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Abstract—This paper discusses the reliability of a graph in
which the links are perfectly reliable but the nodes may fail
with certain probability p. Calculating graph node reliability is
an NP-Hard problem. We introduce an efficient and accurate
Monte Carlo method and a stochastic approximation for the node
reliability polynomial based solely on the degree distribution.
We provide the formulas for the node reliability polynomial
of both Erdős–Rényi graphs and Random Geometric graphs.
The phase transition in the node reliability of Erdős–Rényi
graphs such as are also discussed. Additionally, we propose
two increasingly accurate upper bounds for the node reliability
polynomial solely based on the graph’s degree distributions. The
advantages and disadvantages of these two upper bounds are
thoroughly compared. Beyond the computation of node reliability
polynomials, we also estimate the number of cut sets and present
a solution to the reliability-based network enhancement problem.

Index Terms—network robustness, node failure, probabilistic
graph, reliability polynomial

I. INTRODUCTION

RELIABILITY research in network science is concerned
with the estimation of the probability that the residual

network remains operational after the failure of some com-
ponents [3]. In 1956, Moore and Shannon [2] proposed a
probabilistic model for network reliability. Based on the types
of component that can fail, network reliability can be classified
into two categories:

• Network reliability w.r.t. link failures: defined as the
probability that the nodes of graph G remain connected
if each link is operational with probability p, assuming
the nodes of the graph are perfectly reliable [4]. This
type of network reliability can be expressed as a so-called
reliability polynomial:

RelG (p) =

L∑
j=0

Fj(G) (1− p)
j
p1

L−j , (1)

where Fj(G) is the number of sets of j links whose
removal leaves G connected, and F0(G) = 1.

• Network reliability w.r.t. node failures: defined as the
probability that the operational nodes of graph G remain
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connected if each node is operational with probability p,
assuming the links of the graph are perfectly reliable [4].
This type of network reliability can be expressed as the
node reliability polynomial:

nRelG(p) =
N∑

k=0

Sk(G)pk(1− p)N−k, (2)

where Sk(G) denotes the number of induced connected
subgraphs with k nodes.

Most studies on network reliability focus on link failures.
This paper will focus on node failures. The problems of
computing the reliability polynomial RelG(p) and node relia-
bility polynomial nRelG(p) are NP-hard [1], [5], [7]. Closed-
form analytic expressions for the node reliability polynomial
only exist for some specific graph topologies [6]. We give
examples in Appendix A. Various Monte Carlo methods give
accurate estimations for the node reliability polynomial, but
suffer from a high computational complexity [8]–[10]. The
reliability polynomial is a useful tool in network theory, used
to characterize network structures and to guide optimal design.
It captures crucial information about a network’s connectivity
by encoding all possible cut sets—the sets of links or nodes
whose removal would disconnect the network. The reliability
polynomial thus serves as a comprehensive measure of a
network’s global robustness. Networks with higher values of
the reliability polynomial, under the same operational proba-
bility p, tend to be more resilient to disconnection, allowing
comparisons between different network topologies. In addition
to a structural analysis, the reliability polynomial plays a
key role in network design [3], [19], [20]. The reliability
polynomial can be used to optimize network reliability by
identifying critical nodes or links whose addition or removal
significantly affects the overall reliability [20]. For instance,
adding links can enhance reliability in communication net-
works by increasing redundancy, whereas removing specific
links can effectively contain the spread of diseases [20]. The
reliability polynomial finds practical applications in fields such
as communication networks, infrastructure systems, and public
health [20], [24], [25]. The reliability polynomial helps to
optimize network performance and resilience [21].

This paper first introduces a Laplace approximation for the
node reliability polynomial in Section II. In Section III, we
propose a Monte Carlo method for node reliability polynomi-
als. The proposed Monte Carlo method is inspired by a recent
fast approach designed for network reliability polynomials
[18]. Additionally, the Monte Carlo method is combined with
the Laplace approximation to develop a new hybrid approach,
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referred to as the Laplace Monte Carlo method. Section IV
introduces a stochastic approximation for the node reliability
polynomial. The relation between the reliability polynomial
RelG(p) and the node reliability polynomial nRelG(p) is also
analyzed in Section IV. In Section V, we give the formulas of
the node reliability polynomial for the Erdős-Rényi graph and
random geometric graph. The intersection of node reliability
polynomials for different Erdős-Rényi graphs and the phase
transition of the node reliability for Erdős-Rényi graphs are
also analyzed. Two different kinds of upper bounds for the
node reliability polynomial are given in Section VI. Section
VII discusses the practical applications of the network relia-
bility.

II. THE LAPLACE APPROXIMATION FOR THE NODE
RELIABILITY POLYNOMIAL NRELG(p)

The number of combinations of k different nodes out of N
nodes is the binomial coefficient

(
N
k

)
= N !

k!(N−k)! . We define
the number Cj(G) as the number of subsets of j nodes whose
removal disconnect the graph G. Every subset of k nodes in
G must either be connected or disconnected, leading to the
following relationship:

Sk(G) + CN−k(G) =

(
N

k

)
(3)

After substituting Sk(G) =
(
N
k

)
− CN−k(G) into (2),

and applying Newton’s binomial theorem, (a + b)N =∑N
k=0

(
N
k

)
aN−kbk, we obtain:

nRelG(p) = 1−
N∑

k=0

CN−k(G)pk(1− p)N−k (4)

Hence, the (all-terminal) node reliability polynomial can be
expressed both in the “S-form” and in the “C-form” as

nRelG(p) =
N∑

k=0

Sk(G)pk(1− p)N−k

= 1−
N∑
j=0

Cj(G)pN−j(1− p)j (5)

where Sk(G) counts the number of induced connected sub-
graphs on k nodes and Cj(G) counts the number of vertex
cut sets with j nodes, which is the number of subsets of j
nodes whose removal disconnect the graph.

