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Abstract—Pre-trained Transformers, through in-context learn-
ing (ICL), have demonstrated exceptional capabilities to adapt
to new tasks using example prompts without model update.
Transformer-based wireless receivers, where prompts consist of
the pilot data in the form of transmitted and received signal
pairs, have shown high estimation accuracy when pilot data are
abundant. However, pilot information is often costly and limited
in practice. In this work, we propose the DEcision Feedback IN-
ContExt Detection (DEFINED) solution as a new wireless receiver
design, which bypasses channel estimation and directly performs
symbol detection using the (sometimes extremely) limited pilot
data. The key innovation in DEFINED is the proposed decision
feedback mechanism in ICL, where we sequentially incorporate
the detected symbols into the prompts to improve the detec-
tions for subsequent symbols. Extensive experiments across a
broad range of wireless communication settings demonstrate
that DEFINED achieves significant performance improvements,
in some cases only needing a single pilot pair.

I. INTRODUCTION

Wireless receiver symbol detection focuses on identifying
the transmitted symbols over fading channels with varying
signal-to-noise ratios (SNRs). Traditional methods typically
follow a two-step process: first estimating the channel using,
e.g., the Minimum Mean Square Error (MMSE) estimator, and
then performing symbol detection using the estimated channel.
However, this approach can be computationally intensive and
is impacted by the channel estimation quality. Data-driven
approaches, such as deep learning models that directly learn
channel estimators and symbol detectors, offer an alternative.
Recurrent Neural Networks (RNNs) [1] and Convolutional
Neural Networks (CNNs) [2] have been investigated for this
task. However, deep neural networks (DNNs) require large
amount of data and often perform poorly in the low-data
regime. Moreover, adapting pre-trained DNNs to new wireless
conditions remains a challenge [3].

Advances in Transformer models, particularly decoder-
only architectures like GPT [4], have demonstrated im-
pressive performance across various fields. Recent result
[5] shows that pre-trained Transformers can adapt to new
tasks during inference through prompt pairs, without requir-
ing explicit model updates. Given an input of the form
(y1, f(y1), . . . , yn, f(yn), yquery), a pre-trained Transformer
can approximate f(yquery) based on the provided context,
where (y1, . . . , yn, yquery) represents features and f can repre-
sent various classes of functions [6].

Wireless symbol detection, which involves estimating trans-
mitted symbols from noisy received signals, aligns well with
the Transformer capabilities. [7] introduced Transformers for
this task using in-context learning, framing it as a regression
problem with MSE loss and achieving near-MMSE perfor-
mance. Later works expanded this framework: [8] extended it
to MIMO systems, and [9] demonstrated robustness in multi-
user MIMO environments. Meanwhile, [10] used language
models to reformulate detection as a linguistic task. These
advances highlight Transformers as a powerful tool for ad-
dressing wireless communication challenges.

Despite these successes, prior studies face limitations. Most
approaches treat detection as a regression task, requiring
MSE-based objectives and post-processing to map continuous
outputs to discrete symbols. Additionally, many require ample
pilot pairs, which may not be possible in practice, and large
models increase inference costs, limiting real-world feasibility.

Inspired by decision feedback in wireless communication
(e.g., decision feedback equalizer over multi-path fading chan-
nels), we enhance the prompt design by incorporating decision
pairs, combining current signals with model detections to
improve subsequent detection. Our DEFINED model uses a
carefully designed mixture training process to achieve high
performance with limited pilots (sometimes only a single pilot)
and maintain accuracy with sufficient pilots. Extensive ex-
periments across modulation schemes validate our approach’s
effectiveness. To summarize, our main contributions include:

• We develop a Transformer model that jointly performs
channel estimation and symbol detection, departing from
prior work that separates these tasks. Our key innovation
is the incorporation of decision feedback to improve
accuracy and adaptability.

• We design a mixed training process that achieves high
performance with limited pilots and strong accuracy
with abundant pilots, enhancing model practicality for
deployment.

