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Advancing Sustainability via
Recommender Systems: A Survey

Xin Zhou∗, Lei Zhang∗, Honglei Zhang, Yixin Zhang, Xiaoxiong Zhang, Jie Zhang, and Zhiqi Shen

Abstract—Human behavioral patterns and consumption para-
digms have emerged as pivotal determinants in environmental
degradation and climate change, with quotidian decisions per-
taining to transportation, energy utilization, and resource con-
sumption collectively precipitating substantial ecological impacts.
Recommender systems, which generate personalized suggestions
based on user preferences and historical interaction data, ex-
ert considerable influence on individual behavioral trajectories.
However, conventional recommender systems predominantly op-
timize for user engagement and economic metrics, inadvertently
neglecting the environmental and societal ramifications of their
recommendations, potentially catalyzing overconsumption and
reinforcing unsustainable behavioral patterns. Given their instru-
mental role in shaping user decisions, there exists an imperative
need for sustainable recommender systems that incorporate sus-
tainability principles to foster eco-conscious and socially respon-
sible choices. This comprehensive survey addresses this critical
research gap by presenting a systematic analysis of sustainable
recommender systems. As these systems can simultaneously
advance multiple sustainability objectives—including resource
conservation, sustainable consumer behavior, and social impact
enhancement—examining their implementations across distinct
application domains provides a more rigorous analytical frame-
work. Through a methodological analysis of domain-specific
implementations encompassing transportation, food, buildings,
and auxiliary sectors, we can better elucidate how these systems
holistically advance sustainability objectives while addressing
sector-specific constraints and opportunities. Moreover, we delin-
eate future research directions for evolving recommender systems
beyond sustainability advocacy toward fostering environmental
resilience and social consciousness in society.

Index Terms—Recommender Systems, Sustainability, Environ-
ment, Climate Change, Carbon

I. INTRODUCTION

HUman activities encompass the consumption of myriad non-
renewable resources (e.g., coal, gas, fossil fuels) and natural
materials, while concomitantly inflicting environmental degra-
dation through various mechanisms, including atmospheric
pollution, carbon dioxide (CO2) emissions, and waste gener-
ation [1]–[3]. The cumulative global emissions of CO2 have
exhibited a consistent linear trajectory over time, as illustrated
in Fig. 1 (left). According to the U.S. Energy Information
Administration (EIA), the United States contributed approxi-
mately 5.12 billion metric tons (BMT) of CO2 emissions in
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Fig. 1. Global CO2 emissions trends (1960-2023) and a comparative analysis
of Microsoft and Google’s carbon footprints.

2021 [4], [5]. Of this total, a substantial 92 percent, or 4.6
BMT, was directly attributable to the combustion of fossil fuels
for energy generation. Moreover, recent years have witnessed
a precipitous advancement in generative artificial intelligence
(AI), which necessitates the utilization of large-scale datasets
for training expansive language models [6]. A comparative
analysis of the 2024 environmental sustainability reports from
Microsoft and Google reveals a significant increase in their
carbon footprints since 2020 (Fig. 1 (right)). Microsoft’s
emissions have risen by 29.4%, while Google’s have surged
by 66.3%. The primary driver of this growth is the expansion
of their data center infrastructure, specifically designed and
optimized to accommodate the escalating computational de-
mands of artificial intelligence workloads. It is incontrovertible
that the magnitude of carbon emissions continues to escalate,
making substantial contributions to anthropogenic climate
change [7]–[9].

To align with the United Nations Sustainable Development
Goals (SDGs) [10] and adhere to the stipulations of the Paris
Agreement aimed at mitigating climate change to below 1.5°C
by the mid-2030s, a diverse array of artificial intelligence
technologies has been deployed [11]. As the global community
becomes increasingly aware of the importance of sustainable
practices to address environmental challenges, there is a grow-
ing consensus that recommender systems (RSs) can play a
crucial role in facilitating sustainable human behaviors [12],
[13]. These systems propose alternatives that endorse en-
vironmentally sustainable products, encourage eco-conscious
travel options, and promote energy-efficient living arrange-
ments within architectural structures. Empirical research has
demonstrated that recommender systems tailored for green
products not only contribute to the diminution of energy usage
and the reduction of greenhouse gas emissions [14] but also
foster a paradigm of sustainable consumption among users.
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RSs are AI models designed to predict user preferences
and suggest relevant items or content. These systems have
become ubiquitous in various domains, including e-commerce,
entertainment, social media, and more [15]–[18]. The primary
goal of RSs is to enhance user experience by providing
personalized recommendations tailored to individual prefer-
ences and behaviors [19], [20]. Given the significant impact
of RSs on daily human interactions with digital platforms,
these systems have the potential to contribute substantially to
environmental and social sustainability: i). Waste reduction:
By suggesting products or content that align more closely
with user preferences, RSs can potentially mitigate waste from
unwanted purchases or unused items. ii). Energy efficiency
optimization: In sectors such as energy management, RSs can
propose optimal energy usage patterns, potentially promoting
conservation and reducing carbon footprints. iii). Promotion
of sustainable consumption: These systems can be engineered
to prioritize environmentally friendly products or services,
potentially encouraging more sustainable consumer behavior.
iv). Enhancement of social well-being: Through the recom-
mendation of educational content, health-related information,
or community activities, these systems may contribute to social
development and individual growth.

While several reviews have examined sustainable recom-
mendation systems in specific domains, such as energy-
efficient building practices [21], eco-friendly travel routes [22],
sustainable e-tourism [23], and Sustainable Development
Goals (SDGs) perspectives [12], this survey offers a more
comprehensive and integrated analysis. The present study
provides a holistic view of sustainable recommendation sys-
tems across multiple domains, including health-conscious
food choices, energy-efficient building management, and en-
vironmentally friendly travel solutions, while also examining
the underlying computational strategies employed in these
systems. By synthesizing a diverse body of research and
emphasizing the critical need to incorporate environmental
sustainability into system designs, this review aims to enhance
the understanding of sustainable recommender systems and
stimulate future research that encompasses various aspects of
sustainability. Our primary contributions are as follows:

• We offer an in-depth examination of the implementation and
research trajectories of sustainable recommendation systems
in pivotal sectors, including travel, food, and built environ-
ment management, coupled with insights into algorithmic
optimization.

• We present a generic architectural framework for sustainable
recommender systems, serving as a foundation for organiz-
ing and contextualizing existing research.

• We make a substantial contribution to the corpus of research
on sustainable recommendation systems by elucidating key
challenges within the domain and proposing future research
avenues. It establishes a crucial framework for advancing
the study and application of sustainability principles in
recommendation systems across heterogeneous industries.

The subsequent sections of this paper are structured as
follows: Section II provides the necessary background for
understanding the subsequent review. Section III describes

various work in sustainable travel recommendation, cover-
ing POI recommendation, route recommendation, and trans-
portation recommendation. Section IV delves into sustainable
recommendation practices within the food industry, focusing
on health-conscious and environmentally friendly food rec-
ommendations. Section V discusses the sustainable building
recommendation, ranging from residential to commercial and
large-scale buildings. Section VI expands to a wider discussion
on the broader applications of sustainable recommendations,
which includes environmental and ecological sustainability,
behavior and social change, economic and productive sus-
tainability, and user-centric sustainable recommenders. Sec-
tion VII pivots to the sustainable design of recommendation
models, particularly through algorithmic advancements and
computational efficiency. Section VIII highlights ongoing chal-
lenges and emerging research areas within the field. Finally,
Section IX concludes the paper, synthesizing key findings and
delineating implications for future research endeavors.

II. BACKGROUND

A. Sustainability

The concept of sustainability has emerged as a paramount
global imperative amid escalating challenges of climate
change, resource depletion, and environmental deterioration.
This paradigm was formally introduced through the seminal
publication “Our Common Future”, which established sus-
tainability as the capacity to address present needs while
preserving the ability of future generations to meet their
requirements [24]. The conceptualization of sustainability,
however, demonstrates significant contextual variability and
exhibits stakeholder-dependent interpretations [25]. This def-
initional flexibility underscores the complexity inherent in
implementing sustainable practices across diverse domains.

In the contemporary artificial intelligence (AI) era, sustain-
ability acquires additional dimensions of significance. While
AI technologies present unprecedented opportunities for ad-
vancement and innovation, they simultaneously introduce sub-
stantial sustainability challenges that require careful consid-
eration. Critical concerns include the exponential growth in
energy consumption by data centers, the ethical ramifications
of AI-driven decision-making processes, and the environ-
mental footprint associated with large-scale AI infrastructure
deployment. As AI continues to evolve, it offers powerful
tools to address sustainability challenges, such as optimizing
resource utilization, reducing greenhouse gas emissions, and
promoting sustainable practices across industrial sectors [26].
Nevertheless, the accelerated progression of AI development
necessitates rigorous evaluation of its long-term societal and
environmental implications. The integration of sustainability
principles into AI development and deployment frameworks
represents a crucial imperative for safeguarding the future of
our planet and the well-being of future generations.