We can express the node reliability polynomials in the “S-
form” and “C-form” in binomial forms:

nRelG(p) =
N∑

k=0

(
N

k

)
sk(G)pk(1− p)N−k

= 1−
N∑
j=0

(
N

j

)
cj(G)pN−j(1− p)j (6)

where sk(G) = Sk(G)

(Nk)
and cj(G) =

Cj(G)

(Nj )
are the fractions of

induced connected subgraphs with k nodes and vertex cut sets

of graph G with j nodes in all possible node combinations of
k nodes and j nodes from N nodes. In other words, sk(G)
equals the probability that the residual network remains con-
nected after removing N−k nodes and cj(G) is the probability
that the residual part of graph G is disconnected after removing
j nodes.

Although computing Sk(G) and Cj(G) is NP-hard, the node
reliability polynomials nRelG(p) can still be approximated by
estimating the probabilities sk(G) and cj(G). In this paper, we
propose a Laplace Monte-Carlo approximation of nRelG(p)
based on the “C-form” of the node reliability polynomial and
a stochastic approximation of nRelG(p) based on the “S-form”
node reliability polynomial.

The term
(
N
k

)
pk(1− p)N−k represents the probability den-

sity function (pdf) of the binomial distribution. The Central
Limit theorem states [11], [12] that the binomial distribution
approaches the Gaussian distribution for large N . For large
N , the “S-” and “C-form” of the node reliability polynomials
can then be approximated as:

nRelG(p) =
N∑

k=0

(
N

k

)
sk(G)pk(1− p)N−k

≃
∫ N

0

sk(G)
exp

(
− (Np−k)2

2Np(1−p)

)
√

2πNp (1− p)
dk (7)

Substituting x = k
N transforms the integral in (7) into

∫ 1

0

sNx(G)
1

√
2π
√

p(1−p)
N

exp

(
− (p− x)2

2p(1−p)
N

)
dx (8)

If we define µ̃ = p, σ̃ =
√

p(1−p)
N , then:

nRelG(p) ≃
∫ 1

0

sNx(G)
1√
2πσ̃

exp

(
− (µ̃− x)2

2σ̃2

)
dx (9)

The Gaussian pdf 1√
2πσ̃

exp
(
− (µ̃−x)2

2σ̃2

)
serves as an ap-

proximation of the Dirac delta function as [13, Sec. 7.1]:

δ (x− µ̃) = lim
σ̃→0

1√
2πσ̃

exp

(
− (µ̃− n)2

2σ̃2

)
(10)

Assuming that σ̃ tend to 0, the node reliability polynomial
can be approximated by the following expression:

nRelG(p) ≃
∫ 1

0

sNx(G)δ (x− µ̃) dx = sNµ̃(G) (11)

where µ̃ = p.
In summary, we call the approximation

nRelG(p) ≃ sNp(G) (12)

the Laplace approximation. Following a similar derivation,
the Laplace approximation of the ”C-form” node reliability
polynomial is given by

nRelG(p) ≃ 1− cN(1−p)(G) (13)
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TABLE I: Network reliability polynomials for some simple networks

Network (on N nodes) nRelG(p)

Complete graph KN nRelG(p) = 1− (1− p)N

Complete graph KN−1 with a pendant node K∗
N nRelG(p) = p2 + p(1− p)N−1 + (1− p)(1− (1− p)N−1)

Cycle graph CN nRelG(p) =
Np(pN−(1−p)N )

2p−1
− (N − 1) pN

Path graphs PN nRelG(p) =
Np(1−p)N+1−(N+1)p2(1−p)N+pN+2

(1−2p)2

Star graph SN nRelG(p) = p+ (N − 1) p (1− p)N−1

Star graph SN−1 with a pendant node K∗
N nRelG(p) = p3+p2 (1− p)N−2+p (1− p)N−1+(1−p)(p+(N−2)p(1−p)N−2)

The Laplace approximation (12) holds when σ̃ =
√

p(1−p)
N

is very small. Since for a fixed p, µ̃ decrease with
√
N , the

Laplace approximation becomes increasingly accurate as the
number of nodes N in the network grows larger.

III. MONTE CARLO METHOD OF NODE RELIABILITY
POLYNOMIAL NRELG(p)

The Monte Carlo method for estimating node reliability
polynomials is based on a node deletion process, where at
each time step a randomly selected node is removed. In a
given graph, nodes are removed one by one until all nodes
are eliminated. After each removal, the residual network
is checked to determine whether it remains connected. By
repeating the node deletion process M times, the number of
cases Rj in which the removal of j nodes disconnects the
residual graph is obtained for each node j ∈ [1, N ]. When
the number of realizations M is large, the probability that the
removal of j nodes disconnects the graph is approximately
c̃j(G) =

Rj

M . Thus,

cj(G) =
Cj(G)(

N
j

) ≃ c̃j(G) (14)

The C−form 4 of the node reliability polynomial
nRelG(p) = 1 − ∑N

j=1

(
N
j

)
cj(G)pN−j(1 − p)j can be ap-

proximated by:

nRelG,MC(p) ≃ 1−
N∑
j=1

(
N

j

)
c̃j(G)pN−j(1− p)j (15)

where we denote the Monte Carlo approximation of nRelG(p)
by nRelG,MC(p). The Monte Carlo method is applied to sev-
eral simple graphs, for which explicit closed-form analytical
expressions of node reliability polynomials are known, see
Appendix A. The graphs are the complete graph KN , the
complete graph KN−1 with a pendant node, denoted by K∗

N

(N nodes), the cycle graph CN , the path graph PN , the star
graph SN (N nodes) and the the star graph SN−1 with a
pendant node, denoted by S∗

N (N nodes). The node reliability
polynomials and the result of the Monte Carlo simulations are
depicted in Fig.I, which demonstrates that the Monte Carlo
approximation is accurate for the considered graphs. In the
remainder of this paper, the Monte Carlo method is used as
a benchmark to evaluate other approximations of the node
reliability polynomial.
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Fig. 1: Monte Carlo simulations and exact value of node
reliability polynomials for different graphs
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Fig. 2: The analytical expressions and the Laplace Monte Carlo
simulation result 1 − cN(1−p) of node reliability polynomial
for star graphs SN−1 with different number of nodes
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The analysis in Section II has shown that, if the number
of nodes N in the graph G is large, the node reliability
polynomial can be approximated by (13) nRelG(p) ≃ 1 −
cN(1−p). The combination of the Monte Carlo method and the
Laplace approximation is referred to as the Laplace Monte
Carlo method. Figure 2 presents a comparison between the
theoretical values of the node reliability polynomial nRelG(p)
and the results from the Laplace Monte Carlo approximation,
represented as 1 − cN(1−p). The results indicate that the
Laplace Monte Carlo approximation fits the theoretical values
more closely as the size of the graph increases.