• We validate our approach with experiments across mul-
tiple modulation schemes.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Wireless Model
To more clearly illustrate our design, we consider a canon-

ical receiver symbol detection problem over a standard nar-
rowband wireless fading channel. Specifically, we focus on an
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Nr ×Nt MIMO system, where the channel is represented by
an Nr ×Nt complex-valued matrix Ht at time t, following a
distribution PH . We normalize the channel coefficients such
that each entry in Ht has a unit variance. The received signal
at time t is expressed as: yt = Htxt + zt, where the channel
noise zt ∈ CNr is modeled as a complex additive white
Gaussian noise vector with zero mean and covariance matrix
σ2I , following a distribution Pσ2 . Each entry of the input
vector xt ∈ CNt is sampled uniformly at random from a
given constellation set X (e.g., QPSK or 16QAM), and this
modulation process is independently and identically distributed
(i.i.d.) across both time and space. We normalize the signal to
ensure a unit average total transmit power, i.e. E[∥xt∥2] = 1.
The average signal-to-noise ratio (SNR) at any receive antenna
is given by SNR = 1/σ2.

We focus on the block-fading channel model [11] in this
paper, where the channel Ht remains constant over a coherent
time period of T time slots, and is i.i.d. across different
coherence periods. In other words, Ht = hl,∀t = (l − 1)T +
1, · · · , lT for the l-th coherence period where hl is drawn i.i.d.
from PH . Correspondingly, the data transmission is organized
into frames, where each frame has a length that is at most T .
The frame structure is designed such that the first k transmitted
symbols are known and pre-determined pilot symbols, whose
original purposes include assisting the receiver to perform
channel estimation of hl so that it can perform coherent
symbol detection. In other words, based on the reception of
a few pilot pairs Dk = {(y1, x1), · · · , (yk, xk)}, the design
goal is to determine a demodulator that accurately recovers
the transmitted symbol xk+1, · · · , xT from the received signal
yk+1, · · · , yT with high probability.

B. Existing Methods for Symbol Detection

In the traditional approach, the receiver first estimates the
channel using pilot signals, then performs symbol detection
on the received signal yt via hypothesis testing for each t =
k+1, · · · , T . Typically, the (Linear) MMSE estimator is used
for channel estimation, and the MMSE channel estimate Ĥ is
given by: Ĥ = (XHX + σ2I)−1XHY, where X is the pilot
matrix and Y is the received signal matrix. With the estimated
channel, the transmitted symbol x̂t is detected by projecting
yt onto the closest symbol in the modulation constellation X :
x̂t = argminx∈X ∥Ĥx− yt∥2,∀t = k + 1, · · · , T.

This two-step process treats channel estimation and symbol
detection as separate tasks. Such decoupling can result in
suboptimal detection, particularly under noisy conditions or
limited pilot data. Optimal estimators like MMSE rely on
precise statistical models of the channel and noise, which are
often hard to obtain. Additionally, these estimators are com-
putationally intensive due to matrix inversions and posterior
probability calculations, making them less appealing for real-
time applications in high-dimensional systems.

Data-driven, machine learning-based methods [12] present
a promising alternative. Various neural network architectures,
such as deep neural networks (DNNs), convolutional neural
networks (CNNs), and recurrent neural networks (RNNs), have

been explored to improve channel estimation [1], [2], [13],
[14] and symbol detection [15], [16]. While these methods can
improve detection, they often suffer from high sample com-
plexity, requiring substantial data for effective training [17].
Furthermore, conventional learning models struggle to adapt
to varying channel distributions without retraining, limiting
their applicability in dynamic wireless environments [3].

III. IN-CONTEXT LEARNING-BASED SYMBOL DETECTION

In-context learning (ICL) for symbol detection leverages
the structure of wireless communication frames, particularly
in block-fading channels where channel conditions remain
stable within each frame. Within these frames, pilot signals
are followed by subsequent received signals, which naturally
align with the Transformer architecture’s strength in pro-
cessing sequence-based inputs. The Transformer’s ability to
model dependencies among sequential data allows it to capture
complex relationships within transmitted signals, making it
highly effective for symbol detection tasks.

In this section, we introduce the ICL-based symbol detection
task. First, we provide the formulation of the ICL-based
symbol detection problem and then present its implementation
using the Transformer model GPT-2, which also serves as the
backbone of our proposed solution1.

A. Problem Formulation

Each ICL detection task τ corresponds to a latent channel
H and a channel noise level σ2, following the unknown joint
distribution Pτ = PHPσ2 . The ICL-based symbol detection
does not have prior knowledge of the specific task τ and
is provided only with a prompt Sτ

t = (Dτ
k , yt), consisting

of k target pairs, Dτ
k = {(y1, x1), · · · , (yk, xk)}, which are

sampled from the conditional distribution Px,y|τ and serve
as in-context examples for the current task τ , along with yt,
∀t = k + 1, · · · , T .