B. Recommender Systems

Recommender systems (RSs) are crucial technological solu-
tions addressing the exponential growth of digital information
accessibility [27]–[34]. The proliferation of online content
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Fig. 2. Hierarchical taxonomy of recommender system categories and their applications in advancing sustainability initiatives.

creates significant cognitive load for users navigating vast in-
formation spaces, necessitating efficient filtering mechanisms.
These systems employ sophisticated algorithms to process and
prioritize content, thereby optimizing information discovery
and user engagement.

Recommender systems employ a variety of techniques to
generate personalized suggestions for users, ranging from
matrix factorization [35] to recent deep learning-based and
graph-based recommender models [29], [36]. In the context
of sustainability, RSs can serve as instrumental mechanisms
for advancing sustainability objectives and promoting social

welfare through the following critical pathways:

• Resource Conservation: RSs minimize waste through
preference-aligned product recommendations in high-
consumption sectors including fashion and electronics, op-
timizing resource allocation and reducing disposal rates.

• Sustainable Consumer Behavior: RSs facilitate behavior
modification by prioritizing environmentally conscious and
ethically produced goods within recommendation frame-
works, enabling informed sustainable purchasing decisions.

• Social Impact Enhancement: These systems optimize the
dissemination of educational resources, social initiatives,
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and health-related information, contributing to collective
societal well-being through targeted content distribution.

• Circular Economy Support: RSs advance circular econ-
omy principles by facilitating secondary market transactions,
sharing services, and recycling opportunities, effectively
reducing primary resource demand through optimized re-
source allocation.

Given that recommender systems can concurrently advance
multiple sustainability pathways, examining their implemen-
tations across distinct application domains provides a more
comprehensive analytical framework. By analyzing RS im-
plementations at the application level, including travel, food,
buildings, and other domains, we can better understand how
these systems holistically advance sustainability goals while
addressing sector-specific challenges and opportunities. This
methodological approach facilitates the investigation of mul-
tifaceted RS interventions that simultaneously address various
sustainability pathways. For instance, an intelligent transporta-
tion recommender system can optimize resource utilization
through efficient routing while promoting environmentally
conscious consumer behavior, thereby illustrating the intrin-
sic interconnectedness of sustainability pathways in practical
implementations. Hence, our review will expand at the appli-
cation level of RS to advance sustainability. Consequently, this
review expands upon RS applications across different sectors
to comprehensively examine their role in advancing sustain-
ability. All surveyed publications are available in a curated
GitHub repository at: https://github.com/enoche/SusRec.

III. SUSTAINABLE TRAVEL RECOMMENDATION

Travel recommendation systems aim to mitigate the daunt-
ing task of trip planning by providing personalized suggestions
tailored to individual preferences [37], [38]. By harnessing
user-specific behavior data, these systems offer insights and
recommendations about users’ journeys, ultimately enriching
the overall travel experience. Specifically, travel recommenda-
tion is responsible for providing accurate points of interest
(POI) recommendations (such as hotels, restaurants, etc.),
efficient route recommendations, and appropriate transporta-
tion recommendations both before the commencement of the
journey and during travel [39], [40]. However, traditional
travel recommendation systems often neglect the environ-
mental consequences of their suggestions, such as increased
carbon emissions or ecological damage from promoting certain
destinations, potentially leading to over-tourism and excessive
resource consumption [41].

As the environmental impact of tourism becomes more
apparent, there is a growing need to integrate sustainability
into these systems to encourage responsible travel choices.
Sustainable travel recommendation (STR) is to furnish users
with environmentally-friendly, resource-efficient, and time-
saving travel services [22], [42]. Specifically, it involves the
incorporation of environmental preservation aspects concern-
ing POIs [43], the promotion of low-carbon routes [44], and
sustainable transportation [22]. The ultimate goal of STR
is to provide visitors with an all-encompassing green travel
solution, involving destinations, routes, and modes of trans-
portation. Consequently, this section will concentrate on three

Sustainable Hotel

Healthy Food

Convenient 

Transportation

Italian Food Use natural ingredients, 

provide healthy meals

Eco-friendly hotel with 

scenic views

Delicious Italian restaurant

Comfortable and 

city center hotel

Fig. 3. An example of the sustainable POI recommendation.

key aspects within the context of STR: POI recommendation,
route recommendation, and transportation recommendation.

A. POI Recommendation

POI recommendation is the process of suggesting relevant
future locations or points of interest to users based on their
historical check-in data, preferences, and behaviors within
location-based social networks, utilizing machine learning and
data mining techniques to tailor these suggestions to individual
user preferences [45]. It has been extensively studied by
academia in recent years due to its advantages in many
important aspects, including resource optimization and user
experience personalization [46]. At the early stage, researchers
first concentrated on traditional shallow models like Markov
chain [47], matrix factorization [48], [49], and Bayesian per-
sonalized ranking [50]. Recent research, however, has focused
more on deep neural networks, such as LSTM [51], [52],
RNN [53], and self-attention models [50], [54]. Deep neural
networks enhance the prediction of users’ future locations by
effectively utilizing spatial-temporal correlations in mobility
data like check-ins, significantly outperforming traditional POI
recommendation models.

Traditional POI recommendation methods, while effective at
predicting users’ next points of interest, frequently overlook
sustainability. There’s an increasing need to recommend POIs
that not only are accurate but also align with green prac-
tices. This shift extends beyond merely suggesting popular
or convenient locations to include those that support environ-
mental conservation, local communities, and reduce ecological
footprints. Consequently, sustainable POI recommendations
encompass any suggestions that promote eco-friendly, socially
responsible, and resource-efficient choices. For instance, it in-
cludes recommending environmentally-friendly hotels or eco-
friendly public infrastructure [41], [55] as depicted in Fig. 3.

As concerns for environmental sustainability rise and con-
sumer awareness of environmental issues grows, eco-friendly
services such as sustainable POI recommendations have at-
tracted significant attention [43], [55]. For example, Nilashi
et al. [43] proposed a multi-criteria collaborative filtering
model for eco-friendly hotel recommendations, utilizing ma-
chine learning and dimensionality reduction techniques to
enhance scalability in predicting traveler preferences based on
a large TripAdvisor dataset, demonstrating robust performance

https://github.com/enoche/SusRec


5

in forecasting user choices. Suanpang et al. [55] introduced a
spatio-temporal multi-agent reinforcement learning framework
to intelligently recommend public-accessible charging stations,
accounting for various long-term factors. Experimental results
indicate the framework’s effectiveness in reducing average
charging costs, failure rates, and wait times for electric
vehicles, thereby promoting low-carbon, eco-friendly travel
through sustainable POI recommendations. Besides, Banerjee
et al. [41] proposed the Green Destination Recommender, a
web application leveraging React to recommend sustainable
travel destinations by integrating CO2 emissions, popularity,
and seasonality indices, aiming to encourage environmentally
conscious travel choices.

The user-centric approach of traditional tourism industry
POI recommendation methods can lead to long-term negative
impacts on the environment and local communities. This
strategy fosters user-driven tourism, which adversely affects
wildlife habitats and various landscapes where tourism takes
place [56]. Furthermore, this approach could also detrimentally
affect the experiences of both tourists and locals. For instance,
crowded tourist areas might result in reduced social distances,
increased noise levels, and traffic congestion. In order to lessen
the detrimental effects of unchecked development in the name
of economic gain, Merinov [57] intentionally attempted to ease
the tensions brought on by the intricate relationships between
visitors and the environment.

Besides recommending specific sustainable POIs (such as
hotels or charging stations), another research direction is ex-
ploring capacity constraints in POI recommendation [57], [58].
In other words, providing users with resource-abundant POIs
can indirectly protect the environment, while recommending
resource-limited POIs can easily lead to overcrowding and
unnecessary resource waste. A maximum capacity, such as
the number of seats in a POI or the quantity of item copies
in the inventory, is often linked to the candidate items for
POI recommendations. To address this issue, Konstantina et
al. [58] proposed a multi-objective framework that simultane-
ously optimizes recommendation accuracy and the capacity
constraints of the recommended items. By providing users
with real-time information on POI capacity availability, the
framework effectively guides users to appropriate locations,
achieving the goal of offering sustainable POIs from an
algorithmic perspective. The effectiveness of this method has
been validated on three classic matrix factorization methods:
PMF [59], BPR [60], and GeoMF [48]. Besides, Merinov [57]
addressed POI recommendation by mitigating popularity bias,
ensuring a healthy distribution of visitor traffic. This approach
promotes the long-term economic viability of the environment.