IV. STOCHASTIC APPROXIMATION NRELG(p) FOR THE
NODE RELIABILITY POLYNOMIAL

Our previous work [23] has introduced a stochastic approxi-
mation for the reliability polynomial RelG(p). In this paper, we
extend that approach towards a new stochastic approximation
for the node reliability polynomial nRelG(p).

We denote the random residual graph with the failure of
N − k randomly selected nodes in G as Ĝk. The proba-
bility that the residual graph Ĝk is still connected equals
Pr[Ĝk is connected] = sk(G).

For a given graph, the implication {G is connected} ⇒
{Dmin ≥ 1}, where the minimum degree is Dmin =
minall nodes ∈ GD, is always ture. However, the opposite im-
plication does not generally hold, because it is possible for
a network to be composed of several disconnected clusters
where each node has a minimum degree greater than 1. Van
der Hofstad [14] proves that for an Erdős–Rényi(ER) graph
with large N and certain link density pl which depends on N ,
the opposite implication {Dmin ≥ 1} ⇒ {G is connected}
holds almost for sure. For other network models with large
N and high link density pl, the equation {Dmin ≥ 1} ⇐⇒
{G is connected} also holds [15]–[17]. The main hypothesis
of the stochastic approximation is that

Pr[Ĝk is connected] = Pr[D̂min ≥ 1] + o(1) (16)

where D̂min = minall nodes ∈Ĝk
D̂.

Let Pr[D = k] be the probability that a randomly chosen
node in the graph G has degree k. The probability generating
function(pgf) of the node degree D in the graph G is defined
[11] as:

φD(z) = E[zD] =

N−1∑
j=0

Pr[D = j]zj (17)

If the number of operational nodes is n, the probability that all
neighbors of a node with degree j fail independently of each
other equals (1 − k

N )j . Consequently, the probability that a
randomly chosen residual node i in Ĝ is isolated Pr [di = 0]
equals φD(1 − k

N ) [23]. The probability that the minimum
degree Dmin is larger than 0 is approximated by

Pr[D̂min ≥ 1] =

k∏
i=1

(1− Pr[di = 0]) ≃ (1− Pr [di = 0])
k

(18)

The probability that the residual graph Ĝn remains connected
is approximated as Pr[Ĝk is connected] ≃ Pr[D̂min ≥ 1]

Pr[Ĝk is connected] ≃
(
1− φD

(
1− k

N

))k

(19)

The definition of the coefficients Sk(G) in the “S-form” in
6 of the node reliability polynomial indicates that

Sk(G) =

(
N

k

)
sk(G) ≃

(
N

k

)(
1− φD

(
1− k

N

))k

(20)

Substituting (20) to the “S-form” of node reliability polyno-
mial (2), leads to the approximation of the “S−form” node
reliability polynomial nRelG(p) as

nRelG(p) ≃
N∑

n=0

(
N

k

)(
1− φD

(
1− k

N

))k

pk(1− p)N−k

(21)
When N is large, the value of node reliability polynomial
nRelG(p) can be approximated by sNp(G) as:

nRelG(p) ≃ sNp(G) = Pr[ĜNp is connected]

≃ (1− φD (1− p))
Np (22)

Following the approach in our previous work [23], the stochas-
tic approximation of the node reliability polynomial is denoted
as:

nRelG(p) = (1− φD (1− p))
Np (23)

The implication {G is connected} ⇐⇒ {Dmin ≥ 1}, where
the minimum degree is Dmin = minall nodes ∈ G holds when the
number of nodes N and the link density pl is large, thus the
accuracy of stochastic approximation nRelG(p) increases with
the increase of N and pl.
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Fig. 3: Node reliability polynomial nRelG(p) obtained by the
stochastic approximation and Monte Carlo simulations for
Erdős–Rényi graphs with different number of nodes N and
link probability pl =

logN
N depending on the node number.

We first perform the simulations on Erdős–Rényi graphs
with different number of nodes N and link probability pl =
logN
N . Fig. 3 demonstrates that the accuracy of the stochastic

approximation increases with the size of the network.
Fig. 4, 5, 6, and 7 depict the node reliability polynomial

nRelG(p) obtained by stochastic approximation and Monte
Carlo simulation for Barabási–Albert graphs, Erdős–Rényi
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Fig. 4: Stochastic approximation and Monte Carlo simulations
of Barabási–Albert graphs with N = 1000 and different
number of edges added per step m
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Fig. 5: Stochastic approximation and Monte Carlo simulations
for the Erdős–Rényi graphs with N = 1000 and critical link
density pc ∼ logN

N = 0.0069.

graphs, 2D-lattice graphs and 3D-lattice graphs. We find that
the accuracy of the stochastic approximation increases with
link density pl and the number of nodes N .

Fig. 21 in Appendix B shows the node reliability poly-
nomial nRelG(p) obtained by stochastic approximation and
Monte Carlo simulation for some real-world networks. The
corresponding parameters for these networks are provided in
Table II in Appendix B. We find that the stochastic approxima-
tion demonstrate a high accuracy in approximating the node
reliability polynomial when the network is larger and dense.

We [23] show that for graphs with a large number of nodes
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Fig. 6: Stochastic approximation and Monte Carlo simulations
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Fig. 7: The stochastic approximation and Monte Carlo simu-
lations for 3D-lattices with width d1, length d2 and height d3

and high link density, the link reliability polynomial can be
accurately approximated by:

RelG(p̃) ≃ (1− φD (1− p̃))
N (24)

where the variable p̃ denotes the probability of links being
operational.