As previously mentioned, each context pair (xi, yi) and the
inference pair (yt, xt) are i.i.d. samples given task τ . For
block-fading channels, the context set Dτ

k , also referred to
as pilot data in wireless communication, enhances the channel
estimation, thereby improving the reliability and accuracy of
data transmission. We note that a significant advantage of the
proposed solution is that there is no need to change the frame
structure or the design of pilot signals. Rather, the innovation
is entirely at the receiver side where we leverage the pilot
and decoded signals in a different way. This is an important
advantage in practice as it allows for (backward) compatibility
with the existing standard.

The goal of symbol detection is to identify the correspond-
ing input signal xt for the new query signal yt from the
same task. The ICL-based detection makes its decision as
follows: x̂t = fθ(S

τ
t ), where θ represents the parameters of the

model. The detection for the query is measured by the symbol
error rate (SER), which is the frequency at which transmitted

1We use GPT-2 with elaborated design choices as a concrete example
throughout the paper. However, the proposed principle can be easily adapted
to other Transformer architectures.



symbols are incorrectly decoded. The expected SER for the
new query with k contexts, taking the expectation over the
task distribution for ∀k = 1, · · · , T − 1, is defined as:

SERk(θ) = EτEx,y|τ [fθ(D
τ
k , yt) ̸= xt] . (1)

B. Vanilla In-Context Symbol Detection

Transformer models have emerged as powerful tools for
symbol detection [18], leveraging their ability to capture
long-range dependencies for improved detection in varying
channels. This approach to wireless symbol detection was
introduced in [7], [8]. The input-output structure is illustrated
in Figure 1. With a masked self-attention mechanism, the
model outputs the detection x̂t at the corresponding position of
yt, relying only on known preceding contexts and the received
signal. During the forward process, the Transformer solves
k + 1 detection problems for the same task τ , using an in-
creasing number of pilot data points. Their results demonstrate
that the Transformer exhibits strong capabilities in symbol
estimation within context, without requiring explicit model
updates.

Fig. 1: Decoder-only Transformer architecture for in-context learning-based
symbol detection with k pilots. Detection output applies to ∀t = k+1, · · · , T .

IV. DECISION FEEDBACK IN-CONTEXT DETECTION

The vanilla ICL approaches for symbol detection require
sufficient context to achieve accurate estimation, which is often
impractical in real-world scenarios. Pilot signals, essential
for these methods, are costly and limited, reducing their
adaptability for practical applications. For situations where
the amount of pilots is small, neither conventional two-stage
(channel estimation then symbol detection) nor vanilla ICL
solutions can achieve good performance. Furthermore, these
approaches generally formulate the symbol detection task as
a regression problem, as shown by [8], [9], [19], where a
Transformer model was trained to minimize the mean squared
error (MSE) loss. Although their model achieved performance
comparable to the optimal MMSE estimator for x, an addi-
tional projection step was required to map the output to the
appropriate transmitted symbol, leading to a mismatch and
losing optimality in the process.

In contrast, we directly define the problem as a classification
task, enabling the model to jointly learn channel estimation
and symbol detection while directly measuring the SER during
inference. Additionally, we generalize the approach to effec-
tively handle scenarios where pilot information is highly lim-
ited by sequentially feeding back the already decoded symbol
pairs as noisy pilots and incorporating them as part of the
prompt. Our model demonstrates robust performance even in

challenging conditions with only a single pilot, outperforming
previous ICL models that struggle with insufficient pilot data.
At the same time, it maintains high accuracy when sufficient
pilot data is available.

Fig. 2: DEFINED model architecture with k pilots and (t − k) decision
feedback contexts to detect xt+1, ∀t = k, · · · , T − 1.

Inspired by decision-feedback concepts in wireless com-
munication, we propose the DEcision Feedback IN-ContExt
Detection (DEFINED) model for symbol detection, as shown
in Figure 2. The DEFINED model extends the prompt by
incorporating the previously received signals and detection
decisions alongside prior prompts to improve subsequent de-
tections. While traditional decision-feedback equalizers (DFE)
focus on inter-symbol interference (ISI), our study addresses
narrowband channels without ISI. Nevertheless, decision feed-
back is effective here due to the latent common channel. Noisy
feedback also provides valuable information, further refining
model detection.