B. Route Recommendation

Route recommendation plays a crucial role in personal-
ized travel services by providing users with reasonable and
scientifically travel routes based on their historical behavior
data and user profiles [61]. For drivers, these systems identify
routes with a higher likelihood of finding passengers, reducing
idle cruising time and increasing profits. For passengers, these
recommendations aim to improve satisfaction by directing

drivers along the most efficient paths, minimizing waiting
times, and ensuring a quicker arrival at their destinations.

Recent academic research on route recommendation has fo-
cused on two primary approaches: conventional route planning
and personalized route recommendation [44], [62]. Conven-
tional route planning involves classic shortest path algorithms
like Dijkstra’s and A*, with advancements that account for
variables such as uncertain travel times [63]. Personalized
route recommendations, on the other hand, include methods
like TRIP [64], which relies solely on individual driving data,
T-drive [65], which uses driving time for recommendations,
and more advanced methods [61] that integrate comprehensive
driving information for enhanced efficiency.

While route recommendation systems have greatly enhanced
people’s lives and productivity, mounting evidence of their
detrimental effects on the environment has compelled some
cities to address the urban mobility issues. Route planning
is often blamed for contributing significantly to pollution by
creating traffic congestion and leading to situations where
drivers roam without passengers. It is crucial to develop
sustainable route recommendation systems that reduce fossil
fuel consumption, thereby minimizing local air pollution and
environmental damage [66], as illustrated in Fig. 4 (a). For
instance, Bothos et al. [67] introduced an eco-friendly method-
ology for travel recommendation systems, proposing a system
structure that merges profile matching techniques with essen-
tial information elements. This system offers users alternative
routes that align with their preferences while also reducing
carbon emissions. Additionally, Makhdomi et al. [22] explored
fairness and environmental issues on ride-hailing platforms
and provided a comprehensive overview of advancements in
route recommendation for these services. Furthermore, Bao
et al. [68] leveraged bike-sharing trajectory data to design
efficient bike lanes, enhancing safety and encouraging eco-
friendly travel. Sotsay et al. [66] introduced a route recommen-
dation system that helps commuters make safer, eco-friendly,
and less congested travel choices while reducing societal costs
like accidents and pollution. This system employs a persuasive
reward algorithm and an agent-based model to evaluate the
effectiveness of recommendations, achieving a higher public-
friendly score than traditional methods. Additionally, Namoun
et al. [69] introduced an eco-friendly multi-modal route recom-
mendation system that simulates complex urban transportation
networks with software agents. It leverages real-time traffic
data, including carbon emissions and flow patterns from di-
verse sources, to offer travelers optimized route suggestions
via a dedicated application.

The aforementioned methods achieve sustainable route rec-
ommendation by directly considering environmental factors.
For example, they incorporate fairness into route recommen-
dation or consider CO2 emissions and congestion levels during
modeling, significantly enhancing the sustainability of route
recommendations. Besides explicitly modeling environmental
features, some studies explore efficient shortest path recom-
mendation methods to reduce carbon emissions, indirectly
contributing to the vision of sustainable route recommenda-
tion [44], [62]. Specifically, Garg et al. [44] focused on reduc-
ing the distance between idle taxis and upcoming customers to
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Other 
Transportation 
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(b) Transportation
Fig. 4. Illustration of sustainable route and transportation recommendations.

enhance driver productivity and minimize customer wait times.
They created a route recommendation engine, MDM (Min-
imizing Distance through Monte Carlo Tree Search), which
forecasts the likely origins of future customer requests to
suggest efficient routes. Besides, Yuen et al. [62] investigated
taxi ride-sharing by developing the Share algorithm, which
optimizes routes to accommodate multiple passengers without
significant detours. This method effectively reduces the need
for multiple taxis, lowering carbon emissions and enhancing
sustainable transport.

Furthermore, designing memory-efficient and time-saving
mechanisms for route recommendation models also contribute
to sustainability goals. Qu et al. [70] employed a Brute-
Force method to derive optimal driving routes, crafting a
graph representation of road networks from historical taxi GPS
data. To counter the high computational cost of this graph-
based approach, they introduced a recursive technique that
efficiently identifies the most profitable routes. The aforemen-
tioned methods enhance travel efficiency and user satisfaction
but also prompt environmental concerns, driving the need for
sustainable solutions that reduce pollution and promote eco-
friendly travel practices.

C. Transportation Recommendation

Transportation modes are ways to move from an origin to
a destination, including driving, walking, cycling, and public
transportation [71]. The proliferation of different modes of
transportation (bus, car, ride-sharing, shared-bike, etc.) and
the swift growth of transportation networks (pedestrian, bus,
road, etc.) have given travelers an abundance of options to
reach their destinations [72]. Transportation recommendation
refers to the task of identifying the best transportation options
while taking into account trip attributes (such as destination
and distance) and user preferences (such as habits and times),
as exemplified in Fig. 4 (b). Transportation recommendations
provide reasonable and timely travel options for tourists,
offering a convenient experience, and are widely applied in
many internet applications, such as Google Maps, Baidu Maps.

Classic transportation recommendation methods are typi-
cally divided into two categories: single-mode planning and
multi-modal recommendation [73]. Early research focused on
single-mode transport, such as using trajectory data for private
vehicle planning [61], and leveraging mobility data to suggest
popular routes between locations [74]. However, real-world
planning often requires choosing the best combination of
multiple transport modes, leading to increased attention on

multi-modal recommendations [72]. Multi-modal approaches
are categorized into retrieval-based methods, which use pre-
defined metrics and graph algorithms like Dijkstra [75], [76],
and learning-based methods. They apply machine learning to
derive transport preferences or improve stability using features
like estimated time of arrival [71], [77]–[81].

Although the aforementioned methods effectively combine
various modes of transportation, allowing tourists to travel
smoothly from their point of origin to their destination, they
often solely focus on reducing travelers’ waiting and travel
times, neglecting the multiple goals of sustainable develop-
ment and environmental protection [82]. Consequently, the
emergence of sustainable transportation recommendations has
been crucial in addressing these oversights. These recommen-
dation systems aim to ensure travelers reach their destinations
smoothly and on time while also prioritizing environmental
protection [22]. Technically, sustainable transportation recom-
mendations need to consider the reasonable combination of
multiple transportation modes and the shortest path search with
carbon emission constraints [67]. For example, Arnaoutaki et
al. [83] presented a hybrid knowledge-based recommender
system designed to support Mobility-as-a-Service (MaaS)
users in selecting mobility plans tailored to their specific trans-
portation needs and preferences. Additionally, recommending
green transportation options to travelers [84], [85] is the effec-
tive approach to sustainable transportation recommendations.

Regarding green transportation alternatives, many cities
have recently adopted bike-sharing systems to foster eco-
friendly travel and promote healthier living [86]. The place-
ment of bike stations strategically to best suit users’ trip
demands is a critical component in optimizing the effec-
tiveness of these systems. Urban planners typically use in-
depth surveys to determine the demand for local bike trips.
But this method is labor- and time-intensive, especially when
comparing multiple possible locations. To address these issues,
Chen et al. [87] formulated the problem of bike station
placement as a demand prediction problem for bike trips.
In order to predict the demand for bike trips, they propose
using a semi-supervised feature selection method to extract
customized features from highly variable, heterogeneous urban
open data.

In addition to directly recommending green transportation
options, Bothos et al. [67] developed a travel recommenda-
tion system aimed at encouraging eco-friendly habits among
environmentally conscious travelers. The system offers per-
sonalized advice on the greenest transportation options by
incorporating profile matching techniques and recommenda-
tion information into its architecture. Besides, Ge et al. [84]
conducted a study on how to harness location data to foster
energy-efficient transportation. They developed a mobile rec-
ommendation system that suggests optimal parking spots or
pickup locations for taxi drivers based on energy-saving travel
patterns identified from location traces. This system not only
optimizes operational efficiency but also promotes sustainable
driving behaviors among drivers, enhancing their chances of
business success.

Xu et al. [88] proposed a framework to enhance recommen-
dation systems for connected and autonomous vehicles using
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Fig. 5. Illustration of the sustainable food recommendation.

hidden relationship mining and dual joint matrix factorization
models. These models, driven by machine learning, efficiently
process overlooked data to refine vehicle connectivity rec-
ommendations. In summary, integrating green transportation
options like bike-sharing and carpooling into transportation
recommendation systems, while emphasizing low-carbon and
environmentally friendly criteria, represents a strategic ap-
proach to fostering sustainable travel. Such practices not only
cater to the evolving preferences of travelers but also align
with global sustainability goals, ultimately contributing to a
reduction in environmental impacts and promoting healthier
living standards.

