

An improved multiplicity bound for eigenvalues of the clamped disk

Dan Mangoubi and Daniel Rosenblatt

Abstract

We prove that no eigenvalue of the clamped disk has multiplicity greater than four. This improves upon a previous bound. Exploiting a linear recursion formula of order two for cross-product Bessel functions in which the coefficients are non-rational functions satisfying a non-linear algebraic recursion, we show that higher multiplicity eigenvalues must be algebraic, in contradiction with the Siegel-Shidlovskii theory.

1 Introduction and background

1.1 The vibrating clamped plate

In this paper we are concerned with the vibrating clamped circular plate $[1, ch. V\S6]$, that is, the fourth order eigenvalue problem

(VP)
$$\begin{cases} \Delta^2 u = \lambda u & \text{in } \mathbb{D}, \\ u = 0 & \text{on } \partial \mathbb{D}, \\ \partial_n u = 0 & \text{on } \partial \mathbb{D}. \end{cases}$$

where $\Delta = \text{div} \circ \text{grad}$ is the Laplacian. A basis of eigenfunctions is given in polar coordinates by the family

$$u_{m,k}(r,\phi) = \left(I_m(w_{m,k})J_m(w_{m,k}r) - J_m(w_{m,k})I_m(w_{m,k}r)\right)e^{im\phi}$$

with corresponding eignevalues $\lambda = w_{m,k}^4$, where J_m, I_m denote the Bessel and modified Bessel functions respectively of the first kind, and $w_{m,k}$ is a zero of the cross product

$$W_m := I_{m+1}J_m + I_m J_{m+1} = I_{m-1}J_m - I_m J_{m-1} .$$
⁽¹⁾

We are interested to know whether non-trivial multiplicities occur in the spectrum. The analogous problem for the vibrating circular membrane was solved in [3] (see also [4, 5, ch. 15.28]). The problem amounts to the question whether there exist $m_1, m_2 \in \mathbb{N}_0$ distinct and $x_0 > 0$ with $W_{m_1}(x_0) = W_{m_2}(x_0) = 0$. However, this seems to be a difficult open problem. In [2] it was shown that there do not exist $m_1, m_2, m_3, m_4 \in \mathbb{N}_0$ pairwise distinct and $x_0 > 0$ for which $W_{m_1}(x_0) = W_{m_2}(x_0) = W_{m_3}(x_0) = W_{m_4}(x_0) = 0$. The proof was based on a *fourth* order recursion formula for the sequence W_m with rational functions as coefficients. The aim of this paper is to prove **Theorem 1.1.** There do not exist $m_1, m_2, m_3 \in \mathbb{N}_0$ pairwise distinct and $x_0 > 0$ such that $W_{m_1}(x_0) = W_{m_2}(x_0) = W_{m_3}(x_0) = 0$.

As a corollary we obtain

Corollary 1.2. Let λ be an eigenvalue of the vibrating clamped disk problem. Then, λ is of multiplicity four at most.

To prove Theorem 1.1 we show that if $m_1, m_2, m_3 \in \mathbb{N}_0$ pairwise distinct and $x_0 > 0$ with $W_{m_1}(x_0) = W_{m_2}(x_0) = W_{m_3}(x_0) = 0$ exist, then x_0 must be algebraic. However, an immediate application of the Siegel-Shidlovskii theory shows that any positive root of the equation $W_m(x_0) = 0$ is transcendental. The main new ingredient in our proof with respect to [2], is a *second* order linear recursion for the sequence W_m , whose coefficients, while not rational, satisfy an algebraic *non-linear* recursion of degree two. At a first step we show that each joint zero x_0 of W_m and $W_{m'}$ leads to an equation of the form

$$P_{m,m'}(x_0, f(x_0)) = 0 (2)$$

where $P_{m,m'}(x, y)$ is a polynomial of degree two with respect to y and f is a transcendental function. At a second step we prove that it is possible to eliminate f from a system of any two such equations, leading to a non-trivial polynomial equation for x_0 .

1.2 Acknowledgments

We are very grateful to Gal Binyamini, suggesting the possibility of eliminating f from our equations (2). We thank Or Kuperman for helpful discussions regarding the second order recurrence satisfied by the sequence W_m .

2 Bessel functions and their quotients

Let m be an integer. The Bessel function J_m can be defined as the power series

$$J_m(x) = \left(\frac{x}{2}\right)^m \sum_{k=0}^{\infty} \frac{(-1)^k}{k! \Gamma(m+k+1)} \left(\frac{x}{2}\right)^{2k}$$

The modified Bessel function I_m is the power series

$$I_m(x) = \left(\frac{x}{2}\right)^m \sum_{k=0}^{\infty} \frac{1}{k! \Gamma(m+k+1)} \left(\frac{x}{2}\right)^{2k}$$

Proposition 2.1. [5, chs. 2.12, 3.71] The following recursions are satisfied.

$$J_{m+1} = \frac{2m}{x} J_m - J_{m-1}$$
$$I_{m+1} = -\frac{2m}{x} I_m + I_{m-1}$$

We will consider quotients of successive modified Bessel functions.

