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Abstract—Link prediction is crucial for understanding com-
plex networks but traditional Graph Neural Networks (GNNs)
often rely on random negative sampling, leading to suboptimal
performance. This paper introduces Fuzzy Graph Attention
Networks (FGAT), a novel approach integrating fuzzy rough sets
for dynamic negative sampling and enhanced node feature ag-
gregation. Fuzzy Negative Sampling (FNS) systematically selects
high-quality negative edges based on fuzzy similarities, improving
training efficiency. FGAT layer incorporates fuzzy rough set prin-
ciples, enabling robust and discriminative node representations.
Experiments on two research collaboration networks demonstrate
FGAT’s superior link prediction accuracy, outperforming state-
of-the-art baselines by leveraging the power of fuzzy rough sets
for effective negative sampling and node feature learning.

Index Terms—Link Prediction, Graph Neural Networks, Fuzzy
Rough Sets, Negative Sampling

I. INTRODUCTION

Link prediction has emerged as a crucial task in network
analysis with extensive applications across diverse domains.
In medical sciences, it aids in predicting protein-protein in-
teractions and drug-target associations; in financial systems,
it helps detect fraudulent transactions and assess credit risks;
and in chemistry, it facilitates the discovery of novel molecular
structures and chemical reactions. The ability to accurately
predict potential connections in these complex networks has
significant implications for scientific advancement and practi-
cal applications.

Graph Neural Networks (GNNs) have demonstrated remark-
able success in link prediction tasks, primarily due to their
inherent capability to capture and process structural informa-
tion in graph-structured data. However, a critical limitation
in existing GNN-based approaches lies in their negative sam-
pling methodology. Contemporary methods typically employ
random sampling strategies to select negative edges, disre-
garding the rich semantic and structural information encoded
in node representations. This oversight significantly hampers
the training process, resulting in slower convergence rates and
suboptimal model performance. An ideal negative sampling
mechanism should not only leverage node embeddings effec-
tively but also adaptively select high-quality negative samples
based on the model’s current state, ensuring both dynamic
responsiveness and sampling accuracy.

While various methodologies have been explored to enhance
link prediction accuracy, the potential of fuzzy rough sets—a
mathematical framework for measuring fuzzy relations and
handling uncertainty—remains largely unexplored in the con-
text of GNNs and link prediction. This theoretical framework
offers unique advantages in capturing imprecise relationships
and handling ambiguous data structures, making it particularly
suitable for network analysis tasks.

To address these limitations and leverage the untapped
potential of fuzzy rough sets, we propose a novel fuzzy rough
sets-based negative sampling strategy called Fuzzy Negative
Sampling (FNS). This approach systematically evaluates can-
didate negative edges through their fuzzy lower approximation
values, selecting the top K candidates as negative training
instances. Furthermore, we introduce Fuzzy Graph Attention
Network (FGAT), an enhanced graph neural architecture de-
signed to aggregate neighboring node information in a more
robust and effective manner.

The main contributions of this work can be summarized as
follows:

• We introduce FNS, a novel negative sampling framework
that leverages fuzzy rough sets theory to identify high-
quality negative edges, significantly improving the effec-
tiveness of the training process in link prediction tasks.

• We propose FGAT, an innovative graph attention network
that incorporates fuzzy rough set principles to achieve
more robust and discriminative node representations.

• We conduct comprehensive experiments across two real-
world datasets, demonstrating the effectiveness of our
proposed framework.

II. RELATED WORK

Graph Neural Networks have demonstrated remarkable
versatility across various graph-based learning tasks. In node
classification, seminal works like GraphSAGE [1] and Graph
Attention Networks (GAT) [2] have established foundational
approaches for learning node representations through neigh-
borhood aggregation. GCN [3] introduced convolutional oper-
ations on graphs, enabling efficient feature propagation across
network structures. For graph classification tasks, hierarchical
pooling mechanisms have been developed, with DiffPool [4]
and TopKPool [5] proposing learnable strategies to generate
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graph-level representations. In the context of link prediction,
SEAL [6] pioneered the use of local subgraphs for edge
existence prediction, while VGAE [7] employed variational
autoencoders for learning edge formation patterns. Recent
advances include NGNN [8], which introduces neural archi-
tecture improvements specifically designed for link prediction
tasks.