IV. SUSTAINABLE FOOD RECOMMENDATION

Food recommendation systems (FRSs) [89] serve as pivotal
components in the realm of digital lifestyle services, designed
to assist users in discovering recipes and food items that
resonate with their unique dietary predilections. In today’s
interconnected world, where information is abundant and
diverse, FRSs act as intermediaries that guide users towards
food choices that are not only aligned with their taste pref-
erences but also conducive to their health and well-being.
These systems utilize a variety of data sources, including
user preferences, dietary restrictions, and nutritional needs, to
provide tailored recommendations, as shown in Fig. 5.

Traditional FRSs primarily focus on leveraging user inter-
action data, multi-modal content, ingredient information, etc.,
to personalize recipe suggestions that align with individual
dietary needs. For example, Ge et al. [90] proposed an exten-
sion method using tags within a matrix factorization frame-
work to enhance prediction accuracy. Furthermore, Trattner et
al. [91] demonstrated that Latent Dirichlet Allocation (LDA)
and weighted matrix factorization methods outperform other
collaborative filtering techniques, with research showing that
incorporating item-side information like recipe ingredients and
images effectively addresses data sparsity and precisely mod-
els user preferences. In this vein, Gao et al. [92] introduced a
hierarchical attention mechanism that concurrently integrates
user-recipe interactions, recipe images, and ingredients for
improved recommendation. Moving beyond general collabora-
tive filtering methods, recent research has explored leveraging
Graph Neural Networks (GNNs) for food recommendation.
Gao et al. [93] utilized a graph convolution network to capture
the intricate relationships between ingredients, recipes, and
users. Similarly, Tian et al. [94] constructed heterogeneous

recipe graphs to model the connections between recipe content
and its structure. Tian et al. [95] introduced a graph contrastive
augmentation strategy based on the user-recipe-ingredient
heterogeneous graph to extract informative graph knowledge
in a self-supervised manner. Meng et al. [96] tackled both
ingredient prediction and food recommendation tasks simul-
taneously, allowing it to learn visual features that incorporate
both semantic and collaborative information. Zhang et al. [97]
employed clustering and self-supervised learning to exploit
multi-modal recipe information for recommendation.

A. Healthy-awareness Food Recommendation

As the Internet and information technology continue to
advance, there has been a marked improvement in the cog-
nitive capabilities of the populace. This has led to a growing
recognition of the critical role that dietary intake plays in
shaping human health and well-being, as well as promoting
sustainable living through its impact on both physiological
and psychological conditions. Specifically, Food recommen-
dation systems are becoming indispensable tools in promoting
healthier eating habits, enhancing the overall quality of life,
and assisting users in achieving specific health goals, includ-
ing weight management, disease prevention, and maintaining
nutritional balance.

Although there is currently no unified standard for measur-
ing the healthiness of recipes or foods, numerous researchers
have conducted exploratory studies based on the suggestions
for daily nutrient intake provided by the World Health Orga-
nization (WHO) [98] and the UK’s Food Standards Agency
(FSA) [99], as well as a five-coloured label system Nutri-
Score [100] developed by Nutritional Epidemiology Research
Team. These studies primarily assess the healthiness of recipes
by analyzing the alignment of the nutritional components
contained in them, such as calories, fats, sugars, salt, vitamins,
etc., with these health standards.

According to the nutritional guidelines published by WHO
and FSA, Trattner et al. [101] analyzed the healthiness of main
meal recipes from online websites, celebrity chef cookbooks,
and ready meals from supermarkets. Their analysis suggests
that online recipes are less likely to meet these standards
and tend to be less healthy. Further research by Trattner
et al. [91] revealed that the recipes on these websites are
quite unhealthy, and users generally interact most frequently
with the least healthy recipes. Although most recipe websites
prioritize popular recipes, which tend to be unhealthy, Starke
et al. [102] utilized visual enhancements of images and re-
ranking of results on recipe websites to support healthier food
choices without decreasing user satisfaction.

WHO defines 15 nutrient ranges crucial for a balanced daily
meal plan. The existing research [91], [103] mainly focuses
on the 7 most significant nutrients: proteins, carbohydrates,
sugars, sodium, fats, saturated fats, and fibers. Each food
is assigned a healthiness score according to the criteria,
and the scale ranges from 0 to 7 (0 meaning none of the
WHO ranges are fulfilled and 7 meaning all ranges are met).
Consequently, a food item scoring 7 (meeting all WHO-
defined ranges) is considered exceptionally healthy, while a
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score of 0 (failing to meet any WHO-defined ranges) is
considered highly unhealthy. Research has shifted towards
incorporating health criteria into recommendation algorithms.
Forouzandeh et al. [103] utilized node-level and semantic-
level attention mechanisms to identify recipes that are both
popular and healthy, then recommend healthy meals based
on a heterogeneous graph and the dual attention mechanism.
Rostami et al. [104] developed an efficient food recommen-
dation method based on user preference and healthy nutrition
factors, and introduced a novel time-aware similarity func-
tion to incorporate the dynamic nature of users’ preferences.
Ahmadian et al. [105] introduced an effective health-aware
reliability measurement, which simultaneously considers both
the accuracy and the health factors of predicted ratings to
evaluate their reliability value. The proposed method incor-
porates health-aware reliability measurement into time-aware
food recommendation.

FSA proposes a green, orange, and red traffic light system
to evaluate the healthiness of recipes and provides standard
ranges for low (green), medium (orange), and high (red)
content of fat, saturates, sugar, and sodium. To calculate a
health score, one point is awarded if an element’s quantity is
within the low range, two for the medium range, and three for
the high range, resulting in a health score ranging from 4 (best)
to 12 (worst). Pecune et al. [106] indicated that in a hybrid
recommendation system that combines personalization with
health awareness, users who pay attention to the health tag
are more likely to choose the healthy recipes recommended by
the system, emphasizing the importance of accurately inferring
individuals’ dietary goals and customizing the recommenda-
tion algorithms accordingly. Another observation is that people
tend to avoid recipes labeled as unhealthy (red) as well as
those labeled as healthy (green); the former due to feelings
of guilt, while the latter is perceived as “healthy equals less
tasty”. Rostami et al. [107] explored health-aware and fairness-
aware food recommendation, proposing a re-ranking method
that integrates user and recipe fairness constraints.

Nutri-score is a 5-colour nutrition label (A, B, C, D, E)
rating the overall nutritional value of food products. Among
them, A represents the healthiest option, while E represents
the least healthy. Nutri-score aims to provide nutritional in-
formation about food through a simple color-coded label,
helping consumers quickly understand the nutritional content
of food and make healthier choices. This system was initially
developed in France and has been promoted and used in
several European countries. Nurbakova et al. [108] explored
incorporating the recipe Nutri-score as an additional constraint
into the KBQA framework based on the knowledge graph
HUMMUS [109] to develop a system capable of providing
adaptive and personalized health food recommendations.

In addition, numerous aspects of nutrition can be considered
when recommending recipes. Ng et al. [110] proposed a
personalized recipe recommendation system for toddlers that
combines standard nutrition guidelines from the U.S. govern-
ment’s ChooseMyPlate with users’ food preferences. Bianchini
et al. [111] provided users with personalized and healthy food
options by taking into account both their preferences and
medical prescriptions. Pallavi et al. [112] employed the Harris-

Benedict equation to estimate users’ basal metabolic rate
(BMR) and integrate their daily calorie intake requirements
into the recommendation system. Song et al. [113] considered
users’ evolving preferences for caloric intake by constructing
a heterogeneous graph that models the complex relationships
between users, recipes, ingredients, and calorie information.
Zioutos et al. [114] combined a content-based and col-
laborative filtering approach, introducing a knowledge-based
component to analyze nutritional information from recipes,
thereby tailoring recommendations to suit users’ chronic health
conditions. Zhang et al. [115] distills knowledge from the
metadata of recipes, including descriptions, ingredients, and
health-related attributes, to enhance food recommendation
systems. Moreover, a survey involving 40 real users showed
that integrating health information with personalized filtering
more closely aligns with user requirements. Finally, Zhang et
al. [116] facilitated further research by releasing the first-ever
green food dataset with integrated health scores.

B. Environmental-friendly Food Recommendation

With the rise of digital literacy and accessibility to infor-
mation, there is a growing awareness among users about the
importance of dietary intake and its influence on both lifestyle
and society. This awareness is not limited to personal health
alone, there is a burgeoning recognition of the environmental
impact of food choices. Modern consumers are increasingly
considering sustainability factors such as carbon footprint,
water footprint (WF), and ecological balance when making
food choices. Consequently, there is a rising demand for
food recommendation systems that can accommodate these
complex preferences and provide suggestions that are not only
personalized but also environmentally responsible.

