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NONCOMMUTATIVE COMPLEX STRUCTURES FOR THE FULL QUANTUM

FLAG MANIFOLD OF Oq(SU3)

ALESSANDRO CAROTENUTO, RÉAMONN Ó BUACHALLA, AND JUNAID RAZZAQ

Abstract. In recent work, Lusztig’s positive root vectors (with respect to a distin-
guished choice of reduced decomposition of the longest element of the Weyl group) were
shown to give a quantum tangent space for every A-series Drinfeld–Jimbo full quan-

tum flag manifold Oq(Fn). Moreover, the associated differential calculus Ω
(0,•)
q (Fn)

was shown to have classical dimension, giving a direct q-deformation of the classical
anti-holomorphic Dolbeault complex of Fn. Here we examine in detail the rank two
case, namely the full quantum flag manifold of Oq(SU3). In particular, we examine the

∗-differential calculus associated to Ω
(0,•)
q (F3) and its non-commutative complex geom-

etry. We find that the number of almost-complex structures reduces from 8 (that is 2
to the power of the number of positive roots of sl3) to 4 (that is 2 to the power of the
number of simple roots of sl3). Moreover, we show that each of these almost-complex
structures is integrable, which is to say, each of them is a complex structure. Finally, we
observe that, due to non-centrality of all the non-degenerate coinvariant 2-forms, none
of these complex structures admits a left Oq(SU3)-covariant noncommutative Kähler
structure.

1. Introduction

Constructing a theory of noncommutative geometry for Drinfeld–Jimbo quantum groups
is a very important but very challenging problem. Despite numerous significant con-
tributions over the past three decades, this field remains largely under development.
Throughout the literature, the essential example has been the celebrated Podleś sphere
Oq(S

2), which serves as a fundamental test for evaluating new ideas. While many im-
portant questions remain, the Podleś sphere stands out for its relatively well understood
noncommutative geometry. This is in sharp contrast to the quantum group Oq(SU2),
where the obstruction posed by the non-existence of a bicovariant differential calculus
of classical dimension remains unresolved.

The Podleś sphere is the simplest example of a quantum flag manifold. For the last
two decades this class of quantum homogeneous spaces has been the focus of intense
study, as the noncommutative geometry community has tried to extend its understanding
of the Podleś sphere to this general class of examples. In particular, attention has
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focused on those quantum flag manifolds of irreducible type, a special, more tractable,
subfamily of the general quantum flag manifolds. This has seen many successes, the most
notable being Heckenberger and Kolb’s proof that the irreducible quantum flag manifolds
admit an essentially unique q-deformed covariant de Rham complex. This result directly
generalises Podleś’ construction and classification of differential calculi for Oq(S

2). It
has been shown that the noncommutative complex and Kähler geometry of the Podleś
sphere [30] extends to the irreducible quantum flag setting [39, 31], as does the Bott–
Borel–Weil theorem for Oq(S

2) [30, 27, 28, 26, 12, 11]. Following Connes’ C∗-algebraic
approach to noncommutative geometry, spectral triples have been constructed for many
irreducible quantum flag manifolds [15, 14, 16, 43, 32, 18], extending the construction of
Da̧browski–Sitarz for the Podleś sphere [17]. Recently, the family of quantum projective
spaces have been endowed with the structure of a compact quantum metric space [35],
extending the same construction for the Podleś sphere [1].

While many interesting and challenging problems remain in the irreducible setting, the
time has now come to start examining the non-irreducible situation. The first steps in
this direction have already been taken. For example, there is the work of Yuncken and
Voigt on the noncommutative geometry of the full quantum flag manifold of Oq(SU2),
which uses a quantum BGG sequence to verify the Baum–Connes conjecture for Uq(sl3)
[42]. More recently, Somberg and the second author constructed an anti-holomorhic
Dolbeault complex for the A-series full quantum flag manifolds using Lusztig’s root
vectors and extended the Borel–Weil theorem to this setting [40]. Subsequently, in [33]
Matassa introduced an alternative construction of first-order differential calculi for all
quantum flag manifolds.

To a certain extent, the full quantum flag manifolds look closer to the Podleś sphere
than the other irreducible quantum flag manifolds. For example, their relative Hopf

modules are all direct sums of line bundles. However, their differential calculi Ω
(0,•)
q (Fn)

have more noncommutative behaviour than the Heckenberger–Kolb calculi. In partic-
ular, their bimodule structure is more involved. This means that one cannot use the
monoidal version of Takeuchi’s categorical equivalence, a fact that has many important
consequences. In the present paper we restrict to the simplest example of a full quantum
flag manifold after the Podleś sphere, namely Oq(F3) the full quantum flag manifold of
Oq(SU3). This offers an accessible and tractable example, making it an excellent starting
point for future research in the non-irreducible setting. Just as Podleś’ work advanced
our understanding of the irreducible setting, Oq(F3) has the potential to do the same for
the non-irreducible case. Indeed, recent work of Brzezinski and Szymanski [10] described
Oq(F3) as the total space of a quantum fibration over the quantum projective plane, with
a Podleś sphere fibre Oq(S

2). The authors put this non-principal quantum fibration for-
ward as a motivating example for a proposed theory of noncommutative fibrations with
quantum homogeneous fibers. The first steps in this direction were recently taken in
[13], and a large family of new examples, extending the full flag manifold example, were
produced.

At the first-order level, we observe that just as in the classical case, there exist covari-
ant connections for the one-forms that are not torsion free. This contrasts with the
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Heckenberger–Kolb case, where we have a unique covariant connection and this con-
nection is torsion free. We then examine the maximal prolongation of the associated
differential ∗-calculus, showing that it has classical dimension, that it is a Koszul and
a Frobenius algebra, and we calculate the Nakayama automorphism σ. Notably, unlike
for the special anti-holomorphic sub-calculus, σ is not of classical type. We next classify
the left Oq(SU3)-covariant almost-complex structures on Ω•

q(F3). We find that the num-

ber of almost-complex structures reduces from 2|∆
+| (where ∆+ is a choice of positive

roots for sl3) to 2|Π| (where Π is the set of associated simple roots). This is because
certain almost-complex classical decompositions fail to be bimodule decompositions in
the quantum setting, due to the involved bimodule structure of the differential calculus.
An almost-complex structure admits a q-deformation only if it is integrable. When it
does, integrabillity carries over to the quantum setting, meaning that we do not have any
non-integrable noncommutative almost-complex structures. We contrast this with the
irreducible quantum flag manifolds that have a unique complex structure, up to identi-
fication of opposite complex structures. It is conjectured that this situation generalises
to all A-series full quantum flag manifolds.

