-Peterson showed that MU (p) is a wedge sum of copies of ΣniBP for ni ≥ 0 [BP66].
Thus it suffices to prove that π∗(BP ∧ MString) lacks p-torsion in degrees 15 and below. Since the

9This fact appears in Hill [Hil07], where it is attributed to Hopkins-Mahowald (unpublished) and Behrens [Beh06].
10For MU this is a theorem of Brown-Peterson [BP66, Theorem 1.3]; for MString one combines Brown-Peterson’s
theorem with a calculation due to Giambalvo [Gia69, Corollary 1].
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Ando-Hopkins-Rezk orientation MString → tmf is 15-connected [Hil09, Theorem 2.1] and BP is
connective, then there is a 15-connected map MString ∧ BP → tmf ∧ BP, so if there is no p-torsion
in π∗(BP ∧ tmf ) in degrees 15 and below, the same is true for MString ∧ BP, and therefore also for
MStringh. □

Proposition 3.39. In degrees 15 and below, ΩStringh

∗ lacks 3-torsion.

Proof. By Lemma 3.38, it suffices to show tmf k(BP) lacks 3-torsion for k ≤ 15. We will prove this
using the Baker-Lazarev Adams spectral sequence [BL01]; for 3-local tmf -homology specifically,
this spectral sequence was developed by Henriques and Hill (see [Hil07, DFHH14]), building on
work of Behrens [Beh06] and Hopkins-Mahowald (unpublished).

For a spectrum X, this spectral sequence has the signature

(3.40) Es,t2 = ExtAtmf (H∗(X;Z/3),Z/3) =⇒ tmf t−s(X)∧
3 ,

where

(3.41) Atmf := Z/3⟨β,P1⟩/(β2, (P1)3, β(P1)2β − (βP1)2 − (P1β)2),

with a Z-grading specified on Atmf by |β| = 1 and |P1| = 4. The Atmf -action on H∗(X;Z/3) is
specified by having β act as the Bockstein for the short exact sequence 0 → Z/3 → Z/9 → Z/3 → 0
and P1 act as the first Steenrod power.11 See [Hil07, Hil09, BR21, DY23, BDDM24] for additional
computations with this spectral sequence.

Recall that H∗(BP;Z/3) ∼= Z/3[P1,P2, . . . ]. Therefore β ∈ Atmf acts trivially on H∗(BP;Z/3),
and we can determine the P1-action using the Adem relations, which in this case simplify to

(3.42) P1Pn = (n+ 1)Pn+1

for n ≥ 0. Thus, if we define the Atmf -module N3 := Atmf /(β), so that N3 ∼= Z/3[P1]/((P1)3),
then there is an isomorphism

(3.43) H∗(BP;Z/3) ∼= N3 ⊕ Σ12N3 ⊕ P,

where P is concentrated in degrees 16 and above, so is irrelevant for us. In (3.43), N3 is spanned
by {1,P1,P2} and Σ12N3 is spanned by {P3,P4,P5}.

To describe ExtAtmf (N3,Z/3), it will be helpful to recall ExtAtmf (Z/3,Z/3), computed by
Henriques-Hill [Hil07, DFHH14]. We do not actually need all of this structure; all we use is
that there is a class h0 ∈ Ext1,1

Atmf (Z/3,Z/3) which is not nilpotent. An h0-action on the E∞-page
lifts to multiplication by 3.

ExtAtmf (N3) is given in degrees 15 and below in [BDDM24, Figure 2], which is strictly speaking
all we need, but we can give a fully general calculation without much more effort.

Lemma 3.44. Inside Atmf , let x1 := β, x5 := P1β − βP1, and x9 := (P1)2β − β(P1)2, so that
|xi| = i for i = 1, 5, 9.

(1) The algebra B := ⟨x1, x5, x9⟩ ⊂ Atmf is an exterior algebra on the classes x1, x5, and x9.
(2) There is an isomorphism of Atmf -modules N3 ∼= Atmf ⊗B Z/3.

Proof. To verify (1), use the relations in (3.41) to verify that x2
1 = 0, x2

5 = 0, and x2
9 = 0 and that

there are no additional relations between any of x1, x5, and x9. For (2), one first shows that for
any u ∈ Atmf , βu⊗ 1 = u⊗ β(1) = 0 in Atmf ⊗B Z/3, since we can use x1 ∈ B to move β across

11In other words, we have specified the Atmf -action by defining an algebra homomorphism from Atmf to the mod 3
Steenrod algebra. This homomorphism is not injective! See Henriques [DFHH14, §13.3].
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the tensor product. However, for degree reasons, it is impossible to do the same to make P1 ⊗ 1 or
(P1)2 ⊗ 1 equal to 0, so this tensor product is isomorphic to N3. □

Corollary 3.45. There is an isomorphism of ExtAtmf (Z/3,Z/3)-modules

(3.46) ExtAtmf (N3,Z/3) ∼= ExtB(Z/3,Z/3) ∼= Z/3[h0, y1, y2]

with h0 ∈ Ext1,1, y1 ∈ Ext1,5, and y2 ∈ Ext1,9.

We draw these Ext groups in Figure 2, right.

Proof. The first isomorphism in (3.46) is Shapiro’s lemma [Eck53]. The second isomorphism
in (3.46) is the standard calculation of Ext of an exterior algebra using Koszul duality, e.g. as
in [Pri70]. □

1

P1

−P2

s ↑
t− s→ 0 4 8 12 16 20

0

2

4

6

1

y1

y2
1

y3
1

y4
1

y5
1

y2

y1y2

y2
1y2

y3
1y2

y2
2

y1y2
2

Figure 2. Left: the Atmf -module N3. Right: ExtAtmf (N3), which we calculated in
Corollary 3.45 (see also [BDDM24, Figure 2]). The vertical lines denote h0-actions.
We use these Ext groups in the proof of Proposition 3.39.

For our application to tmf ∗(BP), the takeaway is that in even topological degrees, ExtAtmf (N3)
is 0 or a free Z/3[h0]-module (i.e. a direct sum of “h0-towers”), and in odd topological degrees,
ExtAtmf (N3) vanishes. Therefore by (3.43), at least in degrees 15 and below, the same is true for
the E2-page of the Baker-Lazarev Adams spectral sequence for tmf ∗(BP). Since differentials lower
topological degree by one, the spectral sequence collapses at E2 in degrees 16 and below, and h0
lifts to multiplication by 3, so each Z/3[h0]-module contributes a free summand to tmf ∗(BP)∧

3 .
Therefore there is nothing on the E∞-page that can contribute 3-torsion to tmf ∗(BP) in degrees
15 and below. □

Since the orientation σ1(n) : MStringh → tmf 1(n) factors through MString ∧ BP, we have the
following result.12

Corollary 3.47. The E4-orientation σ̃1(2) : MString ∧ BP → (tmf 1(2))(3) obtained by smashing
the E4-orientation BP → tmf 1(2)(3) from Corollary 3.30 with the string orientation of tmf 1(2) is
11-connected.

12There is a homotopy equivalence tmf 0(2) ≃ tmf 1(2); we mostly refer to this object as tmf 1(2) to streamline our
notation, but it is often called tmf 1(2) in the literature.
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Figure 3. Left: The Atmf -module structure on H∗(BP;Z/3) in degrees 16 and
below. Right: The E2-page of the Adams spectral sequence computing the
nontrivial homotopy groups in degrees less than 16.

Proof. By construction σ̃1(2) factors as a composition of MString ∧ BP → tmf ∧ BP, which is
15-connected, followed by σ1(2) : BP ∧ tmf → tmf 1(2), and both are E4-ring spectrum maps.
Therefore it suffices to show σ1(2) is 11-connected.