In food recommendation systems, carbon footprints serve as
a critical metric for evaluating and optimizing dietary choices
to reduce environmental impact while maintaining nutritional
balance. González et al. [117] found that a diet rich in
vegetables has a lower carbon footprint than one rich in meat.
While reducing the intake of animal products may benefit the
environment, it could also limit the intake of certain nutrients.
It is crucial to develop consistent and widely accepted methods
for estimating carbon footprints and assessing nutrient quality
scores in diet recommendations.

Water footprint is a burning contemporary problem in terms
of sustainability. Mekonnen et al. [118] quantified the green,
blue, and grey WF of global crop production from 1996–2005.
Green WF measures rainwater consumption in production;
blue WF quantifies surface and groundwater used; grey WF
assesses freshwater needed to dilute pollutants to acceptable
levels. A recipe’s WF includes both direct and indirect water
required for its production. Blas et al. [119] used the Water
Footprint Assessment (WFA) to measure the green, blue, and
grey water footprints of diets, finding that a Mediterranean diet
significantly conserves water, emphasizing the need for im-
proved production and consumption to enhance environmental
sustainability. Sobhani et al. [120] assessed the usual food
intake of 723 individuals, aged 20 to 64 years, from Urmia,
Iran. Based on this survey, linear programming techniques are
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used to identify an optimal dietary pattern that considers WF
reduction. This study underscores the significance of sustain-
able diets, highlighting the potential for water conservation
through modifications in dietary practices. Tompa et al. [121]
also emphasized the importance of adopting sustainable eat-
ing patterns that not only enhance people’s health but also
effectively reduce the environmental burden, particularly by
decreasing the WF. Gallo et al. [122] employed ingredient
categorization and corresponding water footprint (WF) values
to estimate the WF of entire recipes by summing the WF of
each ingredient. This approach enables an assessment of the
impact of various recipes on water resources. Additionally, a
recommender system that analyzes and predicts users’ dietary
habits can provide personalized food suggestions aimed at
reducing water footprints, promoting more environmentally
sustainable and health-conscious meal choices.

Ecological balance functions as a guiding principle to
ensure that suggested diets not only meet nutritional needs
but also support the sustainable use of natural resources and
biodiversity conservation. Irz et al. [123] provided a detailed
description of the effects of different dietary recommendations
on food consumption, nutrition, and environmental indicators,
along with cost-benefit analyses. They found that a combi-
nation of health and environmental concerns is necessary to
ensure consistency in consumers’ dietary advice, noting that
reducing meat consumption and shifting to a plant-based diet
are beneficial for both the environment and health. The study
calls for continued efforts to promote dietary guidelines that
support sustainability. Behrens et al. [124] argued that food
systems impose significant environmental burdens, including
global greenhouse gas emissions, eutrophication, and land use
associated with food production. According to the survey, na-
tionally recommended diets (NRDs) in high-income countries
generally recommend reducing the intake of sugar, oil, meat,
and dairy products, replacing these with fruits, vegetables, and
nuts to provide additional nutrients. In contrast, NRDs in low-
income countries are more likely to focus on increasing caloric
and protein intake, particularly to address malnutrition and
micronutrient deficiencies, by encouraging the consumption of
more meat and fish. The production of animal-based products
often carries higher environmental costs, including increased
greenhouse gas emissions, greater land use, and heightened
eutrophication. Based on these findings, they suggest that
environmental sustainability needs to be considered in opti-
mizing NRDs. Perignon et al. [125] proposed estimating the
environmental impact of food items using seven metrics: water
deprivation, land use, land use potential impacts on erosion
resistance, mechanical filtration, groundwater replenishment,
biotic production, and biodiversity. Furthermore, they reveal
the necessity to strike a balance between nutritional and envi-
ronmental objectives when formulating dietary recommenda-
tions and propose methods to achieve this by optimizing food
choices in the Mediterranean region, particularly in Tunisia.

V. SUSTAINABLE BUILDING RECOMMENDATION

Building recommendation systems are increasingly pivotal
in the construction and facility management sectors, crucial
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Fig. 6. Example of sustainable building recommendation.

for optimizing building performance, enhancing comfort, and
cutting operational costs. As buildings grow more complex and
demand more energy, the importance of deploying intelligent,
sustainable systems to efficiently manage and optimize these
structures becomes more pronounced. Energy consumption is
a critical issue in the building sector, which is responsible
for over 40% of global energy use [126]. Projections indicate
that this consumption will grow significantly, with an average
annual increase of around 1.3% from 2018 to 2050, and rates
exceeding 2% in some regions [127]. Current research in
sustainable building recommendations is primarily focused on
two key areas: residential buildings and commercial and large
buildings, as shown in Fig. 6. The key distinction between
residential and commercial building recommendations hinges
on their focus areas: residential strategies emphasize individ-
ual household energy optimization and behavior adjustments,
while commercial strategies tackle extensive energy manage-
ment and occupant engagement across larger infrastructures.

A. Recommender Systems in Residential Buildings

Research on residential building applications focuses on
developing recommendation systems that enhance energy effi-
ciency by targeting household energy consumption patterns
and behaviors [128]. In residential settings, energy use is
largely influenced by occupants’ daily routines and habits,
leading to significant variability in consumption. Hence, it
is vital to provide sustainable recommendations that help
residents seamlessly integrate energy-saving practices into
their daily lives, enhancing their ability to effectively manage
appliance use. This approach not only reduces energy waste
but also ensures that comfort and convenience are maintained,
addressing the growing need for sustainable living solutions
in response to increasing energy demands and environmental
concerns.

A significant portion of the literature on household energy
savings focuses on developing recommendation systems that
encourage behavioral changes to reduce energy consumption.
These systems leverage data analytics and machine learning
techniques to analyze user behaviors and provide tailored
recommendations that seamlessly integrate energy-saving ac-
tions into daily routines. For example, Sardianos et al. [129]
proposed a context-aware recommendation system that uses
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association rule mining to identify energy consumption pat-
terns and provide personalized suggestions, such as adjusting
heating settings based on contextual data like temperature,
to promote gradual behavior changes. Dahihande et al. [130]
developed a real-time recommendation system designed to op-
timize household energy usage. The system utilizes historical
consumption data to identify abnormal appliance use, offering
real-time and tailored advice that leads to substantial energy
savings. Similarly, Pruvost et al. [131] developed a rule-
based system that continuously monitors real-time building
data to deliver customized energy-saving strategies, helping
users make informed decisions to reduce energy consumption
effectively. Besides, Starke et al. [132] introduced the “Saving
Aid” recommendation system for household settings, aiming
at promoting energy-saving behaviors through two innovative
framing mechanisms: the “Savings Score”, which ranks rec-
ommendations based on kWh savings, and the “Smart Savings
Score”, which combines these savings with the perceived
effort required. This approach underscores the importance of
framing and presentation in encouraging sustainable behaviors
in households through personalized recommendations.

Some studies focus on optimizing appliance usage to min-
imize energy consumption by using advanced algorithms that
consider electricity prices, user preferences, and historical
usage patterns to identify the most energy-efficient operation
times. Jimenez et al. [133] developed a multi-agent recom-
mendation system that analyzes usage data from household
devices and current electricity prices to offer personalized
usage recommendations. This system helps users optimize
appliance use times, thereby reducing peak electricity con-
sumption and saving costs. Luo et al. [134] developed a collab-
orative filtering-based system that offers personalized energy-
efficient appliance-use recommendations by drawing on the
experiences of individuals with similar lifestyles while smarter
appliance habits. Besides, Riabchuk et al. [135] developed
a utility-based, context-aware system for load management
in residential buildings. It models user preferences based on
availability and device usage patterns, incorporating electricity
price forecasts and historical consumption data to suggest
optimal appliance start times for the following day, ensuring
efficient energy use without disrupting user routines.

B. Recommender Systems in Commercial and Large Buildings
Studies on commercial and large building applications focus

on complex environments like offices, shopping centers, and
public buildings, which require tailored strategies to balance
energy efficiency with occupant comfort and operational de-
mands [136], [137]. Unlike residential buildings, where energy
consumption is largely influenced by individual behaviors,
commercial and large buildings face challenges due to their
scale, diverse occupancy patterns, and significant energy loads.

Over the past decade, there has been a strong focus on
advancing nearly zero energy buildings (nZEBs) that utilize
renewable energy sources and sophisticated energy manage-
ment systems [126]. Despite the benefits, the implementation
of nZEBs has faced challenges globally, primarily due to the
substantial costs involved in their deployment [138]. Conse-
quently, research on sustainable building recommendations has

increasingly emphasized improving occupant comfort along-
side energy efficiency.