An interesting observation is that the classical nearly Kähler structure of F3 is associ-
ated to one of the non-integrable almost complex structures, meaning that we do not
have a quantum nearly Kähler structure. Another very interesting feature is that the
natural quantum analogue of the standard Kähler form and in fact all non-degenerate
left Oq(SU3)-coinvariant forms, is no longer central. This implies that the calculus does
not admit a covariant non-commutative Kähler structure, nor a covariant metric in the
sense of Beggs and Majid.

Summary of the Paper. The paper is organised as follows: In §2 we recall some neces-
sary preliminaries about differential calculi, noncommutative complex structutres, and
Drinfeld–Jimbo quantum groups.

In §3 we present the differential calculus Ω1
q(F3) as the base of a homogeneous quantum

principal bundle and observe that the zero map gives a principal connection. We then
calculate the degree two relations of the maximal prolongation. Moreover, we present the
associated quantum exterior algebra as a Frobenius algebra and calculate its Nakayama
automorphism.

In §4 we discuss torsion for connections for covariant calculi over quantum homogeneous
spaces. We show that, under the assumption that the quantum isotropy subgroup is
cosemisimple, a covariant torsion free connection always exists. We also calculate the
dimension of the affine space of covariant connections, and torsion free covariant con-
nections, for Ω1

q(F3).

In §5 we classify the left Oq(SU3)-covariant almost-complex structures of Ω1
q(F3). We

show that of the 8 classical almost-complex structures, only four pass to the quantum
setting and that all of these are integrable. Finally, we examine how the standard
classical Kähler form behaves in the quantum setting. We see that there is a three
dimensional space of left Oq(SU3)-covariant 2-forms, and that none of these forms is
both non-degenerate and central.
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2. Preliminaries

In this section we recall some basic material about covariant differential calculi over Hopf
algebras and their associated tangent spaces. We use Sweedler notation, denote by ∆,
ε and S the coproduct, counit and antipode of a Hopf algebra respectively. We write
A◦ for the dual coalgebra (Hopf algebra) of a (Hopf) algebra A, and denote the pairing
between A and A◦ by angular brackets. Throughout the paper, all algebras are over
C and assumed to be unital, all unadorned tensor products are over C, and all Hopf
algebras are assumed to have bijective antipodes.

2.1. Quantum Homogeneous Spaces. We begin by briefly recalling Takeuchi’s equiva-
lence for relative Hopf modules, see [13, Appendix A] for more details. For A a Hopf
algebra, we say that a left coideal subalgebra B ⊆ A is a quantum homogeneous A-space
if A is faithfully flat as a right B-module and B+A = AB+, where B+ := ker(ε|B).
We denote by A

Bmod the category of relative Hopf modules which are finitely gener-
ated as left B-modules, and by πBmod the category of finite-dimensional left comodules
over the Hopf algebra πB(A) := A/B+A, which we call the quantum isotropy subgroup.
An equivalence of categories, known as Takeuchi’s equivalence, is given by the functor
Φ : A

Bmod → πBmod, where Φ(F) = F/B+F , for any relative Hopf module F , and the

functor Ψ : πBmod → A
Bmod is defined using the cotensor product �πB

over πB(A). A
unit for the equivalence is given by U : F → (Ψ ◦Φ)(F), where U(f) = f(1) ⊗ [f(0)], and
[f(0)] denotes the coset of f(0) in Φ(F). For the special case where B = A, Takeuchi’s
equivalence is known as the fundamental theorem of Hopf modules [36].

2.2. Covariant Differential Calculi over Hopf algebras. A differential calculus, or a dc,
is a differential graded algebra (dga)



Ω• ≃
⊕

k∈Z≥0

Ωk,d





that is generated as an algebra by the elements a,db, for a, b ∈ Ω0. When no confusion
arises, we denote the dc by Ω•, omitting the exterior derivative d. We denote the degree
of a homogeneous element ω ∈ Ω• by |ω|. For a given algebra B, a differential calculus
over B is a differential calculus such that B = Ω0. We say that ω ∈ Ω• is closed if dω = 0.
If B′ is a subalgebra of B then the restriction of Ω•(B) to B′ is the dga generated by
the elements db′, for b′ ∈ B′.

A first-order differential calculus (fodc) over an algebra B is a pair (Ω1(B),d), where
Ω1(B) is a B-bimodule and d : B → Ω1(B) is a derivation such that Ω1 is generated
as a left (or equivalently right) B-module by those elements of the form db, for b ∈ B.
We say that a dc (Γ•,dΓ) extends a fodc (Ω1,dΩ) if there exists a bimodule isomorphism
ϕ : Ω1 → Γ1 such that dΓ = ϕ ◦ dΩ. It can be shown [38, §2.5] that any fodc admits an
extension Ω• which is maximal in the sense that there exists a unique differential map
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from Ω• onto any other extension of Ω1. We call this extension the maximal prolongation

of Ω1.

For A a Hopf algebra, and B ⊆ A a quantum homogeneous space, a dc Ω• over B is said
to be left covariant if the coaction ∆L : B → A ⊗ B extends to a (necessarily unique)
coaction ∆L : Ω• → A⊗ Ω•, giving Ω• the structure of a left A-comodule algebra such
that d is a left A-comodule map. We see that Ω• is naturally an object in A

BModB . For
any covariant dc Ω• we usually find it notationally convenient to denote V • := Φ(Ω•).

2.3. Some Remarks on Quantum Homogeneous Tangent Spaces. Let A be a Hopf alge-
bra, and W ⊆ A◦ a Hopf subalgebra of A◦, such that

B := WA =
{

b ∈ B | b(1)〈b(2), w〉
}

is a quantum homogeneous A-space, and denote by B◦ its dual coalgebra. A tangent

space for B is a subspace T ⊆ B◦ such that T ⊕C1 is a right coideal of B◦ and WT ⊆ T .
For any tangent space T , a right B-ideal of B+ is given by

I :=
{

x ∈ B+ |X(x) = 0, for all X ∈ T
}

,

meaning that the quotient V 1 := B+/I is naturally an object in the category πBModB.
We call V 1 the cotangent space of T . Consider now the object

Ω1(B) := A�πB
V 1.