On homotopy groups, σ1(2) is a ring homomorphism, so it sends 1 7→ 1 and therefore is an
isomorphism on π0. Because σ1(2) is an isomorphism on π0, then σ1(2)∗ : H0

tmf (tmf 1(2)) →
H0

tmf (tmf ∧ BP) is also an isomorphism. By (3.43), H0
tmf (tmf ∧ BP) splits as Atmf -modules

as the sum of N3 and an 11-connected summand, and by [Mat16, Theorem 4.13], there is a
tmf (3)-module equivalence (tmf 1(2))(3) ≃ tmf (3) ∧ Y for a spectrum Y with H∗(Y ;Z/3) ∼= N3, so
H∗

tmf (tmf 1(2)) ∼= N3. Thus since σ1(2)∗ is an Atmf -module map which is an isomorphism on H0, it
must map the N3 summand in H∗

tmf (tmf 1(2)) isomorphically onto the N3 summand from tmf ∧ BP.
Then by the Baker-Lazarev Adams spectral sequence, the map is 11-connective. □

Remark 3.48. Because π2(MStringh) ∼= Z but π2(tmf 1(2)) ∼= Z[1/2], σ1(2) is not 11-connected. But
Corollary 3.47 implies that localized at 3, σ1(2) is surjective on homotopy, because π∗(MStringh)(3)
surjects onto π∗(BP ∧ tmf ) and σ1(n) hits the generators of the homotopy ring of tmf 1(2).

Lemma 3.49. There is a 2-local equivalence of tmf -module spectra

(3.50) BP ∧ tmf ≃−→
∞∨
i=0

Σni tmf 1(3),

for some natural numbers ni.

Proof. Maps of tmf -modules BP ∧ tmf → Σni tmf 1(3) are equivalent to maps of spectra BP →
Σni tmf 1(3), so to win, we need to produce maps of spectra fi : BP → Σni tmf 1(3) such that the
sum of the induced maps of tmf -modules is an isomorphism on mod 2 cohomology. In other words,
we need to produce classes in tmf 1(3)∗(BP).

Set up the Atiyah-Hirzebruch spectral sequence

(3.51) Ep,q2 = Hp(BP; tmf 1(3)q(pt)) =⇒ tmf 1(3)p+q(BP);
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since H∗(BP) and tmf 1(3)∗ are concentrated in even degrees, this spectral sequence collapses.
Boardman in [Boa99, Theorem 12.4] shows that the cohomological Atiyah-Hirzebruch spectral
sequence is conditionally convergent when applied to a connective spectrum such as BP, and is
strongly connective when it collapses (ibid., Remark after Theorem 7.1). Therefore (3.51) converges
strongly, so classes on the E∞-page lift to maps BP → tmf 1(3), implying it is possible to produce
enough such maps to get the isomorphism on mod 2 cohomology. □

Corollary 3.52. In degrees 15 and below, ΩStringh

∗ lacks 2-torsion.

Proof. By Lemma 3.38, it suffices to show π∗(tmf ∧ BP) lacks 2-torsion in degrees 15 and below,
which follows from Lemma 3.49 and the fact that π∗(tmf 1(3)) is torsion-free, as we saw from its
relation to BP ⟨2⟩. □

Corollary 3.53. The map σ1(3) : BP ∧ MString → tmf 1(3)(2) is 7-connected.

Proof. The proof is almost exactly the same as that of Corollary 3.47. What makes that proof work
is that the quotients of H∗

tmf (tmf ∧ BP) and H∗
tmf (tmf 1(2)) by all classes in degrees 12 and above

are isomorphic, cyclic Atmf -modules on a generator in degree 0, so that we could lift an evidently
0-connected map to an isomorphism on H∗

tmf in degrees 11 and below.
Therefore it suffices to show that H∗

tmf (BP ∧ tmf ) and H∗
tmf (tmf 1(3)) (this time with Z/2

coefficients, not Z/3 coefficients like in the previous paragraph), quotiented by all classes in degrees
8 and above, are isomorphic cyclic A(2)-modules on a generator in degree 0. For tmf 1(3), there is a
tmf -module equivalence tmf 1(3)(2) ≃ tmf ∧DA(1) for a spectrum DA(1) with H∗(DA(1);Z/2) ∼=
A(2)/(Sq1) [Mat16, Theorem 1.2]. For BP ∧ tmf , we need to compute H∗(BP;Z/2) as an A(2)-
module. Brown-Peterson [BP66, Corollary 1.2] show that H∗(BP;Z/2) ∼= A/(Sq1), so we are done
by the observation that the inclusion A(2) → A is 7-connected, so that A(2)/(Sq1) → A/(Sq1) is
7-connected (since Sq8 is the lowest-degree Steenrod square not contained in A(2)). □

Proof of Theorem 3.34. By Propositions 3.36 and 3.39 and Corollary 3.52, ΩStringh

∗ is torsion-free
in degrees 16 and below, so to determine the homotopy as a graded abelian group in those degrees
we may rationalize: if EQ := E ∧HQ, then π∗(EQ) ∼= π∗(E) ⊗ Q, so we have

(3.54) π∗(MStringh ∧ Q) ∼= π∗(MString ∧ MU ∧ Q) = (MUQ)∗(MString).

We can calculate the MUQ-homology of MString using the Atiyah-Hirzebruch spectral sequence,
which always collapses over Q. Thus we obtain a ring isomorphism

(3.55) π∗(MString ∧ MU ∧ Q) ∼= π∗(MU ) ⊗ Q ⊗ π∗(MString).

There are isomorphisms π∗(MU )Q ∼= Q[x2i : i ≥ 1] with |x2i| = 2i and π∗(MString) ⊗ Q ∼= Q[y4i :
i ≥ 2] with |y4i| = 4i; in degrees 15 and below we thus have the generators in the theorem statement.

To probe the multiplicative structure we notice that since MStringh → tmf 1(3) is surjective
on homotopy groups, that implies after localizing at p = 2 then BP ∧ MString → tmf 1(3) is an
isomorphism on homotopy groups in degrees 7 and below and that the rings are the same in
those degrees. Localizing at p = 3 we get an isomorphism on homotopy groups of MStringh with
tmf 1(2) in degrees 11 and below by Corollary 3.47. Finally, localizing at p ≥ 5 we see that the
bordism ring is polynomial in generators as both BP∗ and MString∗ are polynomial (the latter
after p-localizing). □

3.2. Does σ1(n) split? Anderson-Brown-Peterson [ABP67] showed that the Atiyah-Bott-Shapiro
maps [ABS64] MSpin → ko and MSpinc → ku admit 2-local sections ko → MSpin, resp. ku →
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MSpinc, and used these sections, along with higher-degree analogues, to effectively determine
spin and spinc bordism. The analogous question for the Ando-Hopkins-Rezk orientation [AHR10]
σ : MString → tmf is a longstanding open question in homotopy theory, discussed for example
in [MG95, MH02, MR09, Lau04, Lau16, LO16, LO18, LS19, Dev19, Abs21, Dev24]. It therefore
seems reasonable to ask:

Question 3.56. Let p = 2 or 3 and p ∤ n. Does the map σ1(n) : MStringh(p) → tmf 1(n)(p) have a
section? What about Devalapurkar’s orientation σD?

One could also ask this question localized at a large prime (i.e. p ≥ 5), where it is much easier,
as both MStringh and tmf 1(n) for many n are known to decompose into sums of shifts of BP ∧ BP,
resp. BP (see the proof of Proposition 3.36, resp. [Mei23, §5]). Thus we focus on the harder primes.
We think for p = 2, n = 3, and for p = 3, n = 2, Question 3.56 has an affirmative answer.

Question 3.56 passes a few basic checks.

Proposition 3.57 (Devalapurkar). If there is a section s : tmf (2) → MString(2) of σ, then there is
a section s′ : tmf 1(3)(2) → MStringh(2) of σ1(3).

Proof. This is immediate since MU ∧ tmf would split off from MStringh, and tmf 1(3) itself splits
off of MU ∧ tmf by Lemma 3.49. □

In addition, an affirmative answer to Question 3.56 would imply that σ1(n) is surjective on
homotopy after p-completion. For (p, n) ∈ {(2, 3), (3, 2)}, we proved homotopy surjectivity uncondi-
tionally in Proposition 3.32.

Proposition 3.58. There is no 2-local section of σ1(3) that is a map of BP-module spectra, where
MStringh(2) acquires its BP-module structure from the E4-map BP → MU (2) → MStringh(2) and
tmf 1(3)(2) acquires its BP-module structure from the equivalence tmf 1(3)(2) ≃ BP⟨2⟩.