Comparing Eq.(23) and Eq.(24) we find for large and
dense graphs that there is a relation between the reliability
polynomial and the node reliability polynomial, namely:

nRelG(p) ≃ (RelG(p))p (25)

Fig 8 shows the Monte Carlo simulation results of nRelG(p)
and (RelG(p))p as a function of p for Erdős–Rényi graphs
and Barabási–Albert graphs and demonstrates that the curves
of nRelG,MC(p) and (RelG,MC(p))

p are close to each other,
which implies the approximation in Eq.(25) holds.
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Fig. 8: Monte Carlo simulations of node reliability polynomial
nRelG,MC(p) and the p-th power of Monte Carlo simulations
of reliability polynomial RelG,MC(p)

p

V. NODE RELIABILITY POLYNOMIALS NRELG(p) OF
ERDŐS–RÉNYI GRAPHS AND RANDOM GEOMETRIC

GRAPHS

A. The Node Reliability Polynomial nRelG(p) of Erdős–Rényi
graphs

In an Erdős-Rényi graph GER, a node connects to another
node with a probability pl. The node reliability polynomial of
an Erdős-Rényi graph can be approximated using a stochastic
approach. The detailed derivation of the approximation is
provided in Appendix C.
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The general form of the node reliability polynomial
nRelG,ER(p) for an Erdős-Rényi graph is given by:

nRelG,ER(p) ≃ exp

(
− k

ek·pl

)
(26)

where k = Np is the average degree of the graph.
The degree distribution of the Erdős-Rényi graph follows

a binomial distribution. The general approximation form 63
of the node reliability polynomial for an Erdős-Rényi graph
ignores the specific degree distribution of the network; its
value depends only on the number of nodes and the connection
probability. The Law of Large Numbers states that, as the
number of nodes N in an Erdős-Rényi graph increases, the
degree of all nodes will converge to the expected value,
E[DER](N−1)p. The Central Limit Theorem further implies
that as N grows larger, the degree distribution of the graph will
increasingly resemble a Poisson distribution centered around
the expected value (N − 1)p. Therefore, with a larger N ,
the degree distribution of a specific realization of an Erdős-
Rényi graph will more closely match the theoretical degree
distribution [11, p. 34-40]. Consequently, as the size of the
Erdős-Rényi graph increases, the general form of its node
reliability polynomial becomes more accurate, as demonstrated
in Fig. 9.
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Fig. 9: Monte Carlo simulations nRelG,MC and general form
of node reliability polynomials nRelG,ER(p) for Erdős-Rényi
graphs with different number of nodes N and link probability
pl.

Studying the intersections of reliability polynomials helps
evaluate and compare the reliability of different net-
works. Here we give an analytical solution of intersections
(pi, nRelG (p)) of different Erdős-Rényi graphs. Given two
different Erdős-Rényi graph G1 (with N1 nodes and link
probability pl1) and G2 (with N2 nodes and link probability
pl2), the intersection of the node reliability polynomials of
these two graph is

pi = exp

(
k1 logN2 − k2 logN1

k2 − k1

)
(27)

The detailed derivation is given in Appendix C-A.
From (27), the condition for pi to have a solution in the

range (0, 1) is:
• If k2 > k1, then logN1

logN2
> k1

k2
.

• If k2 < k1, then logN1

logN2
< k1

k2

which means that for two Erdős-Rényi graphs, the node
reliability polynomials will only intersect if the graph with

the smaller average degree has more nodes. For Erdős-Rényi
graphs with same number of nodes N , the larger the average
degree k, the larger the node reliability polynomial nRelG(p)
as is shown in Fig. 10. Fig. 10 also demonstrates that the larger
the average degree k, the faster the nRelG(p) curve changes
from 0 + ϵ to 1 − ϵ, where ϵ is a very small value. It is
expected that for Erdős-Rényi graphs with very large average
degree k, the nRelG(p) will exhibit a sharp transition from 0
to 1, resembling a phase transition. We prove in the Appendix
C-B that the length of the transition region of nRelG(p) is
O(1/k).
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Fig. 10: the Monte Carlo simulation results of the node
reliability polynomial nRelG(p) of Erdős-Rényi graphs with
N = 1000 and different average degrees k. The numbers in
different colors indicate the length of the corresponding poly-
nomials change from nRelG(p) = 0.01 to nRelG(p) = 0.99.

B. The Node Reliability Polynomial nRelG(p) of Random
Geometric Graphs

Random Geometric Graphs (RGGs) are formed by placing
nodes at random positions within a given metric space, such
as the Euclidean plane. Each pair of nodes is connected by
an link if the distance between them is less than a specified
threshold r, known as the connection radius. In a RGG, a
node will connect all the nodes in a circle centered on it with
radius r. Because the nodes in RGG are randomly placed,
the probability that a randomly chosen node b is located in
the circle of certain node a is the area of node a’s circle
divided by the area of the metric space, which is pa,b = πr2.
The probability that a node in RGG has no neighbor is
PrD=0 =

(
1− πr2

)N−1
. Neglecting the boundary conditions,

the probability that there are no isolated nodes in the graph
is Pr[Dmin ≥ 1] = (1− pD=0)

N . The general form of node
reliability polynomial nRelG(p) of a RGG can therefore be
approximated by

nRelG(p) ≈ sµ = Pr
[
Ĝµ is connected

]
≈ Pr

[
D̂min ≥ 1

]
=
(
1−

(
1− πr2

)Np−1
)Np

(28)

VI. ARITHMETIC FIRST-ORDER UPPER BOUND AND
GEOMETRIC FIRST-ORDER UPPER BOUND

In addition to the stochastic approximation, we provide
two upper bounds for the node reliability polynomials, the
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arithmetic first-order upper bound nRelG,arith(p) and geometric
first-order upper bound nRelG,geom(p). Given a node i with
degree di, we define the probability that node i is active while
all its neighbor nodes have failed by fi,

fi = Pr[Node i is active and d̂i = 0]