A. Model Parameters

Our specific Transformer model is designed with an embed-
ding dimension of de = 64, L = 8 layers, and h = 8 attention
heads, resulting in approximately 0.42 million parameters,
which is significantly smaller compared to large language
models (LLMs) commonly applied in wireless communication
tasks, such as those discussed by [10], [20]. For instance, even
smaller LLMs like GPT-J 6B contain over 6 billion parameters,
making them approximately 14,000 times larger than our
model. This compact size not only enables deployment on
edge devices but also significantly shortens the inference time,
enabling low-latency detection at the receiver.

B. Training Details

In this section, we describe our data generation process
and the training of the DEFINED model. Training includes a
pre-training phase to equip the model with general predictive
abilities and speed up convergence, followed by fine-tuning to
adapt the model to scenarios with limited pilot data.

1) Data Generation: We generate data according to the
wireless communication model described in Section III-A.
Specifically, we consider both SISO and 2x2 MIMO systems
and explore various modulation schemes, including BPSK,
QPSK, 16QAM, and 64QAM. For each wireless system and
modulation task, we generate prompts consisting of sequences
with T pilot pairs, with the maximum sequence length set
to T = 31. Both systems operate under a Rayleigh fad-
ing channel, where the channel coefficient is sampled as
H ∼ CN (0, 1). The channel noise is i.i.d. and sampled from
a Gaussian distribution, with the noise variance uniformly



drawn from the range [σ2
min, σ

2
max]. The received signal is thus

yt = Hxt + zt. The training batch size is set to 512.
2) ICL Pre-training: We delve into the details of model

training, which is divided into two phases, as shown in
Figure 3. First, we define ICL training and ICL-testing as
operations on ground-truth data, represented by the clean
prompt: SICL

t = {y1, x1, . . . , yt−1, xt−1, yt}, for t =
1, 2, · · · , T. On the other hand, DF-training and
DF-testing use iteratively decoded sequences with
k pilot data and model decision feedback, which
operate on the decision feedback prompt: SDF

t =
{y1, x1, · · · , yk, xk, yk+1, x̂k+1, . . . , yt−1, x̂t−1, yt}, for t =
k + 1, . . . , T, where each estimation x̂t relies on the first k
pilot points and prior model decisions.

Fig. 3: The training process includes pre-training on clean data, followed
by fine-tuning on a mixed dataset of clean and decision feedback noisy data.
The model demonstrates strong performance, adapting to both limited and
sufficient pilot scenarios during symbol detection (i.e., inference).

We define the loss functions for the ICL-training and DF-
training models. The adopted loss function is the cross-entropy
loss between the model’s output and the ground-truth labels:

LICL(θ) =
1

NT

N∑
i=1

T∑
t=1

loss
(
fθ(S

ICL
t,i ), xt,i

)
, (2)

LDF (θ) =
1

NT

N∑
i=1

T∑
t=k+1

loss
(
fθ(S

DF
t,i ), xt,i

)
, (3)

where θ represents the model parameters, and N is the number
of samples.

DF-training is trained with limited pilot data and utilizes
self-sampled labels, where noisy feedback is combined with
previous contexts to generate new contexts. This process is
time-intensive, as each detection and feedback step requires
a model forward pass. Additionally, noisy data complicates
convergence, which can cause the model to struggle to con-
verge effectively. Training the Transformer with ICL-training
and testing under DF-testing introduces a data mismatch:
training uses clean data, while testing involves noise. Despite
this mismatch, we observed that although the Transformer’s
performance is lower than that achieved with DF-training, it
remains highly competitive, suggesting an inherent robustness
to noisy data. ICL training is also about ten times faster than
DF-training, as it eliminates data sampling and operates solely
on clean data.

Considering all factors, our suggested solution is to perform
ICL-training first, followed by DF-training. Here, ICL-training
serves as pre-training, while DF-training acts as fine-tuning,
similar to the pre-training and fine-tuning process used in
LLMs. Training epochs are carefully structured into two

phases, as shown in Figure 3. In the first phase, the model
converges just before reaching a plateau, at which point we
transition to the DF-training method. During this transition, a
spike in the training loss is observed due to the shift in the
training data distribution. As shown later, ICL pre-training not
only accelerates convergence but also improves recognition of
clean data and ICL-testing performance.

3) Decision Feedback Fine-tuning: We now elaborate on
the details of the carefully designed fine-tuning process, which
follows the ICL pre-training phase. The loss function is
constructed as a linear combination of the previously defined
losses in Equations (2) and (3), where α represents the weight
of the combination:

Lfine-tuning(θ) = αLDF (θ) + (1− α)LICL(θ). (4)
As explained in the pre-training phase, after ICL pre-

training, the model is capable of general symbol detection,
performing well on detections with clean data and, to some
extent, on detections using the decision feedback method.
Furthermore, in the fine-tuning process, the training loss
is designed to emphasize decision feedback detection while
retaining the model’s ability to handle clean data.