Proof. Suppose such a section existed and rationalize. That would imply the existence of a section
of

(3.59) σ1(3)∗ : π∗(MStringh) ⊗ Q −→ tmf 1(3)∗ ⊗ Q

which is linear with respect to BP∗ ⊗ Q ∼= Q[v1, v2, . . . ]. Since

(3.60) π∗(MStringh) ⊗ Q ∼= π∗(MString) ⊗ Q ⊗ π∗(MU )

and π∗(MU ) ⊗Q is a free π∗(BP) ⊗Z(2) Q-module and π∗(MString) ⊗Q is a polynomial algebra, v3

acts injectively on π∗(MStringh ⊗ Q). However, since tmf 1(3)(2) acquired its BP-module structure
by being a form of BP⟨2⟩, v3 acts as zero on tmf 1(3)∗ ⊗ Q. A section equivariant for the action of
v3 cannot carry a zero action to an injective action. □

Ultimately the “problem” causing the negative result in Proposition 3.58 is that the equivalence

(3.61) BP ∧ tmf ≃
∞∨
i∈0

Σni tmf 1(3)(2)

from Lemma 3.49 is not an equivalence of BP-modules.

4. Stringh and the Diaconescu-Moore-Witten Anomaly

We will now explain the formalism for stringh structures has a natural place in type IIA string
theory by understanding its relationship with the Diaconescu-Moore-Witten anomaly. Let X be a
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10-dimensional manifold which serves as the target space for type IIA string theory. The intimate
way in which type IIA and M-theory are related means that the same anomaly also manifests in
M-theory on Y = X ×S1, and is in a sense where it originates. In particular, the partition function
for the RR-fluxes in type IIA string theory can be matched with the corresponding partition
function computed in M -theory, and we review how an anomaly arises in M-theory by looking at a
certain part of its partition function. A priori the way in which the anomalies arise in M-theory and
type IIA are different, but it was shown in [DMW02], that the anomaly cancellation information is
equivalent. Therefore whatever tangential structure that the anomaly cancellation defines is shared
by both M-theory and type IIA target space.

M-theory consists of two types of branes: the M2 and M5 branes. On the M2 brane there is
an associated 3-form field C with field strength G = dC. The topological quantization of G is
given by choosing any element α ∈ H4(X;Z) and letting Gα be the “mode” of G contributing to
the topological sector labeled by α. From this we can form the partition function of M-theory by
considering the contributions from all α.

Definition 4.1 (Diaconescu-Moore-Witten [DMW00, §5]). Let X be a closed spin 10-manifold
and α ∈ H4(X;Z). Assume that there is a class x ∈ ku4(X) such that τ0(x) = α; as we observed in
the proof of Theorem 2.17, x may be represented by an SU-bundle, and because BSU5 → BSU is
11-connected, x may be represented by a rank-5 complex vector bundle E → X with SU-structure.
Then define

(4.2) f(α) := q(E ⊗ E) + ((Ind(Λ2(E)) + Ind(E)) mod 2) ∈ Z/2,

where Ind(V ) denotes the index of the Dirac operator coupled to V and q denotes the mod 2 index
of this Dirac operator.

Definition 4.3. Let X be a closed spin 10-manifold. The partition function of the topological
sector of M-theory on X is given by the following sum over α ∈ H4(X;Z) for G:13

(4.4) ZM ∼
∑

α∈H4(X;Z)

(−1)f(α) exp
(
−|Gα|2

)
,

where |Gα|2 =
∫
Gα ∧ ⋆Gα, and we are assuming the ku4 lifts chosen in Definition 4.1 in the

definition of f exist.

Even though the topological sector is not the full partition function of M-theory, it can already
give hints at anomalies, in particular by studying the way the ambiguity of (4.4) with respect to
the existence of lifts across τ0.

Definition 4.5. The kth integral Stiefel-Whitney class Wk ∈ Hk(BO;Z) is Wk := □Z(wk−1).

Thus, for example, a spinc structure on an oriented vector bundle V is equivalent data to a
trivialization of W3(V ).

Proposition 4.6 (Diaconescu-Moore-Witten [DMW02]). With X as above, given data of a
trivialization of W7(X) the quantity f(α) from Definition 4.1 is well-defined for all α ∈ H4(X;Z):
each α has a ku-cohomology lift, and the quantity (4.2) does not depend on the choice of lift.

13We write ∼ rather than = because of some prefactors that are gauge-invariant and thus not relevant for the present
discussion. See [DMW00, §3] for more on these terms.
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Proposition 4.6 has the physics consequence that the partition function of the topological sector
of type IIA string theory on X, which in general suffers a sign ambiguity, is well-defined when
W7(X) is trivialized. More heuristically speaking, in order for X to be a valid background of type
IIA string theory, either we must have W7(X) = 0 or wrap branes within submanifolds of X. In
this paper we will consider the first option.

Remark 4.7. It is possible to generalize this story to the case when X is merely spinc. In this
case, the relation to M-theory is slightly changed: if L → X is the determinant line bundle of
the spinc structure, then the total space of the unit sphere bundle S(L) is a closed 11-manifold
with a canonical spin structure induced from the spinc structure on X, and one thinks of type IIA
string theory on X as a “twisted compactification” of M-theory on S(L). In this setting, there
is a generalization of Proposition 4.6 implying that on a closed spinc 10-manifold X, the data of
a trivialization of W7(X) suffices to resolve the sign ambiguities in the partition function of the
topological sector of type IIA string theory on X.

Definition 4.8. The Diaconescu-Moore-Witten anomaly cancellation condition is the requirement
W7(X) = 0. A Diaconescu-Moore-Witten (DMW) structure on a vector bundle V is a spinc
structure and a trivialization of W7(V ).

See [FSS20, SS23] for more on how generalized cohomology theories can be applied to M-theory
from the DMW anomaly, and [FH21a] for more on the tangential structure of M-theory when
time-reversal is taken into account.

The following serves as a sketch of the argument given in [DMW00] for their anomaly cancellation
condition. We start by unpacking the conditions on the function f(α). In particular f(α) satisfies
the property that

(4.9) f(α+ α′) = f(α) + f(α′) +
∫
X

α Sq2(α′ mod 2) ,

and (X,α) 7→ f(α) is a bordism invariant in Hom(ΩSpin
10 (K(Z, 4)),Z/2). Suppose γ ∈ H4(X;Z) is

torsion. Then, while |Gα|2 is invariant under α → α+ γ, f(α) is often not invariant. Consider a
specific transformation α → α+ 2γ; then,

(4.10) f(α+ 2γ) = f(α) + f(2γ) +
∫
X

α Sq2(2γ mod 2),

but 2γ mod 2 = 0 so we only need to consider the new term f(2γ). Expanding again, we see

(4.11) f(2γ) = f(γ) + f(γ) +
∫
X

γ Sq2(γ mod 2) .

Stong [Sto86] shows that
∫
X
γSq2(γ) = Sq4(Sq2(γ)); combining this with the Wu formula,

Diaconescu-Moore-Witten [DMW00, §6] show that

(4.12)
∫
X

γSq2(γ mod 2) =
∫
X

γSq2(λ(X) mod 2).

The effect of (4.10) in the partition function is given by (−1)f(α)+f(2γ). As 2f(γ) = 0, we only
have to worry about

∫
X
γSq2(γ mod 2).

Lemma 4.13 ([DMW00, §6]). Let ⟨–, –⟩ : Tors(H4(X;Z)) ⊗ Tors(H7(X;Z)) → Q/Z denote the
torsion pairing on a closed spin 4-manifold X. Then for all γ ∈ Tors(H4(X;Z)),

(4.14) 1
2

∫
X

γ · Sq2(λ(X) mod 2)) = ⟨γ,□Z(Sq2(λ(X)))⟩.
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The equality (4.14) takes place in Q/Z: for the left-hand side, the integral is an element of Z/2,
so dividing by 2 we obtain an element of ( 1

2Z)/Z, which is a subgroup of Q/Z.
Finally, a direct calculation with the Wu formula and the relation λ(X) mod 2 = w4(X) shows

(4.15) □Z(Sq2(λ(X) mod 2)) = W7(X),

so the DMW condition W7(X) = 0 fixes the sign of the partition function unambiguously.14

4.1. Relating Diaconescu-Moore-Witten anomaly cancellation with stringh. We will show
how a stringh structure induces the Diaconescu-Moore-Witten anomaly cancellation.