= Pr[Node i is active] Pr[d̂i = 0]

= p(1− p)di (29)

Since the absence of isolated nodes is a necessary, but not
sufficient condition for graph connectivity, the node reliability
polynomial can be upper bounded by calculating the proba-
bility that no isolated nodes exist in the graph. The resulting
geometric upper bound for the node reliability polynomial is

nRelG,geom(p) = Pr[There are no isolated nodes in the graph]
(30)

For graph G, the absence of isolated nodes is equivalent to
each node being active and having a degree greater than zero.
Assuming independence between these events, the following
holds:

nRelG,geom(p) =

N∏
i=1

(
Pr[Node i is active and d̂i > 0]

)
=

N∏
i=1

(
1− Pr[Node i is active and d̂i = 0]

)
(31)

Substituting the definition Pr[Node i is active and d̂i = 0] =
fi = p(1− p)di (29) into (31)

nRelG,geom(p) =

N∏
i=1

(1− fi) =

N∏
i=1

(
1− p(1− p)di

)
(32)

When calculating the node reliability of large networks,
concatenating the probabilities that each node is not isolated
becomes computationally demanding. We also propose an
arithmetic first-order upper bound by computing the prob-
ability that a randomly selected node is not isolated. The
arithmetic mean probability that a randomly selected node is
not isolated is

PAM =
1

N

N∑
i=1

(
1− Pr[Node i is active and d̂i = 0]

)
(33)

Substituting Pr[Node i is active and d̂i = 0] = fi = p(1 −
p)di (29) into (33), we obtain

PAM =
1

N

N∑
i=1

(1− fi) =
1

N

N∑
i=1

(
1− p (1− p)

di

)
(34)

which we rewrite as a sum over the nodal degrees by denoting
nj as the number of nodes with degree j and realizing that
Pr[D = j] =

nj

N ,

PAM =
1

N

N−1∑
j=0

nd=j

(
1− p (1− p)

j
)

=

N−1∑
j=0

Pr[d = j]
(
1− p (1− p)

j
)

(35)

Using the definition of pgf of the node degree 17, we obtain:

PAM =

N−1∑
j=0

Pr[d = j]
(
1− p (1− p)

j
)
= 1− pφD(1− p)

(36)

By raising PAM to the N th power, the arithmetic first-order
upper bound is derived as:

nRelG,arith(p) = (1− pφD(1− p))
N (37)

The geometric mean of 1 − fi over all nodes is PGM =
N

√∏N
i=1 (1− fi), and by the definition of fi:

PGM = N

√√√√ N∏
i=1

(
1− p (1− p)

di

)
, (38)

which is the N th root of nRelG,geom(p). Because the arith-
metic mean is always larger than or equel to the geometric
mean, the arithmetic first-order upper bound nRelG,arith(p) is
larger than or equal to the geometric first-order upper bound
nRelG,geom(p).

The computational complexity of the arithmetic first-order
upper bound,

nRelG,arith = exp (N log (1− pφD(1− p))) ,

depends on the computation of φD(1 − p), which has a
complexity of O (ND), where ND represents the number of
distinct degrees in the graph. In contrast, the geometric first-
order upper bound, nRelG,geom(p), involves calculating the
term

(
1− p (1− p)

di

)
for each of the N nodes, resulting in

a computational complexity of O(N). Therefore, in networks
where ND ≪ N , the arithmetic first-order upper bound re-
quires significantly fewer computational resources, leading to a
notable reduction in computation time and increased efficiency.
As the network size increases, this advantage becomes even
more significant, making the arithmetic first-order upper bound
a practical choice for analyzing large-scale networks with a
limited number of distinct degrees. For cases requiring higher
precision, the geometric first-order upper bound nRelG,geom(p)
can be used, while the arithmetic first-order upper bound
nRelG,arith is preferred for its computational efficiency.

VII. APPLICATIONS OF NODE RELIABILITY
POLYNOMIALS NRELG(p)

The reliability polynomial captures essential information
about the structure of a network, especially concerning its
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cut sets — the sets of links or nodes whose removal would
disconnect the network. As a result, the reliability polynomial
serves as a comprehensive measure of a network’s global
connectivity. In this section, we introduce a way to estimate
the number of cut set (vertex cut set) of a graph, based on the
reliability polynomial (node reliability polynomial).

The reliability is an important robustness measure of graph
G(N,L). Given a graph G = (N,L) and a budget of k links
to be added, a set S ⊂

(
N
2

)
\ L of size k that optimizes

the robustness of G is an common problem. Predari et al.
refer to this optimisation problem as k-GRIP problem, short
for graph robustness improvement problem [22]. We select
reliability polynomial RelG(p) (node reliability polynomial
nRelG(p)) as robustness measure for k-GRIP. Within the
stochastic approximations of reliability polynomial RelG(p)
and node reliability polynomial nRelG(p), we give optimal
solutions S of RelG(p) and nRelG(p). The optimal solution S
are approximate optimal solutions for reliability-based k-GRIP
and node-reliability-based k-GRIP problems.

A. Estimation of the number of vertex cut set

Given any approximation ñRelG(p) of the reliability poly-
nomial nRelG(p), we estimate the number of vertex cut set by
the following method.

Substituting N different node operational probabilities p =
{p1, p2, . . . , pN} into the C-form node reliability polynomial,
we obtain N different equations:

nRelG(pi) = 1−
N∑
j=0

Cj(1− pi)
jpN−j

i

≈ ñRelG(pi), i = 0, 1, . . . , N (39)

In matrix form, these N equations can be written as:

1−PC = ñRelG (40)

where

P =


(1− p0)

0pN0 (1− p0)
1pN−1

0 · · · (1− p0)
Np00

(1− p1)
0pN1 (1− p1)

1pN−1
1 · · · (1− p1)

Np01
...

...
. . .

