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Abstract 

Quality control of structures segmentation in volumetric medical images is important for identifying 

segmentation errors in clinical practice and for facilitating model development by enhancing network 

performance in semi-supervised and active learning setups. This paper introduces SegQC, a novel 

framework for segmentation quality estimation and segmentation error detection. SegQC computes an 

estimate measure of the quality of a segmentation in volumetric scans and in their individual slices and 

identifies possible segmentation error regions within a slice. The key components include: 1) SegQC-

Net, a deep network that inputs a scan and its segmentation mask and outputs segmentation error 

probabilities for each voxel in the scan; 2) three new segmentation quality metrics, two overlap metrics 

and a structure size metric, computed from the segmentation error probabilities; 3) a new method for 

detecting possible segmentation errors in scan slices computed from the segmentation error 

probabilities. We introduce a new evaluation scheme to measure segmentation error discrepancies based 

on an expert radiologist corrections of automatically produced segmentations that yields smaller 

observer variability and is closer to actual segmentation errors. We demonstrate SegQC on three fetal 

structures in 198 fetal MRI scans – fetal brain, fetal body and the placenta. To assess the benefits of 

SegQC, we compare it to the unsupervised Test Time Augmentation (TTA)-based quality estimation. 

Our studies indicate that SegQC outperforms TTA-based quality estimation in terms of Pearson 

correlation and MAE for fetal body and fetal brain structures segmentation. Our segmentation error 

detection method achieved recall and precision rates of 0.77 and 0.48 for fetal body, and 0.74 and 0.55 

for fetal brain segmentation error detection respectively. SegQC enhances segmentation metrics 

estimation for whole scans and individual slices, as well as provides error regions detection. 

Keywords:  

Segmentation; Deep Learning; Segmentation Quality Estimation; Segmentation Error Detection 
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1. Introduction 

The segmentation of structures in volumetric medical images is increasingly used in clinical practice 

for a variety of diagnostic and prognostic tasks. Since manual delineation of structures’ contours is 

time-consuming and requires expertise, a variety of automatic segmentation methods have been 

developed. In turn, the increased use of automatic segmentation methods creates the need for the 

systematic evaluation of the computed segmentation (Renard et al., 2020). 

Automatic quality control (QC) of structures segmentations in volumetric scans can play an 

important role in clinical practice. It may provide an approach to systematically detect and correct 

segmentation errors that might go unnoticed, ensuring that the segmentations accurately represent the 

underlying anatomy. While segmentation quality assessment can be performed by a human expert, it is 

impractical for large datasets and is subject to observer variability and to interpretation and attention 

errors. Automatic quality estimation is key to validate the robustness of the segmentation methods on 

unseen scans. 

Automatic segmentation QC can also be useful for the development of large datasets with high 

quality expert-validated annotations. Most state-of-the-art automatic segmentation methods for 

volumetric scans are based on deep neural networks that require a large, high-quality dataset of expert-

validated annotations, which is expensive and very difficult to obtain (Tajbakhsh et al., 2020). A variety 

of methods have been recently developed to tackle segmentation annotation in medical images. Methods 

for leveraging unlabeled data to create better classification models with fewer annotated datasets, e.g. 

with self-training (Cheplygina et al., 2019) and active learning (Tajbakhsh et al., 2020) have been 

proposed. In the self-training setup, a model improves the quality of the pseudo-annotations by learning 

from its own high quality predictions. Active learning is an iterative paradigm wherein the unlabeled 

samples for each round of annotations are selected to maximally improve the performance of the current 

model. For both self-training and active learning, a QC mechanism is needed to select high-quality 

pseudo-labels and to identify low-quality cases for manual labeling. 

Existing supervised methods for segmentation QC compute a single metric for the estimation, e.g., 

the Dice score. While the Dice score is usually the most technically relevant metric for the evaluation 

of segmentations, other metrics may be relevant for specific clinical tasks. For example, the Relative 

Volume Difference (RVD) is useful for quantifying volume measurement error. Moreover, the training 

of QC networks is usually performed using multiple annotated samples of varying quality, which 

requires large, annotated datasets and the training of multiple networks to produce appropriate 

segmentation masks. It is also important to evaluate QC methods on manual segmentations, which are 

usually of high quality for most of the structure except for a few isolated regions, which should be 
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automatically identified and corrected. Furthermore, most methods focus on the precise estimation of 

the metric itself, while in practice the relative ranking of the segmentations by their quality or the 

identification of the cases with large segmentation errors is both preferable and sufficient.  

Unsupervised methods for QC that do not require explicit supervision have also been proposed. They 

are used for ranking cases by quality for active cases selection, for pseudo-labeling, and for detecting 

outliers (Specktor-Fadida et al., 2023a; Audelan and Delingette, 2021). Unsupervised methods identify 

outliers in a set of segmentations, but may not be accurate in assessing individual segmentation results. 

Furthermore, they do not identify all erroneous segmentations in the dataset, but only some suspicious 

cases. Their advantage is that they do not require any supervision. 

For segmentation QC, it is useful to identify segmentation error regions within scan slices to help 

annotators focus on relevant error regions that require manual correction. Several methods have been 

recently proposed to address the problem of error regions detection, e.g., Audelan and Delingette 

(2021); Zaman et al. (2023); Qiu et al. (2023). However, they do not provide both segmentation error 

regions detection and multiple quality metrics estimations in 2D and 3D in a single framework.  