Theorem 4.16. Let V → X be a stringh vector bundle. Then W7(V ) admits a canonical trivial-
ization.

Thus the Diaconescu-Moore-Witten anomaly cancellation condition (Definition 4.8) is automati-
cally satisfied on stringh 10-manifolds.

Proof. We use the characterization of stringh structures from Definition 2.12: that we have
trivialized □ku(λc(V )).To relate Definition 2.12 to the W7(X) = 0 anomaly cancellation condition
of Diaconescu-Moore-Witten we observe the following commutative diagram, whose rows are cofiber
sequences:

(4.17)
Σ2ku ku HZ Σ3ku

Σ2HZ τ≤2ku HZ Σ3HZ .

β

τ≤2

τ0

τ≤2

□ku

τ0

□ZSq2

The top map builds ku as an extension with □ku as the k-invariant, β the Bott map, and the
map down is the truncation map. This builds τ≤2ku also as an extension with k-invariant □ZSq2.
Extending the left most square gives a map of cofiber sequences

(4.18)

Σ4ku Σ4ku

Σ2ku ku HZ

Σ2HZ τ≤2ku HZ

=

β β2

β

τ≤2

τ0

This implies the map HZ → HZ is the identity by the third isomorphism theorem and right most
square commutes. On cohomology, the rightmost commuting square gives

(4.19)
H4(X;Z) ku7(X)

H4(X;Z) H7(X;Z) ,

□ku

τ0

□ZSq2

where q is the restriction to cohomology. For a stringh vector bundle V , we we compute
□ZSq2(λc(V )). We first take the mod 2 reduction of λc which is w4(V ⊕L), where L → X is the de-
terminant line bundle of V . Applying the Whitney sum formula gives w4(V ⊕L) = w4(V )+w2(V )2,

14In conversation with Moore, it became known to the authors that the theory could be consistent even if the W7
anomaly is non-trivial. If the partition function vanishes, that does not inherently mean that the theory itself is
invalid. We plan to return to theories with nontrivial values of this anomaly in future work.
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upon using the fact that w2(TX) = w2(L). The action by Sq2 is obtained by the Wu for-
mula, for which we get Sq2(w4(B) + w2(B)2) = w2(V )w4(V ) + w6(V ). Applying □Z then
implies □ZSq2(λc(V )) = W7(V ). The square commuting means τ0□ku = □ZSq2 and that if
τ0□ku(λc(V )) = 0 then □ZSq2(λc(V )) = 0. Therefore, if we have a stringh structure on V , then
W7(V ) is canonically trivialized. □

Remark 4.20. Let us take the target space of type IIA string theory to have a stringh structure. As
a first level consistency check, we recall that a stringh structure induces a spinc structure. This is
consistent with the fact that the target space of type IIA string theory has a spinc structure. We
exhibit the spinc structure on type IIA by observing the transformation of the gravitino field Ψ in
the low energy supergravity. This is a fermion that is charged under a U1-gauge symmetry, where
the U1-bundle arises from dimensionally reducing away the M-theory circle. A gauge transformation
Ψ → e2πiqΨ reflects the spinc structure if q is half integral, and it was shown in [DLP98, BEM04]
that this is the case.

While a stringh structure always induces a W7 = 0 condition, one can also ask the reverse
question, which is slightly more nontrivial. If we want to study type IIA on manifolds with a stringh
structure, we should see how strong of an assumption the stringh structure is.

Theorem 4.21. Let V → X be a vector bundle with DMW structure. Then there is a class
ρ(V ) ∈ H9(X;Z) which vanishes if V is stringh. If X is a manifold of dimension 10 or below
with DMW structure, ρ(X) is the complete obstruction to lifting the DMW structure to a stringh
structure.

Lemma 4.22. Let BSpinc⟨W7⟩ be the fiber of the map BSpinc W7−−→ K(Z, 7). The homotopy groups
up to degree 10 of BSpinc⟨W7⟩ are given by:

π∗(BSpinc⟨W7⟩) = {0, 0, Z, 0, Z, 0,Z, 0,Z, Z/2, Z/2, . . .} .

Proof. This follows immediately from studying the homotopy long exact sequence for BSpinc⟨W7⟩ →
BSpinc → K(Z, 7), and using the homotopy groups in Figure 1. □

Proof of Proposition 4.21. Let the space F be the fiber of the map f : BStringh → BSpinc⟨W7⟩.
For a map X → BSpinc⟨W7⟩, we want to quantify the first obstruction to lifting against the map f .
This will be given by a cohomology class Hn+1(X;πn(F )). The long exact sequence in homotopy
groups for the fiber sequence F → BStringh → BSpinc⟨W7⟩ is given in Figure 4. We see that the
only homotopy group that contributes to the obstruction for manifolds X in the degrees we are
considering is π8(F ) = Z. Therefore the obstruction class is in H9(X;Z). □

If an obstruction class in Hn trivializes, the choices of trivializations live in a torsor for Hn−1.
We summarize the implications below:

• For spinc manifolds in dimension ≤ 5, the W7 = 0 condition is always satisfied and for
dimension 6 the W7 = 0 condition is not trivialized uniquely as H6(X,Z) is not necessarily
trivial.

• For spinc manifolds X that are dimension 7 and below, the obstruction for a W7 = 0
condition to lift to a stringh structure vanishes, and there are no choices of trivializations.
In dimension 8, the obstruction vanishes but not canonically.

• For spinc manifolds in dimension 9 and 10, it is unclear whether a W7 condition lifts to a
stringh structure. It was claimed that □Z(Sq2(a mod 2)) = 0 gives a lift of a ∈ H4(X;Z)
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∗ π∗(F ) π∗(BStringh) π∗(BSpinc⟨W7⟩)

2 0 Z Z

3 0 0 0

4 0 Z Z

5 0 0 0

6 0 Z Z

7 0 0 Z

8 Z Z ⊕ Z Z

9 0 Z/2 Z/2

10 Z ? Z/2

∼=

0

Figure 4. Homotopy Long Exact Sequence for computing the homotopy groups
of BStringh in degrees up to 10.

to K-theory and hence a stringh structure on X. We see here that it is not a priori clear
that one obtains a K-theory lift in dimension 10, but it is possible in dimension 9. It is
still possible that the obstruction vanishes on closed DMW 10-manifolds.

Theorem 4.23. Let M be a closed 9 dimensional spinc manifold. Every DMW structure on M

lifts to a stringh structure.

Lemma 4.24. If M is a closed, R-oriented n-manifold, for R a ring spectrum, then the map
ΣnR → R ∧M+ induced by the top cell of M splits off as a direct summand.

Proof. The bottom cell of any space always splits off stably, by the inclusion of the basepoint
followed by the crush map. If M is R-oriented, Atiyah-Poincaré duality identifies R ∧M+ with its
(dim(M))-shifted (R-module) Spanier-Whitehead dual R ∧ Σ− dim(M)D(M)+; the top cell of D(M)
corresponds to the bottom cell of M , hence splits off, and therefore the top cell of R ∧M+ does as
well. □

As a result, the p = 9 column of the ku∗(M) spectral sequence of a closed spinc 9-manifold M

splits off as a direct sum, which prohibits any differentials or extensions involving this column.

Proof of Proposition 4.23. Let λc ∈ H4(M ;Z) such that □ZSq2(λc) = 0. If λc exists on the E∞

page of the ku∗(M) spectral sequence then λc has a K-theory lift to ku4(M). The homotopy groups
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of ku start in degree 0 given by Z, and by Bott periodicity are Z in each negative even degree. The
class λc appears in bidegree (p, q) = (4, 0) The only differentials that λc can admit, and within the
range of degrees that we are considering, are d3 and d5:

• The d3 differential is given by □Z ◦ Sq2 ◦ mod 2, which maps λc to W7(M). But since this
class is trivial by assumption, d3 vanishes.

• The d5 differential maps λc to bidegree (9,−4), but by Lemma 4.24 the class in (9,−4)
must split off as a direct sum and therefore cannot be killed by a differential, hence d5
vanishes.