Definition 2.2. For $x \in \mathbb{R}$ we set

$$F_m(x) := \frac{I_m(x)}{xI_{m-1}(x)} \; .$$

The following identity, which can be viewed as a discrete Riccati equation will be important in the sequel.

Key Identity 2.3.

$$x^{2}F_{m+1}(x)F_{m}(x) = 1 - 2mF_{m}(x)$$

Proof. From the definition of F_m and Proposition 2.1 we have

$$x^{2}F_{m+1}F_{m} = x^{2} \cdot \frac{I_{m+1}}{xI_{m}} \cdot \frac{I_{m}}{xI_{m-1}} = \frac{1}{I_{m-1}} \left(I_{m-1} - \frac{2m}{x}I_{m} \right) = 1 - 2mF_{m} .$$

A similar computation, which we omit, shows also

Lemma 2.4. $x^2 F_{-m+1} = x^2 F_{m+1} + 2m$

3 Second order recursion for cross products of Bessel functions

The sequence $(W_m)_{m\in\mathbb{Z}}$ satisfies a fourth order linear recurrence with non-constant coefficients in $\mathbb{Q}(x)$ (see [2]). However, it also satisfies a second order linear recurrence whose coefficients, while not in $\mathbb{Q}(x)$, satisfy themselves a quadratic recursion. We prove

Theorem 3.1. The following recursion formula holds.

$$W_{m+1} = 2mF_mW_m + (2mF_m - 1)W_{m-1}$$

Proof. On the one hand we have by (1) and Proposition 2.1

$$W_{m-1} + W_{m+1} = (I_m J_{m-1} + I_{m-1} J_m) + (I_m J_{m+1} - I_{m+1} J_m)$$

= $I_m \frac{2m}{x} J_m + \frac{2m}{x} I_m J_m = \frac{4m}{x} I_m J_m$.

On the other hand,

$$2mF_m(W_m + W_{m-1}) = 2m\frac{I_m}{xI_{m-1}}(I_{m-1}J_m - I_mJ_{m-1} + I_mJ_{m-1} + I_{m-1}J_m) = \frac{4m}{x}I_mJ_m \ .$$

Comparing the preceding expressions gives the desired identity.

4 Rolling out the recursion

In this section we use the second order recursion for W_m (Theorem 3.1) in order to express any element in the sequence in terms of two initial consecutive terms.

Proposition 4.1. Let $m \in \mathbb{Z}$, $n \in \mathbb{N}_0$. There exist polynomials $A_{m,n}$, $B_{m,n}$, $\tilde{B}_{m,n}$, $C_{m,n} \in \mathbb{Q}[x]$ such that:

$$x^{2n}W_{m+n+1} = \left(A_{m,n}F_m + x^2B_{m,n} + C_{m,n}F_m^{-1}\right)W_m + \left(A_{m,n}F_m + \tilde{B}_{m,n} - C_{m,n}F_m^{-1}\right)W_{m-1}$$
(3)

Remark. Note that the coefficients in the preceding formula are linear in F_m and F_m^{-1} .

Proof. The case n = 0 follows from Theorem 3.1. For $n \ge 1$

$$x^{2n}W_{m+n+1} = x^{2}x^{2n-2}W_{(m+1)+(n-1)+1} = \left(x^{2}A_{m+1,n-1}F_{m+1} + x^{4}B_{m+1,n-1} + x^{2}C_{m+1,n-1}F_{m+1}^{-1}\right)W_{m+1} + \left(x^{2}A_{m+1,n-1}F_{m+1} + x^{2}\tilde{B}_{m+1,n-1} - x^{2}C_{m+1,n-1}F_{m+1}^{-1}\right)W_{m}$$

We substitute W_{m+1} using Theorem 3.1 and Key Identity 2.3.

$$\begin{aligned} x^{2n}W_{m+n+1} &= \\ & \left(2mx^2A_{m+1,n-1}F_mF_{m+1} + 2mx^4B_{m+1,n-1}F_m + 2mx^2C_{m+1,n-1}F_mF_{m+1}^{-1}\right)W_m \\ & - \left(x^2A_{m+1,n-1}F_{m+1} + x^4B_{m+1,n-1} + x^2C_{m+1,n-1}F_{m+1}^{-1}\right)x^2F_mF_{m+1}W_{m-1} \\ & + \left(x^2A_{m+1,n-1}F_{m+1} + x^2\tilde{B}_{m+1,n-1} - x^2C_{m+1,n-1}F_{m+1}^{-1}\right)W_m \end{aligned}$$