Ground truth quality is usually defined as the segmentation evaluation metric, e.g. the Dice score, 

between the ground truth segmentation and the computed segmentation. However, the discrepancy 

between the ground truth and predicted mask includes both the observer variability and the 

segmentation error (Joskowicz et al., 2019). This issue is usually overlooked when evaluating 

segmentation performance.  Correcting segmentation masks introduces inductive bias to the manual 

segmentation and may result in reduced observer variability compared to manual delineations from 

scratch. Thus, evaluating QC performance on corrections data may be a more accurate error assessment. 

This paper introduces SegQC, a novel framework for segmentation quality estimation based on 

overlap and size metrics and for segmentation error detection in volumetric scan slices. The key 

observation is that a deepl learning network, called SegQC-Net, can correctly identify the segmentation 

error regions in high quality segmentations despite the poor error segmentation performance. In 

addition, since the observer variability occurs in the boundaries of the structure of interest, it can be 

estimated using an offset band around the segmentation mask contour. We leverage these observations 

to design a quality estimator that can also identify error regions. We demonstrate the performance of 

our method on settings with different qualities and on corrections data and compare it to unsupervised 

quality estimation based on Test Time Augmentations (TTA) to see the benefits of the supervised 

approach (Dudovitch et al., 2020; Specktor-Fadida et al., 2021, 2023a).  
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2. Related work 

Multiple supervised methods have been proposed for segmentation QC that estimates a segmentation 

score. Reverse Classification Accuracy (RCA) has been proposed for QC assessment without the need 

of a large annotated dataset (Valindria et al., 2017; Robinson et al., 2019). However, both require long 

computation times, which preclude their use in real-time applications. Recent methods for quality 

control based on deep learning input a scan and a segmentation mask and output a predicted Dice 

coefficient (Robinson et al., 2018; Fournel et al., 2021), or the Intersection over Union (IoU, Jaccard 

index) with a regression network (Arbelle et al., 2019; Huang et al., 2016; Shi et al., 2017). Liu et al. 

(2019) use a Variational Auto-Encoder (VAE) network to learn shape features and a regressor in the 

one-dimensional feature space to predict the quality of the segmentation. These methods output quality 

scores but are limited to the prediction of a single predefined quality metric and require large datasets 

of scan-mask pairs with masks of varying quality. Furthermore, they usually provide a single score for 

the entire scan, not for individual slices where the manual corrections should be made.  

Unsupervised methods have been proposed for segmentation QC to alleviate the burden of data 

annotation. Methods for unsupervised quality control rely on assumptions about the appearance and 

shape of the structure of interest and of the background regions, e.g. high levels of intra-region 

homogeneity and inter-region heterogeneity (Rosenberger et al., 2006; Chabrier et al., 2006; Zhang et 

al., 2008; Johnson and Xie, 2011; Gao et al., 2017). Audelan and Delingette (2021) proposed 

unsupervised quality control where quality estimates are produced by comparing each segmentation 

with the output of a probabilistic segmentation model that relies on intensity and smoothness 

assumptions. Ranking cases with respect to these two assumptions allows the detection of the most 

challenging cases in a dataset. Other works use TTA based Dice score estimation based on the Dice 

coefficient between each one of the augmentation results and the average or median prediction 

Dudovitch et al. (2020); Specktor-Fadida et al. (2021, 2023a,b). These methods were used for scans 

prioritization in active learning, high quality pseudo-labels selection in self-training, and for discarding 

low quality segmentations when estimating weight from fetal MRI whole-body segmentation masks. 

Other methods use the uncertainty of segmentations to assess their quality. Uncertainty quantification 

also adds interpretability to the quality assessment as it provides information about the location of 

possible errors. Roy et al. (2019) uses Monte Carlo dropout to estimate uncertainty, which yields a good  

correlation between the measured uncertainty and the Dice coefficient. In DeVries and Taylor (2018), 

a first network computes a segmentation map and an uncertainty map at the pixel level, which are then 

used by a second network to regress a QC estimate at the image level. Dudovitch et al. (2019) describe 

a TTA-based entropy uncertainty measure that is used to prioritize slices for correction.
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Several methods have been proposed for the detection of segmentation error regions. Zaman et al. 

(2023) predict segmentation error regions with a 3D segmentation network where the ground truth error 

is the absolute difference between the ground truth and the predicted masks. They then extract erroneous 

surface patches with the Marching Cubes and k-d tree algorithms. Qiu et al. (2023) use a combined 

segmentation and regression network to simultaneously compute segmentation quality measures and 

voxel-level segmentation error maps for brain tumor segmentation quality control. However, this 

method computes a single Dice score measure in 3D for each scan and does not provide 2D information. 

It uses the Dice score to quantify error regions detection, which may not be optimal for cases with 

correct detected error regions but failure of precise segmentation. 

The discrepancy between ground truth segmentation and predicted segmentation mask includes the 

observer variability and the segmentation error (Joskowicz et al., 2019). Correcting the computed 

segmentation mask introduces inductive bias to the manual segmentation and may result in reduced 

observer variability compared to manual delineations from scratch (Chlebus et al., 2019). However, to 

the best of our knowledge, none of the existing methods have been tested on segmentation masks 

correction data. In our previous work (Specktor-Fadida et al., 2022), we used corrections data to 

prioritize slices for manual correction and tested the method on fetal body corrections test data. 

However, this method required a dedicated dataset of correction data for training, and it did not perform 

metrics estimation, 3D scans prioritization and error detection. 