If {Xi}
n
i=1 is a basis for T , and {ei}

n
i=1 is the dual basis of V 1, then the map

d : A → Ω1(B), a 7→

n
∑

i=1

(X+
i ⊲ a)⊗ ei

is a derivation, and the pair (Ω1(B),d) is a left A-covariant fodc over B. This gives
a bijective correspondence between isomorphism classes of finite-dimensional tangent
spaces and finitely-generated left A-covariant fodc [22].

In order to give an explicit presentation of the maximal prolongation of a left A-covariant
fodc Ω1(B), we need to recall the notion of a framing calculus: A framing calculus for
Ω1(B) is a left A-covariant fodc Ω1(A) ≃ A ⊗ Λ1 over A that restricts to Ω1(B), such
that V 1 embeds into Λ1, and the image of V 1 in Λ1 is a right A-submodule of Λ1.

Let Ω1(A) ≃ A⊗Λ1 be a framing calculus for Ω1(B), and let I ⊆ B+ be the corresponding
ideal of the fodc. Consider the subspace

I(2) :=
{

ω(y) := [y+(1)]⊗ [y+(2)] | y ∈ I
}

⊆ V 1 ⊗ V 1 ⊆ Λ1 ⊗ Λ1.

Starting from the the tensor algebra T (V 1 of V 1, we construct the Z≥0-graded algebra

V • :=
⊕

k∈Z≥0

V k := T
(

V 1
)

/〈I(2)〉,

which we call the quantum exterior algebra of Ω1(B), and whose multiplication we denote
by ∧, motivated by the classical situation. An isomorphism between F (Ωk(B)) and V k,
for k ∈ Z≥0, is determined by

[db1 ∧ · · · ∧ dbk] 7→ [b+1 ] ∧ · · · ∧ [b+k ],
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giving us an explicit description of the maximal prolongation.

2.4. First-Order Differential ∗-Calculi. A ∗-differential calculus, or a ∗-dc, over a ∗-
algebra B is a differential calculus over B such that the ∗-map of B extends to a (neces-
sarily unique) conjugate-linear involution ∗ : Ω•(B) → Ω•(B) satisfying d(ω∗) = (dω)∗,
and

(ω ∧ ν)∗ = (−1)klν∗ ∧ ω∗, for all ω ∈ Ωk, ν ∈ Ωl.

If we now assume that A is a Hopf ∗-algebra, and that Ω1(A) is a left A-covariant fodc
over A, with corresponding tangent space T, then Ω1(A) is a ∗-fodc iff T ∗ = T , [29,
Proposition 14.1.2] for details. Consider next the case where T ∗ 6= T . Since

∆(X∗) = X∗
(1) ⊗X∗

(2) ∈ (T ∗ ⊕ C)⊗A◦,

T ∗ is a tangent space. implying in turn that T + T ∗ is a tangent space. We call T + T ∗

the ∗-extension of T .

2.5. Preliminaries on the Full Quantum Flag Manifold of Oq(SU3). In this subsection
we recall the definition of the Drinfeld–Jimbo quantised enveloping algebra of the simple
Lie algebra sl3, the quantum coordinate algebra Oq(SU3). For more details, we direct the
reader to [29] where the general definitions of the Drinfeld–Jimbo quantised enveloping
algebras and their dual quantum coordinate algebras are given.

The algebra Uq(sl3) is generated by the elements E1, E2, F1, F2,K
±
1 , and K±

2 , subject to
the relations

K±1
i Ej = q±aijEjK

±1
i , K±1

i Fj = q∓aijFjK
±1
i ,(1)

K±1
i K±1

j = K±1
j K±1

i , [Ei, Fj ] = δij
Ki −K−1

i

q − q−1
,(2)

where (aij) is the Cartan matrix of sl3, and the two Serre relations

E2
1E2 − (q + q−1)E1E2E1 + E1E

2
2 , F 2

1F2 − (q + q−1)F1F2F1 + F1F
2
2 .(3)

A Hopf algebra structure on Uq(sl3) is determined by the coproduct formulae

∆(Ei) = Ei ⊗Ki + 1⊗Ei, ∆(Fi) = Fi ⊗ 1 +K−1
i ⊗ Fi, ∆(Ki) = Ki ⊗Ki,

and the counit formulae

ε(Ei) = ε(Fi) = 0, ε(K±1) = 1.

Moreover, a Hopf ∗-algebra structure is given by

E∗
i = KiFi, F ∗

i = EiK
−1
i , K∗

i = Ki.

Let uij , for i, j = 1, 2, 3, be the elements of Uq(sl3)
◦, the Hopf dual of Uq(sl3), defined by

the coproduct formula ∆(uij) =
∑3

a=1 uia ⊗ uaj , and the fact that their only non-zero
pairings with the non-unital generators of Uq(sl3) are given by

〈E1, u21〉 = 〈E2, u32〉 = 〈F1, u12〉 = 〈F2, u23〉 = 1, 〈K±1
i , ujj〉 = q±(δi,j−1−δij).

We denote by Oq(SU3) the subalgebra of Uq(sl3)
◦ generated by the elements uij . for

i, j = 1, 2, 3, and call it the quantum coordinate algebra of SU3. It is clear that Oq(SU3)
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is a sub-bialgebra of Uq(sl3)
◦. In fact, it is a Hopf subalgebra of Uq(sl3)

◦ whose antipode
satisfies

S(uij) = (−q)i−j(ukmuln − quknulm),

where {k, l} := {1, 2, 3}\{j}, and {m,n} := {1, 2, 3}\{i}. Moreover, it is a Hopf ∗-
algebra with respect to the ∗-map defined by (uij)

∗ = S(uji), for all i,= 1, 2, 3.

2.6. Preliminaries onOq(F3) the Full Quantum Flag Manifold ofOq(SU3). Consider now

the commutative subalgebra of Uq(sl3) generated by {K±1
i | i = 1, 2} which we denote by

Uq(h). This is a Hopf subalgebra of Uq(sl3) and we define the full quantum flag manifold

Oq(F3) to be the space of invariants of Oq(SU3) with respect to the restriction of the
action of Uq(sl3) to Uq(h):

Oq(F3) :=
Uq(h)Oq(SU3).