...
(1− pN )0pNN (1− pN )1pN−1

N · · · (1− pN )Np0N


(41)

is the probability matrix which represents the contribution
of different vertex cut sets to the node reliability for each
probability value pi,

C = [C0, C1, . . . , CN ] (42)

the vertex cut set coefficient vector which contains the coeffi-
cients Cn that represent the number of vertex cut sets of sizes
n, and

ñRelG = [ñRelG(p0), ñRelG(p1), . . . , ñRelG(pN )] (43)

the node reliability approximation vector, which holds the ap-
proximate values of the node reliability polynomial at different
probabilities.

Coefficient vector C can be obtained by

C̃ = P−1(1− R̃elG) (44)

Given any approximation of the reliability polynomial
R̃elG(p), the number of cut set is found via (44). Using the
similar method on the approximation of reliability polynomial
R̃elG(p), we obtain the number of link cut set with different
number of links.

B. Analytical Optimization Strategy for the Node-Reliability-
Based k-GRIP Problem

By using the reliability polynomial as an objective measure,
we design networks that optimize for specific reliability crite-
ria. For example, to enhance a network’s reliability, we might
seek to add or reinforce connections (links) in such a way that
the reliability polynomial achieves its highest possible values
under expected operational probabilities. Since computing the
exact expression of the reliability polynomial is NP-hard, it is
not possible to provide an analytical solution to the reliability-
based k-GRIP problem. However, a stochastic approximation
of the reliability polynomial can be optimized analytically,
which offers a practical approach to solving the reliability-
based k-GRIP problem.

We recall the stochastic approximation of the reliability
polynomial in (24),

RelG(p) = (1− φD(1− p))
N
,

and the stochastic approximation of the node reliability poly-
nomial in (23),

nRelG(p) = (1− φD(1− p))
Np

,

that both depend on the value of term 1 − φD(1 − p).
The function f(x) = xc, where c is a positive number,
is monotonically increasing for x in domain [0, 1]. Thus a
larger 1 − φD(1 − p) contribute to higher reliability and
node reliability. Consequently, the problem of optimizing the
stochastic approximations RelG(p) and nRelG(p) reduces to
maximizing the value of 1−φD(1− p). We denote the graph
obtained by adding the links of S into G as G′ := G∪S and
degree distribution of graph G′ as D′, where S ⊂

(
N
2

)
\ L.

Based on the analysis in our previous work [23], the term
1− φD(1− p) can be expressed as

1− φD(1− p) =
1

N

N∑
i=1

(
1− (1− p)

di

)
(45)

where di is the degree of node i. Here we denote the
degree vector of graph G as d = [d1, d2, ..., dN ] and the
degree change vector after k links added into G as a =
[a1, a2, ..., aN ], where ai ≥ 0. Then the degree vector of graph
G′ becomes d = [d1+a1, d2+a2, ..., dN+aN ]. The reliability-
based k-GRIP problem is then transformed into:

Objective:

max
A

1− φD+A(1− p)

= max
A=[a1,a2,...,aN ]

N∑
i=1

(
1− (1− p)

di+ai

)
(46)
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Subject to:

s.t.

N∑
i=1

ai = 2k, ai ≥ 0, ai ∈ Z (47)

Suppose here are two sets

A1 = [a1, a2, ..., am, ..., an, ..., aN ]

A2 = [a1, a2, ..., am + 1, ..., an − 1, ..., aN ] (48)

where am, an ≥ 1.
The only difference between A1 and A2 is mth el-

ement of A2 is mth element of A1 plus one, and
the nth element of A2 is nth element of A1 minus
one. The difference of

∑N
i=1

(
1− (1− p)

di+ai

)
|A2

and∑N
i=1

(
1− (1− p)

di+ai

)
|A1

is

∆ =

N∑
i=1

(
1− (1− p)

di+ai

)
|A2 −

N∑
i=1

(
1− (1− p)

di+ai

)
|A1

=
(
1− (1− p)

dm+am+1
)
+
(
1− (1− p)

dn+an−1
)

−
(
1− (1− p)

dm+am

)
−
(
1− (1− p)

dn+an

)
= p

(
(1− p)

dn+an−1 − (1− p)
dm+am

)
(49)

The value of ∆ is larger than 0 only when dn + an − 1 >
dm + am. dm + am and dn + an are the degree of node m
and node n after k links are added to the graph according to
set A1. When the degree dn + an of the node n is larger
that dm + am of node m plus one, reconnecting the end
of one link connect to node n to node m contribute to a
better link-adding set S. Here we define a k-GRIP descending
restructuring, which disconnects the end of an added link to a
node n with degree dn + an in the graph G′ and reconnects
that end of the link to another node m with degree dm + am,
where dn+an−1 > dm+am and an > 0, like the case in 11
shows. The ascending restructuring is defined as the inverse
of the descending restructuring. The above analysis shows that
1−φD+A(1−p) after descending restructuring is always larger
than that before descending restructuring. Figures in Fig. 12
illustrate that both for reliability and the node reliability are
improved by descending restructuring.
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Fig. 11: Schematic of the k-GRIP descending restructuring:
Graph G′

1 is obtained by adding two links l3,7 and l5,7 into a
graph G with N = 8 nodes and L = 16 links. Graph G′

2 is
obtained by reconnecting the link l5,7 to l1,5.
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Fig. 12: Monte Carlo simulations results of the reliability poly-
nomial RelG(p) and the node reliability polynomial nRelG(p)
of graphs G′

1 and G′
2 (see Fig. 11). (a) The reliability polyno-

mial RelG(p). (b) The node reliability polynomial nRelG(p).

We denote the set of all possible graphs, where k links are
added into graph G, as ⟨G⟩. Start from a random graph G′ in
⟨G⟩, any graph in ⟨G⟩ can be obtained by multiple descending
and ascending restructurings. Since descending restructuring
always contribute to a higher

∑N
i=1

(
1− (1− p)

di+ai

)
, the

optimal graph G∗ is a graph where no descending restructuring
could occur. To construct the optimal graph G∗, links can be
greedily added by connecting pairs of nodes with the lowest
degrees, provided the link does not already exist. In this paper,
the algorithm of greedily adding k links between pairs of
nodes with the lowest degrees that are not already connected
is referred to as the Greedy Lowest-Degree Pairing Edge
Addition Algorithm.