 

3. Method 

We describe next SegQC, a novel method for simultaneously computing quality estimates for the 

entire scan and individual slices using overlap and size metrics and identifying segmentation error 

regions. It estimates the Dice score and the IoU overlap metrics, and the absolute Relative Volume 

Difference (ARVD) for volume estimation. It requires a relatively small number of annotated cases for 

training and uses input-mask pairs generated from a single segmentation network. 

The SegQC segmentation quality estimation framework uses SegQC-Net, a network to predict 

segmentation error regions, followed by quality estimation modules using the segmentation results (Fig. 

1). The segmentation error computed by the SegQC-Net on a given scan-mask is used to compute 

estimated 2D and 3D Dice scores and ARVD metrics. To detect and highlight segmentation error 

regions, an estimated error is computed from the network's output mask and error regions are calculated 

from the estimated error result. Finally, scans and slices are ranked using the SegQC-Net output for 

scans prioritization based on largest error. 
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Fig. 1. The SegQC segmentation quality estimation method. The segmentation error estimation 

proceeds as follows: 1) segmentation error computation with SegQC-Net, a U-Net that inputs the scan 

and a segmentation mask from the previous step; 2) Dice score and Absolute Relative Volume 

Difference (ARVD) estimations in 2D and 3D from the predicted segmentation error result; 3) estimated 

segmentation error extraction from the predicted segmentation mask; 4) segmentation error regions 

extraction from the estimated error result. Inputs are colored in blue, outputs in yellow; 5) 3D scans and 

2D slices ranking from largest to smallest predicted segmentation errors. 

3.1. Segmentation error estimation network 

The segmentation error estimation network, SegQC-Net, inputs a volumetric scan 𝐼	 ∈ 	𝑅!×#×$ and 

the segmentation mask M ∈ 𝑁!×#×$. It outputs the segmentation error in the mask E ∈ 𝑅!×#×$, where 

𝑚, 𝑛, 𝑘	 ∈ 𝑁 are the dimensions of the volumes. 

The training data for the SegQC-Net is created as follows (Figure A1, Supplemental Material). First, 

to produce scan-mask pairs, a segmentation network is trained to create the segmentation masks. To 

increase the number of scan-mask pairs, Test-time Augmentations (TTA) are used. 

Segmentation masks augmentations are performed to increase the number of cases with ground truth 

segmentation delineations and to have pairs of input segmentation masks with different qualities to 

account for the high variability of possible segmentation errors. We create multiple masks with the same 

input using TTA on the segmentation network (Figure A1, Supplemental Material). These constitute 

mask augmentations. The final input-mask data consists of multiple masks for each input, as well as the 

median TTA prediction. For TTA, we perform flipping, rotation, transpose and contrast augmentations.

3.2. Metrics estimation 

The Dice score, IoU and ARVD metrics are computed as follows. Let 𝑡 ∈ 	𝑇 be a voxel in the ground 

truth segmentation T, m ∈ M be a voxel in the segmentation mask M and i be an index over the voxels 

in the volume. Then: 

Input scan Segmentation 
mask

Predicted 
segmentation 
error

2. Metrics 
estimation in 
2D and 3D

4. Error regions 
extraction

3. Estimated 
error 
extraction

1. Error 
segmentation 
network

Estimated metrics:
• Dice score
• RVD
• ARVD

Error 
bounding 
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Segmentation 
method

5. Scans and 
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ranking

Ranked scans 
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Note that the ground truth segmentation T is unknown. Given a segmentation mask and the result of 

an error segmentation network, we estimate the Dice score and RVD quality metrics of the masks as 

follows. Let M be the segmentation mask, 𝐸6 	∈ 	 (0, 1) 	⊂ 	𝑅 be the estimated error from the error 

segmentation network result and ϵ be the smoothing term. We first compute the estimated ground truth 

𝑇6 	∈ 	 (0, 1) 	⊂ 	𝑅 by summing the estimated intersection with mask M and the estimated truth which is 

a segmentation error in mask M: 

(4) 𝑇6 = 𝑀 ∙ >1 − 𝐸6@ + (1 −𝑀) ∙ 𝐸6 

Let �̂� 	 ∈ 	 𝑇6  be a voxel in volume 𝑇6 , m ∈ M a voxel in mask M and �̂� ∈ 𝐸6 a voxel in volume 𝐸6 . Since 

𝑀	 · 	 (1 − 𝐸6) is the intersection between mask M and ground truth, the estimated Dice is: 

(5) 𝐷𝑖𝑐𝑒+,' =
%∑ #!
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The estimated 𝑅𝑉𝐷 and 𝐴𝑅𝑉𝐷 are: 

(6) 𝑅𝑉𝐷+,' =
∑ (#!)'2!)"
!
∑ '2!	"
!
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Note that the denominator is the segmentation error difference, so it can be estimated directly by the 

network output. Thus, we can simplify the equation: 

(8) 𝐴𝑅𝐷𝑉+,' =
∑ +̂!"
!

∑ '2!"
!

 

3.3. Estimated error extraction 

Ideally, the ground truth segmentation error should only correspond to regions with segmentation 

errors and should exclude regions of observer variability. Formally, let 𝐷' 	 ∈ 𝑁!×#×$ be the difference 

volume between a given segmentation mask M ∈ 𝑁!×#×$and the ground truth segmentation 𝑇	 ∈ 

𝑁!×#×$, and 𝑉' 	 ∈ 𝑁!×#×$ be the observer variability regions. The ground truth segmentation volume 

error 𝐸'	∈ 𝑅!×#×$  is: 

(9) 𝐸' 	= 	𝑇	 − 	𝑀	 −	𝑉' 	= 	𝐷' 	− 	𝑉' 
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Fig. 2. Illustration of the estimated error extraction algorithm for the fetal body, brain and placenta 

segmentation tasks. 1) input image; 2) ground truth segmentation; 3) segmentation mask; 4) difference 

volume between ground truth and segmentation mask; 5) estimated error of the segmentation mask. 