Training on both clean and noisy data enhances the robust-
ness of the Transformer model by exposing it to a more diverse
dataset. Ultimately, we propose that a single Transformer
model can be trained to perform both ICL-testing and DF-
testing, making our DEFINED model adaptable for practical
wireless systems. For example, in scenarios with sufficient
pilot information, the model can operate in the ICL manner.
However, in challenging situations – common in real-world ap-
plications – where pilots are limited and difficult to acquire, the
model can utilize previous decisions to improve performance
in subsequent symbol detection.

V. EXPERIMENT

This section presents the experimental results, analyzing
our model’s performance against baseline algorithms. Our
model excels not only with sufficient pilot data but also
shows notable improvement in limited-data scenarios by effec-
tively leveraging noisy feedback. Furthermore, the DEFINED
model demonstrates strong performance in complex modula-
tion tasks, underscoring the Transformer’s capacity to learn
geometrical structures within modulation constellations.

A. Baseline Algorithms

We introduce several baseline algorithms, including the
prior ICL model, the MMSE algorithm, and MMSE-DF, a
decision-feedback variant of MMSE.

1) In-Context Learning: We train a Transformer using
vanilla ICL-training and will plot SER against context se-
quence length in ICL-testing and DF-testing, shown as the
ICL-ICL and ICL-DF lines, respectively.

2) MMSE Algorithm: We present the MMSE algorithm,
assuming a known pilot signal matrix X . The received signal
matrix is represented as Y = HX+Z. Since both the channel
and noise follow complex Gaussian distributions, the pair



(H,Y ) is jointly Gaussian. The MMSE estimator for H is
given by: ĤMMSE

k = (XHX + σ2I)−1XHY. With the t-th
received signal yt, the transmitted symbol xt is estimated by
projection onto the closest symbol in X :

x̂t = argmin
x∈X

∥ĤMMSE
k x− yt∥2,∀t = k + 1, · · · , T. (5)

With k pilot pairs, the mean symbol error rate is computed,
shown as a horizontal line labeled MMSE-Pk.

3) MMSE-DF Algorithm: We introduce MMSE-DF, which
uses decision feedback data as a baseline for our DEFINED
model in limited pilot scenarios. Starting with k pilots, we
compute the MMSE estimator of H and detect x̂k+1 using
yk+1 as in Equation (5). The decision pair (yk+1, x̂k+1)
merges with the previous dataset, which is then used iteratively
to detect each signal until x̂T . We plot the SER against the
decision feedback-extended context sequence length.

B. Experimental Results

We set the hyperparameter α to 0.7 during model train-
ing. Testing data is generated with a different random seed,
sampling 80,000 prompts to compute the mean SER across
tasks. Results are presented for BPSK, QPSK, 16QAM, and
64QAM in the SISO system, and for BPSK and QPSK in
a 2x2 MIMO system, plotting SER against context sequence
length, as shown in Figure 4. The t-th point represents the
SER of the estimator x̂t+1 using t contexts, omitting the 0-th
point (random guessing) due to high SER.

To quantify the SER improvement with increasing context
length, we define the metric gainθ = SERk(θ)−SERT−1(θ)

SERk(θ)
,

representing the relative SER reduction as the context length
increases from k to (T − 1), starting from k clean pilots.
Specifically, gainDF is computed for our DEFINED model
with the decision feedback-enhanced context sequence, indi-
cating the performance improvement from the decision feed-
back mechanism, while gainICL is computed for the ICL
model using the clean pilot sequence.

1) Comparison with Baseline Algorithms: In the plots, the
MMSE algorithm, which provides optimal channel estimation
based on given pilots and detections of the next transmit-
ted symbol, is shown alongside horizontal lines representing
MMSE performance with k pilots and with full (30) pilots,
respectively. The ICL-ICL line, for the model trained and
tested with ICL method, shows that with 30 pilots, the
Transformer slightly outperforms the MMSE algorithm with
30 pilots during ICL testing. This improvement arises from
model’s ability to perform channel estimation and symbol
detection jointly, leveraging the synergy between these tasks.