The full quantum flag manifold is a quantum homogeneous space, and a special example
of the general class of quantum homogenous spaces called quantum flag manifolds, see
[21, 24, 13] for more details.

The decomposition of Oq(SU3) into homogeneous components with respect to the action
of Uq(h) is equivalent to having a P+ = Z

2 grading

Oq(SU3) =
⊕

λ∈P+

Eλ,(4)

where each Ek is an equivariant line bundle over Oq(F3), that is an invertible object in
the category of relative Hopf bimodules over Oq(F3). We see that E0 = Oq(F3). See [13,
§5] for further details. Moreover, on generators we see that

ui1 ∈ E−̟1 , ui2 ∈ E̟1−̟2 , ui3 ∈ E̟2 ,(5)

for all i = 1, 2, 3, which completely determines the P+-grading.

The subalgebra Oq(CP
2) of Oq(SU3) generated by the elements zα1

ij := ui1u
∗
j1, for i, j =

1, 2, 3, is called the quantum projective plane [15, 21, 27, 34, 37]. An isomorphic copy of
the quantum projective plane is generated by the elements zα2

ij := ui3u
∗
j3, for i, j = 1, 2, 3.

Both algebras are contained in Oq(F3), and together they generate Oq(F3) as an algebra.
Moreover, both subsalgebras are quantum homogeneous spaces, and in fact also examples
of quantum flag manifolds, again see [13, §5] for further details.

Let us next introduce some notation

zα1
i := ui1, for i = 1, 2, 3, zα2

i := ui3, for i = 1, 2, 3.(6)

The ∗-algebra Oq(S
5) generated by the elements zα1

i is known as the quantum 5-sphere,
or the Vaksmann–Soibelmann 5-sphere. An isomorphic ∗-algebra is generated by the
elements zα2

i . From (5) above, we immediately see that

zα1
i ∈ E̟1 , zα1

i := (zα1)∗ ∈ E−̟1 zα2
i ∈ E̟2 , zα2

i := (zα2
i )∗ ∈ E−̟2 .

In fact, since these elements generate Oq(SU3) as a ∗-algebra, this gives an alternative
complete description of the P+-grading.
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3. The Lusztig–de Rham Complex of Oq(F3)

In this section we present the main result of the paper, a q-deformation of the classical
de Rham complex of the full flag manifold of SU3. We extend the construction of [40],
where a quantum tangent space T (0,1) was constructed that q-deforms the classical anti-
holomorphic tangent space of F3. We start by considering the ∗-extension of T (0,1),
and then look at the maximal prolongation of its associated fodc. Finally, the quantum
exterior of the prolongation is considered as a Frobenius algebra.

3.1. The ∗-Extension of T (0,1). In what follows, we find it convenient to denote the
positive simple generators E1 and E2 by Eα1 and Eα2 respectively. In addition we will
also consider the non-simple root vector

Eα1+α2 := [E2, E1]q−1 .

We can understand Eα1+α2 as a Lusztig root vector. Explicitly, recall that the Weyl
group of sl3 is the symmetric group S3, with standard generators s1 and s2. Then, with
respect to the reduced decomposition s2s1s2 of the longest element of sl3, the element
Eα1+α2 is the associated non-simple quantum root vector. See [29, §6.2], or [40, Appendix
A], for a more detailed presentation of Lusztig’s root vectors. Consider now the subspace

T (0,1) := spanC

{

Eα1 , Eα2 , Eα1+α2

}

.(7)

As shown in [40, Example 3.2.], we have the identity

∆(Eα1+α2) = Eα1+α2 ⊗K1K2 + q−1νEα1 ⊗ Eα2K1 + 1⊗ Eα1+α2 .(8)

Thus we see that T (0,1) is a quantum tangent space for Oq(SU3).

Next we consider the quantum tangent space T , the ∗-extension of T (0,1). We denote
T (1,0) := (T (0,1))∗ and we see it is spanned by the elements

Fα1 := E∗
α1

= K1F1, Fα2 := E∗
α2

= K2F2, Fα1+α2 := E∗
α1+α2

= q−1K1K2[F1, F2]q−1 .

Moreover, we can conclude the following coproduct formula

∆(Fα1+α2) = Fα1+α2 ⊗K1K2 + νFα1 ⊗ Fα2K1 + 1⊗ Fα1+α2 .(9)

Denote the associated ∗-fodc by Ω1
q(SU3), its cotangent space by Λ1, and the basis of Λ1

dual to the defining basis of T by
{

eγ , fγ | γ ∈ ∆+
}

.

The following lemma gives explicit representatives for the the cosets of the dual basis.
These representatives will be used in a number of calculations in this section.

Lemma 3.1. It holds that

eα1 = [u21], eα2 = [u32], eα1+α2 = [u31],

fα1 = [qu12], fα2 = [qu23], fα1+α2 = [q2u13].
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Proof. The representatives for the positive basis elements were established in [40, Lemma
3.6]. The negative representatives are produced similarly. For example, the calculation

〈Fα1 , u12〉 = 〈K1F1, u12〉 = 〈K1, u11〉〈F1, u12〉 = q−1,

implies that qu12 is a representative for the coset fα1 . �

The following proposition determines the right Oq(SU3)-module structure of Λ1. The
proof is completely analogous to that of [40, Proposition 3.7] and so we omit it.

Proposition 3.2. The right Oq(SU3)-module structure of Λ1 is determined by

eγukk = q−(γ,εk)eγ , fγukk = q−(γ,εk)fγ ,

eα1u32 = νeα1+α2 , fα1u23 = q−1νfα1+α2 ,

with all other actions by the generators uij being zero.

Just as in [40, §3.4], we now find it instructive to present the non-diagonal actions in the
form of a graph. Arrange the basis elements in their natural upper and lower triangular
form and draw an arrow from one basis element b to another b′ if there exists a generator
uji such that buji is a scalar multiple of b′:

*

*

*

3.2. AQuantumPrincipal Bundle. In this section we prove that the pair (Oq(SU3),Ω
1
q(SU3))

gives a quantum principal bundle according to Brzeziński and Majid [4, 9], whose defi-
nition we recall here.

