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An improved multiplicity bound for eigenvalues of the

clamped disk

Dan Mangoubi and Daniel Rosenblatt

Abstract

We prove that no eigenvalue of the clamped disk has multiplicity greater than
four. This improves upon a previous bound. Exploiting a linear recursion for-
mula of order two for cross-product Bessel functions in which the coefficients are
non-rational functions satisfying a non-linear algebraic recursion, we show that
higher multiplicity eigenvalues must be algebraic, in contradiction with the Siegel-
Shidlovskii theory.

1 Introduction and background

1.1 The vibrating clamped plate

In this paper we are concerned with the vibrating clamped circular plate [1, ch. V§6],
that is, the fourth order eigenvalue problem

(VP)







∆2u = λu in D,
u = 0 on ∂D,

∂nu = 0 on ∂D.

where ∆ = div ◦ grad is the Laplacian. A basis of eigenfunctions is given in polar
coordinates by the family

um.k(r, φ) =
(

Im(wm,k)Jm(wm,kr)− Jm(wm,k)Im(wm,kr)
)

eimφ

with corresponding eignevalues λ = w4
m,k, where Jm, Im denote the Bessel and modified

Bessel functions respectively of the first kind, and wm,k is a zero of the cross product

Wm := Im+1Jm + ImJm+1 = Im−1Jm − ImJm−1 . (1)

We are interested to know whether non-trivial multiplicities occur in the spectrum.
The analogous problem for the vibrating circular membrane was solved in [3] (see also
[4, 5, ch. 15.28]). The problem amounts to the question whether there exist m1, m2 ∈ N0

distinct and x0 > 0 with Wm1
(x0) = Wm2

(x0) = 0. However, this seems to be a difficult
open problem. In [2] it was shown that there do not exist m1, m2, m3, m4 ∈ N0 pairwise
distinct and x0 > 0 for which Wm1

(x0) = Wm2
(x0) = Wm3

(x0) = Wm4
(x0) = 0. The

proof was based on a fourth order recursion formula for the sequence Wm with rational
functions as coefficients. The aim of this paper is to prove
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Theorem 1.1. There do not exist m1, m2, m3 ∈ N0 pairwise distinct and x0 > 0 such
that Wm1

(x0) = Wm2
(x0) = Wm3

(x0) = 0.

As a corollary we obtain

Corollary 1.2. Let λ be an eigenvalue of the vibrating clamped disk problem. Then, λ is
of multiplicity four at most.

To prove Theorem 1.1 we show that if m1, m2, m3 ∈ N0 pairwise distinct and x0 > 0
with Wm1

(x0) = Wm2
(x0) = Wm3

(x0) = 0 exist, then x0 must be algebraic. However,
an immediate application of the Siegel-Shidlovskii theory shows that any positive root of
the equation Wm(x0) = 0 is transcendental. The main new ingredient in our proof with
respect to [2], is a second order linear recursion for the sequence Wm, whose coefficients,
while not rational, satisfy an algebraic non-linear recursion of degree two. At a first step
we show that each joint zero x0 of Wm and Wm′ leads to an equation of the form

Pm,m′(x0, f(x0)) = 0 (2)

where Pm,m′(x, y) is a polynomial of degree two with respect to y and f is a transcendental
function. At a second step we prove that it is possible to eliminate f from a system of
any two such equations, leading to a non-trivial polynomial equation for x0.

1.2 Acknowledgments

We are very grateful to Gal Binyamini, suggesting the possibility of eliminating f from
our equations (2). We thank Or Kuperman for helpful discussions regarding the second
order recurrence satisfied by the sequence Wm.

2 Bessel functions and their quotients

Let m be an integer. The Bessel function Jm can be defined as the power series

Jm(x) =
(x

2

)m
∞
∑

k=0

(−1)k

k!Γ(m+ k + 1)

(x

2

)2k

The modified Bessel function Im is the power series

Im(x) =
(x

2

)m
∞
∑

k=0

1

k!Γ(m+ k + 1)

(x

2

)2k

Proposition 2.1. [5, chs. 2.12, 3.71] The following recursions are satisfied.

Jm+1 =
2m

x
Jm − Jm−1

Im+1 = −
2m

x
Im + Im−1

We will consider quotients of successive modified Bessel functions.
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Definition 2.2. For x ∈ R we set

Fm(x) :=
Im(x)

xIm−1(x)
.

The following identity, which can be viewed as a discrete Riccati equation will be
important in the sequel.