Fuzzy rough sets theory, initially proposed by Dubois and
Prade [9], has evolved into a powerful framework for handling
uncertainty and imprecision in data analysis. In feature selec-
tion, Jensen and Shen [10] developed fuzzy-rough attribute
reduction algorithms that significantly outperform traditional
approaches in identifying relevant features while maintaining
information fidelity. The application of fuzzy rough sets in
medical diagnosis has been exemplified by works such as
[11], where they effectively handle the inherent uncertainty
in patient data for more accurate disease classification. For
uncertainty measurement, the framework has been extensively
studied in theoretical works by [12] and [13], establishing
mathematical foundations for quantifying various types of
uncertainty in data relationships. Recent developments include
hybrid approaches combining fuzzy rough sets with deep
learning and applications in big data analytics [14] , demon-
strating the framework’s adaptability to modern computational
challenges.

Except the innovative applications of Graph Neural Net-
works and fuzzy rough set theory in handling complex data
and multi-task learning, against the backdrop of rapid advance-
ments in machine learning, applications like knowledge graph
technology in intelligent question-answering systems have
become a key area of development for graph learning methods,
effectively integrating multiple data sources to support flexible
knowledge processing [15]. Similarly, multi-model integration
technology applied to automated generation systems has sig-
nificantly enhanced content generation flexibility and quality,
providing valuable insights for representation learning based
on graph data [16]. In network security, Graph Neural Net-
works have demonstrated strong generalization capabilities in
supporting Botnet detection through machine learning, pre-
cisely identifying abnormal behaviors and enhancing network
defense levels [17].

In recent years, the scope of machine learning applications
has continuously expanded, especially in image processing
and VR fields. Blockchain-enhanced image retrieval systems,
for example, have brought revolutionary improvements in
data security and retrieval efficiency [18]. In VR and robotic
interaction, AI-vision-powered intelligent systems have ex-
plored new methods for balancing real-world interaction and
virtual immersion, making human-computer interaction more
natural and seamless [19]. Furthermore, the integration of
fuzzy rough set theory with deep learning has also achieved
breakthroughs in traffic data prediction, enabling more accu-
rate short-term forecasting through multi-source data fusion,
effectively adapting to the dynamic demands of complex data
environments [20]. Overall, these technological innovations
not only showcase the broad applicability of graph learning

Fig. 1. The FGAT Framework

methods and fuzzy rough sets across different task scenarios
but also reinforce their theoretical and practical value in big
data and intelligent applications.

III. METHODOLOGY

Figure 1 illustrates our proposed framework, which consists
of two main components:

• Fuzzy Negative Sampling: A mechanism that selects
high-quality negative edges based on fuzzy similarities,
where negative edges with high fuzzy similarity are
dynamically selected for the FGAT framework’s training.

• FGAT Convolution Layer: A specially designed layer
for effective neighbor node information aggregation. Mul-
tiple FGAT convolution layers are stacked to capture
multi-hop information.

In the following sections, we first detail the computation
of fuzzy similarities using fuzzy rough sets for high-quality
negative edge selection. Subsequently, we elaborate on the
FGAT architecture, followed by a comprehensive framework
summary.

A. Fuzzy Negative Sampling

A fuzzy information system is defined as a tuple
(U,A, V, f), where U represents a non-empty finite set of
samples, A denotes the finite set of sample attributes, V
represents the domain of all attributes in A, expressed as
V =

⋃
i Vi where Vi is the domain of attribute i, and f is

a mapping function U ×A → V [11].
For an attribute set B ⊆ A and a fuzzy equivalence relation

R, we can compute a coverage of the universe U . For a sample
x, we denote its coverage under the fuzzy equivalence relation
R as [x]R. The membership of a sample y to the coverage [x]R
is defined as [x]R(y) = R(x, y), where R(x, y) quantifies the
similarity between samples x and y under relation R. For any
sample x ∈ U and subset X ⊆ A, the fuzzy lower and upper
approximations of sample x to X are defined as [11]:

RSX(x) = inf
y∈U

S(N(R(x, y)), X(y)),

RTX(x) = sup
y∈U

T (R(x, y), X(y))
(1)



where S and T represent fuzzy triangular conorm (S-norm)
and fuzzy triangular norm (T-norm) respectively, and N(x) =
1− x.