In practice, only Dt can be computed and not Et, as the observer variability mask Vt is not available. 

However, when the ground truth segmentation was created by manually correcting the segmentation 

mask M, the mask M reflects the inductive bias of the manual delineation and can help reduce the 

observer variability Vt, thereby reflecting the segmentation error Et. 

Ideally, the goal is to obtain multiple scan mask pairs with ground truth segmentations that were 

created by correcting the input mask. However, it is very difficult to obtain many cases with 

segmentation corrections data. Furthermore, we would like to train our error segmentation network with 

masks of both high and low quality, although corrections datasets are obtained with high quality 

segmentations, for otherwise the manual delineations would have been performed from scratch. 

Therefore, instead of using real segmentation correction data, we estimate the segmentation error 

regions from the ground truth difference volume Dt. The segmentation error estimation algorithm uses 

the simple heuristic of removing a band around the difference volume Dt contour. The idea behind it is 

that much of the variability Vt lies in the boundary of the structure of interest, thus to estimate the 

segmentation error boundary can be removed. 

(1) (2) (3) (4) (5)
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Fig. 3. Illustration of the boxes ROI extraction. (a) Input mask for error evaluation; (b) Estimated error 

output; (c) Estimated error postprocessing: removed small error regions are marked in yellow arrows; 

unified boxes are marked in yellow box; (d) Estimated error bounding boxes; (e) Overlay of the mask 

with ground truth mask; (f) Ground truth error bounding boxes. 

The algorithm consists of three steps performed on each scan slice separately: 1) binary dilation and 

binary erosion; 2) removal of the area between dilation and erosion; 3) removal of small components 

below a threshold tsize. Fig. 2 shows examples for the fetal body, the fetal brain and the placenta. 

3.4. Segmentation error regions computation 

To extract segmentation error regions as 2D regions of interest (ROI) bounding boxes from the 

computed segmentation error, the following operations are applied: 1) extraction of the connected 

components; 2) extraction of bounding boxes around the connected components; 3) unification of the 

nearby boxes; 4) removal of boxes with small areas below a threshold. Fig. 3 illustrates this process.  

3.5. Scans and slices segmentation quality ranking  

Prioritizing segmentation corrections can be useful for different tasks, such as active learning. 

Segmentation volumes are prioritized for correction based on the chosen estimated metrics in 3D. Since 

2D slices might not include the structure of interest, it is not clear how to prioritize between those slices 

using 2D metrics estimation. Thus, 2D corrections prioritization is performed using the summation 

function over the error segmentation network output in the slices. 

 

(a) (b)

(c)

(d) (e) (f)
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Fig. 4: The creation process of the test sets for corrections and stratified datasets. The number of the 

final test set cases is shown in red in the yellow output boxes. 

4. Experimental results 

The experimental results are presented as follows. Section 4.1 provides a detailed description of the 

datasets used and the process of their construction. Section 4.2 outlines the specifics of the trained 

model. Section 4.3 explains the evaluation setup. Section 4.4 presents the experimental studies, and the 

results on various datasets and of the ablation studies.

4.1. Datasets 

To evaluate our method, we used two types of data. The first is the manual segmentation correction 

data, D_corr, which includes the scan and segmentation mask pairs with their corresponding corrected 

segmentation by a human annotator. This data type is particularly useful to quantify error prediction, as 

data corrected from a given segmentation mask is subject to lower observer variability (Chlebus et al., 

2019). The drawback of the segmentation corrections data is that it contains data with similar and 

usually high qualities, since in cases of a poor quality it is better to perform the manual segmentation 

from scratch. The second data type is segmentation data with stratified qualities, D_strat, as was 

suggested in previous works Robinson et al. (2018); Fournel et al. (2021). The process for creating the 

D_corr and D_strat test sets is depicted in Figure 4, while the creation of the training sets is presented 

in Figure A1 of the Supplemental Material. 
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Corrections datasets. Correction datasets were created from data for which the ground truth T was 

created by correcting a segmentation mask M. The ground truth error E was then computed using the 

absolute difference between a corrected segmentation T and a segmentation mask M from which the 

manual correction was performed, 𝐸	 = 	 |𝑇	 − 	𝑀|. 

Stratified datasets. To produce masks with variable qualities, the segmentation data was first split 

into training/validation/test. Next, 12 networks were trained with different subsets of the training data, 

with and without anisotropic pooling. To enlarge the number of low-quality masks, two network 

weights were selected from each network training session: networks weight that achieved the best 

results on the validation set and the network weights of a random early epoch. This resulted in a total 

of 24 networks weights. The networks were then used to compute predictions on the test set and the 

Dice score for each case was recorded. Then, for each Dice score bin (e.g. Dice score between 0.85 and 

0.9) scan-mask pairs were selected with a higher priority to new scans that were not already in the bin. 

The same number of cases were selected for each quality bin. The final dataset was constructed with 

the selected stratified scan-mask pairs and their corresponding ground truth discrepancy E between the 

segmentation mask M and the manual annotation T,  𝐸	 = 	 |𝑇	 − 	𝑀|. 