Definition 3.3. Let H be a Hopf algebra. A quantum principal H-bundle is a pair
(P,Ω1(P )), consisting of a right H-comodule algebra (P,∆R) and a right-H-covariant
calculus Ω1(P ), such that:

1. P is a Hopf–Galois extension of B = P co(H).
2. If N ⊆ Ω1

u(P ) is the sub-bimodule of the universal calculus corresponding to
Ω1(P ), we have ver(N) = P ⊗ I, for some Ad-sub-comodule right ideal

I ⊆ H+ := ker(ε : H → C),

where Ad : H → H ⊗H is defined by Ad(h) := h(2) ⊗ S(h(1))h(3).

Denoting by Ω1(B) the restriction of Ω1(P ) to B, and Λ1(H) := H+/I, the quantum
principal bundle definition implies that an exact sequence is given by

0 −→ PΩ1(B)P
ι

−→Ω1(P )
ver
−→ P ⊗ Λ1(H) −→ 0,(10)
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where by abuse of notation ver denotes the map induced on Ω1(P ) by identifying Ω1(P )
as a quotient of Ω1

u(P ). We denote Ω1(P )hor := PΩ1(B)P and call this subspace the
horizontal forms of the bundle.

In this subsection we construct a quantum principal bundle from our fodc Ω1
q(SU3).

Proposition 3.4. For the quantum homogeneous space Oq(F3), a quantum principal bun-

dle is given by the pair (Oq(SU3),Ω
1
q(SU3)).

Proof. Since Oq(F3) is a quantum homogeneous space, it suffices to show that Ω1
q(SU3)

is a right covariant fodc. As discussed in [40, §2.2], this would follow from the identity
Uq(h)T = T , where the action of Uq(h) on T is given by the right adjoint action. However,
since T is spanned by root vectors, this is clear. �

Corollary 3.5. Denoting the cotangent space of Ω1(B) by V 1, an isomorphism in the

category of Uq(h)-modules is given by

V 1 → Λ1, [b] 7→ [b].

Proof. The fact that this is an injective module map follows from [30, Theorem 2.1].
(See also the discussion in [40, §4.2].) Surjectivity follows from the fact that each basis
element of the tangent space T pairs non-trivially with an element of Oq(F3). Explicitly,
the pairings

〈Eα1 , z
α1
21 〉, 〈Eα2 , z

α2
32 〉, 〈Eα1+α2 , z

α1
31 〉, 〈Eα1+α2 , z

α2
31 〉,

〈Fα1 , z
α1
12 〉, 〈Fα2 , z

α2
23 〉, 〈Fα1+α2 , z

α1
13 〉, 〈Fα1+α2 , z

α2
13 〉.

are all non-zero scalars. �

Let us now recall the definition of a framing calculus for a quantum homogeneous space
B ⊆ A. For any first-order differential calculus Ω1(B) over B, a framing calculus Ω1(B)
is a fodc over A such that Ω1(B) is the restriction of Ω1(A) to B and Ω1(B)A ⊆ AΩ1(B).

Corollary 3.6. It holds that Ω1
q(SU3) is a framing calculus for Ω1(F3).

Proof. Since the embedding in Corollary 3.5 above is surjective, the image of V 1 is
obviously a right Oq(SU3) submodule of Λ1. It now follows from [38] that

Ω1
q(F3)Oq(SU3) = (Oq(SU3)�πB

V 1)Oq(SU3) ⊆ Oq(SU3)⊗ V 1 = Oq(SU3)Ω
1
q(F3).

Thus Ω1
q(SU3) is a framing calculus, as claimed. �

Finally, following the argument of [11, Proposition 5.8], we see that Corollary 3.5 implies
the existence of a principal connection for the quantum bundle.

Corollary 3.7. The zero map on Ω1
q(SU3) is a left Oq(SU3)-covariant connection for the

quantum principal bundle (Oq(SU3),Ω
1
q(SU3)).
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3.3. The Higher Forms. In this section we use the results of [38, §5] to calculate the
degree two relations of the maximal prolongation of the fodc Ω1

q(F3).

Theorem 3.8. A full set of relations for the algebra V • is given by the following three

sets of identities: The first set is given by

eγ ∧ eβ = −q(β,γ)eβ ∧ eγ , fγ ∧ fβ = −q−(β,γ)fβ ∧ fγ , for all β ≤ γ ∈ ∆+,

the second set of relations is given by

eγ ∧ fβ = −q(β,γ)fβ ∧ eγ , for all β 6= γ ∈ ∆+, or for β = γ = α1 + α2,

and the third set is given by the two identities

eα1 ∧ fα1 = −q2fα1 ∧ eα1 − νfα1+α2 ∧ eα1+α2 ,

eα2 ∧ fα2 = −q2fα2 ∧ eα2 + νfα1+α2 ∧ eα1+α2 .

Proof. Using the description of the right Oq(SU3)-module structure of Λ1 given above,
one can observe the following set of identities, analogous to those in Lemma 3.1:

[S(u21)] = −qeα1 , [S(u32)] = −qeα2 , [S(u31)] = −qeα1+α2 ,

[S(u12)] = −q−2fα1 , [S(u23)] = −q−2fα2 , [S(u13)] = −q−5fα1+α2 .

Moreover, we have the second set of identities, analogous to those in Proposition 3.2:

eγS(ukk) = q(γ,εk)eγ , fγS(ukk) = q(γ,εk)fγ ,(11)

eα1S(u32) = −νeα1+α2 , fα1S(u23) = −q−3νfα1+α2 ,(12)

with all other actions by the antipoded generators S(uij) being zero.

From these identities, we can now see that the following set is the dual basis of V 1:

eα1 = q−1[zα1
21 ], eα2 = −q−1[zα2

32 ], eα1+α2 = q−1[zα1
31 ] = −q−1[zα2

31 ]

fα1 = −q2[zα1
12 ], fα2 = q2[zα2

23 ], fα1+α2 = −q5[zα1
13 ] = q3[zα2

13 ].