Using the conventional min-max version of T and S norms,
for a set of samples di of class i and corresponding attribute
set B ⊆ A, Equation 1 can be reformulated as:

RBdi(x) = inf
y∈U

max(1−R(x, y), di(y)),

RBdi(x) = sup
y∈U

min(R(x, y), di(y))
(2)

To capture non-linear high-level similarities, R typically
employs kernel functions, including the Gaussian kernel:
kG(x, y) = exp(− ||x−y||2

δ ), exponential kernel: kE(x, y) =

exp(− ||x−y||
δ ), and rational quadratic kernel: kR(x, y) = 1−

||x−y||2
||x−y||2+δ .

During each training epoch, negative links are dynamically
selected based on their quality scores. For any potential nega-
tive link with end nodes (x, y), the quality score is computed
as:

Score(x, y) = α×RBdy(x) + (1− α)×RBdx(y) (3)

where α is a hyperparameter.
While computing quality scores for all possible negative

edges and selecting the top k would be optimal, this approach
becomes computationally intractable for large dense graphs.
For a graph with N nodes and E edges, there exist N ×
(N − 1) − E potential directed negative edges. To address
this computational challenge, we randomly select 2E negative
edges and select the top E edges among them. This strategy
reduces the computational complexity from N × (N − 1)−E
to 2E while maintaining near-optimal performance.

The selected top E negative edges are combined with
the original positive edges to form the training dataset. To
prevent class imbalance issues, we maintain an equal number
of selected negative edges and original positive edges.

B. FGAT Convolution Layer

The FGAT convolution layer integrates GAT convolution
layers with linear layers, incorporating layer normalization
for training acceleration and dropout mechanisms for effective
regularization.

Given an undirected graph G = (V,E), where V represents
the set of nodes and E denotes the set of edges, each node
v ∈ V is associated with a feature vector hv ∈ RF , where
F represents the dimension of input features per node. The
FGAT layer aims to compute updated node representations
h′
v ∈ RF ′

, where F ′ denotes the output feature dimension, by
performing weighted aggregation of features from each node’s
neighborhood.

For a node pair consisting of node v and its neighbor u, the
attention coefficient evu is computed through:

evu = LeakyReLU
(
aT [Whv ∥ Whu]

)
(4)

where:

• W ∈ RF ′×F represents a learnable weight matrix that
transforms node features linearly.

• ∥ indicates vector concatenation.
• a ∈ R2F ′

denotes a learnable weight vector.
• LeakyReLU serves as the activation function, typically

configured with a small negative slope (e.g., 0.2).
The attention coefficients then undergo normalization across

each node’s neighborhood using the softmax function:

αvu =
exp(evu)∑

k∈N (v) exp(evk)
(5)

where N (v) represents the neighborhood set of node v.
The normalized attention scores αvu facilitate the compu-

tation of updated node features h′
v through weighted aggrega-

tion:

h′
v = σ

 ∑
u∈N (v)

αvuWhu

 (6)

where σ represents a non-linear activation function, typically
implemented as ReLU.

To enhance model robustness and representational capacity,
the GAT layers employ multi-head attention mechanisms.
Specifically, K independent attention heads operate in paral-
lel, each generating distinct attention coefficients and feature
representations. These representations are subsequently con-
catenated to produce the final output:

h′
v =∥Kk=1 σ

 ∑
u∈N (v)

α(k)
vu W

(k)hu

 (7)

where α
(k)
vu and W(k) correspond to the attention coefficient

and weight matrix of the k-th attention head, respectively.
Layer normalization [21] is incorporated to stabilize and

expedite the training process by normalizing layer inputs. For
an input vector h = [h1, h2, . . . , hd] with d features, the
normalized output ĥ = [ĥ1, ĥ2, . . . , ĥd] is computed as:

ĥi =
hi − µ√
σ2 + ϵ

(8)

where µ = 1
d

∑d
i=1 hi represents the mean, σ2 =

1
d

∑d
i=1(hi−µ)2 denotes the variance, and ϵ is a small constant

ensuring numerical stability. The final output y is obtained
through the application of learnable scaling parameter γ and
bias term β:

yi = γĥi + β (9)