In commercial settings, maintaining occupant comfort while
achieving energy efficiency is a primary challenge. Research
in this area typically explores the use of advanced sensing
and control systems to dynamically adjust building parameters,
such as lighting and Heating, Ventilation, and Air Conditioning
(HVAC) operations, based on real-time data. Kar et al. [136]
developed a collaborative filtering system that optimizes in-
door lighting in open-plan offices by aligning individual com-
fort with energy efficiency. This system, learning from his-
torical user data gathered via sensors and smart applications,
employs machine learning techniques to customize lighting
recommendations, achieving an energy consumption reduction
of up to 72% compared to conventional methods. Wei et
al. [139] proposed energy-saving strategies by optimizing
occupant locations and schedules in commercial buildings.
This system offers two types of recommendations: relocating
occupants to different spaces and adjusting arrival or departure
times to reduce energy use. Using a simulator combined with
a Q-learning-based recommendation system, they evaluate the
potential energy savings of these adjustments. Wei et al. [140]
developed a system for optimizing energy use in commercial
buildings using a deep reinforcement learning model struc-
tured as a Markov decision process. This system evaluates
building conditions, identifies optimal energy-saving actions,
offers recommendations, and dynamically adapts based on user
feedback, ensuring scalability and efficiency across extensive
building networks. Besides, Pinto et al. [141] introduced a
multi-agent case-based reasoning (CBR) system for optimizing
energy management in buildings. This system leverages K-
NN clustering to identify patterns from historical data, applies
SVM for predictive accuracy, and uses an expert system
to fine-tune energy consumption recommendations based on
established rules.

General energy management systems in commercial build-
ings aim to provide holistic solutions that integrate multiple
building subsystems to optimize overall energy use. These
systems often combine data from various sources, such as
sensors, weather forecasts, and occupancy schedules, to de-
velop comprehensive energy-saving strategies. Sardianos et
al. [142] presented a versatile online recommendation system
applicable to both households and large public buildings. By
combining sensor data with user habits and feedback, the
system generates personalized energy efficiency recommen-
dations tailored to the specific needs of each building type.
Siddique et al. [143] developed a recommendation system
that leverages Smart Readiness Indicator (SRI) and Building
Information Modeling (BIM) data to enhance building energy
efficiency. The system specifically targets improvements in
HVAC systems and thermal insulation, offering practical rec-
ommendations that significantly reduce energy usage.

Furthermore, there remains a need for recommendation
systems that are flexible enough to be applied in both resi-
dential and commercial settings. These systems are tailored
to meet the unique requirements of various building types,
serving as flexible tools for diverse energy management needs.
Sardianos et al. [144] proposed a context-aware and explain-
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able recommendation system that generates personalized and
persuasive recommendations to optimize energy efficiency.
The system accounts for both environmental and economic
impacts, making it suitable for various building types, from
small residential units to large commercial complexes.

VI. BROADER APPLICATIONS OF SUSTAINABLE
RECOMMENDATIONS

Beyond the specific applications of sustainable recom-
mender systems in food, travel, and building, these systems
have the potential to contribute to sustainability efforts across a
broader range of domains. Sustainability-oriented recommen-
dation models are specifically designed to integrate sustainable
practices directly into the content of their recommendations,
focusing on influencing user behavior across environmental,
social, economic, and user-specific dimensions. By actively
promoting sustainable behaviors, such as recommending prod-
ucts and services that minimize environmental impacts, en-
courage energy-saving actions, or promote planned purchasing
to reduce waste [145]–[147], these models are particularly
effective in areas where consumer choices significantly impact
environmental outcomes.

This section explores the broader applications of sus-
tainable recommender systems, categorized into four main
areas: environmental and ecological sustainability, behavior
and social change, economic and productive sustainability,
and user-centric sustainable recommendation. This catego-
rization allows us to examine how recommender systems
can be specifically designed to address diverse sustainability
challenges by minimizing environmental impact, promoting
sustainable behaviors, supporting economic activities that align
with sustainability goals, and enhancing user engagement in
sustainability practices.

A. Environmental and Ecological Sustainability
Within the evolving landscape of sustainability-oriented

recommendation systems, a specialized segment of models
is increasingly dedicated to fostering environmentally respon-
sible behaviors. Leveraging state-of-the-art recommendation
algorithms, these models advocate for practices and products
that minimize environmental impact, such as reducing pollu-
tion and conserving resources, while enhancing biodiversity.

Building upon the foundation of sustainable practices within
the realm of recommendation systems, various researchers
have advanced methodologies that align technological inno-
vation with ecological preservation. Jnr [145] utilized CBR to
assist city planners in enhancing smart city initiatives towards
sustainability. The CBR recommendation system provides a
comprehensive approach to the sustainable development of
smart cities, focusing on not only technological and economic
development, but also the coordination and integration of
society, environment and governance. Lee et al. [146] de-
veloped a multi-period product recommender system for the
online food market, employing LSTM networks to improve
prediction accuracy across multiple purchasing periods. This
system encourages planned consumption and efficient pur-
chasing decisions, effectively reducing food waste by mini-
mizing the disposal of perishable items. Onile et al. [148]

introduced an optimization method for battery energy storage
systems in solar microgrids using multi-agent reinforcement
learning, aiming to improve grid stability, enhance consumer
comfort, and boost energy efficiency. Besides, Wibowo et
al. [149] explored biodiversity conservation and eco-friendly
recommendation systems, proposing a recommender system
designed to promote biodiversity by suggesting bumblebee-
friendly plants for domestic gardens.

B. Behavior and Social Change

By integrating user-specific data and social influences, sus-
tainable recommendation systems not only optimize personal-
ization but also promote behavioral changes that are critical
for environmental sustainability. Through strategies that range
from preference elicitation to the incorporation of gamification
within social platforms, researchers are uncovering innovative
ways to encourage eco-friendly choices, thereby enhancing
both user satisfaction and societal shifts towards sustainability.

Sustainable recommendation systems, greatly influenced
by social acceptance and behavioral change, primarily fo-
cus on altering consumer habits and societal norms towards
more sustainable practices [147]. By employing strategies
that encourage eco-friendly behaviors and cultivate a cultural
shift towards environmental responsibility, these systems ef-
fectively link individual actions to broader social impacts.
Knijnenburg et al. [150] explored how tailored preference
elicitation methods in recommendation systems can enhance
user satisfaction and encourage energy-saving behaviors. It
demonstrates that well-aligned preference elicitation methods
significantly improve the adoption of energy-saving measures,
thereby increasing user satisfaction with the system. Tomkins
et al. [151] developed a probabilistic model that enhances
the recommendation of sustainable products by integrating
freely available domain knowledge, product metadata, and
customer purchase patterns. This model improves recom-
mendation accuracy by scoring both products and customers
based on sustainability criteria. Silva et al. [152] explored the
integration of gamification strategies within social networks to
enhance user engagement and promote sustainable behaviors,
thus contributing to a more sustainable society. This array of
studies highlights the diverse and significant ways in which
recommendation systems, by focusing on behavior and social
change, can be tailored to enhance user experience and actively
promote sustainable practices across various sectors.

C. Economic and Productive Sustainability

In the realm of recommendation systems, a notable focus
is directed towards economic and productive sustainability.
This aspect emphasizes promoting economic activities that
are both profitable and environmentally responsible, aiming to
cultivate a balanced, sustainable economic environment. These
innovative systems integrate advanced algorithms to optimize
economic performance while adhering to sustainability prin-
ciples, striving to enhance efficiency, environmental care, and
economic viability across various industries.

This section delves into innovative applications of sus-
tainable recommender systems in the industrial field. For
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example, Capelleveen et al. [153] investigated how explicit
and implicit knowledge can be integrated in developing a
recommendation system for industrial symbiosis, arguing that
techniques based on implicit knowledge may offer superior
adaptability to the unique challenges of the industrial sym-
biosis data environment. Some work utilized multi-objective
optimization in recommendation systems to advance manu-
facturing and production industries. These models stand out
by integrating diverse objectives that not only target im-
provements in efficiency and service quality but also align
closely with sustainability goals, balancing economic and
environmental impacts while catering to the needs of various
stakeholders. Liu et al. [154] developed a recommendation
model that enhances cloud manufacturing services by incor-
porating sustainability and collaboration metrics, optimizing
service quality, eco-efficiency, and synergy through multi-
objective approaches. Similarly, Pachot et al. [155] introduced
a system designed to help companies diversify and improve
their production to meet both economic and environmental
goals, also considering the objectives of local authorities
and businesses to promote sustainable production systems.
Hyunwoo et al. [156] developed a session-based recommender
system tailored for sustainable digital marketing in the fashion
industry, utilizing item session data and attribute session data
with feature-weighted algorithms to enhance the accuracy of
promoting sustainable fashion products. This collection of
studies illustrates the broad application of recommendation
systems in promoting economic and productive sustainability
across various industries, utilizing techniques ranging from
multi-objective optimization to the integration of explicit and
implicit knowledge, all designed to enhance service quality,
environmental sustainability, and economic efficiency.