Thus, λc survives to E4,0
∞ which means it has a ku-cohomology lift, and M has a stringh structure. □

4.2. Applications of stringh for type IIA compactifications. Consider a compactification
of type IIA string theory down to dimension d < 10. We know that imposing Diaconescu-Moore-
Witten’s anomaly cancellation condition W7 = 0 resolves a sign ambiguity in the partition function,
but it is a priori possible that the compactified theory has an anomaly α of some other provenance.
This anomaly is a unitary (d+ 1)-dimensional invertible field theory of manifolds equipped with a
DMW structure and possibly a map to a space X (e.g. X = BG if we have a background gauge
field for the group G), so by work of Freed-Hopkins [FH21b] and Grady [Gra23], α is classified in
terms of the bordism groups ΩSpinc⟨W7⟩

k (X) for k = d+ 1, d+ 2.
There is a standard procedure to compute bordism groups of manifolds with a trivialized

characteristic class such as DMW-structures (see, for example, [BDDM24, §3.3.2]): first, use the
Serre spectral sequence to study H∗(BSpinc⟨W7⟩), then use that cohomology as input to the
Adams or Atiyah-Hirzebruch spectral sequence. This is thus quite a bit more complicated than just
computing spinc bordism.

In this subsection, we will use stringh bordism to simplify the bordism computations underlying
anomaly cancellation of these IIA compactifications. Specifically, we will lift from DMW-structures
to stringh structures, and show that in dimensions d ≤ 8, this loses no information about the anomaly.
We will also see that the Atiyah-Hirzebruch and Adams spectral sequences for stringh bordism are
relatively straightforward after our work in the previous section. See [DY24, DY23, Tac22, TY23b]
for more examples of anomaly cancellations in compactifications of supergravity and heterotic string
theory. We highlight here how using stringh affects the computations in different dimensions:

• If M is a manifold of dimension 5 or below, every spinc structure on M lifts uniquely to a
stringh structure. Therefore in dimensions 5 and below, lifting to a stringh structure does
not buy us anything new over computing with spinc.

• For manifolds in dimensions 6 ≤ d ≤ 9, spinc and DMW structures are not equivalent, and
every DMW structure lifts uniquely to a stringh structure. Therefore given a d-dimensional
field theory on manifolds with a DMW structure (and perhaps also some background fields),
the anomaly is trivializable as an IFT of DMW manifolds if and only if it is trivializable as
a stringh theory. Because stringh bordism is easier to compute than DMW bordism, as we
will see in a few examples below, this can assist in anomaly cancellation computations.

• In dimension 10, because we do not know whether every DMW structure lifts to a stringh
structure, we do not know whether restricting to stringh manifolds loses information with
regards to anomaly cancellation.

The real highlight of when stringh leads to simplifications is when we are concerned with
anomalies of a compactified theory that has some Lie group global symmetry. Using the change of
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rings from A to E(2) that is afforded to us by the orientation σ1(3), the Adams spectral sequence
can be used to compute these bordism groups in low degrees.

Remark 4.25. If we suppose a naïveness to stringh as well as the W7 = 0 condition and only
considered spinc structures for target space manifolds, then we will start to see the difference after
degree 6. After this degree is when stringh bordism begins to have more free summands than in
spinc and thus there could potentially be more perturbative anomalies to check.

Example 4.26. Consider any theory that arises as a compactification of type IIA in dimension
9 or below, with a G symmetry where G is a Lie group of the type Un,SUn, or Spn for n > 1.
The bordism groups relevant for anomaly cancellation will be ΩSpinc⟨W7⟩

∗ (BG), and by the above
discussion ΩStringh

∗ maps surjectively onto the DMW bordism groups in dimensions ∗ ≤ 9. Since
the homology is sparse and concentrated in even degree the Atiyah-Hirzebruch spectral sequence
that computes ΩStringh

∗ (BG) therefore collapses on the E2-page. For applications to anomalies of
theories with G-symmetry, the Anderson-dual (IZΩStringh)∗(BG) is free and concentrated in odd
degrees. This implies that any theory with a stringh structure and a G global symmetry has no
global anomalies to cancel, and once the perturbative anomalies are cancelled then the theory is
anomaly free.

Example 4.27. Consider any theory that arises as a compactification of type IIA in dimension
9 or below, with a U1 global symmetry. If one is interested in computing ΩSpinc⟨W7⟩

∗ (BU1), the
situation is much more complicated from the point of view of the Atiyah-Hirzebruch spectral
sequence because the low degree homology classes for BU1 are more nontrivial. However, this is
where being able to lift to stringh pays off. Since the homology of BU1 is in even degrees, and by
Theorem 3.34 the homotopy groups of MStringh are also concentrated in even degrees and there is
no torsion. Therefore the Atiyah-Hirzebruch spectral sequence for ΩStringh

∗ (BU1) collapses on the
E2 page and the anomalies share the same properties as in Example 4.26.

Example 4.28. Let G by a connected, simple, simply connected Lie group. We explain how the
bordism groups ΩSpinc⟨W7⟩

∗ (BG) can be computed using the lift to stringh. Since the homology of
G begins in degree 4, and ΩStringh

∗ → ΩSpinc

∗ is an isomorphism in degrees < 6 we see by the Atiyah-
Hirzebruch spectral sequence that the first place where the two groups ΩStringh

∗ (BG) and ΩSpinc

∗ (BG)
can potentially begin to differ is in bi-degree (p, q) = (4, 6). Therefore ΩStringh

∗ (BG) → ΩSpinc

∗ (BG)
is an isomorphism in degrees ≤ 9. In Theorem A.1, we prove that the groups ΩSpinc

∗ (BG) are
torsion free in degrees 9 and below. The anomalies for these symmetries therefore share the same
features as in Example 4.26. In higher degrees we predict it will be easier to use the Adams spectral
sequence and changing rings to E(2), since the complications with using Atiyah-Hirzebruch spectral
sequence build up very quickly in this high of degree. We leave the details to future work.

Appendix A.

The purpose of this appendix is to prove the following theorem.

Theorem A.1. Let G be a connected, simple, simply connected Lie group. Then ku∗(BG) is
torsion-free in degrees 10 and below.

This is an ingredient in our anomaly cancellation result in Examples 4.27 and 4.28; however, it
requires different techniques than we used in that section, so we have siloed it off here.
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Lemma A.2.

(1) Theorem A.1 is true for G = Spn, SUn, and (for n ≤ 6) Spinn.
(2) If we localize at a prime p > 5, the theorem is true for all G in the statement of Theorem A.1.

Localized at p = 5, the theorem is true for all such G except perhaps E8, and localized at
p = 3, the theorem is true for all such G except perhaps F4, E6, E7, and E8.

Proof. For part (1), let G be Spn, SUn, or (for n ≤ 6) Spinn and set up the Atiyah-Hirzebruch
spectral sequence

(A.3) E2
p,q = Hp(BG; kuq) =⇒ kup+q(BG).

For these choices of G, H∗(BG;Z) is torsion-free and concentrated in even degrees. Since ku∗ is
also torsion-free and concentrated in even degrees, the spectral sequence collapses to imply the first
part of the lemma statement.

The proof of part (2) is similar except for using the ku(p)-homology Atiyah-Hirzebruch spectral
sequence, whose input is the Z(p)-homology of BG. Assume p ≥ 7, or p = 5 and G ̸= E8, or p = 3
and G ̸∈ {F4, E6, E7, E8}. Borel [Bor61, Théorèmes B et 2.5] shows that for these choices of G
and p, H∗(BG;Z) lacks p-torsion and is concentrated in even degrees, so the Atiyah-Hirzebruch
spectral sequence collapses as in the previous paragraph. □

The Atiyah-Hirzebruch-style proof of Lemma A.2 does not generalize nicely to the remaining
cases of Theorem A.1, so we use the Adams spectral sequence. Choose a prime p and let A denote
the p-primary Steenrod algebra, the Z-graded noncommutative Z/p-algebra consisting of natural
transformations H∗(–;Z/p) → H∗+n(–;Z/p) that commute with the suspension functor. Then the
Adams spectral sequence has signature

(A.4) Es,t2 = ExtA(H∗(X;Z/p),Z/p) =⇒ πst−s(X)∧
p ,

where πs∗ denotes stable homotopy groups and (–)∧
p denotes p-completion.