We evaluated the segmentation quality estimation method on three fetal MRI structures: 101 fetal 

body, 40 fetal brain and 57 placenta cases. All scans were retrospectively obtained from Tel Aviv 

Sourasky Medical  Center (Tel Aviv, Israel) by the co-author radiologist during routine clinical practice. 

For each one of the segmentation structures, we used corrections data when applicable and constructed 

stratified qualities datasets for structures with at least 50 annotated cases. Figure 4 summarizes the test 

sets details of all datasets.

Dataset 𝑫𝒃𝒐𝒅𝒚 consists of 101 cases with the TRUFI sequence acquired on Siemens Skyra 3T, Prisma 

3T, and Aera 1.5T scanners.  Each scan has a resolution in the range of 0.6 − 1.34 × 0.6 − 1.34 × 2 − 

4.8 mm3. Two sub-cohorts were created, one with corrections data 𝑫𝒃𝒐𝒅𝒚_𝒄𝒐𝒓𝒓 and another using 

segmentation masks having stratified qualities 𝑫𝒃𝒐𝒅𝒚_𝒔𝒕𝒓𝒂𝒕: 

• 𝑫𝒃𝒐𝒅𝒚_𝒄𝒐𝒓𝒓 consists of 101 scan-mask pairs I, M. Data was split to 25/26/50 

training/validation/test. The test set had ground truth error E that is the absolute difference 

between a corrected segmentation T and a segmentation mask M from which the manual 

correction was performed.  

• 𝑫𝒃𝒐𝒅𝒚_𝒔𝒕𝒓𝒂𝒕 consists of scan-mask pairs I, M with test-set masks that were created with stratified 

qualities. Data was split to 30/6/65 training/validation/test. Test set data was stratified with Dice 

score bins of [0,0.88], [0.88,0.92], [0.92,0.96], [0.96,1]. Note that the first bin includes variable 

qualities, since the fetal body is a large structure usually with high quality segmentations and 
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there were not enough samples for lower quality bin threshold. The stratified test set resulted in 

200 cases, 50 cases in each bin. 

Dataset 𝑫𝒃𝒓𝒂𝒊𝒏 was used for fetal brain segmentation quality estimation. It consists of 40 cases of 

the HASTE sequence acquired on Siemens Skyra 3T, Prisma 3T, and Aera 1.5T scanners with 

resolution in the range of 0.45 − 1.5 × 0.45 − 1.5 × 2.2 − 6 mm3. Out of the 40 cases, 19 cases were 

created by correcting segmentation results. Since the brain segmentation dataset was relatively small, 

we created only corrections dataset 𝑫𝒃𝒓𝒂𝒊𝒏_𝒄𝒐𝒓𝒓	that included 19 cases for training, two for validation 

and 19 cases with corrections for testing. 

Dataset 𝑫𝒑𝒍𝒂𝒄𝒆𝒏𝒕𝒂 was used for placenta segmentation quality estimation. It consists of 57 placenta 

segmentation cases with the TRUFI sequence acquired on Siemens Prisma 3T and Vida 3T scanners 

with a resolution of 0.781 × 0.781 × 2 mm3. 𝑫𝒑𝒍𝒂𝒄𝒆𝒏𝒕𝒂_𝒔𝒕𝒓𝒂𝒕	was created from the data, a set of scan-

mask pairs I, M with test set masks that were created with stratified qualities. Data was split to 30/2/25 

training/validation/test. Test set data was stratified with the Dice score bins of [0,0.75], [0.74,0.833], 

[0.833,0.917], [0.917,1]. The stratified test set resulted in 140 cases, 35 cases in each bin. 

 

4.2. Model 

The volumetric segmentation model SegQC-Net inputs a scan and a segmentation mask and outputs 

an error segmentation mask. It has an anisotropic network architecture similar to that of Dudovitch et 

al (2020). The model was trained with a Dice loss function, initial learning rate of 0.0005 and a batch 

size of 2. To normalize for the scan dimensions, block sizes of 256´256´48, 128´128´32 and 

128´128´48 were used for fetal body, fetal brain, and placenta error segmentation networks 

respectively.  

 

4.3. Evaluation 

We used the Dice, IoU and AVDR metrics for the evaluation and the Mean Average Error (MAE) 

and Pearson correlation, as in Fournel et al. (2021); Qiu et al. (2023). We determined whether the MAE 

differences between methods are significant using paired two-sided t-tests.  

We performed corrections evaluation in 3D and 2D to quantify the ability of correcting 

segmentations of volumes or 2D slices in descending order of quality, from the lowest to the highest 

quality. For 3D segmentation corrections evaluation, we evaluated the test scans correction order and 

compared it to the order based on TTA quality estimation, to the optimal order and to random order. 

For 2D segmentation corrections evaluation, we evaluated different correction percentages and 
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compared them to 2D TTA quality estimation based on entropy, optimal order, random order, random 

order with non-empty slices and sequential order.  

For 2D segmentation error detection evaluation, we first extracted bounding boxes around ground 

truth error and binarized prediction by first extracting bounding boxes around 2D connected 

components and then unifying boxes whose distance between them was smaller than a predefined 

minimum distance mind. Then, we used the Average Precision (AP) and the Average Recall (AR) 

metrics to evaluate the detected bounding boxes compared to ground truth error bounding boxes with 

varying intersection-over-union percent- ages. We used small IoU percentages of 0.05-0.2 to account 

for the precise detection difficulty of small segmentation errors. 

 

4.4. Experimental Studies 

The Experimental Studies section is structured as follows. Section 4.4.1 presents the results on the 

corrections data. Section 4.4.2 discusses the outcomes in stratified datasets. Section 4.4.3 details the 

ablation studies. 