We next introduce a set of generators for the ideal of the tangent space from the de-
scription of the right Oq(SU3)-module structure of Λ1is given above. We divide the set
of generators according to their polynomial degree. To do so we find it convenient to
introduce the subset of Z3

>0

B :=
{

(1, 2, 1), (1, 1, 2), (1, 3, 1), (1, 1, 3), (2, 3, 2), (2, 2, 3), (2, 3, 1), (2, 1, 3)
}

.

Consider now the degree one polynomials

G1 :=
{

zαi

ab | (i, a, b) /∈ B
}

∪
{

zα1
31 + zα2

31 , q
2zα1

13 + zα2
13

}

Next consider the quadratic polynomials

G2 :=
{

zαi

kl (z
αp

ab )
+ | (i, k, l) ∈ B\{(1, 2, 1), (2, 3, 2)}, p = 1, 2, a, b = 1, 2, 3

}

,

G3 :=
{

zαi

kl (z
αp

ab )
+ | (i, k, l) ∈ B, (p, a, b) 6= (2, 3, 2), (2, 2, 3)

}

,

G4 :=
{

zα1
21 z

α2
32 − νzα2

31 , z
α1
12 z

α2
23 − νzα1

13

}

.
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Collecting these elements together gives us our proposed set of generators

G := G1 ∪G2 ∪G3 ∪G4.

Indeed, since it is clear that

dim
(

Oq(F3)
+/〈G〉

)

≤ 6,

where 〈G〉 is the right ideal of Oq(F3)
+ generated by the elements of G, we see that G

gives a full set of generators.

Calculating the action of the map ω on these generators is now a routine calculation, as
explicitly presented in [38, Proposition 5.8] for the case of quantum projective space, and
in [40, §3.3] for the anti-holomoprhic complex of the A-series full quantum flag manifold.
As an example, we take the generator zα1

22 , and note that

ω(zα1
22 ) =

∑

a,b

[u2aS(ub2)]⊗ [zα1
ab ]

= [u22S(u12)]⊗ [zα1
21 ] + [u23S(u12)]⊗ [zα1

31 ] +

[u21S(u22)]⊗ [zα1
12 ] + [u21S(u32)]⊗ [zα1

13 ](13)

Using identities in 11 and 12, we computed:

[u22S(u12)] = −q−2fα1 , [u23S(u12)] = 0

[u21S(u22)] = q−1eα1 , [u21S(u32)] = −νeα1+α2

Substituting these values in Eq. 13 we get:

w(zα1
22 ) = −q−1fα1 ⊗ eα1 − q−3eα1 ⊗ fα1 + q−5νeα1+α2 ⊗ fα1+α2 .

Therefore, the relation w(zα1
22 ) = 0 gives us:

eα1 ∧ fα1 = −q2fα1 ∧ eα1 + q−2νeα1+α2 ∧ fα1+α2 .

Continuing as such gives us the claimed set of relations. Finally, we observe the descrip-
tion of the right Oq(SU3)-module structure of Λ1 given in Proposition 3.2 implies that
the relations form a right Oq(F3)-submodule of V 1 ⊗ V 1. Thus they give a full set of
relations. �

In the next corollary we consider Ω(A), the maximal prolongation of Ω1(A). In view of
the fundamental theorem of Hopf modules, for each k ∈ Z one hase

Ωk(A) = A⊗ Λk

and the following holds.

Corollary 3.9. For k = 1, . . . , 6 = |∆|, a basis of Λk is given by
{

eγ1 ∧ · · · ∧ eγa ∧ fγ1 ∧ · · · ∧ fγb | γ1 < · · · < γk ∈ ∆+
}

.

In particular, it holds that

dim
(

V k
)

=

(

|∆|

k

)

, and dim
(

V •
)

= 2|∆|.
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Proof. It is clear from the set of relations given in Theorem 3.3 that the proposed basis
is a spanning set. To prove that its elements are linearly independent, let 〈Λ1〉 be the
free monoid generated by elements of Λ1 and let S∆+ := (W∆+ , f∆+) be the reduction
system in the free algebra C〈Λ1〉 corresponding to the set of relations 3.3, namely

(eγ ⊗ eβ , −q(β,γ)eβ ⊗ eγ), (fγ ⊗ fβ,−q−(β,γ)fβ ⊗ fγ), for all β ≤ γ ∈ ∆+,

(eγ ⊗ fβ, −q(β,γ)fβ ⊗ eγ) for all β 6= γ ∈ ∆+, or for β = γ = α1 + α2,

(eα1 ⊗ fα1 , −q2fα1 ⊗ eα1 − νfα1+α2 ⊗ eα1+α2 , )

(eα2 ⊗ fα2 , −q2fα2 ⊗ eα2 + νfα1+α2 ⊗ eα1+α2).

Let ≪ denote the total ordering such that for every β, γ ∈ ∆+

fβ ≪ eγ

and

β ≤ γ ∈ ∆+ ⇒ eβ ≪ eγ , fγ ≪ fβ.

Then S∆+ is a reduction system compatible with the ordering ≪ and it is easy to verify
that it has no ambiguities, hence from Bergmann’s diamond lemma [6] the set of algebra
relations 3.3 is linearly independent and the spanning set given above is a basis. �

Remark 3.10. The form of the anti-holomorphic relations given above imply that the dc

Ω
(0,•)
q (F3) given in [40, §5] is in fact the maximal prolongation of the fodc Ω

(0,1)
q (F3).

Remark 3.11. Unlike the fodc Ω
(0,1)
q (SUn+1) considered in [40, §3], the maximal prolon-

gation of Ω1
q(F3) does not have classical dimension, and restricts to a dc over Oq(SU3) of

non-classical dimension. This is our motivation for calculating the maximal prolongation
of Ω1

q(F3) directly.

3.4. Restriction to the Heckenberger–Kolb Calculus of the Quantum Projective Plane.

As explained in §2.6, we have two copies of the quantum projective plane Oq(CP
2),

arising as subalgebras of Oq(F3). Each subalgebra comes endowed with a left Oq(SU3)-

covariant fodc of classical dimension Ω1
q(CP

2), known as the Heckenberger–Kolb fodc

[23]. For the copy of the quantum projective plane generated by the elements zα1
ij , the

quantum tangent space T ⊆ Oq(CP
2)◦ of Ω1

q(CP
2) is given by

T := {F1, F2F1, E1, E2E1}.

The tangent space of the second copy of the quantum projective plane is given by

T := {F2, F1F2, E2, E1E2}.