Definition A.5. Let Qi ∈ A denote the ith Milnor primitive; thus Q0 is the Bockstein operator for
0 → Z/p → Z/p2 → Z/p → 0 and Q1 is the commutator of Q0 and Sq2 (if p = 2) or P1 (if p > 2).

Let E(1) := ⟨Q0, Q1⟩ ⊂ A; the Adem relations imply E(1) is an exterior algebra on Q0 and Q1.

Theorem A.6 (Adams [Ada74, §16]). For each prime p, there is a spectrum ℓ with the following
properties.

(1) ku(p) ≃ ℓ ∨ Σ2ℓ ∨ · · · ∨ Σ2(p−2)ℓ, or if p = 2, ku(2) ≃ ℓ.
(2) There is an A-module isomorphism H∗(ℓ;Z/p) ∼= A ⊗E(1) Z/p.

The first part of Theorem A.6 implies that, if we can prove ℓ∗(BG) is torsion-free in degrees
10 and below, then we have proven Theorem A.1. The second part of Theorem A.6 allows us to
simplify the Adams spectral sequence calculating ℓ-homology: following the same reasoning as in
the proof of Corollary 3.45, if one plugs in X = ℓ ∧ Y to (A.4), the spectral sequence simplifies to

(A.7) Es,t2 = Exts,tE(1)(H
∗(Y ;Z/p),Z/p) =⇒ ℓt−s(Y )∧

p .

The ℓ∗-module structure on ℓ∗(Y ) manifests in this spectral sequence through the action of the
algebra ExtE(1)(Z/p,Z/p) on the E2-page of (A.7). Explicitly, this algebra is [BG03, §2.1]

(A.8) Ext∗,∗
E(1)(Z/p,Z/p) ∼= Z/p[h0, v1]
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with h0 ∈ Ext1,1 and v1 ∈ Ext1,2p−2. The action of h0 on the E∞-page of (A.7) lifts to detect
multiplication by p on ℓ∗(Y ).

On the E2-page of (A.7), an h0-tower is a free Z/p[h0]-module of rank 1.

Lemma A.9. Suppose Y is a CW complex with finitely many cells in each dimension and the
E2-page of the spectral sequence (A.7) for Y consists solely of h0-towers in even (t− s)-degrees as
long as t− s ≤ N . Then in degrees k ≤ N − 1, ℓk(Y ) is torsion-free.

For any connected Lie group G, there is a choice of BG which is a CW complex with finitely
many cells in each dimension, so this hypothesis does not worry us.

Proof. By assumption, t− s is even for all nonzero classes on the E2-page with t− s ≤ N ; since
Adams differentials change the parity of t− s, this forces all differentials in that range to vanish.
Then, all extension questions for multiplication by p in that range are resolved by the h0-action:
since the E∞-page for t− s ≤ N − 1 is a direct sum of h0-towers, there can be no hidden extensions
by p in this range. Since Y has finitely many cells in each dimension, ℓk(Y ) is a finitely generated
Z(p)-module for each k, so we conclude that, in the range claimed, ℓk(Y ) is a free Z(p)-module of
finite rank. □

Remark A.10. Because |v1| is even, (A.8) implies ExtE(1)(Z/p,Z/p) consists of h0-towers in even
degrees.

Lemma A.11 (Adams-Priddy [AP76, §3]). Up to multiplication by a unit in (Z/p)×, there is a
unique nonzero E(1)-module map f : Σ−1E(1) → Σ−1Z/p. Given any such map, let Q:= ker(f); the
isomorphism type of Qdoes not depend on f . Moreover, there is an ExtE(1)(Z/p,Z/p)-equivariant
isomorphism Exts,tE(1)(

Q
,Z/p) ∼= Exts+1,t+1

E(1) (Z/p,Z/p), so ExtE(1)(
Q

,Z/p) consists of h0-towers in
even degrees.

For any E(1)-module M , let M≥d denote the E(1)-submodule generated by homogeneous classes
in degrees d and greater.

Definition A.12. We say that two E(1)-modules M and N are isomorphic up to degree d, denoted
M ∼=<d N , if there is an E(1)-module isomorphism M/M≥d

∼=→ N/N≥d.

Proposition A.13. Let Y be a CW complex with finitely many cells in each dimension. Suppose
that H∗(Y ;Z/p) is isomorphic up to degree d to a direct sum of copies of Σ2miZ/p and Σ2nj

Qfor
various mi, nj. Then for k ≤ d− 2, ℓ∗(Y ) has no p-torsion.

Proof. Use the long exact sequence in Ext associated to the short exact sequence 0 → M≥n →
M → M/M≥n → 0 to show the map M → M/M≥d induces an isomorphism in Ext in degrees d− 2
and below. Therefore for the purpose of calculating ℓ∗(Y ) in degrees d − 2 and below, we may
replace H∗(Y ;Z/p) with a sum of shifts of Z/p and Qby even degrees. The result then follows
from Lemma A.9 and the observations in Remark A.10 and Lemma A.11 that ExtE(1)(Z/p,Z/p)
and ExtE(1)(

Q

,Z/p) consist of h0-towers in even degrees. □

Thus to prove Theorem A.1, it would suffice to prove the following assertions.

Proposition A.14. The following are isomorphisms of E(1)-modules up to degree 12.
• For G = G2, F4, E6, E7, E8, and Spin7, H̃∗(BG;Z/2) ∼=<12 Σ4 Q

⊕ Σ8Z/2.
• For G = Spin8 and Spin9, H̃∗(BG;Z/2) ∼=<12 Σ4 Q

⊕ Σ8Z/2 ⊕ Σ8Z/2.
• For n ≥ 10, H̃∗(BSpinn;Z/2) ∼=<12 Σ4 Q

⊕ Σ8Z/2 ⊕ Σ8 Q.
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• For G = F4, E6, E7, and E8, H̃∗(BG;Z/3) ∼=<12 Σ4 Q

⊕ Σ8Z/3.
• H̃∗(BE8;Z/5) ∼=<12 Σ4Z/5.

Proof. In [LY22], the authors compute the A(1)-module structure on H∗(BG;Z/2) in the degrees
we need for G = Spinn, G2, F4, E6, E7, and E8, from which the E(1)-module structures in the
theorem statement follow.

The assertion for H∗(BF4;Z/3) follows from the products and Steenrod operations given by
Toda [Tod73, Theorems I, II, III]. The cohomology H∗(BE6;Z/3), can be computed from [Bor61,
Théorème 2.3] where the author computes H∗(E6;Z/3). The cohomology H∗(BE7;Z/3) can be
computed from [Ara61, Theorem 8] and H∗(BE8;Z/3) can be computed from [Ara61, Theorem
9], where the author computes H∗(E7;Z/3) and H∗(E8;Z/3) respectively together with Steenrod
powers on the generators; the Kudo transgression theorem [Kud56] determines the Steenrod powers
in the cohomology of the classifying spaces. The assertion for BE8 at p = 5 follows from Borel [Bor61,
Théorème 2.3] calculating H∗(E8;Z/5) together with a quick transgression argument. □
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[Kur96] Katsuhiko Kuribayashi. On the vanishing problem of string classes. J. Austral. Math. Soc. Ser. A,

61(2):258–266, 1996. 15
[KY98] Katsuhiko Kuribayashi and Toshihiro Yamaguchi. The vanishing problem of the string class with degree

3. J. Austral. Math. Soc. Ser. A, 65(1):129–142, 1998. 15
[Lan67] Peter S. Landweber. Fixed point free conjugations on complex manifolds. Ann. of Math. (2), 86:491–502,

1967. 21
[Lan68] Peter S. Landweber. Conjugations on complex manifolds and equivariant homotopy of MU . Bull. Amer.

Math. Soc., 74:271–274, 1968. 21
[Lau04] Gerd Laures. K(1)-local topological modular forms. Invent. Math., 157(2):371–403, 2004. 30
[Lau16] Gerd Laures. Characteristic classes in T MF of level Γ1(3). Trans. Amer. Math. Soc., 368(10):7339–7357,

2016. https://arxiv.org/abs/1304.3588. 30
[Law15] Tyler Lawson. The Shimura curve of discriminant 15 and topological automorphic forms. Forum Math.

