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UPPER BOUND OF THE COUNTING FUNCTION OF STEKLOV

EIGENVALUES

FEI HE AND LIHAN WANG

Abstract. We study the counting function of Steklov eigenvalues on compact manifolds
with boundary and obtain its upper bound involving the leading term of Weyl’s law. Our
estimate can be viewed as a weakened version of Pólya’s Conjecture in the Steklov case on
general manifolds. As a byproduct, we also obtain a description about the decay behavior
of Steklov eigenfunctions near the boundary.

1. Introduction

Given a smooth compact Riemannian manifold Mn with smooth boundary ∂Mn, the
Steklov eigenvalue problem is defined as follows:







∆u = 0, Mn;

∂u

∂~n
= σu, ∂Mn,

where ∆ is the Laplace-Beltrami operator on Mn and ~n is the outward normal vector. Its
spectrum is discrete and consists of isolated eigenvalues of finite multiplicity:

0 = σ0 < σ1 ≤ σ2 ≤ · · · ր +∞.

This problem were first discussed by Steklov ([27]) in 1902 motivated by physics: these
eigenfunctions represent the steady state temperature on bounded domains such that the flux
on the boundary is proportional to the temperature. The Steklov eigenvalue problem appears
in many physical fields such as fluid mechanics, electromagnetism and elasticity. It has lots
of applications in physics and technology like seismology and tomography. Mathematically,
there has been intense interest and study in this problem. One recent breakthrough was
made by Fraser and Schoen in the extremal Steklov eigenvalue problems on surfaces. In their
seminal work [8], Fraser and Schoen revealed a deep connection between the extremal Steklov
eigenvalue problems and the free boundary minimal surface theory in the unit Euclidean
ball Bn. See [13] for a review and [6] for the recent development about Steklov eigenvalue
problems.

We are interested in the counting function for Steklov eigenvalues :

N(σ) := #{k ∈ N : σk < σ}.(1)

As shown by L. Sandgren in [26], N(σ) satisfies the Weyl’s law when the boundary is C2:

N(σ) =
ωn−1

(2π)n−1
Vol(∂M)σn−1 + o(σn−1)(2)
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with ωn−1 as the volume of the unit Euclidean ball Bn−1. This asymptotic formula has
been extended to domains with piecewise C1 boundary in [1], Lipschitz boundary in the
two-dimensional case in [17] and higher dimensions in [25]. We refer the readers to [17] and
[25] for more discussions and references about the asymptotic behavior of N(σ).

Our purpose in this paper is to estimate the counting function N(σ) from above by the
leading term of the Weyl’s law 2. This type of question has always been one of central
interests in spectral geometry. In the case of the Laplace operator ∆, such question is the
well-known Pólya’s Conjecture ([23], 1954) in spectral geometry:

Conjecture 1 (Pólya’s Conjecture). The eigenvalue counting functions of the Dirichlet

Laplacian on a bounded Euclidean domain can be estimated from above by the leading term

of Weyl’s Law.

Note the version of Pólya’s Conjecture for Neumann Laplacian states that its eigenvalue
counting functions can be estimated from below by the leading term of the Weyl’s law. In
[24], Pólya proved this conjecture for plane-covering domains. For general domains, Li and
Yau proved a weakened version in [22]. The Pólya Conjecture for both of Dirichlet and
Neumann Laplacian is still open in general. The recent breakthrough shows that it is true
for Euclidean balls in [9]. Please see [21], [10] and [9] for more results and recent development
about the Pólya’s Conjecture.

In this paper, we proved the following weakened version of Pólya’s Conjecture for Steklov
eigenvalues on compact manifolds with boundary:

Theorem 1.1 (Main Theorem). Let (Mn, g) be a smooth compact manifold with smooth

boundary ∂Mn. Let ρ be the distance function to the boundary and Σρ be its level sets. Let

II denote the second fundamental form and H the mean curvature. Let nir(∂Mn) denote the

the normal injective radius of ∂Mn and define

CH = sup
ρ<nir(∂M)

sup
Σρ

|H|, CII = sup
ρ<nir(∂M)

sup
Σρ

(|II|).

Assume that Ric(x) ≥ −(n− 1)K for some constant K ≥ 0 when ρ(x) < nir(∂M). Then for

any σ > 0, there is

N(σ) ≤ C(n)e(C(n)
√
K+CH)nir(∂Mn)+4e6(CH+CII)min{nir(∂M),σ−1}

v−1
0 Vol(∂M)

(

1

nir(∂Mn)
+ σ

)n−1

.

(3)

In particular, when σ ≥ c
nir(∂Mn)

for any positive constant c, there is

N(σ) ≤ C(n)e(C(n)
√
K+CH)nir(∂Mn)+4e6c(CH+CII)σ

−1

v−1
0 Vol(∂M)σn−1.(4)

The constant v0 is the volume non-collapsing constant defined as

v0 = inf
ρ(x)<nir(∂M),0<s<min{nir(∂M)/2,(2σ)−1}

Vol(B(x, s))

sn
.

It can be replaced by a constant depending only on n when σ is sufficiently large.

The normal injective radius of the boundary is defined as the maximum of the set of
radius r > 0 such that the exponential map exp(x, t) = expx(tν) : ∂M × [0, r) → M is a
diffeomorphism onto its image with ν as the inward unit normal of ∂M . In this theorem, the
upper bounds are sharp in the sense that they have the same orders as in the Weyl’s law (2)

2



in terms of Vol(∂M) and σ. With the assumption of general compact manifolds instead of
Euclidean domains, it is reasonable to expect a different coefficient from ωn−1

(2π)n−1 in (2) which

only depends on the dimension. The coefficients in our estimates 3 and 4 depend on the
geometry near the boundary including the second fundamental form, the mean curvature,
the normal boundary injective radius and the lower bound of the Ricci curvature.

The upper bound of N(σ) we obtained has two immediate consequences about the Steklov
eigenvalue σk and its multiplicity. Since N(σ) is the number of eigenvalues σk < σ, its upper
bound implies a lower bound of eigenvalues σk as stated in Corollary 5.1. In addition, N(σ)
is also the sum of the multiplicities of distinct eigenvalues less than σ. Therefore its upper
bound implies the upper bound of the multiplicity of eigenvalues σk. About the multiplicity
of Steklov eigenvalues, the second author in [28] proved that non-zero Steklov eigenvalues
are simple for generic Riemannian metrics.

To prove Theorem 1.1, we follow the spirit of P.Li’s work in estimating the dimension
of the space of harmonic functions with polynomial growth in [19]. Two key ingredients in
P.Li’s approach are the mean value inequality and the weak volume comparison condition.
One change we make is to use the volume non-collapsing property of small balls, which is
more suitable on compact manifold, instead of the weak volume comparison condition. A
major challenge in implementing P.Li’s idea in our case is to control the growth of Steklov
eigenfunctions. To overcome this challenge, we adopt the method of frequency developed by
the first named author and J. Ou in [14] to estimate the growth of the L2 norm of Steklov
eigenfunctions. The frequency for harmonic functions is introduced by Almgren [2] and has
been generalized and applied in various literature. We use the frequency to measure the
growth of a weighted average of harmonic functions on level sets. The growth estimate
implies a control of the growth of the L2 norm of Steklov eigenfunctions on small balls (see
Lemma 7). Detailed definitions and statements are given in Section 2 and Section 3. One
observation which plays an important part in our proof is that the frequency of a Steklov
eigenfunction can be naturally estimated from above using the corresponding eigenvalue.

We first carry out our approach in a more general situation in Section 2 and Section 3.
Namely, we look at manifolds with a good potential function and estimate the counting
function for Steklov eigenvalues on the sub-level sets of this potential function. This general
setup actually covers many situations. As a first showcase we study the problem on star-
shaped Euclidean domains in Section 4. Theorem 1.1 is proved in Section 5. In this case,
we use the distance function to the the boundary to define a potential function. Then we
refine the general estimates in Section 2 and Section 3 to obtain the more explicit estimates
in Theorem 1.1.