The DEFINED-DF line denotes the performance of our
proposed model during DF-testing, showing a marked SER
reduction as more decision feedback data is incorporated.
This confirms that the Transformer can effectively use noisy
feedback to improve detections with limited pilot data. Our
model also performs well in ICL testing, as indicated by the
DEFINED-ICL line, which aligns closely with the ICL-ICL
line. This result suggests that ICL pre-training, followed by
carefully designed loss functions during decision feedback

fine-tuning, allows the model to learn effectively from clean
data. Additionally, our DEFINED model adapts well to real-
world symbol detection, excelling with ample pilot data and
performing effectively even with a single pilot.

The ICL-DF line, which represents a Transformer trained
with ICL but tested under DF conditions, performs signif-
icantly worse than our model, nearly coinciding with the
MMSE-DF line. This observation highlights that models
trained solely on clean data struggle with noisy feedback,
producing MMSE-like detections and underscoring the impor-
tance of fine-tuning for handling noisy feedback.

2) Comparison with Different SNRs and Varying Pilot
Lengths: At high SNR levels, reduced data noise enables more
accurate detection from pilot data, enhancing DEFINED model
performance and accentuating the downward SER trend. How-
ever, at very high SNRs, the already low initial SER limits
further improvement. Our DEFINED model also performs
robustly with minimal pilot data, including the extreme single-
pilot cases. As pilot data increases, all algorithms show
improved performance in DF inference.

3) Comparison of SISO and MIMO Systems: Across var-
ious modulation schemes and SNR levels, our model per-
forms better in MIMO than in SISO systems, with a more
pronounced SER reduction from additional decision feedback.
This improvement suggests the model effectively learns from
the communication system structure and may perform well in
multi-user systems.

4) Comparison with Different Modulation Schemes: We
conduct experiments using BPSK, QPSK, 16QAM, and
64QAM modulations in the SISO system, representing clas-
sification tasks with 2, 4, 16, and 64 classes, respectively. As
modulation complexity increases, the detection task becomes
more challenging, but we observe greater performance im-
provements with complex schemes during DF-inference, as
reflected by a more pronounced SER decrease with additional
feedback data in our DEFINED model.

Analysis of the Transformer’s output logit vector shows that
nearly all of the incorrect detections occur within a small
region around the ground-truth label in the constellation. This
“typical error event” [11] suggests that even incorrect detec-
tions carry valuable information, as the noisy label is often
near the correct one, enhancing the model’s detections. Thus,
as modulation complexity increases, the compact constellation
set allows noisy feedback to provide more useful information,
leading to better SER gains with added feedback data.

These findings demonstrate that our Transformer model
effectively captures the constellation set’s geometry. It not only
learns detections but also recognizes relationships between
classes, often assigning higher probabilities to neighboring
labels when errors occur. Due to inherent data noise – e.g.,
channel fading and additive noise – received signals with
nearby latent labels in the constellation may overlap. As a
result, the model sees adjacent labels as close neighbors,
letting its detections retain valuable information, even when
they are not entirely accurate.



(a) SISO BPSK SNR0 P1
gainDF = 0.076, gainICL = 0.380

(b) SISO QPSK SNR5 P1
gainDF = 0.056, gainICL = 0.372

(c) SISO 16QAM SNR10 P1
gainDF = 0.170, gainICL = 0.292

(d) SISO 64QAM SNR25 P1
gainDF = 0.462, gainICL = 0.545

(e) MIMO BPSK SNR5 P2
gainDF = 0.208, gainICL = 0.721

(f) MIMO QPSK SNR10 P2
gainDF = 0.338, gainICL = 0.733

Fig. 4: SISO performance for BPSK, QPSK, 16QAM, and 64QAM with one pilot, and 2×2 MIMO for BPSK and QPSK with two pilots. The X-axis shows
context sequence length, where the t-th point for ∗-ICL uses t ground truth pilots and ∗-DF-Pk uses k clean pilots and (t− k) decision feedback noisy pairs.

VI. CONCLUSION

Inspired by the decision feedback mechanism in wireless
receiver designs, we proposed DEFINED to enhance symbol
detection by incorporating decision pairs into the prompts of
Transformer. Our approach achieved significant performance
gains with limited pilot data while maintaining high accu-
racy with sufficient pilot data, demonstrating its adaptability
for practical scenarios. Extensive experiments across various
modulation schemes validated the robustness and flexibility
of our model. These contributions highlight the potential
of Transformers, underscoring their capabilities for future
wireless communication systems.
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