Sigma, 3:Paper No. e3, 32, 2015. https://arxiv.org/abs/1301.3233. 19
[Law18] Tyler Lawson. Secondary power operations and the Brown-Peterson spectrum at the prime 2. Ann. of

Math. (2), 188(2):513–576, 2018. https://arxiv.org/abs/1703.00935. 24
[LMSM86] L. G. Lewis, Jr., J. P. May, M. Steinberger, and J. E. McClure. Equivariant stable homotopy theory, volume

1213 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1986. https://www.math.uchicago.edu/
~may/BOOKS/equi.pdf. 13

[LN12] Tyler Lawson and Niko Naumann. Commutativity conditions for truncated Brown-Peterson spectra of
height 2. J. Topol., 5(1):137–168, 2012. https://arxiv.org/abs/1101.3897. 25

[LN14] Tyler Lawson and Niko Naumann. Strictly commutative realizations of diagrams over the Steenrod
algebra and topological modular forms at the prime 2. Int. Math. Res. Not. IMRN, (10):2773–2813,
2014. https://arxiv.org/abs/1203.1696. 19

[LO16] Gerd Laures and Martin Olbermann. T MF0(3)-characteristic classes for string bundles. Math. Z.,
282(1-2):511–533, 2016. https://arxiv.org/abs/1403.7301. 30

[LO18] Gerd Laures and Martin Olbermann. Cannibalistic classes of string bundles. Manuscripta Math., 156(3-
4):273–298, 2018. https://arxiv.org/abs/1701.01287. 30

[LS19] Gerd Laures and Björn Schuster. Towards a splitting of the K(2)-local string bordism spectrum. Proc.
Amer. Math. Soc., 147(1):399–410, 2019. https://arxiv.org/abs/1710.03427. 30

https://arxiv.org/abs/1507.08115
https://arxiv.org/abs/math/0212397
https://arxiv.org/abs/1808.10412
https://arxiv.org/abs/math/0504524
https://arxiv.org/abs/math/0504524
https://arxiv.org/abs/2006.02922
https://arxiv.org/abs/1707.07587
https://arxiv.org/abs/1309.0210
https://arxiv.org/abs/1309.0210
https://arxiv.org/abs/1701.08264
https://arxiv.org/abs/1304.3588
https://arxiv.org/abs/1301.3233
https://arxiv.org/abs/1703.00935
https://www.math.uchicago.edu/~may/BOOKS/equi.pdf
https://www.math.uchicago.edu/~may/BOOKS/equi.pdf
https://arxiv.org/abs/1101.3897
https://arxiv.org/abs/1203.1696
https://arxiv.org/abs/1403.7301
https://arxiv.org/abs/1701.01287
https://arxiv.org/abs/1710.03427


44 ARUN DEBRAY AND MATTHEW YU

[Lud23] Matthias Ludewig. The spinor bundle on loop space. 2023. https://arxiv.org/abs/2305.12521. 15
[Lur17] Jacob Lurie. Higher algebra. 2017. https://www.math.ias.edu/~lurie/papers/HA.pdf. 21
[LY22] Yasunori Lee and Kazuya Yonekura. Global anomalies in 8d supergravity. J. High Energy Phys., (7):Paper

No. 125, 31, 2022. https://arxiv.org/abs/2203.12631. 40
[Mat16] Akhil Mathew. The homology of tmf. Homology Homotopy Appl., 18(2):1–29, 2016. https://arxiv.org/

abs/1305.6100. 28, 29
[McL92] Dennis A. McLaughlin. Orientation and string structures on loop space. Pacific J. Math., 155(1):143–156,

1992. 15
[Mei22] Lennart Meier. Additive decompositions for rings of modular forms. Doc. Math., 27:427–488, 2022.

https://arxiv.org/abs/1710.03461. 19, 22
[Mei23] Lennart Meier. Connective models for topological modular forms of level n. Algebr. Geom. Topol.,

23(8):3553–3586, 2023. https://arxiv.org/abs/2104.12649. 3, 19, 20, 21, 22, 30
[MG95] Mark Mahowald and Vassily Gorbounov. Some homotopy of the cobordism spectrum MO⟨8⟩. In Homotopy

theory and its applications (Cocoyoc, 1993), volume 188 of Contemp. Math., pages 105–119. Amer. Math.
Soc., Providence, RI, 1995. 30

[MH02] Mark Mahowald and Mike Hopkins. The structure of 24 dimensional manifolds having normal bundles
which lift to BO[8]. In Recent progress in homotopy theory (Baltimore, MD, 2000), volume 293 of
Contemp. Math., pages 89–110. Amer. Math. Soc., Providence, RI, 2002. 30

[MR09] Mark Mahowald and Charles Rezk. Topological modular forms of level 3. Pure Appl. Math. Q., 5(2, Special
Issue: In honor of Friedrich Hirzebruch. Part 1):853–872, 2009. https://arxiv.org/abs/0812.2009. 18,
30

[Och87] Serge Ochanine. Sur les genres multiplicatifs définis par des intégrales elliptiques. Topology, 26(2):143–151,
1987. 14

[Pri70] Stewart B. Priddy. Koszul resolutions. Trans. Amer. Math. Soc., 152:39–60, 1970. 27
[PS86] Andrew Pressley and Graeme Segal. Loop Groups. Oxford University Press, 1986. 15
[PW88] K. Pilch and N. P. Warner. String structures and the index of the Dirac-Ramond operator on orbifolds.

Comm. Math. Phys., 115(2):191–212, 1988. 15
[Qui69] Daniel Quillen. On the formal group laws of unoriented and complex cobordism theory. Bull. Amer.

Math. Soc., 75:1293–1298, 1969. 25
[Sat11a] Hisham Sati. Geometric and topological structures related to M-branes II: Twisted string and stringc

structures. J. Aust. Math. Soc., 90(1):93–108, 2011. https://arxiv.org/abs/1007.5419. 14
[Sat11b] Hisham Sati. Twisted topological structures related to M-branes. Int. J. Geom. Meth. Mod. Phys.,

8:1097–1116, 2011. https://arxiv.org/abs/1008.1755. 14
[Seg70] Graeme Segal. Cohomology of topological groups. In Symposia Mathematica, Vol. IV (INDAM, Rome,

1968/69), pages 377–387. Academic Press, London, 1970. 15
[Seg75] G. B. Segal. A classifying space of a topological group in the sense of Gel’fand-Fuks. Funkcional. Anal. i

Priložen., 9(2):48–50, 1975. 15
[Sen17] Andrew Senger. The Brown-Peterson spectrum is not E2(p2+2) at odd primes. 2017. https://arxiv.

org/abs/1710.09822. 24
[Sen23] Andrew Senger. Obstruction theory and the level n elliptic genus. Compos. Math., 159(9):2000–2021,

2023. https://arxiv.org/abs/2203.13743. 19, 20, 22, 23
[SS23] Hisham Sati and Urs Schreiber. M/F-theory as Mf -theory. Rev. Math. Phys., 35(10):2350028, 2023.

https://arxiv.org/abs/2103.01877. 32
[SSS12] Hisham Sati, Urs Schreiber, and Jim Stasheff. Twisted differential string and fivebrane structures. Comm.