As a byproduct we also get a description about the decay behavior of Steklov eigenfunc-
tions near the boundary in L2-integral form in Section 5.

Theorem 1.2. Let (Mn, g) be a smooth compact manifold with smooth boundary ∂Mn. Let

ρ be the distance function to the boundary and Σρ be its level sets. Let H denote the mean

curvature. Let u be a Steklov eigenfunction with respect to eigenvalue σ > 0. Then there is

e(−2σ−inf H+o(1))ρ ≤
∫

Σρ
u2

∫

∂Mn u2
≤ e(−2σ−supH+o(1))ρ,

for sufficiently small ρ.

This result is motivated by the commonly held hypothesis that Steklov eigenfunctions ex-
hibit boundary-localized oscillations and rapid decay in the interior for large eigenvalues. In
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2001, Hislop and Lutzer [15] proved that the Steklov eigenfunctions decay super-polynomially
into the interior of Euclidean domains when the boundary is smooth. And they conjectured
that the decay should be exponential in the case of an analytic boundary. Galkowski and
Toth [11] proved this Hislop-Lutzer conjecture using point-wise upper bounds of Steklov
eigenfunctions near the boundary. Recently, they also [12] proved an L2-lower bounds of
Steklov eigenfunctions near the boundary for analytic boundary. Note that the L2−upper
and lower bounds we obtain in Theorem 1.2 exhibit exponential decay in eigenvalues and
the distance-to-boundary function, and these estimates hold for manifolds with a smooth
boundary.

We would like to point out that the smoothness in Theorem 1.1 and Theorem 1.2 can be
relaxed to C2. In fact our proofs only need that the distance function to the boundary is
C2.

Finally in Section 6 we study the case of C1,α domains in Riemannian manifolds. By
constructing a distance-like function to the boundary, we generalize Theorem 1.1 to C1,α

domains but with less explicit estimate.

Theorem 1.3. Let Ω be a bounded C1,α domain in a smooth Riemannian manifold (Mn, g).
There are constants i0 and C depending on the geometry of a neighborhood of Ω such that

N(σ) ≤ CArea(∂Ω)

(

1

i0
+ σ

)n−1

.

We also obtain a description about the behavior of Steklov eigenfunctions near the bound-
ary in this case. See Theorem 6.2 for details.

Acknowledgement: The second named author would like to thank the Tianyuan Math-
ematical Center in Southeast China for its hospitality during her visit when this work was
partially finished.

2. Frequency of harmonic functions on manifolds with potential functions

Let (Mn, g, f) be a complete Riemannian manifold with a smooth positive function f .
Here f is called the potential function.

Definition 2. Define a symmetric 2-tensor Tij

(5) Tij =
1

2
gij −∇i∇jf,

and a function S

(6) S = f − |∇f |2.
Remark 3. In fact, the tensor T and the function S appear naturally on gradient shrinking

Ricci solitons as Ricci curvature tensor and scalar curvature respectively. Let (Mn, g, f) be
a gradient shrinking Ricci soliton. Then f satisfies

∇i∇jf +Rij =
1

2
gij.

This implies that T is just the Ricci curvature tensor in this case.

Let Scal denote the scalar curvature of a gradient shrinking Ricci soliton. It is known that

Scal + |∇f |2 − f = constant.
4



By modifying f by a constant, this formula implies that S is just the scalar curvature in this

case. See Chapter 1 in [4] for more details.

We introduce the following function related to f :

b = 2
√

f.

Since f is positive, by direct calculations, it follows that

∇b =
∇f√
f
, ∇∇b =

√
f∇∇f − 1

2
√
f
∇f ⊗∇f

f
.

By (5) and (6), the function b satisfies

(7)

{

|∇b|2 = 1− 4S
b2
,

b∆b = n− |∇b|2 − 2trT,

where trT = gijTij is the trace of T .
We are going to define the frequency of harmonic functions on level sets of the function b.

And the following assumptions are in need:

Assumption 1. (1) Assume there are constants 1 ≤ R0 < R, such that each r ∈ [R0, R]
is a regular value of b.

(2) Assume that the sublevel set {b ≤ r} is compact for each r ∈ [R0, R].

Definition 4. Suppose that Assumption 1 holds on (Mn, g, f). Consider a harmonic function

u on {b < R}. For each r ∈ [R0, R], define

I(r) = r1−n

∫

b=r

u2|∇b|,

and

D(r) = r2−n

∫

b=r

u〈∇u, ~n〉

with ~n as the unit outward normal vector on {b = r}. Then I(r) > 0 and the frequency of u
is defined as

U(r) =
D(r)

I(r)
.

Here I(r) is the weighted average of u on the level set of b and the usage of |∇b| as a weight
follows [5]. Since u is a non-trivial harmonic function, the positivity of I(r) at regular values
r of b follows from the maximum principle. We also notice that

(8) D(r) = r2−n

∫

b<r

|∇u|2

by the divergence theorem.
We want to estimate the growth of U(r) and I(r). At first we derive formulas of I ′(r) and

D′(r).

Lemma 2.1. At a regular value r of b, we have

I ′(r) =
2D(r)

r
+ r−n

∫

b=r

(

4nS

r2
− 2trT

)(

1− 4S

r2

)−1

u2|∇b|.
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and

(ln I(r))′ =
2U(r)

r
+ r−nI−1(r)

∫

b=r

(

4nS

r2
− 2trT

)(

1− 4S

r2

)−1

u2|∇b|.

Proof. Let ~n as the unit outward normal vector on {b = r}, that is, ~n = ∇b
|∇b| . By the

divergence theorem, it follows that

I(r) = r1−n

∫

b=r

u2|∇b| = r1−n

∫

b=r

u2〈∇b, ~n〉

=

∫

b<r

〈∇u2,∇b〉b1−n − (n− 1)u2b−n|∇b|2 + u2b1−n∆b.

Plug (7) into this equation and it follows that

I(r) =

∫

b<r

〈∇u2,∇b〉b1−n − (n− 1)u2b−n|∇b|2 + u2b−n(n− |∇b|2 − 2trT )

=

∫

b<r

〈∇u2,∇b〉b1−n + u2b−n

(

4nS

b2
− 2trT

)

.

Take the derivative on the last equality. By the co-area formula, it follows that

I ′(r) =r1−n

∫

b=r

〈∇u2, ~n〉+ r−n

∫

b=r

(

4nS

r2
− 2trT

)

u2

|∇b|

=
2D(r)

r
+ r−n

∫

b=r

(

4nS

r2
− 2trT

)

u2

|∇b| .

By (7), there is

1

|∇b| = (1− 4S

b2
)−1|∇b|.

Applying this equality into the second term of above formula of I ′(r) yields the conclusion.
�

Lemma 2.2. At a regular value r of b, we have

D′(r) =2r2−n

∫

b=r

∣

∣

∣

∣

∂u

∂~n

∣

∣

∣

∣

2

|∇b|−1 + 4r−n

∫

b=r

S

(

|∇u|2 − 2

∣

∣

∣

∣

∂u

∂~n

∣

∣

∣

∣

2
)

|∇b|−1

+ 2r1−n

∫

b<r

(

−trT |∇u|2 + 2T (∇u,∇u)
)

.

Proof. Take the derivative of D with respect to r using 8. It follows that

(9) D′(r) = r2−n

(
∫

b=r

|∇u|2
|∇b| − n− 2

r

∫

b<r

|∇u|2
)

.