The following lemma is an easy extension of [40, Proposition 4.2], for the rank 2 case,
to include the holomorphic parts of the Heckenberger–Kolb dc, and so, we omit it.

Lemma 3.12. The fodc Ω1
q(F3) restricts to the Heckenberger–Kolb fodc for both copies of

the quantum projective plane.

Let A be an algebra endowed with a dc Ω•(A), and let B ⊂ A be a subalgebra. The
restriction Ω•(B) of Ω•(A) to B is the subalgebra of Ω•(A) generated by the elements b
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and db′, for b, b′ ∈ B. We note that Ω•(B) is of course a dc. We note that the first-order
part Ω1(B) of the restriction dc is, of course, equal to the restriction of Ω1(A) to B.

Denoting by (Max(Ω1(B)), d′) the maximal prolongation of Ω1(B) we have a surjection

p : Max(Ω1(B)) → Ω•(B),

uniquely defined by

p(b0db1 ∧ · · · ∧ dbk) = b0d
′b1 ∧ · · · ∧ d′bk.

It is clear that if p is an injective map, then we have an isomorphism of dc.

For the case that A is a Hopf algebra, B a quantum homogeneous A-space, and Ω•(A) a
left A-covariant dc, then it is clear that p is a morphism in the category of relative Hopf
modules. Thus we can see that p is injective if and only if Φ(p) is injective.

For the case of the quantum projective plane, we can calculate the dimension of the
restricted dc using the same approach as used in [40, Proposition 4.8]. This shows us
that the dimension is classical, just as is well-known for the Heckenberger–Kolb dc [24,
§3.3]. Thus we see that Φ(p) is injective, giving us the following proposition.

Proposition 3.13. The dc Ωq(F3) restricts to the Heckenberger–Kolb dc for both copies

of Oq(CP
2).

The question of how the covariant complex structures of the Heckenberger–Kolb dc relate
to the possible covariant complex structures on Ω1

q(F3) will be considered in §5.

3.5. A Filtration for the Quantum Exterior Algebra. Consider the following total order
on the roots of sl3:

α1 ≥ −α1 ≥ α2 ≥ −α2 ≥ α1 + α2 ≥ −(α1 + α2).(14)

Following the approach of [40, Appendix B], this gives us a filtration on V •. We denote
the associated graded algebra by grF .

Proposition 3.14. The algebra grF is generated by the elements eγ , fγ, for γ ∈ ∆+,

subject to the relations, for all β ≤ γ ∈ ∆+,

eγ ∧ eβ = −q(β,γ)eβ ∧ eγ , fγ ∧ fβ = −q(β,γ)fβ ∧ fγ ,(15)

fγ ∧ eβ = −q(β,γ)eβ ∧ fγ .(16)

Proof. It is clear from the relation set for V • given above that these relations hold in the
associated graded algebra. Moreover, since these relations imply an obvious spanning of
dimension 26, we see that they must form a complete set of relations. �

Following the argument of [40, Proposition 3.18], we can now prove the following corol-
lary.

Corollary 3.15. The algebra V • is a Frobenius algebra.

Remark 3.16. We note that since the space V 26 is a trivial Uq(h)-module V • is a Frobe-

nius algebra object in the category of Uq(h)-modules. This is in contrast to V (0,•)

which is a Frobenius algebra, but not in the category of Uq(h)-modules, nor are the
anti-holomorphic subcomplexes of the Heckenberger–Kolb calculi.
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For a general Frobenius algebra A, there exists an algebra automorphism σ : A → A of
A, uniquely defined by the identity B(x, y) = B(y, σ(x)), for all x, y ∈ A. We see that
the bilinear form B of a Frobenius algebra is symmetric if and only if σ = id. With
a view to describing the Nakayama automorphism of our quantum exterior algebra, we
first describe the Nakayama automorphism of grF .

Proposition 3.17. The Nakayama automorphism of grF is determined by

σ(eα1) = −q2eα1 , σ(eα2) = −q2eα2 , σ(eα1+α2) = −q4eeα1+α2
,(17)

σ(fα1) = −q−2fα1 , σ(fα2) = −q−2fα2 , σ(fα1+α2) = −q−4fα1+α2 .(18)

Proof. In the following we let ι : Λn → Λ0 denote the isomorphism of πB(A)−comodules
uniquely defined by

ι(α1∧eα2 ∧ eα1+α2 ∧ fα1 ∧ fα2 ∧ fα1+α2) = 1.

Since σ is an algebra map, it is clearly determined by its action of the algebra generators.
For the generator fα1 we have

(eα1 ∧ eα2 ∧ eα1+α2 ∧ fα2 ∧ fα1+α2 , fα1) = ι[eα1 ∧ eα2 ∧ eα1+α2 ∧ fα2 ∧ fα1+α2 ∧ fα1 ]

= ι[eα1 ∧ eα2 ∧ eα1+α2 ∧ fα1 ∧ fα2 ∧ fα1+α2 ]

= 1.

On the other hand, it holds that

(fα1 , eα1 ∧ eα2 ∧ eα1+α2 ∧ fα2 ∧ fα1+α2) = ι[fα1 ∧ eα1 ∧ eα2 ∧ eα1+α2 ∧ fα2 ∧ fα1+α2 ]

= − q−2ι[eα1 ∧ eα2 ∧ eα1+α2 ∧ fα1 ∧ fα2 ∧ fα1+α2 ]

= − q−2.

Thus we see that σ(fα1) = q−2fα1 . The action of σ on the other generators is calculated
similarly.

�

In the following corollary we use our description of the Nakayama automorphism of grF

to produce an analogous description of the Nakayama automorphism of Λ
(0,•)
q . The proof

is completely analogous to the proof of [40, Corollary 3.21].

Corollary 3.18. The Nakayma automorphism of Λ
(0,•)
q acts on the generators eγ, and fγ,

for γ ∈ ∆, just as in (17) and (18).

We finish by observing that Λ
(0,•)
q is also a Koszul algebra. Recall that a Koszul algebra

is a Z≥0-graded algebra admitting a linear minimal graded free resolution. We refer the
reader to the standard text [41] for more details on Koszul algebras.

Proposition 3.19. The algebra Λ
(0,•)
q is a Koszul algebra.