D. User-centric Sustainable Recommendation

User-centric approaches are increasingly recognized as a
crucial component within the evolving realm of sustainable
recommendation systems, effectively aligning with individual
user preferences to foster lasting sustainability practices. These
systems not only cater to immediate user preferences but also
adapt over time to sustain engagement and minimize resource
wastage. By harnessing advanced algorithms and user feed-
back, these recommender systems promise to enhance long-
term user satisfaction and promote sustainable consumption
habits across various platforms. This approach not only aligns
with environmental goals but also ensures that recommenda-
tions remain relevant and effective, encouraging users to make
choices that contribute positively to sustainability.

Besides focusing on specific areas of sustainability, research
also explores user-centric approaches. Hyun et al. [157] in-
troduced the Personalized Interest Sustainability-aware rec-
ommender system (PERIS), designed to predict which items
users will remain interested in over time, effectively addressing
the challenge of evolving user preferences. Lee et al. [158]
proposed a recommender system that incorporates green mar-
keting principles to steer consumers towards environmentally
friendly products. It uses an adaptive fuzzy inference mecha-
nism to evaluate options based on price, features, and green

attributes, aiming to boost consumer awareness and preference
for green products, thereby supporting environmental sustain-
ability. Sardianos et al. [159] introduced a context-aware, goal-
oriented recommendation system that helps users change their
energy consumption habits by prioritizing actions based on
user goals and adapting recommendations to user behavior
and environmental conditions. In academic collaborations,
sustaining partnerships is vital for recommendation systems.
Wang et al. [160] developed the SCORE model to improve
academic collaborator recommendations by focusing on the
longevity and effectiveness of these partnerships. Using three
key sustainability metrics and a random walk with restart
algorithm, SCORE prioritizes recommendations that support
long-term, successful collaborations.

This subsection delves into how recommender systems can
be strategically designed to advance sustainability across di-
verse domains. This exploration is organized into four distinct
categories: environmental and ecological sustainability, which
focuses on promoting eco-friendly choices that minimize
environmental impact; behavior and social change, which
leverages recommendation algorithms to foster sustainable
consumer behaviors and societal norms; economic and produc-
tive sustainability, which integrates sustainable practices into
economic activities by optimizing processes and aligning with
sustainability objectives; and user-centric sustainable recom-
mendations, which aim to sustain long-term user engagement
with environmentally responsible content to promote ongoing
sustainable behaviors.

VII. SUSTAINABLE DESIGN OF RECOMMENDER MODELS

In addition to exploring the diverse applications of sus-
tainable recommender systems, it is crucial to consider the
sustainability of the models themselves from a computational
perspective. The environmental impact of recommender sys-
tems is not only determined by the content they recommend
but also by the efficiency of the algorithms and computational
resources used to generate these recommendations. Recent
research has increasingly focused on developing eco-efficient
computational models that aim to reduce energy consumption,
carbon emissions, and resource usage within recommender
systems [161]–[163]. These models employ energy-efficient
algorithms, optimized computational processes, and sustain-
able hardware configurations to enhance system performance
while minimizing environmental impact. This focus on com-
putational sustainability is particularly important in large-
scale applications, where small improvements in efficiency can
lead to significant reductions in environmental footprint. The
subsequent sections will provide an in-depth examination of
the strategies and innovations driving the sustainable design
of recommender models, highlighting the importance of com-
putational efficiency in achieving broader sustainability goals.

A. Energy Consumption Analysis

As recommendation systems advance in complexity, their
energy consumption and environmental impact have become
pressing concerns. The continuous evolution of large models
necessitates significant computational resources, leading to
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substantial energy use and consequential carbon emissions.
This increasing demand highlights the critical need for energy
consumption analysis, aiming to balance computational effi-
ciency with sustainability. Understanding the energy footprint
of various algorithms is paramount to fostering sustainable
computing practices that mitigate the environmental impacts
of technological advancements.

As modern models, including large language models
(LLMs), grow increasingly complex and demand vast com-
putational resources, the primary task in advancing sustain-
ability is the analysis of algorithmic energy consumption,
with a particular focus on quantifying the specific energy
usage of existing research. Training models with billions of
parameters, such as GPT-3 or BERT, consumes substantial
energy, heavily relying on power-hungry GPUs and large data
centers. Strubell et al. [164], for instance, found that training
large AI models generates carbon emissions comparable to the
lifetime emissions of five cars. Similarly, Patterson et al. [165]
highlighted the massive energy demands and high carbon foot-
print of training GPT-3. Addressing these energy requirements
is not only critical for reducing costs but also essential for
mitigating environmental impact, prompting recent research
to explore how to reduce the energy consumption of rec-
ommendation systems and other AI models, making detailed
energy consumption analysis the foundation for achieving
more sustainable and responsible computing. Scells et al. [166]
analyzed the environmental impacts of information retrieval
(IR) technologies by quantifying the energy consumption
and emissions of the hardware used, and demonstrated the
carbon footprint of various IR methods through a series of
experiments. Spillo et al. [167] examined the environmental
impact of recommendation systems by analyzing the carbon
emissions associated with 18 different recommendation algo-
rithms. The study reveals that more complex algorithms often
result in minimal performance gains but significantly higher
carbon emissions, highlighting the need to balance algorithm
efficiency with environmental sustainability. Vente et al. [13]
conducted a comparative analysis of the environmental impact
of recommender systems by reviewing 79 experiments from
ACM RecSys conferences. This study compared traditional
artificial intelligence methods with contemporary deep learn-
ing techniques, uncovering that, on average, deep learning ap-
proaches produce 42 times more CO2 equivalents. This signifi-
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Fig. 8. Simplification and optimization methods in RSs.

cant increase in carbon emissions highlights the environmental
costs associated with advanced algorithms and underscores
the urgent need for integrating sustainable practices within
the field. Purificato et al. [168] analyzed the environmental
impact of using GNNs in recommender systems, specifically
focusing on carbon emissions and energy consumption, aiming
to balance recommendation performance with sustainability.

B. Algorithmic Simplification and Optimization

To achieve more efficient computation, both academia
and industry are now focused on developing simplified and
optimized recommendation systems aimed at creating more
sustainable solutions. This ongoing research seeks to reduce
the computational complexity and energy consumption of
recommendation algorithms, with the goal of balancing high
performance with environmental sustainability, ultimately con-
tributing to the development of more eco-friendly recommen-
dation systems.

Simplifying complex computational processes is an effec-
tive approach for sustainable algorithm development. Liu et
al. [169] developed GreenRec, a Green AI benchmark for
news recommendation systems, which uses an “Only-Encode-
Once” training paradigm to pre-train content encoders and
cache content vectors, thereby reducing redundant processing
and energy consumption. Lu et al. [162] proposed GreenFlow,
a computational allocation framework designed to minimize
the carbon footprint and energy demands of recommendation
systems. This system dynamically modulates computational
complexity using primal-dual optimization techniques, achiev-
ing significant reductions in energy use. In a practical appli-
cation within a mobile industry setting, GreenFlow managed
to cut computational needs by 41%, resulting in a daily
energy savings of 5000 kWh and a reduction of 3 tons of
carbon emissions, without impacting revenue generation. Yu
et al. [170] simplified graph contrastive learning for effi-
cient recommendations. Shrivastava et al. [161] developed the
BOLT framework, which is designed to enhance the efficiency
of neural recommendation models on CPUs. By utilizing
dynamic sparsity, BOLT significantly lowers computational
needs, facilitating scalable deployment on more affordable and
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accessible hardware, promoting sustainability in computational
practices. Beyond optimizing and simplifying algorithms, the
user interface of recommendation systems is also a key
factor in driving energy efficiency and reducing emissions.
In SelfCF [171] and BM3 [172], the authors eliminated the
requirement for negative sampling via constractive learning
in the recommendation model training process, thereby en-
hancing computational efficiency. Other models [173], [174]
froze the graph structure, thereby preventing it from being
modified during the recommendation process. This elimi-
nated the requirement for learning the graph structure during
training. Starke et al. [175] proposed the Rasch model in a
recommender system, which ranks energy-saving measures by
their difficulty and aligns them with a user’s ability. The results
show that tailored advice reduces user effort, increases system
support, and leads to more satisfactory energy-saving actions.

C. Model Compression

One effective strategy for developing eco-efficient computa-
tional recommendation systems is through model compression
techniques. Approaches like pruning [176], quantization [177],
[178], and knowledge distillation [179] are used to simplify
recommendation models, reducing their size and complex-
ity while maintaining performance. By cutting down on the
computational power needed for training and inference, these
methods help to significantly lower energy consumption.