To calculate the right hand side above, we need the following formula:

(10)

∫

b<r

|∇u|2div(X)− 2〈∇u⊗∇u,∇X〉 =
∫

b=r

|∇u|2〈X,~n〉 − 2
∂u

∂~n
〈∇u,X〉,

6



for any smooth vector field X . This can be derived from the variation formula of the
Dirichlet energy at u w.r.t. deformations generated by X . It can also be proved directly
using integration by parts.

Take X = ∇f in (10), we get
∫

b<r

|∇u|2∆f − 2fijuiuj =

∫

b=r

|∇u|2|∇f | − 2〈∇u, ~n〉〈∇u,∇f〉

=
r

2

∫

b=r

|∇u|2|∇b| − 2

∣

∣

∣

∣

∂u

∂~n

∣

∣

∣

∣

2

|∇b|.
(11)

Since |∇b|2 = 1− 4S
b2

by (7), the RHS of (11) can be written as

(12) RHS =
r

2

∫

b=r

|∇u|2
|∇b|

(

1− 4S

b2

)

− 2

∣

∣

∂u
∂~n

∣

∣

2

|∇b|

(

1− 4S

b2

)

,

By (5), we have

∆f =
n

2
− trT, fij =

1

2
gij − Tij .

Plug these into the LHS of (11) and then it follows that

(13) LHS =

∫

b<r

n− 2

2
|∇u|2 − trT |∇u|2 + 2T (∇u,∇u).

Then the equality of (13) and (12) implies that

r

2

∫

b=r

|∇u|2
|∇b| −

∫

b<r

n− 2

2
|∇u|2 =

∫

b=r

(

2

r
S|∇u|2 + r

∣

∣

∣

∣

∂u

∂~n

∣

∣

∣

∣

2

− 4

r
S

∣

∣

∣

∣

∂u

∂~n

∣

∣

∣

∣

2
)

|∇b|−1

∫

b<r

(

−trT |∇u|2 + 2T (∇u,∇u)
)

.

Plug this equality into the right hand of (9) after multiplying 2r1−n and then desired formula
follows. �

In order to estimate U ′(r) from below, we need a lower bound of D′(r).

Lemma 2.3. Assume that 4
r2
supb<r |S| < 1 for all R0 ≤ r ≤ R. Then there is a constant C

depending on supR0≤r≤R

(

4
r2
supb<r |S|

)

< 1 and the dimension n, such that

D′(r) ≥ 2r−1D2(r)I−1(r)− C supb<r(|∇S||∇b|+ |S∇∇b|+ |T |)
r

D(r)

for 1 < R0 ≤ r ≤ R.

Proof. By Lemma 2.2, there is

D′(r) =2r2−n

∫

b=r

∣

∣

∣

∣

∂u

∂~n

∣

∣

∣

∣

2

|∇b|−1 + 4r−n

∫

b=r

S

(

|∇u|2 − 2

∣

∣

∣

∣

∂u

∂~n

∣

∣

∣

∣

2
)

|∇b|−1

+ 2r1−n

∫

b<r

(

−trT |∇u|2 + 2T (∇u,∇u)
)

.

(14)
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We first consider the first term on the right hand side of (14). By the definition of D(r) and
I(r), we have

D2(r) = r4−2n

∣

∣

∣

∣

∫

b=r

u
∂u

∂~n

∣

∣

∣

∣

2

≤ r4−2n

∫

b=r

u2|∇b|
∫

b=r

∣

∣

∣

∣

∂u

∂~n

∣

∣

∣

∣

2

|∇b|−1

= r3−nI(r)

∫

b=r

∣

∣

∣

∣

∂u

∂~n

∣

∣

∣

∣

2

|∇b|−1.

Here Holder’s inequality is applied in the second line. Then we have

D′(r) ≥2r−1D2(r)I−1(r) + 4r−n

∫

b=r

S

(

|∇u|2 − 2

∣

∣

∣

∣

∂u

∂~n

∣

∣

∣

∣

2
)

|∇b|−1

+ 2r1−n

∫

b<r

(

−trT |∇u|2 + 2T (∇u,∇u)
)

.

(15)

Next we estimate the second term from below. For any positive integer m and R0 ≤ r ≤ R,
define

Km(r) =

∫

b=r

Sm

(

|∇u|2 − 2

∣

∣

∣

∣

∂u

∂~n

∣

∣

∣

∣

2
)

|∇b|−1.

Then 4r−nK1(r) is exactly the second term in (14).
By (7), we have the identity |∇b|−1 = |∇b|+ 4S

b2|∇b| . Plugging this into the integrand above

yields that

Km(r) =

∫

b=r

Sm

(

|∇u|2 − 2

∣

∣

∣

∣

∂u

∂~n

∣

∣

∣

∣

2
)

|∇b|+ 4

r2
Km+1(r).

By applying (10) with X = Sm∇b, we have

Km(r)−
4

r2
Km+1(r)

=

∫

b<r

|∇u|2div (Sm∇b)− 2〈∇u⊗∇u,∇(Sm∇b)〉

=

∫

b<r

Sm−1
(

|∇u|2(m〈∇S,∇b〉 + S∆b)− 2〈∇u⊗∇u,m∇S ⊗∇b+ S∇∇b〉
)

≥−mC1(sup
b<r

|S|)m−1

∫

b<r

|∇u|2.

Here we use the notation C1 = supb<r(3|∇S||∇b|+ (n + 2)|S||∇∇b|), which is independent
of m, for convenience.

By iterating the above inequality, we get

K1(r) ≥
(

4

r2

)m

Km+1(r)−
m
∑

k=1

k

(

4

r2
sup
b<r

|S|
)k−1

C1

∫

b<r

|∇u|2

≥
(

4

r2

)m

Km+1(r)−
m
∑

k=1

k

(

sup
R0≤r≤R

(

4

r2
sup
b<r

|S|
))k−1

C1

∫

b<r

|∇u|2.
(16)
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Since 4
r2
supb<r |S| < 1 by the assumption, there is

∣

∣

∣

∣

(

4

r2

)m

Km+1(r)

∣

∣

∣

∣

≤
(

4

r2
sup
r<R

|S|
)m ∫

b=r

∣

∣

∣

∣

∣

|∇u|2 − 2

∣

∣

∣

∣

∂u

∂~n

∣

∣

∣

∣

2
∣

∣

∣

∣

∣

→ 0 as m → ∞.

And the series
∑∞

k=1 k
(

supR0≤r≤R

(

4
r2
supb<r |S|

))k−1
is convergent to some constant C de-

pending on supR0≤r≤R

(

4
r2
supb<r |S|

)

< 1. Thus taking m → ∞ in (16) yields that

K1(r) ≥ −CC1

∫

b<r

|∇u|2 ≥ −CC1r
n−2D(r) ≥ −CC1r

n−1D(r).(17)

The fact r ≥ R0 > 1 is used for the last inequality.
For the third integral term in (15), it follows that

∫

b<r

(

−trT |∇u|2 + 2T (∇u,∇u)
)

≥ −3
√
n sup

{b<r}
|T |
∫

b<r

|∇u|2 = −3
√
n sup

{b<r}
|T |rn−2D(r),

(18)

where we have used |trT | ≤ √
n|T |. Plug both of (17) and (18) into (15). Then the desired

claim follows. �

Next we will derive a lower bound of U ′(r) which will control the growth of U(r) and I(r).

Proposition 2.4. Assume that supR0≤r≤R

(

4
r2
supb<r |S|

)

< 1. Then there is a constant C

depending on supR0≤r≤R

(

4
r2
supb<r |S|

)

and the dimension n, such that

U ′(r) ≥ −C supb≤r(|∇S||∇b|+ |S∇∇b|+ |T |)
r

U(r)

for 1 < R0 ≤ r ≤ R.