Key Identity 2.3.

x2Fm+1(x)Fm(x) = 1− 2mFm(x)

Proof. From the definition of Fm and Proposition 2.1 we have

x2Fm+1Fm = x2 ·
Im+1

xIm
·

Im
xIm−1

=
1

Im−1

(

Im−1 −
2m

x
Im

)

= 1− 2mFm .

A similar computation, which we omit, shows also

Lemma 2.4. x2F−m+1 = x2Fm+1 + 2m

3 Second order recursion for cross products of Bessel

functions

The sequence (Wm)m∈Z satisfies a fourth order linear recurrence with non-constant coef-
ficients in Q(x) (see [2]). However, it also satisfies a second order linear recurrence whose
coefficients, while not in Q(x), satisfy themselves a quadratic recursion. We prove

Theorem 3.1. The following recursion formula holds.

Wm+1 = 2mFmWm + (2mFm − 1)Wm−1

Proof. On the one hand we have by (1) and Proposition 2.1

Wm−1 +Wm+1 = (ImJm−1 + Im−1Jm) + (ImJm+1 − Im+1Jm)

= Im
2m

x
Jm +

2m

x
ImJm =

4m

x
ImJm .

On the other hand,

2mFm(Wm +Wm−1) = 2m
Im

xIm−1
(Im−1Jm − ImJm−1 + ImJm−1 + Im−1Jm) =

4m

x
ImJm .

Comparing the preceding expressions gives the desired identity.
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4 Rolling out the recursion

In this section we use the second order recursion forWm (Theorem 3.1) in order to express
any element in the sequence in terms of two initial consecutive terms.

Proposition 4.1. Let m ∈ Z, n ∈ N0. There exist polynomials Am,n, Bm,n, B̃m,n,
Cm,n ∈ Q[x] such that:

x2nWm+n+1 =
(

Am,nFm + x2Bm,n + Cm,nF
−1
m

)

Wm+
(

Am,nFm + B̃m,n − Cm,nF
−1
m

)

Wm−1

(3)

Remark. Note that the coefficients in the preceding formula are linear in Fm and F−1
m .

Proof. The case n = 0 follows from Theorem 3.1. For n ≥ 1

x2nWm+n+1 = x2x2n−2W(m+1)+(n−1)+1 =
(

x2Am+1,n−1Fm+1 + x4Bm+1,n−1 + x2Cm+1,n−1F
−1
m+1

)

Wm+1

+
(

x2Am+1,n−1Fm+1 + x2B̃m+1,n−1 − x2Cm+1,n−1F
−1
m+1

)

Wm

We substitute Wm+1 using Theorem 3.1 and Key Identity 2.3.

x2nWm+n+1 =
(

2mx2Am+1,n−1FmFm+1 + 2mx4Bm+1,n−1Fm + 2mx2Cm+1,n−1FmF
−1
m+1

)

Wm

−
(

x2Am+1,n−1Fm+1 + x4Bm+1,n−1 + x2Cm+1,n−1F
−1
m+1

)

x2FmFm+1Wm−1

+
(

x2Am+1,n−1Fm+1 + x2B̃m+1,n−1 − x2Cm+1,n−1F
−1
m+1

)

Wm

Applying Key Identity 2.3 and collecting terms gives

x2nWm+n+1 =
(

2mAm+1,n−1(1− 2mFm) + 2mx4Bm+1,n−1Fm

− x2Cm+1,n−1(1− 2mFm)F
−1
m+1 + Am+1,n−1(F

−1
m − 2m) + x2B̃m+1,n−1

)

Wm

−
(

x2Am+1,n−1Fm+1(1− 2mFm) + x4Bm+1,n−1(1− 2mFm) + x4Cm+1,n−1Fm

)

Wm−1

Applying once more Key Identity 2.3 and collecting terms gives

x2nWm+n+1 =
(

(

−4m2Am+1,n−1 + 2mx4Bm+1,n−1 − x4Cm+1,n−1

)

Fm

+ x2B̃m+1,n−1 + Am+1,n−1F
−1
m

)

Wm

+
(

2mAm+1,n−1(1− 2mFm)− Am+1,n−1(F
−1
m − 2m) +

(

2mx4Bm+1,n−1 − x4Cm+1,n−1

)

Fm

− x4Bm+1,n−1

)

Wm−1
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and finally,

x2nWm+n+1 =
(

(

−4m2Am+1,n−1 + 2mx4Bm+1,n−1 − x4Cm+1,n−1

)

Fm

+ x2B̃m+1,n−1 + Am+1,n−1F
−1
m

)

Wm

+
(

(

−4m2Am+1,n−1 + 2mx4Bm+1,n−1 − x4Cm+1,n−1

)

Fm

+ 4mAm+1,n−1 − x4Bm+1,n−1 − Am+1,n−1F
−1
m

)

Wm−1

which is of the desired form.