4.4.1. Studies on corrections datasets 

We evaluated our method on fetal body and fetal brain segmentation corrections datasets with metrics 

estimation, corrections in 3D and 2D based on quality ranking, and 2D detection evaluations. The fetal 

body test set consisted of 45 cases; the fetal brain consisted of 19 cases. All cases were created by 

correcting the results of same network for each structure. The training of error segmentation networks 

was performed on segmentation masks created from these two networks. The results were compared to 

TTA-based quality estimation using the same network from which the results were corrected from. 

Table 1 shows MAE of metrics estimation results. Tables A1 and A2 (Supplemental Materials) show 

statistical p-values for fetal body and brain segmentation corrections datasets. Table 2 lists the Pearson 

correlation results. For both fetal body and fetal brain segmentation quality estimation and for all 

metrics, the Pearson correlations are higher for the SegQC network compared to TTA estimation, with 

and without error extraction. 

For fetal body segmentation quality estimation, the MAE results of 2D metrics are significantly better 

using the SegQC network compared to TTA-based estimation. For fetal brain segmentation, for all 

metrics except for 3D AVDR, the MAE results are significantly better for the SegQC estimation 

compared to TTA-based quality estimation method.  
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  Corrections data Stratified data 

  Body  Brain Body  Placenta 

 TTA SegQC TTA SegQC TTA SegQC-TR TTA SegQC-TR 

3D 

Dice  0.013 0.008 0.052 0.020* 0.056 0.041* 0.160 0.082* 

IoU  0.021 0.015 0.084 0.033* 0.081 0.064* 0.228 0.104* 

AVDR  0.020 0.018 0.057 0.061 0.062 0.057 0.185* 0.251 

2D 

Dice  0.028 0.023* 0.084 0.050* 0.073 0.058* 0.137 0.111* 

IoU  0.044 0.038* 0.117 0.066* 0.097 0.078* 0.190 0.129* 

AVDR  0.043 0.040* 0.104 0.079* 0.103 0.095* 0.205* 0.274 

Table 1. Segmentation quality estimation Mean Average Error (MAE) for fetal body and brain 

corrections data and fetal body and placenta stratified datasets. TTA - test time augmentations, SegQC 

- SegQC difference network trained on masks pairs from corrected segmentation network, SegQC-TR 

- SegQC network using difference network trained on masks of a single network. Significant values 

with p<0.01 are marked with *. 

 

  Body Brain 

  TTA SegQC SegQC-EE TTA SegQC SegQC-EE 

3D 

Dice  0.229 0.692 0.699 0.230 0.898 0.901 

IoU  0.349 0.697 0.703 0.322 0.914 0.915 

AVDR  0.243 0.521 0.529 0.420 0.601 0.605 

2D 

Dice  0.495 0.621 0.630 0.529 0.768 0.766 

IoU  0.530 0.608 0.619 0.557 0.812 0.811 

AVDR  0.497 0.618 0.631 0.483 0.718 0.718 

Table 2. Fetal body and fetal brain segmentation quality estimation Pearson correlation for corrections 

data. TTA - test time augmentations, SegQC - SegQC method using difference network, SegQC-EE - 

SegQC method using difference network following error extraction.  

Figures 5 and 6 show 3D and 2D correction results for the body and brain structures respectively. 

Despite the large differences in MAE and Person correlation for the fetal body segmentation error 

estimation, the differences in 3D and 2D segmentation correction results are minor. For the fetal brain 

segmentation error estimation, the differences in correction performance are larger, especially for 2D, 

but still not very large. 
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Segmentation error detection in 2D slices was also evaluated for segmentation errors with an area    

> 100 mm2. For both fetal body and fetal brain segmentation error detection evaluation, we used mind 

= 5 voxels to unify bounding boxes and a threshold of th = 0.5 for the network results. Very large 

bounding boxes, i.e., bounding boxes whose area was larger than half the area of the whole slice and 

larger than twice the area of the largest ground truth bounding box were discarded, as they are not useful 

for focusing on the specific error region. 

Table 3 shows 2D detection results for fetal body and fetal brain segmentation errors > 100 mm2. 

For fetal body segmentation error detection, using SegQC-Net followed estimated error extraction 

performed better compared to SegQC-Net without it, with a precision of 0.48 and a recall of 0.77 for 

IoU of 0.05% vs. a precision of 0.29 and a recall of 0.55. Computing the estimated segmentation errors 

from the SegQC-Net output was also beneficial for fetal brain segmentation error detection, with a 

precision of 0.55 and a recall of 0.74 vs. a precision of 0.52 and a recall of 0.63 without estimated error 

extraction. 
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Fig. 5. Correction results based on masks ranking for fetal body segmentation quality estimation tasks. 

Fig. 6. Correction results based on masks ranking for fetal brain segmentation quality estimation 

tasks. 
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 Body Brain 

 IoU 
(%) 

\wo 
EE 

\w 
EE 

\wo 
EE 

\w 
EE 

Precision 0.05 
0.10 
0.15 
0.20 

0.29 
0.17 
0.11 
0.08 

0.48 
0.43 
0.37 
0.32 

0.52 
0.49 
0.48 
0.45 

0.55 
0.53 
0.50 
0.46 

Recall 0.05 
0.10 
0.15 
0.20 

0.55 
0.40 
0.31 
0.25 

0.77 
0.68 
0.60 
0.53 

0.63 
0.61 
0.59 
0.56 

0.74 
0.69 
0.65 
0.62 

Table 3. Detection results for fetal body and fetal brain segmentation errors with average precision 

(AP) and average recall (AR) evaluation metrics for different IoU %. Comparison between SegQC-Net 

with (\w EE) and without (\wo EE) error extraction. 