Proof. By the definition of U , we have

I2(r)U ′(r) = D′I −DI ′.(19)

By Lemma 2.1, there is

I ′(r) ≤ 2D(r)

r
+ sup

b=r

[

(

4nS

r2
− 2trT

)(

1− 4S

r2

)−1
]

r−n

∫

b=r

u2|∇b|

=
2D(r)

r
+ sup

b=r

[

(

4nS

r2
− 2trT

)(

1− 4S

r2

)−1
]

r−1I(r).

(20)

Apply this inequality (20) and Lemma 2.3 to (19). Then it follows

I2(r)U ′(r) ≥ −C supb<r(|∇S||∇b|+ |S∇∇b|+ |T |)
r

D(r)I(r)

− sup
b=r

[

(

4nS

r2
− 2trT

)(

1− 4S

r2

)−1
]

r−1D(r)I(r).

9



Since

|
(

4nS

r2
− 2trT

)(

1− 4S

r2

)−1

| ≤
(

4

r2
sup
b<r

|S|+ 2
√
n sup

b≤r
|T |
)(

1− 4

r2
sup
b<r

|S|
)−1

≤ C(1 + sup
b≤r

|T |)

for some constant C depending on supR0<r<R(
4
r2
supb<r |S|) and the dimension n, there is

I2(r)U ′(r) ≥ −C supb≤r(|∇S||∇b|+ |S∇∇b|+ |T |)
r

D(r)I(r).

Therefore the conclusion follows since U(r) = D(r)
I(r)

. �

Now we are ready to prove the following estimate on the growth of U(r) and I(r).

Theorem 5. Assume that supR0≤r≤R

(

4
r2
supb<r |S|

)

< 1. Assume there exists a constant κ
and β ∈ [0, 1) such that

sup
b<r

(|∇S||∇b|+ |S∇∇b|+ |T |) ≤ κ(R− r)−β.

Then there is a constant C depending on supR0≤r≤R

(

4
r2
supb<r |S|

)

and n, such that

U(r) ≤ κCU(R) exp

(
∫ R

R0

ds

s(R− s)β

)

.(21)

And for R0 ≤ r2 < r1 ≤ R, there is

(

r1
r2

)−C2

I(r2) ≤ I(r1) ≤
(

r1
r2

)

(

CκU(R) exp

(

∫R

R0

ds

s(R−s)β

)

+C2

)

I(r2)(22)

with

C2 = sup
R0≤b≤R

[

(
4nS

b2
− 2trT )(1− 4S

b2
)−1

]

.

Proof. By Proposition 2.4, we have

U ′(r) ≥ − κC

r(R− r)β
U(r)

where C depends on supR0≤r≤R(
4
r2
supb<r |S|) and n. Integrating the above inequality yields

U(r) ≤ κCU(R) exp

(
∫ R

r

ds

s(R− s)β

)

≤ κCU(R) exp

(
∫ R

R0

ds

s(R− s)β

)

.

For convenience, let C3 = κCU(R) exp
(

∫ R

R0

ds
s(R−s)β

)

. Applying the above upper bound of

U(r) to the formula of (ln I(r))′ in Lemma 2.1, we have

−C2

r
≤ (ln I(r))′ ≤ 2C3 + C2

r

with C2 = supR0≤b≤R

[

(4nS
b2

− 2trT )(1− 4S
b2
)−1
]

. Then integrating the above inequalities of
(ln I(r))′ over [r2, r1] ⊂ [R0, R] implies (22).

�
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3. Counting functions on manifolds with potential functions

With the set-up in Section 2, we will derive a general upper bound of the counting function
N(σ) for Steklov eigenvalues on (Mn, g, f). Consider the Steklov eigenvalue problem on
{b < R}:

{

∆u = 0 on {b < R};
∂u
∂~n

= σu on {b = R}.(23)

Through out this article, we only consider the non-trivial case, i.e., σ 6= 0 or u is non-
constant. Let Eσ be the linear space spanned by all Steklov eigenfunctions with eigenvalue
≤ σ. Then the dimension of Eσ is exactly the counting function N(σ).

We are going to apply Section 1 to functions in Eσ and obtain the upper bound of the
dimension of Eσ, i.e., N(σ). First we have the following observation about the frequency of
functions in Eσ.

Lemma 6. For any u ∈ Eσ, its frequency satisfies

U(R) ≤ σR

infb=R |∇b| .(24)

Proof. Let k denote the dimension of Vσ. Then there exists Steklov eigenfunctions u1, ..., uk

corresponding to eigenvalues σ1, ..., σk in (23) which form an orthonormal basis for Vσ w.r.t.
the L2 inner product on {b = R}.

For any u ∈ Eσ, there exists constants l1, · · · , lk such that u =
∑k

i=1 liui. By the definition
4, its frequency satisfies that:

U(R) =
R
∫

b=R
u ∂u
∂~n

∫

b=R
u2|∇b| =

R
∫

b=R

∑

l2i σiu
2
i

∫

b=R
u2|∇b| ≤ σR

infb=R |∇b| .

�

Theorem 3.1. Suppose Assumption 1 and supR0≤r≤R

(

4
r2
supb<r |S|

)

< 1 hold. Assume there

exists a constant κ and β ∈ [0, 1) such that

sup
b<r

(|∇S||∇b|+ |S∇∇b|+ |T |) ≤ κ(R− r)−β.

Let R0 = αR for some α ∈ (0, 1). Let γ0 = infR0<b<R |∇b| and γ1 = supR0<b<R |∇b|. Then

N(σ) ≤ CMC7A(R)v−1
0

[

(

[α−1/3 − 1]R
)−1

+ σ
]n−1

.(25)

Here CM denotes the constant in the mean value inequality for harmonic functions on

small balls and depends on the Ricci lower bound and n,R, γ1. The constant C7 depends

on n, α, β, γ1, γ0, κ, supR0≤r≤R

(

4
r2
supb<r |S|

)

and C2 = supR0≤b≤R

[

(4nS
b2

− 2trT )(1− 4S
b2
)−1
]

.

The constant A(R) = supR0<s<R A({b = s}) is the supremum of the area of level sets of b.
And v0 is a volume non-collapsing constant defined by

v0 = inf
R0<b(x)<R,s<min{R−R0,σ−1}/(2γ1)

s−nVol(B(x, s)).

In particular, when σ is sufficiently large, the constant v0 can be replaced by a constant

depending only on n.

To prove this theorem, we need the following key lemma about the growth of L2 norm of
harmonic functions.

11



Lemma 7 (Key lemma). With the assumptions in Theorem 3.1, there is a constant C
depending on supR0≤r≤R

(

4
r2
supb<r |S|

)

and n, suppose the constant λ > 1 is properly chosen

such that λ−3R > R0, then for each point x ∈ {λ−2R < b < λ−1R} such that B(x, δ) ⊂
{λ−3R < b < R} for some δ > 0, there is

∫

B(x,δ)

u2 ≤ γ2
1γ

−2
0 (λC2−n + 1 + λn+C2+C3)

∫

λ−2R<b<λ−1R

u2(26)

where C2 = supR0≤b≤R

[

(4nS
b2

− 2trT )(1− 4S
b2
)−1
]

, and C3 = κC σR
γ0

exp
(

∫ R

R0

ds
s(R−s)β

)

.

Proof of Lemma 7. Choose any u ∈ Vσ and consider its weighted L2 norm I(r) for r ∈
[R0, R]. Applying (24) to (22), we have

(

r1
r2

)−C2

I(r2) ≤ I(r1) ≤
(

r1
r2

)

(

κCU(R) exp

(

∫R
R0

ds

s(R−s)β

)

+C2

)

I(r2)

Then for any constant λ > 1 satisfying λr ≤ R, the above inequalities imply that

λ−C2I(r) ≤ I(λr) ≤ λ(C3+C2)I(r).(27)

Define

J(r1, r2) =

∫ r2

r1

rn−1I(r)dr.