Algorithm 1 Greedy Lowest-Degree Pairing Edge Addition
Algorithm
Input: a graph G, number of links to add k
Output: a new graph G∗

1: Generate the degree vector d for graph G
2: for t = 1 to k do
3: Sort nodes by their degree in ascending order
4: Find node i with the smallest degree
5: Find node j with the smallest degree that is not

connected to i
6: Add link between nodes i and j in the graph
7: Update the graph G and the degree vector d after

adding the new link
8: end for
9: Return the new graph G∗

To evaluate the performance of the Greedy Lowest-Degree
Pairing Edge Addition Algorithm in improving network
reliability, we applied Greedy Lowest-Degree Pairing Edge
Addition Algorithm and other two link-adding strategies to
real-world networks from Network Repository [26] and com-
pared their effectiveness. The first strategy, Random Pairing
Strategy, adds links randomly between node pairs that are
not already linked. The second strategy, Greedy Highest-
Degree Pairing Strategy, focuses on adding links between
the highest-degree nodes that are not yet connected, aiming
to strengthen the already well-connected nodes. Figures in
Fig. 13 and 14 illustrate that Greedy Lowest-Degree Pairing
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Edge Addition Algorithm has the most significant effect in
enhancing network reliability and node reliability, far outper-
forming random link addition and adding links between high-
degree nodes. Adding links between high-degree nodes shows
the worst performance, with almost no noticeable impact on
network reliability. The simulation demonstrates that one of
the most effective ways to enhance network robustness from
the perspective of network connectivity is to add links between
low-degree nodes.
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Fig. 13: Monte Carlo simulations results of reliability polyno-
mial RelG(p) in two real-world graphs and graphs constructed
by adding links to these graphs in three different strategies.
(a) The original graph is a simplicial complex network with
N = 1365 nodes and L = 5263 links [26]. l = 500 links are
added into the original graph in three different strategies. (b)
The original graph is 1997 U.S. flight network with N = 332
nodes and L = 2126 links [26]. l = 100 links are added into
the original graph in three different strategies.
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Fig. 14: Monte Carlo simulations results of node reliability
polynomial nRelG(p) in two real-world graphs and graphs
constructed by adding links to these graphs in three different
strategies. (a) The original graph is a simplicial complex
network with N = 1365 nodes and L = 5263 links [26].
l = 500 links are added into the original graph in three
different strategies. (b) The original graph is 1997 U.S. flight
network with N = 332 nodes and L = 2126 links [26].
l = 100 links are added into the original graph in three
different strategies.

VIII. CONCLUSION

Calculating the exact node reliability polynomial is known
to be NP-Hard, prompting the need for efficient approximation
techniques. We have approximated the node reliability poly-
nomial of a graph, which is a key measure of the robustness
of networks against node failures.

First, we presented a Laplace approximation method for the
node reliability polynomial, utilizing “the C-form” and “S-
form” representations. We demonstrated that by approximating
these forms with probabilistic methods, significant computa-
tional efficiency can be achieved while maintaining reasonable
accuracy on approximating the node reliability polynomial
nRelG(p).

We then proposed the Laplace Monte Carlo method that
offers a practical approach for estimating the node reliability
polynomial. This method involves simulating node failures
and observing the resulting network connectivity, allowing for
accurate estimation even for complex graph structures. The
effectiveness of Monte Carlo method was validated against
known node reliability polynomials for several well-structured
networks.

Additionally, we introduced a stochastic approximation
method, leveraging the probability generating function of node
degrees. The stochastic approximation provides a quick and
reasonably accurate estimation of node reliability polyno-
mials, particularly effective for large and dense networks.
For Erdős–Rényi graphs, we derived a general form of the
node reliability polynomial and analyzed its behavior under
various conditions. We found that as the size of the network
increases, the reliability polynomial exhibits a sharp transition,
resembling a step function. We also extended our analysis to
Random Geometric Graphs, providing an approximation for
their node reliability polynomials.

Moreover, we proposed for the node reliability polynomial
the arithmetic first-order upper bound and the geometric first-
order upper bound. These bounds provide useful benchmarks
for evaluating the reliability of a network without the need for
exhaustive computation.

Finally, we discussed applications of reliability polynomi-
als: estimating the number of vertex cut sets and enhancing
network reliability through link additions.

Acknowledgements Van Mieghem has been funded by
the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme
(grant agreement No 101019718).

REFERENCES

[1] Sutner, Klaus and Satyanarayana, Appajosyula and Suffel, Charles, The
complexity of the residual node connectedness reliability problem, SIAM
Journal on Computing, 1991, 20(1), 149–155.

[2] Moore, Edward F and Shannon, Claude E, Reliable circuits using less
reliable relays, Journal of the Franklin Institute, 1956, 262(3), 191–208.
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APPENDIX A
NODE RELIABILITY POLYNOMIALS FOR SOME GRAPH

FAMILIES

A. Complete Graph KN

For a complete graph KN with N nodes, the only way to
disconnect the graph is when all the nodes fail. For a node
operational probability p, the probability that all nodes are
failed is (1−p)N . Thus we obtain the following node reliability
polynomial:

Fig. 15: Complete graph KN

nRelG(p) = Pr[Ĝ is connected] = 1− (1− p)N (50)

B. Complete Graph KN−1 with a Pendant Node

We will denote the complete graph KN−1 with a pendant
node as K∗

N . The node reliability polynomial of K∗
N is given

by:

Fig. 16: The graph KN−1 + P1

nRelG(p) = Pr[Ĝ is connected] = (1− p)(1− (1− p)N−1) + p2

+ p(1− p)N−1 (51)

C. Cycle Graph CN

For a cycle graph CN with N nodes, after k nodes are
removed, the remaining N − k nodes should be connected.
Thus, the node reliability polynomial of the cycle graph is:

Fig. 17: Cycle graph CN

nRelG(p) = Pr[Ĝ is connected] = pN +N

N−1∑
k=1

pN−k(1− p)k

=
Np(pN − (1− p)N )

2p− 1
− (N − 1)pN (52)

D. Path Graph PN

For a path graph PN , the node reliability polynomial is:

Fig. 18: Path graph PN

nRelG(p) = 1−
N∑
j=0

((
N

j

)
− j − 1

)
pN−j(1− p)j

=

N∑
j=0

(j + 1)pN−j(1− p)j

=
Np(1− p)N+1 − (N + 1)p2(1− p)N + pN+2

(1− 2p)2

(53)

E. Star Graph SN

For a star graph SN with one central node and N − 1 edge
nodes, the node reliability polynomial is:

Fig. 19: Star graph SN

nRelG(p) = p+ (N − 1)p(1− p)N−1 (54)

F. Star Graph SN−1 with a Pendant Node

For a star graph SN−1 with a pendant node, denoted as S∗
N ,

the node reliability polynomial is:

Fig. 20: The graph SN−1 + P1

nRelG(p) = (1− p)
(
p+ (N − 2)p(1− p)N−2

)
+ p3

+ p2(1− p)N−2 + p(1− p)N−1 (55)
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APPENDIX B
PERFORMANCE OF STOCHASTIC APPROXIMATION IN

REAL-WORLD NETWORKS
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Fig. 21: Monte Carlo simulations and stochastic approxima-
tions for different real-world graphs.

APPENDIX C
DERIVATION OF THE NODE RELIABILITY POLYNOMIAL

NRELG(p) OF ERDŐS–RÉNYI GRAPHS

In a Erdős-Rényi graph GER, a node connects to another
node with a probability pl. The random residual graph Ĝn of
an Erdős-Rényi graph GER retains the Erdős-Rényi property,
where residual nodes remain connected with probability pl.
Thus, the probability that the degree D̂Ĝn

of a node in Ĝn

equals 0 is:

Pr
[
D̂Ĝn

= 0
]
= (1− pl)

n−1 (56)

Invoking the analysis in Section IV (23), the stochastic
approximation of the node reliability polynomial of Erdős-
Rényi graph is:

nRelG,ER(p) ≃ Pr[D̂min ≥ 1] =
(
1− (1− pl)

Np−1
)Np

(57)

. Rewriting the exponent, we obtain:

nRelG,ER(p) =
(
1− (1− pl)

Np−1
)Np

=
(
1− (1− pl)

1
pl

pl(Np−1)
)Np

(58)

Using (1 − x)
1
x = e−1 + O(x) for x tends to 0 for small

pl, we have

nRelG,ER(p) =
(
1− (1− pl)

1
pl

pl(Np−1)
)Np

≃
(
1− e−pl(Np−1)

)Np

(59)

A new function of the node operational probability p is defined
as:

b(p) =
eN ·p·pl

N
(60)

so that the link probability equals pl =
(log b(p)N)

pN . Substituting
pl =

(log b(p)N)
pN to (59)

nRelG,ER(p) ≃
(
1− exp

(
− log(b(p)N)

pN
· (Np− 1)

))Np

≃
(
1− 1

b(p)N

)Np

(61)

which for large N lead to

nRelG,ER(p) ≃ e−
p

b(p) (62)

After substituting the definition b(p) = eN·p·pl

N in (60) into
(62), we obtain an approximation of the node reliability of
Erdős-Rényi graph

nRelG,ER(p) ≃ exp

(
− k

ek·pl

)
(63)

where k = Np is the average degree of the graph.
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TABLE II: Parameters for the networks shown in Figure 21

Network Node Number Link Density Mean Squared Error Mean Absolute Error

130bits 584 0.0358 1.328 1.862
Infect Dublin 410 0.0329 1.712 7.576
Infect Hyper 113 0.347 7.827 2.346
Aves Songbird Social 110 0.171 1.803 1.062

A. Intersection of Node Reliability Polynomials nRelG(p) of
Erdős-Rényi graphs

Invoking (62), the value of node reliability nRelG(p) of
Erdős-Rényi graph is determined by the term p

b(p) . For two
different Erdős-Rényi graph G1 (with N1 nodes and link
probability pl1) and G2 (with N2 nodes and link probability
pl2), the intersection of two reliability polynomial can be
obtained by solving

pi
b1(pi)

=
pi

b2(pi)
(64)

computing pi, b1(pi) and b2(pi) satisfy:
pi = exp

(
k1 logN2−k2 logN1

k2−k1

)
b1(pi) =

ek1pi

N1

b2(pi) =
ek2pi

N2

(65)

where k1 = N1 · pl1, k2 = N2 · pl2. Based on these pi
and bi(pi), we obtain the intersection (pi, e

− pi
b1(pi) ). Fig. 22

illustrates that as in our derivation in Eq.(65), the reliability
polynomials of Erdős-Rényi graphs with same pi = 0.4,
b(pi) = 0.6 intersect at point (pi, e

− pi
b(pi) ).
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Fig. 22: The Monte Carlo simulation result of node reliability
polynomials of Erdős-Rényi graphs with pi = 0.4, different
number of nodes N and auxiliary line p = 0.4.

B. Asymptotic Behavior of Node Reliability in Erdős-Rényi
Graphs with Respect to Link Density and Node Count

Equation (62) shows that the node reliability polynomial of
an Erdős-Rényi graph depends on p

b(p) :

p

b(p)
=

pN

eN ·p·pl
= c′ (66)

Taking the logarithm of both sides:

log p+ logN −N · p · pl = log c′ (67)

For two values p1 and p2, we have:

log
p1
p2

− (p1 − p2)Npl = log
c′1
c′2

(68)

Rearranging the terms:

p1 − p2 ≈ − log c′1 − log c′2
Npl

(69)

Thus, as the average degree k = Npl becomes large,
the range of p where nRelG,ER(p) changes from c2 to c1 is
approximately on the order of O

(
1

Npl

)
.
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