Applying Key Identity 2.3 and collecting terms gives

$$\begin{aligned} x^{2n}W_{m+n+1} &= \\ \left(2mA_{m+1,n-1}(1-2mF_m) + 2mx^4B_{m+1,n-1}F_m \right. \\ \left. -x^2C_{m+1,n-1}(1-2mF_m)F_{m+1}^{-1} + A_{m+1,n-1}(F_m^{-1}-2m) + x^2\tilde{B}_{m+1,n-1}\right)W_m \\ \left. -\left(x^2A_{m+1,n-1}F_{m+1}(1-2mF_m) + x^4B_{m+1,n-1}(1-2mF_m) + x^4C_{m+1,n-1}F_m\right)W_{m-1} \right] \end{aligned}$$

Applying once more Key Identity 2.3 and collecting terms gives

$$\begin{aligned} x^{2n}W_{m+n+1} &= \\ \left(\left(-4m^2A_{m+1,n-1} + 2mx^4B_{m+1,n-1} - x^4C_{m+1,n-1} \right) F_m \\ &+ x^2\tilde{B}_{m+1,n-1} + A_{m+1,n-1}F_m^{-1} \right) W_m \\ &+ \left(2mA_{m+1,n-1}(1 - 2mF_m) - A_{m+1,n-1}(F_m^{-1} - 2m) + \left(2mx^4B_{m+1,n-1} - x^4C_{m+1,n-1} \right) F_m \\ &- x^4B_{m+1,n-1} \right) W_{m-1} \end{aligned}$$

and finally,

$$x^{2n}W_{m+n+1} = \left(\left(-4m^2A_{m+1,n-1} + 2mx^4B_{m+1,n-1} - x^4C_{m+1,n-1} \right) F_m + x^2\tilde{B}_{m+1,n-1} + A_{m+1,n-1}F_m^{-1} \right) W_m + \left(\left(-4m^2A_{m+1,n-1} + 2mx^4B_{m+1,n-1} - x^4C_{m+1,n-1} \right) F_m + 4mA_{m+1,n-1} - x^4B_{m+1,n-1} - A_{m+1,n-1}F_m^{-1} \right) W_{m-1}$$

which is of the desired form.

As an immediate consequence of the above computation we obtain the following Lemma.

Lemma 4.2. Let $A_{m,n}$, $B_{m,n}$, $\tilde{B}_{m,n}$, and $C_{m,n}$ be as in Proposition 4.1. Then, the following recursive relations hold.

(i) $A_{m,0} = 2m, A_{m,n} = -4m^2 A_{m+1,n-1} + 2mx^4 B_{m+1,n-1} - x^4 C_{m+1,n-1}$

(*ii*)
$$B_{m,0} = 0, \ B_{m,n} = B_{m+1,n-1}$$

- (*iii*) $\tilde{B}_{m,0} = -1$, $\tilde{B}_{m,n} = 4mA_{m+1,n-1} x^4B_{m+1,n-1}$
- (*iv*) $C_{m,0} = 0, \ C_{m,n} = A_{m+1,n-1}$

As a corollary we have

Lemma 4.3. Let $m \in \mathbb{Z}$ and $n \in \mathbb{N}$. Then,

$$A_{m,n} \equiv 2(-4)^n (m+n) \prod_{k=0}^{n-1} (m+k)^2 \mod x^4$$
.

In particular, if m > 0 or m < -n, then $A_{m,n} \not\equiv 0 \mod x$.

Proof. The proof follows immediately from Lemma 4.2, part (i).

5 Proof of Theorem 1.1

We recall

Proposition 5.1 ([2]). The functions W_m and W_{m+1} have no joint positive zeros. Proof. Assume $W_m(x_0) = W_{m+1}(x_0) = 0$ for some $x_0 > 0$. Observe that

$$W_{m+1} + W_m = I_m J_{m+1} - I_{m+1} J_m + I_{m+1} J_m + I_m J_{m+1} = 2I_m J_{m+1}$$

and

$$W_{m+1} - W_m = I_m J_{m+1} - I_{m+1} J_m - I_{m+1} J_m - I_m J_{m+1} = -2I_{m+1} J_m$$

It follows that $J_m(x_0) = J_{m+1}(x_0) = 0$. However, this is impossible since it would imply that $J'_m(x_0) = (m/x_0)J_m(x_0) - J_{m+1}(x_0)$ is also zero, while J_m satisfies a second order linear ODE.

A direct consequence of the preceding proposition and Proposition 4.1 is

Corollary 5.2. Let $m \in \mathbb{Z}$, and $n \in \mathbb{N}_0$.