With a change of variable r = λs, we have

J(λr1, λr2) =

∫ λr2

λr1

rn−1I(r)dr = λn

∫ r2

r1

sn−1I(λs)ds.

Applying (27)to I(λs) implies the following estimates on annulus regions:

λn−C2J(r1, r2) ≤ J(λr1, λr2) ≤ λn+C2+C3J(r1, r2).

Then these estimates implies that

J(λ−3R,R) =J(λ−3R, λ−2R) + J(λ−2R, λ−1R) + J(λ−1R,R)

≤(λC2−n + 1 + λn+C2+C3)J(λ−2R, λ−1R).
(28)

On the other hand, by the co-area formula, there is

J(r1, r2) =

∫ r2

r1

(
∫

b=r

u2|∇b|
)

dr =

∫

r1<b<r2

u2|∇b|2.(29)

Together with (28), this implies that
∫

λ−3R<b<R

u2 ≤ γ−2
0

∫

λ−3R<b<R

u2|∇b|2 = γ−2
0 J(λ−3R,R)

≤ γ−2
0 (λC2−n + 1 + λn+C2+C3)J(λ−2R, λ−1R).

(30)

For each point x ∈ {λ−2R < b < λ−1R} such that B(x, δ) is contained in {λ−3R < b < R}.
By (30), we have

∫

B(x,δ)

u2 ≤
∫

λ−3R<b<R

u2 ≤ γ−2
0 (λC2−n + 1 + λn+C2+C3)J(λ−2R, λ−1R).

12



At the same time (29) implies that

J(λ−2R, λ−1R) ≤ γ2
1

∫

λ−2R<b<λ−1R

u2.

Therefore the conclusion (26) follows.
�

Proof of Theorem 3.1 . Choose

λ = 1 +
1

(α−1/3 − 1)−1 +Rσ
(31)

Note that this choices of λ implies λ ≤ α−1/3 to make sure that R0 = αR < λ−3R.
We introduce the following inner product on Eσ:

L(u, v) =

∫

λ−2R<b<λ−1R

uv.

Note that L(u, u) = 0 implies that u ≡ 0 on {b < R} by the unique continuation principle
of harmonic functions.

Let {u1, u2, ..., uk} be an orthonormal basis of Eσ with respect to L(·, ·) and F (x) =
∑k

i=1 u
2
i (x). Then F is well-defined under an orthonormal change of basis and

k = dimEσ =

∫

λ−2R<b<λ−1R

F(x)

For each point p ∈ {λ−2R < b < λ−1R}, let Ep = {u ∈ Eσ|u(p) = 0}. By an argument
due to P. Li (see Lemma 7.3 in [20]), the co-dimension of the subspace Ep in Eσ is at most
one. For completeness, we include the argument here. Suppose there are at least two linearly
independent functions w1 and w2 in the complement of Ep. Then w1(p) 6= 0 and w2(p) 6= 0.
On the other hand, their linear combination w1(p)w2 − w2(p)w1 vanishes at the point p.
Hence w1(p)w2 − w2(p)w1 ∈ Ep and we get a contradiction.

Therefore by a change of orthonormal basis, for the point p, we can have an orthonormal
basis of Eσ, still denoted by {u1, u2, ..., uk}, such that

F (p) = u2
k(p).

Apply the well-known Li-Schoen’s mean value inequality (see Theorem 7.2 in [20]) to u2
k on

B(p, δ) with δ = R
2γ1

(1− λ−1)λ−2. It follows that

F (p) = u2
k(p) ≤ C4

1 + exp(C5δ
√
K)

V (B(p, δ))

∫

B(p,δ)

u2
k(32)

for constants C4(n), C5(n) > 0. Here K is from Ric ≥ −(n − 1)K on {R0 < b < R}. Since

δ < R
γ1
, for convenience, let CM = C4(1 + exp(C5Rγ−1

1

√
K)) be the constant of the mean

value inequality which depends on n,K,R, γ1.
With the choice of δ = R

2γ1
(1− λ−1)λ−2, we have that B(p, 2δ) is contained in {b < R} for

every p ∈ {λ−2R < b < λ−1R}. We also have δ < min{R−R0

2γ1
, 1
2γ1σ

} by a simple calculation,
hence

V (B(p, δ)) > v0δ
n

by the assumption. Morever, when σ is large enough such that δ is less than the half of
the injective radius of {R0 ≤ b ≤ R}, a well-known result of Croke (see Proposition 14 in
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[7]) yields that the constant v0 depends only on the dimension n. We call v0 the volume
non-collapsing constant for small balls. Then (32) becomes

F (p) ≤ CM

v0δn

∫

B(p,δ)

u2
k.(33)

Applying Lemma 7 to the right hand side of (33) implies that

F (p) ≤ CM

v0δn
γ2
1γ

−2
0 (λC2−n + 1 + λn+C2+C3)(34)

for any p ∈ {λ−2R < b < λ−1R} since
∫

λ−2R<b<λ−1R
u2
k = 1. Integrating (34) on {λ−2R <

b < λ−1R}, we get

(35) k ≤ V (λ−2R < b < λ−1R)
CM

v0δn
γ2
1γ

−2
0 (λC2−n + 1 + λn+C2+C3).

At the same time, we have

V (λ−2R < b < λ−1R) =

∫ λ−1R

λ−2R

∫

b=s

1

|∇b|

≤ R(λ− 1)

λ2

supλ−2R<s<λ−1R A({b = s})
γ0

≤ R(λ− 1)

λ2

A(R)

γ0

with A(R) = supR0<s<R A({b = s}) as the supremum of the area of level sets of b. Plug this

volume estimate into (35). Then by δ = R
γ1
(1− λ−1)λ−2, it follows

k ≤ CMγn+2
1 A(R)

v0γ3
0

λC6(C2,C3,n) ((λ− 1)R)1−n(36)

with the constant C6 depending on C2, C3, n.
Plug the definition (31) of λ into (36). Then we have

k ≤ CMC7A(R)v−1
0

(

(

(α−1/3 − 1)R
)−1

+ σ
)n−1

with C7 depending on n, γ1, γ0, C2, C3, α, β.

Since
∫ R

αR
ds

s(R−s)β
≤ α−1R−β(1− β)−1, there is

C3 ≤ κC
σR

γ0
exp

(

α−1R−β

1− β

)

where C depending on supR0≤b≤R

(

4
r2
supb<r |S|

)

and n. Hence C3 depends on κ, γ0, R, α, β

and supR0≤b≤R

(

4
r2
supb<r |S|

)

. Therefore the conclusion of the theorem follows.
�

4. The counting function on star-shaped Euclidean domains

Let Ω ⊂ Rn be a bounded domain in Rn containing the origin as an interior point such
that there exists a a positive smooth function φ on the unit sphere such that

Ω = {x ∈ Rn : |x| < φ(
x

|x|)}.(37)

14



Let (ρ, y) with y ∈ Sn−1 be the polar coordinates of Rn. Then ∂Ω = {ρ = φ(y)}. Note Ω is a
star-shaped with respect to the origin. We will apply Theorem 3.1 to the counting function
N(σ) on Ω.

We choose the potential function f as

(38) f(x) =

{

R2ρ2

4φ2(y)
, , x = (ρ, y) 6= 0;

0 , x = 0

for some constant R. Then b = 2
√
f = Rρ

φ
at x 6= 0, ∂Ω = {b = R} and Ω = {b < R}.

We notice that the multiplicity of Steklov eigenvalue are invariant under scaling of the
domain. Choose

R = ( inf
Sn−1

φ)

(

1 + sup
Sn−1

φ−2|∇Sn−1

φ|
)−1/2

.(39)

Then by scaling of the domain, we can always have a large R > 8. We choose R0 = 1. Then
Assumption 1 holds.