4.4.2. Studies on stratified datasets 

We evaluated our method on stratified fetal body and placenta datasets with metrics estimation and 

segmentation corrections in 3D and 2D based on quality ranking. Detection evaluation was not feasible 

for stratified datasets as we did not have ground truth corrections data for these cases. Results of the 

SegQC method were compared to TTA-based quality estimation using the same networks from which 

the evaluated segmentation masks were created from. To evaluate the transferability of the SegQC-Net 

segmentations, we compared training of a SegQC network on masks using stratified masks qualities to 

using masks of only one of the segmentation networks that produces relatively high-quality masks. 

Tables 5 and 7 list the metrics estimation MAE and Pearson correlation respectively, and Fig. 7 

shows corrections results for the fetal body stratified dataset. Metrics estimation in terms of MAE are 

significantly better using SegQC network compared to TTA estimation except for the 3D AVDR metric 

when training with stratified data. Pearson correlations for the SegQC network are higher compared to 

TTA-based estimation. Furthermore, metrics estimation using the SegQC network trained on masks of 

a single network without stratification outperformed TTA metrics estimation as well. However, in terms 

of correction graphs in both 3D and 2D there is almost no difference between ranking using TTA 

estimation and ranking using SegQC networks masks qualities to using masks of only one of the 

segmentation networks that produces relatively high-quality masks. 
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  Body Placenta 

  TTA  SegQC-TR SegQC TTA  SegQC-TR SegQC 

3D 

Dice  0.523 0.667 0.807 0.633 0.869 0.901 

IoU  0.641 0.791 0.885 0.682 0.850 0.881 

AVDR  0.469 0.573 0.626 0.407 0.566 0.624 

2D 

Dice  0.614 0.707 0.831 0.701 0.680 0.655 

IoU  0.708 0.768 0.874 0.736 0.690 0.675 

AVDR  0.640 0.654 0.795 0.340 0.461 0.466 

Table 4. Pearson correlation results for fetal body and placenta segmentation quality estimation for 

stratified dataset (200 test examples). TTA - test time augmentations, SegQC-TR - SegQC method using 

difference network trained on masks of a single network for transferability test, SegQC - SegQC method 

using difference network trained on stratified masks. 

 

Tables 1 and 4 list the metrics estimation MAE and Pearson correlation respectively. Fig. 8 shows 

the corrections results for placenta segmentation quality estimation on the stratified dataset. While 3D 

overlap metrics estimations are significantly better using the SegQC networks in terms of MAE and 

show improved Person correlations, 3D AVDR metric and 2D metrics demonstrate mixed results. 

Correction graphs showed slight benefit for ranking based on SegQC network compared to ranking 

based on TTA for 3D corrections, and similar performance for 2D corrections. Using SegQC networks, 

metrics estimation in 2D demonstrated a decline in performance compared to 3D metrics estimation. 

Using SegQC-Net networks trained on masks using a single network compared to stratified masks 

usually resulted in a decline in metrics estimation performance, with larger difference in the case of 

fetal body segmentation quality estimation compared to placenta segmentation quality estimation. 

However, the difference in correction graphs performance was much smaller, with the largest difference 

observed for 3D fetal body corrections. 
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Fig. 7. Correction results for fetal body segmentation quality estimation using stratified dataset. 

 
Fig. 8. Correction results for placenta segmentation quality estimation using stratified dataset. 
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Fig. 9. Correction results for 3D data - comparison between metrics estimation using SegQC and TTA 

and sum and entropy functions respectively. 

4.4.3. Ablation studies 

Metrics estimation ablation for 3D corrections evaluation. Cases prioritization for correction was 

performed based on 3D metrics estimation ranking. To understand the benefit of using direct metrics 

estimation compared to entropy measure for TTA and sum measure for SegQC, we compared 3D 

correction results using these metrics. For 2D slices corrections, we used entropy measure for TTA and 

sum measure for SegQC, as there are many slices without annotations which we cannot prioritize using 

2D metrics estimation based on binary masks. 

Fig. 9 shows 3D segmentation correction graphs for fetal body and fetal brain corrections datasets 

based on either metrics estimation or sum and entropy calculations for SegQC and TTA methods 

respectively. Comparison was made between: (1) ranking based on SegQC metrics estimation; (2) 

ranking based on SegQC sum; (3) ranking based on SegQC metrics estimation following estimated 

error extraction; (4) ranking based on TTA-based metrics estimation; (5) ranking based on TTA-based 

entropy. Correction performance in 3D for both fetal body and brain segmentations was worse for sum 

and entropy compared to their metric estimation counterparts of SegQC networks and TTA, respectively 
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Body TTA Placenta TTA 

\wo \w \wo \w 

Dice 3D 
MAE 0.05 0.04 0.06 0.05 

Pearson 0.64 0.67 0.66 0.75 

IoU 3D 
MAE 0.07 0.06 0.08 0.08 

Pearson 0.76 0.79 0.62 0.71 

AVDR 3D 
MAE 0.06 0.06 0.20 0.24 

Pearson 0.56 0.57 0.38 0.53 

Dice 2D 
MAE 0.06 0.06 0.09 0.10 

Pearson 0.70 0.71 0.61 0.64 

IoU 2D 
MAE 0.08 0.08 0.11 0.12 

Pearson 0.75 0.77 0.65 0.67 

AVDR 2D 
MAE 0.10 0.09 0.24 0.27 

Pearson 0.64 0.65 0.44 0.45 
 

Table 5. Metrics estimation results comparison between SegQC network that was trained without (\wo) 

and with (\w) augmentations. 