Lightweight methodologies are also utilized to develop
eco-efficient recommender systems. Zhang et al. [163] in-
troduced SHARK, a model compression approach for large-
scale systems that integrates feature selection via first-order
Taylor expansion for pruning embedding tables and row-wise
quantization. SHARK significantly reduces memory usage
and improves query performance without sacrificing accuracy,
contributing to eco-efficiency by lowering energy consump-
tion and supporting sustainable, large-scale recommendation
systems. Another promising approach for developing sus-
tainable recommender systems is neural architecture search
(NAS) [180], [181], which automates the design of neural
networks by finding the most efficient architectures, balancing
model complexity and performance. These approach help cre-
ate lightweight, energy-efficient models, supporting the devel-
opment of sustainable recommender systems by reducing com-
putational demands and energy consumption. For example,
Ren et al. [182] proposed a NAS-based GreenSeq framework
designed to optimize the trade-off between computational
performance and environmental impact in recommendation
models. By creating a multi-layer search space that balances
lightweight and heavyweight neural operations, the framework
reduces the carbon footprint and energy consumption, par-
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ticularly during the inference stage of complex models like
Transformers.

D. Federated Learning and Edge Computing

With the advancement of edge computing and federated
learning [183]–[188], federated recommendation has emerged
as a new paradigm in recommendation systems, enabling the
offloading of substantial server-side computations to multiple
clients [189], [190]. These approaches process data locally,
reducing reliance on energy-intensive centralized data cen-
ters [191], [192]. By distributing computational tasks and
focusing on resource conservation, this strategy supports green
objectives, making recommendation systems more sustainable
while preserving performance. Maeng et al. [193] highlighted
the need to address the interdependence of system and data
heterogeneity in federated learning for recommender systems,
introducing the RF2 framework to evaluate its impact on
fairness and promote more energy-efficient and eco-friendly
AI models. Qu et al. [194] introduced CDCGNNFed, a novel
federated recommendation system that enhances privacy and
energy efficiency by allowing users to control data sharing
and utilizing localized processing through a cloud-device
collaborative graph neural network. This approach balances
privacy concerns with recommendation quality while promot-
ing sustainability by reducing energy consumption and the
environmental impact of traditional centralized systems. Sayed
et al. [191] introduced a smart, edge-based recommendation
system for internet of energy applications that improves energy
efficiency by providing real-time, personalized energy-saving
advice directly to users’ devices, enhancing privacy and reduc-
ing latency through local data processing. Besides, some works
focus on POI recommendation, for example, Wang et al. [195]
proposed a novel on-device POI recommender model (LLRec)
on resource-constrained mobile devices, which can be fully
compatible with the limited memory space and computing
resources. Chen et al. [196] proposed a distributed POI rec-
ommendation method that efficiently distributes computation
across multiple edge devices. This approach improves training
efficiency and contributes to environmental protection.
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The eco-efficient computational approaches discussed em-
phasize enhancing and optimizing the algorithms themselves,
utilizing techniques such as algorithmic simplification and
optimization, model compression, and the integration of fed-
erated learning and edge computing. These strategies aim to
boost computational efficiency, lower energy consumption, and
reduce carbon emissions, ultimately fostering the development
of more sustainable and eco-friendly recommender systems.

VIII. RESEARCH CHALLENGES AND FUTURE DIRECTIONS

A. Challenges

1) Public Datasets: The advancement of sustainable rec-
ommender systems is substantially impeded by the paucity of
publicly available datasets. Such datasets are indispensable for
the rigorous training, testing, and validation of these systems,
ensuring the generation of accurate and pertinent recommen-
dations. Majority of existing recommendation datasets lack
labels that connect directly with sustainability concepts, which
are critical for training models to make ecologically responsi-
ble recommendations. The limited availability of accessible,
diverse, and comprehensive datasets introduces significant
methodological constraints in sustainable recommender sys-
tems research.
• Scientific reproducibility limitations: Dataset inaccessibil-

ity fundamentally compromises the scientific community’s
capacity to validate and replicate experimental findings,
thereby impeding the essential peer verification processes
integral to scientific advancement.

• Benchmark standardization barriers: The absence of com-
mon datasets precludes the establishment of standardized
performance metrics, inhibiting objective comparative anal-
ysis of sustainable recommender systems.

• Representation biases: Dataset homogeneity introduces po-
tential systematic biases, potentially yielding models that
insufficiently address the diverse requirements of varied user
demographics and sustainability contexts, thereby compro-
mising model equity and applicability.

Hence, addressing this data deficiency is thus paramount for
advancing the field of sustainable recommendation systems
and their broader impact on sustainability initiatives.

2) Evaluation of Sustainability: The evaluation of RSs in
the context of sustainability presents a complex set of chal-
lenges, primarily stemming from the absence of standardized
metrics and the heterogeneity of sustainability criteria across
diverse domains.
• Domain-specific variability: Sustainability metrics vary sig-

nificantly across different sectors (e.g., energy, agriculture,
urban planning), making it difficult to establish universally
applicable evaluation criteria.

• Temporal considerations: The long-term impacts of recom-
mendations on sustainability outcomes are often challenging
to quantify and predict, necessitating longitudinal studies
that are resource-intensive and time-consuming.

• Multi-objective optimization: Sustainability often involves
balancing competing objectives (e.g., environmental preser-
vation vs. recommendation accuracy), complicating the de-
velopment of comprehensive evaluation frameworks.

While various ISO standards related to sustainability ex-
ist (e.g., ISO 14000 series for environmental management,
ISO 26000 for social responsibility), translating these broad
guidelines into domain-specific, quantifiable metrics for RS
evaluation remains a significant challenge. The process of
mapping and implementing these standards in specific domains
can be hindered by several factors:
• Abstraction level: ISO standards often provide high-level

principles that require substantial interpretation and adapta-
tion for application to RS in specific contexts.

• Lack of RS-specific guidance: Existing standards are not tai-
lored to the unique characteristics of recommender systems,
leaving significant ambiguity in their application.

• Data availability: The implementation of ISO-aligned met-
rics frequently requires data that may not be readily avail-
able or easily collectable within the RS operational context.

• Interdisciplinary expertise: Effective mapping of ISO stan-
dards to RS evaluation metrics demands collaboration be-
tween sustainability experts, domain specialists, and RS
researchers—a conjunction that is not always feasible.

B. Directions
Based on the challenges discussed regarding datasets and

evaluation of sustainability in recommender systems, the fol-
lowing research directions are proposed:
• Development of Sustainability-Centric Datasets: This di-

rection focuses on creating comprehensive, multi-domain
datasets specifically designed for training and evaluating
sustainable recommender systems. These datasets should
incorporate sustainability indicators (e.g.,, carbon footprint,
social impact scores) alongside traditional recommendation
data, enabling researchers to develop and test models that
balance user preferences with sustainability goals. This
direction supports sustainable practices by providing the
foundation for developing recommender systems that in-
herently consider sustainability factors. By incorporating
sustainability metrics into the core dataset, it encourages the
creation of algorithms that balance user preferences with en-
vironmental and social considerations, potentially leading to
more sustainable consumer behaviors and business practices.

• Long-term Impact Assessment Methodologies: This direc-
tion addresses the challenge of evaluating the long-term
sustainability effects of recommendations. It involves de-
veloping novel methodologies and tools for predicting and
measuring the extended impact of recommender systems
on sustainability outcomes. This research direction aligns
with sustainable practices by focusing on the long-term
consequences of recommendations. By developing tools to
predict and measure extended impacts, it encourages a more
holistic view of sustainability in recommender systems. This
approach can lead to the design of systems that optimize
for long-term sustainability rather than short-term gains,
potentially resulting in more resilient and environmentally
responsible recommendation practices.

IX. CONCLUSION

The urgency of addressing climate change and promoting
sustainable practices has become increasingly evident, neces-
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sitating technological interventions across multiple domains.
Recommender systems, which leverage user behavior patterns
to generate personalized suggestions, offer promising capa-
bilities for advancing sustainability initiatives and mitigating
climate-related challenges. This survey has comprehensively
examined the current progress in leveraging recommender
systems for sustainability advancement, encompassing a di-
verse range of eco-oriented applications and efficient model
architectures. The literature reveals promising developments
across a broad spectrum of domains including energy con-
servation, sustainable product recommendations, eco-friendly
transportation suggestions, environmentally sensitive building
solutions, and among others. However, substantial challenges
persist, particularly in the realms of sustainability-focused
dataset creation, standardized evaluation metrics, and long-
term impact assessment. Future research directions should
prioritize the development of multidimensional sustainability
metrics frameworks, the creation of domain-specific sustain-
ability datasets, and the formulation of models capable of
assessing the long-term environmental and social impacts of
recommendations. As the field progresses, interdisciplinary
collaboration between computer scientists, sustainability ex-
perts, and domain specialists will be crucial in realizing the
full potential of recommender systems as a tool for advancing
global sustainability goals and combating climate change.
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