Next we will show that supR0≤r≤R

(

4
r2
supb<r |S|

)

< 1. Let Y1, Y2, ..., Yn−1 be an orthonor-
mal frame on the unit sphere Sn−1 and denote the first and second order covariant derivatives
of φ in this frame as φi, φij, i, j = 1, 2, ..., n− 1. Choose ei = ρ−1Yi for i = 1, 2, ..., n− 1, and
en = ∂ρ such that {e1, e2, ..., en} forms an orthonormal frame on Rn. Then

(∇eiej)
⊥ = −ρ−1δijen, ∇eien = ρ−1ei, 1 ≤ i, j ≤ n− 1.

Let ∇eifi,∇ei∇ejf denote the first and second order covariant derivatives of f in the frame
e1, ..., en. Then at x 6= 0, it follows that

∇ei(f) =

{

−1
2
R2ρφ−3φi, i = 1, 2, ..., n− 1;

1
2
R2ρφ−2, i = n.

∇ei∇ejf = ei(ej(f))−∇eiej(f) =











R2

2
(−φ−3φij + 3φ−4φiφj) +

R2

2
φ−2δij , 1 ≤ i, j ≤ n− 1;

−R2φ−3φi, j = n, 1 ≤ i ≤ n− 1;
R2

2φ2 , i = j = n.

Hence

S(x) = f − |∇f |2 = f(1− R2φ−4|∇Sn−1

φ|2 − R2φ−2), x 6= 0.

Together with (39), this implies that 0 < S < f . Then we have supr≤R

(

4
r2
supb<r |S|

)

< 1.
Calculations above also implies that

(sup
Sn−1

φ)−2( inf
Sn−1

φ)2
(

1 + sup
Sn−1

φ−2|∇Sn−1

φ|
)−1

≤ |∇b| ≤ 1.

Here the left hand side is invariant under scaling. And for all 1 ≤ i, j ≤ n, we have

|∇ei∇ejf | ≤
1 + 4

(

supSn−1 φ−1|∇Sn−1∇Sn−1
φ|+ supSn−1 φ−2|∇Sn−1

φ|2
)

2 (1 + supSn−1 φ−2|∇Sn−1φ|2)
with the right hand side invariant under scaling. Hence the tensor T = 1

2
δ − ∇∇f is also

bounded by a constant depending only on φ and invariant under scaling.
15



On Rn we can take the mean value constant CM = 1. We also notice that the level sets of
b are homothetic which implies that

Area({b = s}) = s

R
Area(∂Ω), r < R.

Thus applying Theorem 3.1 implies the following result.

Corollary 4.1. For a bounded domain Ω ⊂ Rn satisfying (37) for a smooth positive function

φ, the counting function of Steklov eigenvalue satisfies

N(σ) ≤ C(φ)Area(∂Ω)

(

1

infSn−1 φ
+ σ

)n−1

.

5. The counting function and eigenfunctions on manifolds with boundary

Consider a smooth compact manifold (Mn, g) with smooth boundary ∂M . Instead of
applying Theorem 3.1 directly, we will refine the estimates in Section 2 and Section 3 to
obtain a more explicit upper bound of N(σ) in Theorem 1.1. We will also study the decay
behavior of eigenfunctions near the boundary and prove the Theorem 1.2.

Define the normal injective radius of the boundary (denoted by nir(∂Mn)) as the maximum
of the set of radius r > 0 such that the exponential map exp(x, t) = expx(tν) : ∂M× [0, r) →
M is a diffeomorphism onto its image. Here ν is the inward unit normal of ∂Mn. By the
compactness, this nir(∂Mn) exists and is positive.

Let ρ(x) = d(x, ∂Mn) be the distance function to the boundary. Then ρ is smooth in
the nir(∂Mn)-neighborhood of ∂M with ρ = 0, |∇ρ| = 1 on ∂Mn. And the metric g can be
written as

g = dρ2 + gρ, ρ ∈ [0, nir(∂Mn))

where gρ denote the induced metric on the level set of ρ which is denoted as Σρ. Then
Σ0 = ∂M .

Remark 8. We assume the smoothness on (Mn, g) and ∂Mn for the convenience. Our

argument works as long as ρ(x) = d(x, ∂M) is C2.

5.1. Upper bound of N(σ): proof of Theorem 1.1.

Proof. Let i0 > 0 be a constant slightly smaller than the normal injective radius. Choose
R = k0i0 for some k0 > 1 such that R0 = R− i0 ≥ 1. We define the potential function

f =
1

4
(R− ρ)2

for 0 ≤ ρ ≤ i0 and extend f smoothly to the domain where ρ(x) > i0 such that f is
well-defined on Mn. Then

b = 2
√

f = R− ρ

for 0 ≤ ρ ≤ i0. And Assumption 1 holds. In particular, level sets of b are just level sets of
the distance function ρ by {b = r} = Σρ for ρ = R− r. Through this section, we will use Σρ

instead of {b = r} in the argument.
For 0 < ρ < i0, by ∇f = −1

2
(R − ρ)∇ρ, we have

|∇b| = 1, S = f − |∇f |2 = 0.(40)

To calculate the tensor T , choose {e1, e2, ..., en−1} as an orthonormal frame on level sets
Σρ and en = ∇ρ. With respect to {ei}, there is ρij = hij(Σρ), 1 ≤ i, j ≤ n − 1 where
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II(ei, ej) = hijen as the second fundamental form on the level set Σρ, and ρnn = 0. Denote the
mean curvature on Σρ by H . Then for {0 < ρ < i0}, by ∇∇f = −1

2
(R−ρ)∇∇ρ+ 1

2
∇ρ⊗∇ρ,

we have

Tij =
1

2
δij −

1

2
(R− ρ)hij(Σρ), Tni = 0, Tnn = 0, 1 ≤ i, j ≤ n− 1.(41)

At first, we will refine key estimates of harmonic functions in Section 2. Let u be any
harmonic function well-defined on {R0 ≤ b ≤ R} = {0 ≤ ρ ≤ i0}. We start with the lower
bound of D′(r) in Lemma 2.3. Since S = 0, the second term in the formula of D′(r) (14)
vanishes. For the third term in (14), by (41), we have

trT |∇u|2 − 2T (∇u,∇u) =

(

n− 1

2
− R − ρ

2
H

)

|∇u|2 −
n−1
∑

i=1

u2
i + (R− ρ)

n−1
∑

i,j=1

hijuiuj

≤
(

n− 1

2
+ (R− ρ)(

1

2
CH + CII)

)

|∇u|2.

with

CH = sup
ρ≤nir(∂M)

sup
Σρ

|H|, CII = sup
ρ≤nir(∂M)

sup
Σρ

(|II|).

Plug this inequality into (15). Then we get

D′(r) ≥ 2r−1D2(r)I−1(r) +

(

−n− 1

r
− CH − 2CII

)

D(r).(42)

At the same time, plugging S = 0 and (41) into the formula of I ′(r) and (ln I(r))′ in
Lemma 2.1, we get refined bounds of I ′(r) and (ln I(r))′ :

I ′(r) ≤ 2D(r)

r
−
(

n− 1

r
− CH

)

I(r),(43)

−n− 1

r
− CH ≤ (ln I(r))′ ≤ 2U(r)

r
− n− 1

r
+ CH .(44)

Now apply both of (42) and (43) to the proof of Lemma 2.4. We get a refined lower bound
of U ′(r):

U ′(r) ≥ −2(CH + CII)U(r)(45)

Apply (45) and (44) into the proof of Theorem 5. We obtain the refined growth estimates
of U(r) and I(r) as:

U(r) ≤ U(R)e2(CH+CII)(R−r).

and for R0 ≤ r2 < r1 ≤ R

e−CH (r1−r2)

(

r1
r2

)−n+1

≤ I(r1)

I(r2)
≤ (

r1
r2
)2U(R)e2(CH+CII)(R−r2)+(−n+1)eCH (r1−r2).(46)

Next we run the same argument as the proof of Lemma 7 using the refined growth estimate
(46). Then the key inequality (28) becomes

J(λ−3R,R) ≤ (λ−1eCHR(λ−1) + 1 + λ2σRe2(CH+CII)R(1−λ−3)+1eCHR(λ−1))J(λ−2R, λ−1R).
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and we obtain the refined L2 estimate of u on small balls as

∫

B(x,δ)

u2 ≤
(

λ−1eCH (λ−1)Rλ−3

+ 1 + λ2σRe2(CH+CII)R(1−λ−3)+1eCH (λ−1)Rλ−2
)

∫

λ−2R<b<λ−1R

u2

(47)

with δ = 1
2
R(1− λ−1)λ−2 and x ∈ [λ−2R, λ−1R].