(a) If x_0 is a joint zero of W_m , and W_{m+n+2} , then

$$A_{m+1,n}(x_0)F_{m+1}(x_0)^2 + x_0^2 B_{m+1,n}(x_0)F_{m+1}(x_0) + C_{m+1,n}(x_0) = 0$$

(b) If x_0 is a joint zero of W_m , and W_{m-n-2} , then

$$A_{-m+1,n}(x_0) \left(x_0^2 F_{m+1}(x_0) + 2m \right)^2 + x_0^4 B_{-m+1,n}(x_0) \left(x_0^2 F_{m+1}(x_0) + 2m \right) + x_0^4 C_{-m+1,n}(x_0) = 0$$

Proof. Part (a) follows from Proposition 4.1 with m replaced by m + 1, taking into account Proposition 5.1. Part (b) follows from Part (a) with m replaced by -m, taking into account Lemma 2.4.

Proof of Theorem 1.1. Assume $0 \le m_1 < m_2 < m_3$ and $x_0 > 0$ are such that $W_{m_1}(x_0) = W_{m_2}(x_0) = W_{m_3}(x_0) = 0$. By Proposition 5.1 we can write $m_1 = m_2 - l - 2$, $m_2 = m$ and $m_3 = m_2 + n + 2$ with $l, m, n \in \mathbb{N}_0$. By Corollary 5.2 setting $x = x_0$ solves a system

$$\begin{cases} A_{m+1,n}(x)F_{m+1}(x)^2 + x^2B_{m+1,n}(x)F_{m+1}(x) + C_{m+1,n}(x) = 0\\ A_{-m+1,l}(x)\left(x^2F_{m+1}(x) + 2m\right)^2 + x^4B_{-m+1,n}(x)\left(x^2F_{m+1}(x) + 2m\right) + x^4C_{-m+1,n}(x) = 0 \end{cases}$$
(4)

Eliminating F_{m+1}^2 from the preceding system we obtain that x_0 is a root of an equation of the form

$$\left(4mA_{m+1,n}(x)A_{-m+1,l}(x) + x^4P_1(x)\right)x^2F_{m+1}(x) + 4m^2A_{m+1,n}(x)A_{-m+1,l}(x) + x^4P_2(x) = 0$$

for some polynomials $P_1, P_2 \in \mathbb{Q}[x]$, depending on l, m, n.

By Lemma 4.3 (and the fact that m > l+1) the polynomial $4mA_{m+1,n}A_{-m+1,l}+x^4P_1$ is not zero. Hence, in case it vanishes at the point x_0 we get that x_0 is algebraic. Otherwise, using the preceding equation to eliminate F_{m+1} from the first equation in (4) leads to an equation of the form

$$16m^4 A_{m+1,n}(x_0)^3 A_{-m+1,l}(x_0)^2 + x_0^4 P_3(x_0) = 0$$

with $P_3 \in \mathbb{Q}[x]$ depending on l, m, n. From Lemma 4.3 it follows that x_0 is algebraic in this case too.

We have shown that x_0 is algebraic. However, this is impossible, as by the Siegel-Shidlovskii theory all positive roots of $W_m(x) = 0$ are transcendental (see [2, cor. 6.4]).

References

R. Courant and D. Hilbert. Methods of mathematical physics. Vol. I. Interscience Publishers, Inc., New York, 1953, pp. xv+561.

- Y. Lvovsky and D. Mangoubi. "Bounded multiplicity for eigenvalues of a circular vibrating clamped plate". In: J. Differential Geom. 121.2 (2022), pp. 369–383. ISSN: 0022-040X,1945-743X. DOI: 10.4310/jdg/1659987895.
- [3] C. L. Siegel. "Über einige Anwendungen diophantischer Approximationen." German. In: Abh. Preuß. Akad. Wiss., Phys.-Math. Kl. 1929.1 (1929), 70 s.
- [4] C. L. Siegel. Transcendental Numbers. Vol. No. 16. Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1949, pp. viii+102.
- [5] G. N. Watson. A treatise on the theory of Bessel functions. Cambridge Mathematical Library. Reprint of the second (1944) edition. Cambridge University Press, Cambridge, 1995, pp. viii+804. ISBN: 0-521-48391-3.

EINSTEIN INSTITUTE OF MATHEMATICS, EDMOND J. SAFRA CAMPUS, THE HE-BREW UNIVERSITY OF JERUSALEM, JERUSALEM 9190401, ISRAEL *Email address:* dan.mangoubi@mail.huji.ac.il

EINSTEIN INSTITUTE OF MATHEMATICS, EDMOND J. SAFRA CAMPUS, THE HE-BREW UNIVERSITY OF JERUSALEM, JERUSALEM 9190401, ISRAEL *Email address:* daniel.rosenblatt2@mail.huji.ac.il