 

Mask augmentations ablation. We compared the performance of SegQC networks trained with 

and without mask augmentations of a single segmentation network on test sets of stratified datasets. 

Table 5 lists the results. Mask augmentations usually improve metrics estimation results for both fetal 

body and placenta segmentation quality estimations, with the largest difference observed for the 

placenta 3D overlap metrics. 

 

5. Discussion 

Quality control of structures segmentation in volumetric medical images is key for detecting errors 

in clinical practice and improving model performance in semi-supervised and active learning. This 

paper presents SegQC, a novel segmentation quality control method based on error segmentation 

network. Our approach provides quality control in 3D and 2D, as well as detection of error regions, and 

thus can be used for a variety of important use-cases ranging from scans segmentation quality control 

to indication of segmentation error regions. Unlike other methods that focus on a single quality 

estimation metric, our approach computes multiple metrics, including overlap estimates of Dice score 

and the Intersection over Union (IoU, Jaccard index) metrics, and volume size estimate of the absolute 
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Relative Volume Difference (ARVD) metric. In addition, we present a novel error extraction method 

that can be applied on the segmentation error result, which extracts segmentation error regions from the 

network output for segmentation error regions detection. 

The paper presents a new evaluation methodology of segmentation corrections data for quality 

control estimation. Segmentation corrections data is created by correcting masks of a segmentation 

network result. Studies show that ground truth segmentation that was created by correcting a 

segmentation mask is different from the original mask mostly by segmentation error (Chlebus et al., 

2019). The original segmentation masks introduce an inductive bias for regions with high observer 

variability, helping the user to focus on the error regions and making the error regions the most likely 

to be corrected. In contrast, with the stratified qualities evaluation method, the ground truth quality does 

not necessarily reflect segmentation errors, but rather a combination of segmentation error and observer 

variability. Moreover, correction data enables the evaluation of error detection by identifying ground 

truth error regions and comparing them with the estimated error regions from the QC method. 

The drawback of segmentation corrections data evaluation is the limited types of quality that we can 

assess using this method. We are limited by the quality of the segmentation masks from which the 

ground truth segmentations were created. Thus, the evaluation on stratified qualities datasets is still 

important, and evaluation on corrections data can be used as a complimentary evaluation to get a better 

sense of the pure segmentation error quality estimation. 

To better understand the benefits in training a dedicated quality control network, in this work we 

performed an extensive comparison to the unsupervised TTA based quality estimation method. The 

quality control evaluation included both traditional metrics such as Pearson correlation and MAE, as 

well as and additional corrections graph evaluation in 3D and 2D to quantify the ranking capabilities of 

the quality estimation methods. 

Our studies on segmentation corrections data indicate that the supervised SegQC method 

outperforms TTA-based quality estimation in most cases in terms of the Pearson correlation and the 

MAE for fetal body and fetal brain structures segmentation. However, the difference in correction 

performance based on quality estimation ranking is relatively small, indicating that specifically for 

ranking purposes, using TTA-based evaluation may be enough for the application at hand.  

Studies on stratified datasets demonstrate a similar phenomenon for the fetal body segmentation, 

where SegQC method outperforms TTA for Person correlation and MAE metrics but has only a small 

improvement for the correction graph evaluation. However, for the placenta segmentation task Pearson 

correlation and MAE results were mixed, especially for 2D evaluation. This may be due to the high 

observer variability of the placenta segmentation task, which makes the learning of placenta 

segmentation quality estimation more challenging. 
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The results of the segmentation error detection show the benefit of our error extraction method for 

detecting error regions, even for very small segmentation errors. Our method achieved a recall of 0.77 

and a precision of 0.48 for fetal body segmentation error detection task of a high-quality segmentation, 

compared to a recall of 0.55 and precision of 0.29 without the segmentation error extraction method. 

For the task of fetal brain segmentation error detection, our method boosted detection performance from 

a recall of 0.62 to 0.74 and from a precision of 0.52 to precision of 0.55. 

The ablation studies with correction graphs evaluation show the benefit of using a direct Dice score 

estimation compared to entropy and sum estimations for TTA and SegQC methods respectively. They 

also demonstrate improved Pearson correlation with mask augmentations for the SegQC network. 

Our experimental studies have the following limitations. Results indicate a relatively lower quality 

estimation performance of the SegQC method for 2D compared to 3D data. This may be due to the 

volumetric nature of the SegQC segmentation network. Fournel et al. (2021) showed the superiority of 

a 2D regression network compared to 3D network for quality estimation. This can potentially be also 

the case for the SegQC error segmentation network. Future work can explore the use of a 2D 

segmentation network for quality estimation. In addition, it can be beneficial to test the performance of 

difference segmentation network architectures for the error segmentation task. 

 

6. Conclusion  

This paper describes a new method for segmentation quality estimation of whole scans and for 

individual scan slices using three different overlap and size metrics.  We also presented a method to 

identify segmentation error regions within scan slices that can help the annotator to focus on error 

regions. We presented a novel evaluation scheme on segmentation corrections data that distills the 

segmentation discrepancy caused by error, having a relatively low observer variability. Our method was 

evaluated on body, brain and placenta structures on corrections and stratified qualities data when 

applicable.  
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