Now we can run the same argument as in the proof of Theorem 3.1 by applying (47) to
(33). We pick a large k0 = max(8

7
, 1 + i−1

0 ). Then

R = k0i0 > i0,

α =
R0

R
= 1− 1

k0
>

1

8
,

λ = 1 +
1

(α−1/3 − 1)−1 +Rσ
< α−1/3 < 2,

δ =
R(1− λ−1)

2
λ−2 =

(λ− 1)R

2λ3
<

1

2
min{i0, σ−1},

and similarly R(1− λ−3) < 3min{i0, σ−1}. It follows that

N(σ) ≤ C(n)CMAe2CH min{i0,σ−1}+2e6(CH+CII) min{i0,σ
−1}

v−1
0

(

1

i0
+ σ

)n−1

(48)

≤ C(n)CMAe4 exp(6(CH+CII)min{i0,σ−1})v−1
0

(

1

i0
+ σ

)n−1

.(49)

Here CM = C(n)eC(n)i0
√
K is the mean value constant and K is from the Ricci lower bound

Ric ≥ −(n−1)K in the nir(∂Mn)-neighborhood of ∂Mn. And A = sup0<ρ≤i0 A({Σρ}) is the
supremum of the area of level sets of ρ. We notice that by the first variation formula for the
area, there is

A = sup
0<ρ≤i0

A({Σρ}) ≤ Vol(∂Mn)eCH i0 .

Plug this inequality into (48). Then it follows that

N(σ) ≤ C(n)eC(n)i0
√
K+CH i0+4e6(CH+CII) min{i0,σ

−1}

Vol(∂Mn)v−1
0

(

1

i0
+ σ

)n−1

.

Let i0 → nir(∂Mn) and the conclusion (3) and (4) will follow.
�

One immediate consequence of the upper bound of N(σ) is the following lower bound of
Steklov eigenvalues.

Corollary 5.1. Consider a smooth compact (Mn, g) with smooth boundary ∂Mn. Let 0 <
σ1 ≤ σ2 ≤ ... ≤ σj · · · ր +∞ be all positive Steklov eigenvalues on (Mn, g). Then we have

for all j ≥ 1

σj ≥ C(n)e−(C(n)
√
K+CH)nir(∂M)−4e6(CH+CII)min{nir(∂M),σ−1

1
}

v
1

n−1

0

(

j

Vol(∂M)

)
1

n−1

− 1

nir(∂M)
.
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In particular, when σj ≥ c
nir(∂M)

for some positive constant c, there is

σj ≥ C(n)e−(C(n)
√
K+CH)nir(∂M)−4e6(CH+CII)min{nir(∂M),σ−1

1
}

v
1

n−1

0

(

j

Vol(∂M)

)
1

n−1

.

Proof. Choose σ = σj in Theorem 1.1. Then we have

j = N(σj)

≤ C(n)e(C(n)
√
K+CH)nir(∂M)+4e

6(CH+CII)min{nir(∂M),σ−1
j

}

Vol(∂Mn)v−1
0

(

1

nir(∂Mn)
+ σj

)n−1

.

Taking the (n − 1)th root of the above inequality and applying the fact σj ≥ σ1 yield the
conclusions.

�

5.2. Behaviour of eigenfunctions near the boundary: proof of Theorem 1.2.

Proof. Let u be an Steklov eigenfunction corresponding to the Steklov eigenvalue σ > 0 on
(Mn, g). Under the same setup of f and R as in the proof of 1.1, we revisit Lemma 2.1 for
u. It follows from b = R− ρ and |∇b| = 1 that

(ln I(r))′ =
2U(r)

r
− (n− 1)

r
+ r1−nI−1(r)

∫

b=r

Hu2ds.

This implies that

2U(r)− (n− 1)

r
+ infH(Σρ) ≤ (ln I(r))′ ≤ 2U(r)− (n− 1)

r
+ supH(Σρ).

Integrating the above inequality on the interval [r, R] yields
(

R

r

)−n+1

e(
∫R
r

inf H(Σρ)ds+
∫R
r

u(s)
s

ds) ≤ I(R)

I(r)
≤
(

R

r

)−n+1

e(
∫ R
r

supH(Σρ)ds+
∫R
r

u(s)
s

ds).

By the definition of U(r) and the definition of Steklov eigenfunction in (23), there is
U(R) = Rσ. Then, by the smoothness, we have in a sufficient small neighborhood of
∂M = {b = R}, i.e. ρ → 0(or r → R) that

U(r) = U(R) + o(1) = Rσ + o(1)

H(Σρ) = H(∂M) + o(1).

Plugging these approximation into the above inequality yields that
(

R

r

)2Rσ+o(1)−n+1

e(R−r)(inf H(∂M)+o(1)) ≤ I(R)

I(r)
≤
(

R

r

)2Rσ+o(1)−n+1

e(R−r)(supH(∂M)+o(1)),

which can be equivalently written as
(

1− ρ

R

)2Rσ+o(1)−n+1

e−(inf H(Σ)+o(1))ρ ≤ I(r)

I(R)
≤
(

1− ρ

R

)2Rσ+o(1)−n+1

e−(supH(Σ)+o(1))ρ.

Notice that
(

1− ρ
R

)R → e−ρ as R → ∞. Then the conclusion follows from taking R → ∞
on above inequality. �
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6. C1,α domains in Riemannian manifolds

Let Ω be a bounded C1,α domain in a smooth compact Riemannian manifold (Mn, g). That
is, every point in the boundary ∂Ω has a neighborhood where the boundary is the graph of
some C1,α function. In this case, the distance function to the boundary ρ(x) = d(x, ∂Ω) is
only C1,α. Thus the method in Section 5 does not apply directly. We need a regularized
distance-like function.

Lemma 6.1. Let Ω be a bounded C1,α domain in a smooth and comlete Riemannian mani-

fold. For any 1 > ǫ > 0, there exists a function η ∈ C1,α(Ω̄), satisfying

(1− ǫ)ρ < η < (1 + ǫ)ρ, 1− ǫ ≤ |∇η| < 1 + ǫ, and |∇∇η| ≤ Cρα−1(50)

in a neighborhood of the boundary, where the constants C depends on ǫ, α, and the geometry

of a tubular neighborhood of ∂Ω in M.

Proof. By the result of Anderson (see Main Lemma 2.2 in [3]), for any 1 > ǫ > 0, there
exists a radius δ > 0 such that one has C1,α harmonic coordinates on Bδ(y) for any y ∈ ∂Ω.
This radius δ depends on ǫ, α, the Ricci curvature, and the injective radius. With respect to
this harmonic coordinates on B(y, δ) denoted by (x1, x2, ..., xn), the Riemannian metric g is
C1,α-close to the Euclidean metric, i.e. |gij − δij |C1,α < ǫ.