As an immediate consequence of the above computation we obtain the following
Lemma.

Lemma 4.2. Let Am,n, Bm,n, B̃m,n, and Cm,n be as in Proposition 4.1. Then, the fol-
lowing recursive relations hold.

(i) Am,0 = 2m, Am,n = −4m2Am+1,n−1 + 2mx4Bm+1,n−1 − x4Cm+1,n−1

(ii) Bm,0 = 0, Bm,n = B̃m+1,n−1

(iii) B̃m,0 = −1, B̃m,n = 4mAm+1,n−1 − x4Bm+1,n−1

(iv) Cm,0 = 0, Cm,n = Am+1,n−1

As a corollary we have

Lemma 4.3. Let m ∈ Z and n ∈ N. Then,

Am,n ≡ 2(−4)n(m+ n)
n−1
∏

k=0

(m+ k)2 mod x4 .

In particular, if m > 0 or m < −n, then Am,n 6≡ 0 mod x.

Proof. The proof follows immediately from Lemma 4.2, part (i).

5 Proof of Theorem 1.1

We recall

Proposition 5.1 ([2]). The functions Wm and Wm+1 have no joint positive zeros.

Proof. Assume Wm(x0) = Wm+1(x0) = 0 for some x0 > 0. Observe that

Wm+1 +Wm = ImJm+1 − Im+1Jm + Im+1Jm + ImJm+1 = 2ImJm+1

and
Wm+1 −Wm = ImJm+1 − Im+1Jm − Im+1Jm − ImJm+1 = −2Im+1Jm

It follows that Jm(x0) = Jm+1(x0) = 0. However, this is impossible since it would imply
that J ′

m(x0) = (m/x0)Jm(x0) − Jm+1(x0) is also zero, while Jm satisfies a second order
linear ODE.
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A direct consequence of the preceding proposition and Proposition 4.1 is

Corollary 5.2. Let m ∈ Z, and n ∈ N0.

(a) If x0 is a joint zero of Wm, and Wm+n+2, then

Am+1,n(x0)Fm+1(x0)
2 + x2

0Bm+1,n(x0)Fm+1(x0) + Cm+1,n(x0) = 0

(b) If x0 is a joint zero of Wm, and Wm−n−2, then

A−m+1,n(x0)
(

x2
0Fm+1(x0) + 2m

)2

+ x4
0B−m+1,n(x0)

(

x2
0Fm+1(x0) + 2m

)

+ x4
0C−m+1,n(x0) = 0

Proof. Part (a) follows from Proposition 4.1 with m replaced by m + 1, taking into
account Proposition 5.1. Part (b) follows from Part (a) with m replaced by −m, taking
into account Lemma 2.4.

Proof of Theorem 1.1. Assume 0 ≤ m1 < m2 < m3 and x0 > 0 are such that Wm1
(x0) =

Wm2
(x0) = Wm3

(x0) = 0. By Proposition 5.1 we can write m1 = m2− l− 2, m2 = m and
m3 = m2 + n+ 2 with l, m, n ∈ N0. By Corollary 5.2 setting x = x0 solves a system

{

Am+1,n(x)Fm+1(x)
2 + x2Bm+1,n(x)Fm+1(x) + Cm+1,n(x) = 0

A−m+1,l(x)
(

x2Fm+1(x) + 2m
)2
+x4B−m+1,n(x)(x

2Fm+1(x) + 2m)+ x4C−m+1,n(x) = 0

(4)
Eliminating F 2

m+1 from the preceding system we obtain that x0 is a root of an equation
of the form

(

4mAm+1,n(x)A−m+1,l(x)+x4P1(x)
)

x2Fm+1(x)+4m2Am+1,n(x)A−m+1,l(x)+x4P2(x) = 0

for some polynomials P1, P2 ∈ Q[x], depending on l, m, n.
By Lemma 4.3 (and the fact thatm > l+1) the polynomial 4mAm+1,nA−m+1,l+x4P1 is

not zero. Hence, in case it vanishes at the point x0 we get that x0 is algebraic. Otherwise,
using the preceding equation to eliminate Fm+1 from the first equation in (4) leads to an
equation of the form

16m4Am+1,n(x0)
3A−m+1,l(x0)

2 + x4
0P3(x0) = 0

with P3 ∈ Q[x] depending on l, m, n. From Lemma 4.3 it follows that x0 is algebraic in
this case too.

We have shown that x0 is algebraic. However, this is impossible, as by the Siegel-
Shidlovskii theory all positive roots ofWm(x) = 0 are transcendental (see [2, cor. 6.4]).
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