Math. Phys., 315(1):169–213, 2012. https://arxiv.org/abs/0910.4001. 6, 12
[ST04] Stephan Stolz and Peter Teichner. What is an elliptic object? In Topology, geometry and quantum field

theory, volume 308 of London Math. Soc. Lecture Note Ser., pages 247–343. Cambridge Univ. Press,
Cambridge, 2004. https://math.berkeley.edu/~teichner/Papers/Oxford.pdf. 5, 15

[ST05] Stephan Stolz and Peter Teichner. The spinor bundle on loop space. 2005. https://people.mpim-bonn.
mpg.de/teichner/Math/ewExternalFiles/MPI.pdf. 15

[ST11] Stephan Stolz and Peter Teichner. Supersymmetric field theories and generalized cohomology. Mathe-
matical foundations of quantum field theory and perturbative string theory, 83:279–340, 2011. 2

[Sto67] R. E. Stong. On complex-spin manifolds. Ann. of Math. (2), 85:526–536, 1967. 7, 12

https://arxiv.org/abs/2305.12521
https://www.math.ias.edu/~lurie/papers/HA.pdf
https://arxiv.org/abs/2203.12631
https://arxiv.org/abs/1305.6100
https://arxiv.org/abs/1305.6100
https://arxiv.org/abs/1710.03461
https://arxiv.org/abs/2104.12649
https://arxiv.org/abs/0812.2009
https://arxiv.org/abs/1007.5419
https://arxiv.org/abs/1008.1755
https://arxiv.org/abs/1710.09822
https://arxiv.org/abs/1710.09822
https://arxiv.org/abs/2203.13743
https://arxiv.org/abs/2103.01877
https://arxiv.org/abs/0910.4001
https://math.berkeley.edu/~teichner/Papers/Oxford.pdf
https://people.mpim-bonn.mpg.de/teichner/Math/ewExternalFiles/MPI.pdf
https://people.mpim-bonn.mpg.de/teichner/Math/ewExternalFiles/MPI.pdf


TYPE IIA STRING THEORY AND TMF WITH LEVEL STRUCTURE 45

[Sto86] R. E. Stong. Appendix: calculation of ΩSpin
11 (K(Z, 4)). In Workshop on unified string theories (Santa

Barbara, Calif., 1985), pages 430–437. World Sci. Publishing, Singapore, 1986. 32
[Sto12] Vesna Stojanoska. Duality for topological modular forms. Doc. Math., 17:271–311, 2012. https://arxiv.

org/abs/1105.3968. 18
[Tac22] Yuji Tachikawa. Topological modular forms and the absence of a heterotic global anomaly. PTEP,

2022(4):04A107, 2022. https://arxiv.org/abs/2103.12211. 2, 36
[Tho62] Emery Thomas. The torsion Pontryagin classes. Proc. Amer. Math. Soc., 13:485–488, 1962. 8
[Tod73] Hirosi Toda. Cohomology mod 3 of the classifying space BF4 of the exceptional group F4. J. Math.

Kyoto Univ., 13:97–115, 1973. 40
[TY23a] Yuji Tachikawa and Mayuko Yamashita. Anderson self-duality of topological modular forms, its differential-

geometric manifestations, and vertex operator algebras. 2023. https://arxiv.org/abs/2305.06196. 2,
7

[TY23b] Yuji Tachikawa and Mayuko Yamashita. Topological modular forms and the absence of all heterotic
global anomalies. Commun. Math. Phys., 402(2):1585–1620, 2023. [Erratum: Commun.Math.Phys. 402,
2131 (2023)]. https://arxiv.org/abs/2108.13542. 2, 7, 36

[TYY23] Yuji Tachikawa, Mayuko Yamashita, and Kazuya Yonekura. Remarks on mod-2 elliptic genus. 2 2023.
https://arxiv.org/abs/2302.07548. 2

[TZ24] Yuji Tachikawa and Hao Y. Zhang. On a Z3-valued discrete topological term in 10d heterotic string
theories. SciPost Phys., 17:077, 2024. https://arxiv.org/abs/2403.08861. 2

[Wal10] Konrad Waldorf. Multiplicative bundle gerbes with connection. Differential Geom. Appl., 28(3):313–340,
2010. https://arxiv.org/abs/0804.4835. 15

[Wal12a] Konrad Waldorf. Transgression to loop spaces and its inverse, I: Diffeological bundles and fusion maps.
Cah. Topol. Géom. Différ. Catég., 53(3):162–210, 2012. https://www.arxiv.org/abs/0911.3212. 15

[Wal12b] Konrad Waldorf. Transgression to loop spaces and its inverse, III: Gerbes and thin fusion bundles. Adv.
Math., 231(6):3445–3472, 2012. https://arxiv.org/abs/1109.0480. 15

[Wal15] Konrad Waldorf. String geometry vs. spin geometry on loop spaces. J. Geom. Phys., 97:190–226, 2015.
https://arxiv.org/abs/1403.5656. 15

[Wal16a] Konrad Waldorf. Spin structures on loop spaces that characterize string manifolds. Algebr. Geom. Topol.,
16(2):675–709, 2016. https://arxiv.org/abs/1209.1731. 15

[Wal16b] Konrad Waldorf. Transgression to loop spaces and its inverse, II: Gerbes and fusion bundles with
connection. Asian J. Math., 20(1):59–115, 2016. https://arxiv.org/abs/1004.0031. 15

[Wal23] Konrad Waldorf. String structures and loop spaces. 2023. https://arxiv.org/abs/2312.12998. 15
[Wan08] Bai-Ling Wang. Geometric cycles, index theory and twisted K-homology. J. Noncommut. Geom.,

2(4):497–552, 2008. https://arxiv.org/abs/0710.1625. 6
[WG18] Qing-Rui Wang and Zheng-Cheng Gu. Towards a complete classification of symmetry-protected topological

phases for interacting fermions in three dimensions and a general group supercohomology theory. Phys.
Rev. X, 8:011055, Mar 2018. https://arxiv.org/abs/1703.10937. 6

[WG20] Qing-Rui Wang and Zheng-Cheng Gu. Construction and classification of symmetry-protected topological
phases in interacting fermion systems. Phys. Rev. X, 10:031055, Sep 2020. https://arxiv.org/abs/1811.
00536. 6

[Wil82] W. Stephen Wilson. Brown-Peterson homology: an introduction and sampler, volume 48 of CBMS
Regional Conference Series in Mathematics. Conference Board of the Mathematical Sciences, Washington,
DC, 1982. 25

[Wil15] Dylan Wilson. Orientations and topological modular forms with level structure. 2015. https://arxiv.
org/abs/1507.05116. 24

[Wit87] Edward Witten. Elliptic genera and quantum field theory. Communications in Mathematical Physics,
109(4):525 – 536, 1987. 2

[Wit88] Edward Witten. The index of the Dirac operator in loop space. Lect. Notes Math., 1326:161–181, 1988.
14, 15

[Yon22] Kazuya Yonekura. Heterotic global anomalies and torsion Witten index. J. High Energy Phys., (10):Paper
No. 114, 38, 2022. https://arxiv.org/abs/2207.13858. 2

[Zil77] Wolfgang Ziller. The free loop space of globally symmetric spaces. Invent. Math., 41(1):1–22, 1977. 16

https://arxiv.org/abs/1105.3968
https://arxiv.org/abs/1105.3968
https://arxiv.org/abs/2103.12211
https://arxiv.org/abs/2305.06196
https://arxiv.org/abs/2108.13542
https://arxiv.org/abs/2302.07548
https://arxiv.org/abs/2403.08861
https://arxiv.org/abs/0804.4835
https://www.arxiv.org/abs/0911.3212
https://arxiv.org/abs/1109.0480
https://arxiv.org/abs/1403.5656
https://arxiv.org/abs/1209.1731
https://arxiv.org/abs/1004.0031
https://arxiv.org/abs/2312.12998
https://arxiv.org/abs/0710.1625
https://arxiv.org/abs/1703.10937
https://arxiv.org/abs/1811.00536
https://arxiv.org/abs/1811.00536
https://arxiv.org/abs/1507.05116
https://arxiv.org/abs/1507.05116
https://arxiv.org/abs/2207.13858


46 ARUN DEBRAY AND MATTHEW YU

Department of Mathematics, University of Kentucky, 719 Patterson Office Tower, Lexington, KY
40506-0027

Email address: a.debray@uky.edu

Mathematical Institute, University of Oxford, Woodstock Road, Oxford, UK
Email address: yumatthew70@gmail.com

mailto:a.debray@uky.edu
mailto:yumatthew70@gmail.com

	1. Introduction
	Main Results
	Outline

	2. The Stringh tangential structure
	2.1. Stringh structures
	2.2. Relation between stringh structures and spinc structures on loop spaces

	3. Orienting tmf1(n)
	3.1. Low-degree homotopy groups of MStringh
	3.2. Does 1(n) split?

	4. Stringh and the Diaconescu-Moore-Witten Anomaly
	4.1. Relating Diaconescu-Moore-Witten anomaly cancellation with stringh
	4.2. Applications of stringh for type IIA compactifications

	Appendix A. 
	References