By the compactness, we can cover ∂Ω with finite small balls Bδ(y). We will construct a
distance-like function satisfying (50) in each Bδ(y) and glue them up by a smooth partition
of unity. Then we extend this function smoothly into Ω to get η.

Fix one Bδ(y). Let φ be a nonnegative smooth function in a neighborhood of Bδ(y) which
has a compact support in Bδ(y) and equals to 1 in Bδ/2(y) and 0 outside of Bδ(y). Define a
parabolic operator

L = ∂t − φ∆E − (1− φ)∆g

where ∆g is the Laplacian operator with respect to the Riemannian metric g, and ∆E is
the Laplacian operator with respect to the Euclidean metric in these harmonic coordinates
(x1, x2, ..., xn). Note that L is the standard Euclidean heat operator on Bδ/2(y). Then there
exits a C1,α(Ω̄) solution of the initial-boundary value problem











Lu(x, t) = 0, in Bδ(y) ∩ Ω;

u(x, t) = 0, on Bδ(y) ∩ ∂Ω;

u(x, 0) = φ(x)ρ(x).

We can take t0 > 0 small enough such that

(1− ǫ)ρ(x) < u(x, t) < (1 + ǫ)ρ(x), and 1− ǫ < |∇u(x, t)| ≤ 1 + ǫ,

for all t ∈ [0, t0] and x ∈ Bδ/2(y) ∩ Ω.
Next we derive the estimate of ∇∇u near y. For any constant unit vector ~v and sufficiently

small h > 0, define Dh∂iu(x, t) = ∂iu(x+ h~v, t)− ∂iu(x, t). Since L has constant coefficients
in Bδ/2(y), the function Dh∂iu(x, t) is also a solution of the heat equation:

LDh∂iu(x, t) = 0, x ∈ Bδ/2(y) ∩ Ω.

Note that |Dh∂iu(x, t)| < Chα, by parabolic gradient estimate we have

|∇Dh∂iu|(x, t) ≤ Chαρ(x)−1 ∧ t−1/2, (x, t) ∈ Bδ/4(y) ∩ Ω× (0, t0].
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For any fixed t ∈ (0, t0], pick ρ(x) < t1/2 and h = ρ(x)/2. Then it follows that

|∇∇u|(x+ h~v, t) ≤ |∇∇u|(x, t) + Cρ(x)α−1.

By iterating the above inequality, we can find a sequence of points x0 = x, x1, x2, ..., in
Bδ/2(y) ∩ Ω along the geodesic joining x to the boundary ∂Ω such that ρ(xi) = 2−iρ(x) and

|∇∇u|(xi, t) ≤|∇∇u|(x0, t) + C
i
∑

j=0

(2−jρ(x))α−1

≤|∇∇u|(x0, t) + C2(i+1)(1−α)ρ(x)α−1 ≤ Cρ(xi)
α−1.

Here the constant C varies from line to line. It is not hard to see that xi can be made
arbitrary, hence we have established the desired second order estimate for u is a smaller
neighborhood around y. Then we choose u(x, ty) for some ty < t0 as the desired distance-like
function in Bδ(y).

�

Now we are ready to prove Theorem 1.3 in the introduction.

Proof of Theorem 1.3 . Fix a positive constant ǫ ∈ (0, 1) and R > 1. Choose R0 = R − i0
for a sufficiently small i0 > 0. Define f = 1

4
(R − (1 − ǫ)η)2 and b = 2

√
f = R − (1 − ǫ)η,

where η is the function from Lemma 6.1. Then

∇f =
1

2
(R− (1− ǫ)η)(−(1− ǫ)∇η), |∇f |2 = (1− ǫ)2|∇η|2f,

∇∇f =
(1− ǫ)2

2
∇η ⊗∇η − 1− ǫ

2
b∇∇η.

By Lemma 6.1, we can check that Assumption 1 holds. Moreover we have

0 ≤ S = f − |∇f |2 ≤ (1− (1− ǫ)2)f, |∇∇b| ≤ Cρα−1, |T | ≤ Cρα−1

in the domain {R0 < b < R}. By taking i0 sufficiently small, the condition 4‖S‖L∞(b<r) < r2

is satisfied. Thus we can apply Theorem 3.1 to get the conclusion. �

We also obtain the following result about the behavior of Steklov eigenfunctions near a
C1,α boundary.

Theorem 6.2. Let Ω be a bounded C1,α domain in a smooth compact Riemannian manifold

(Mn, g). Let ρ be the distance-to-boundary function and denote its level sets as Σρ. For any

Steklov eigenfunction u with respect to the eigenvalue σ > 0, there is

e−Cρα−2(1+ǫ)σρ ≤
∫

Σρ
u2

∫

Σ
u2

≤ eCρα−2(1−ǫ)σρ

when ρ is sufficiently small. Here C is a constant depending on α and the geometry near the

boundary.

Proof. For any 1 > ǫ > 0, let η be the function from Lemma 6.1. Define the potential
function f and b as in the proof of Theorem 1.3. Then we have

(1− ǫ)Rσ ≤ U(R) ≤ (1 + ǫ)Rσ

in a small neighborhood of ∂Ω.
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By Lemma 2.1 and Lemma 6.1, we have

2(1− ǫ)Rσ

r
− C

(R− r)1−α
≤ (ln I(r))′ ≤ 2(1 + ǫ)Rσ

r
+

C

(R− r)1−α
.

Integrating the above inequality on the interval [r, R] yields
(

R

r

)2(1−ǫ)Rσ

exp

(

−
∫ R

r

C

(R − s)1−α
ds

)

≤ I(R)

I(r)
≤
(

R

r

)2(1+ǫ)Rσ

exp

(
∫ R

r

C

(R − s)1−α
ds

)

which implies that
(

1− (1 + ǫ)ρ

R

)2(1+ǫ)Rσ

exp

(

−
∫ R

r

C

(R− s)1−α
ds

)

≤ I(r)

I(R)

≤
(

1− (1− ǫ)ρ

R

)2(1−ǫ)Rσ

exp

(
∫ R

r

C

(R − s)1−α
ds

)

Let R → ∞ and the proof is finished by adjusting ǫ. �
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[1] M. S. Agranovich, On a mixed Poincaré-Steklov type spectral problem in a Lipschitz domain, Russ. J.
Math. Phys. 13 (2006), no. 3, 239–244, DOI 10.1134/S1061920806030010. MR2262827

[2] Frederick J. Almgren Jr., Dirichlet’s problem for multiple valued functions and the regularity of mass
minimizing integral currents, Minimal submanifolds and geodesics (Proc. Japan-United States Sem.,
Tokyo, 1977), North-Holland, Amsterdam-New York, 1979, pp. 1–6. MR0574247

[3] Michael T. Anderson, Convergence and rigidity of manifolds under Ricci curvature bounds, Invent. Math.
102 (1990), no. 2, 429–445, DOI 10.1007/BF01233434. MR1074481

[4] Bennett Chow, Sun-Chin Chu, David Glickenstein, Christine Guenther, James Isenberg, Tom Ivey, Dan
Knopf, Peng Lu, Feng Luo, and Lei Ni, The Ricci flow: techniques and applications. Part I, Mathematical
Surveys and Monographs, vol. 135, American Mathematical Society, Providence, RI, 2007. Geometric
aspects. MR2302600

[5] Tobias Holck Colding and William P. Minicozzi II, Optimal growth bounds for eigenfunctions,
arXiv:2109.04998.

[6] Bruno Colbois, Alexandre Girouard, Carolyn Gordon, and David Sher, Some recent developments on
the Steklov eigenvalue problem, Rev. Mat. Complut. 37 (2024), no. 1, 1–161, DOI 10.1007/s13163-023-
00480-3. MR4695859

[7] Christopher B. Croke, Some isoperimetric inequalities and eigenvalue estimates, Ann. Sci. École Norm.
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