C. The FGAT Framework

As illustrated in Figure 1, the FGAT framework operates
through a systematic process that begins with dynamic neg-
ative edge selection during each training epoch, utilizing the
given adjacency matrix. These dynamically selected negative
edges, along with the existing positive edges, are subsequently
processed by the FGAT layer in conjunction with their cor-
responding node embeddings. To effectively capture long-
range dependencies within the graph structure, multiple FGAT



layers are cascaded, with residual connections implemented to
enhance training stability and information flow. Following the
iterative processing through these layers, we obtain updated
node representations H = {h1, h2, . . . , hN}. The probability
of link existence between any pair of nodes x and y is then
computed as:

P link
r (x, y) = Sigmoid(hxh

T
y ) (10)

The framework’s effectiveness stems from two key compo-
nents: the fuzzy negative sampling technique, which efficiently
identifies and selects high-quality negative edges, and the
FGAT layer architecture, which performs iterative neighbor
information aggregation. The empirical validation of this
framework’s performance is documented in the experiments
section, demonstrating its effectiveness in link prediction tasks.

IV. EXPERIMENTS

We conduct comparative evaluations of FGAT against sev-
eral state-of-the-art baselines using two research collaboration
network datasets. The experimental results demonstrate the
superior performance of FGAT. In this section, we present
detailed information about the datasets, experimental settings,
evaluation metrics, and analysis of results.

A. Datasets

Our evaluation utilizes two research collaboration network
datasets, summarized in Table I.

TABLE I
DATASETS SUMMARY

Ca-netscience Ca-sandi-auths

#Nodes 379 86
#Edges 914 124
#AvgDegree 2.4 1.4
Directed TRUE TRUE
%Training Edges 0.7 0.7
%Validation Edges 0.1 0.1
%Testing Edges 0.2 0.2

The Ca-netscience dataset comprises 379 nodes and 914
edges, with an average node degree of 2.4. In contrast, Ca-
sandi-auths exhibits a more sparse structure with fewer nodes,
edges, and a lower average node degree. Both datasets are
directed networks. For experimental purposes, we employ a
70-10-20 split ratio, where 70% of the data is used for training,
10% for validation (early stopping), and 20% for testing.

B. Experiment Settings and Evaluation Metrics

We benchmark FGAT against several prominent baseline
models: MLP, GCN [3], GraphSAGE [1], and GAT [2]. All
baseline models maintain their default parameter configura-
tions. For FGAT implementation, we configure the embedding
dimension to 128 and employ a stack of 4 FGAT convolution
layers. The dataset partitioning follows the aforementioned
0.7:0.1:0.2 ratio for training, validation, and testing, respec-
tively.

To ensure a comprehensive performance assessment, we
employ multiple evaluation metrics: Precision, Recall, F1
score, and ROC score. This diverse set of metrics provides
a multifaceted evaluation, enabling thorough analysis of each
model’s capabilities across different performance aspects.

C. Results

The experimental results are presented in Table II, yielding
several significant observations:

• On the Ca-netscience dataset, MLP demonstrates the
poorest performance, attributable to its inability to capture
spatial information encoded in the adjacency matrix.
GCN, GraphSAGE, and GAT exhibit comparable per-
formance levels, with GraphSAGE achieving superior
Recall scores and GAT excelling in F1 metrics. For
the Ca-sandi-auths dataset, MLP achieves notable Recall
but relatively inferior Precision, suggesting overfitting
tendencies and limited generalization capability. GAT,
leveraging its attention mechanism, achieves the highest
ROC scores among baseline methods.

• FGAT outperforms baseline methods across both datasets
in terms of the average of four evaluation metrics.
Specifically, it demonstrates an average improvement
of 7.11% across all metrics on Ca-netscience, and a
more substantial 15.55% improvement on Ca-sandi-auths.
This superior performance can be attributed to two key
factors: the fuzzy negative sampling mechanism, which
enables focused learning on error-prone edges, and the
FGAT layer architecture, which provides robust message
aggregation capabilities.

V. CONCLUSION

The proposed FGAT framework, combining FNS and a
novel graph attention layer, significantly improves link pre-
diction performance compared to existing methods. FNS ef-
fectively identifies informative negative edges by leveraging
fuzzy rough sets, leading to more focused and efficient model
training. The FGAT layer, integrating fuzzy set concepts,
captures complex relationships in graph data, resulting in
superior node representations for accurate link prediction. The
paper’s findings highlight the potential of fuzzy rough sets in
advancing GNNs for link prediction tasks and pave the way
for future research exploring fuzzy set theory in graph-based
learning.
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