Proof. The algebra Λ
(0,•)
q is clearly a PBW-algebra in the sense of Priddy [41, §4.1].

Thus it follows from Priddy’s theorem [41, Theorem 3.1] that it is a Koszul algebra. �
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4. Connections and Torsion

In this section we make some general observations about torsion for connections, and
prove the existence of a covariant torsion-free connection for a dc over a quantum ho-
mogeneous space with cosemisimple quantum isotropy subgroup. Moreover, we classify
covariant torsion free connections for such spaces. These general results are then applied
to the dc Ω•

q(F3). One major difference with the irreducible quantum flag manifold case
is that Ω•

q(F3) admits covariant connections with torsion.

Let us first recall the definition of a connection and its associated torsion operator. Let
Ω•(B) be a differential calculus over an algebra B and F a left B-module, a connection

on F is a C-linear map ∇ : F → Ω1(B)⊗B F satisfying the identity

∇(bf) = db⊗ f + b∇f, for all b ∈ B, f ∈ F .

An immediate but important consequence of the definition is that the difference of two
connections ∇−∇′ is a left B-module map.

Let ∇ : Ω1(B) → Ω1(B) ⊗B Ω1(B) be a connection for Ω1(B). The torsion of ∇ is the
left B-module map

T∇ := ∧ ◦ ∇ − d : Ω1(B) → Ω2(B).

We note that if B ⊆ A is a quantum homogeneous space, Ω1(B) is a left A-covariant dc
over B, and ∇ is a left A-comodule map, then T∇ is a morphism in the category A

BMod.

We note that since the difference of two left A-covariant connections is a morphism of
relative Hopf modules, the set of left A-covariant connections is an affine space for the
vector space of morphisms from Ω1(B) to Ω1(B) ⊗B Ω1(B). Moreover, for any two
torsion free connections ∇ and ∇′, it holds that

(∇−∇′)(ω) ∈ ker(∧), for ω ∈ Ω1(A).

This implies that the set of left A-covariant connections is an affine space for the vector
space of morphisms from Ω1(B) to the kernel

ker
(

∧ : Ω1(B)⊗B Ω1(B) → Ω1(B)
)

.

Moreover, since we are dealing with a quantum homogeneous space, and hence a prin-
cipal comodule algebra, Ω1

u(B) admits a left A-covariant connection [8, §3.4], which we
can then quotient to a covariant connection for any covariant differential calculus [19,
Corollary 3.2]. Moreover, we recall from [20, §4.5] that if the space of πB(A)-comodule

maps from V (0,1) to V (0,2) is trivial, then this connection is necessarily torsion free. The
following proposition is a variation on this result for the cosemisimple case.

Proposition 4.1. Let B ⊆ A be a quantum homogeneous space such that πB(A) is a

cosemisimple Hopf algebra, and let Ω•(B) be a left A-covariant dc over B. Then Ω1(B)
admits a left A-covariant torsion-free connection.

Proof. Let ∇ be a left A-covariant connection, which as discussed above, is guaranteed
to exist. If it is torsion-free, then we are done. So let us assume that ∇ has non-zero
torsion Tor(∇). Since we are assuming that πB(A) is a cosemisimple Hopf algebra, we
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can choose a left πB(A)-comodule splitting of the surjection ∧ : V 1 ⊗ V 1 → V 2, and
hence a splitting i, in the category A

BMod, of the surjection

∧ : Ω1(B)⊗B Ω1(B) → Ω1(B)

Consider next the left A-comodule map

∇′ := ∇− i ◦Tor(∇) : Ω1(B) → Ω1(B)⊗B Ω1(B).

Now, for ω ∈ Ω1(B), and b ∈ B, we have

∇′(bω) =∇(bω)− i ◦Tor(b∇)(ω)

=db⊗ ω + b∇(ω)− b(i ◦Tor(∇)(ω))

=db⊗ ω + b
(

∇(ω)− i ◦ Tor(∇)
)

(ω)

=db⊗ ω + b∇′(ω).

Thus we see that ∇′ is a connection. Next we note that

Tor(∇′) = ∧ ◦ ∇′ − d

= ∧ ◦ (∇− ι ◦ Tor(∇))− d

= ∧ ◦ ∇ − d− Tor(∇)

= Tor(∇)− Tor(∇)

= 0.

Thus we see that ∇′ is torsion-free, and hence that a left A-covariant torsion-free con-
nection always exists. �

A simple but useful observation is that if Ω1(B) admits a unique left A-covariant con-
nection, then it must be the same as the torsion-free connection just constructed. This
gives us the following corollary.

Corollary 4.2. Let B ⊆ A and Ω•(B) be as above. If Ω1(B) admits a unique left A-
covariant connection, then this connection is necessarily torsion-free.

Example 4.3. As an application of the above corollary, consider the Heckenberger–Kolb
differential calculi for the irreducible quantum flag manifolds, a special subclass of the
quantum flag manifolds, itself a family of quantum homogeneous spaces, containing
Oq(F3) and Oq(CP

2). These covariant differential calculi, extending the Podleś calculus
disscused in the introduction. In [19] their 1-forms were shown to possess a unique left
Oq(G)-covariant connection, and moreover, this connection was shown to be torsion-free
using a representation theoretic argument. We now see that vanishing of the torsion
follows directly from Corollary 4.2.

We now apply these general results to the special case of Ω1(F3). First we calculate the
dimension of the affine space of torsion free connections. In particular, we see that in
general, torsion free connections are not unique.

Corollary 4.4. For the full quantum flag manifold Oq(F3), endowed with the dc Ω•
q(F3),

the affine space of connections has dimension 12. The dimension of the affine space of

torsion-free connections 6.
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Proof. The dimension of the space of Uq(h)-module maps from V 1 to V 1 ⊗ V 1 can be
calculated by noting the multiplicity of the weight spaces of V 1⊗V 1 of weight ±α1,±α2,
and ±(α1 + α2). Looking at Table 1 in Appendix A, we see that each weight has
multiplicity 2. Hence the dimension of the affine space of connections is 12. A similar
argument confirms that the dimension of the affine space of torsion-free connections is
6. �

5. Almost-Complex Structures for the Lusztig–de Rham Complex

In this section we examine covariant complex and almost complex structures for the
dc Ω1

q(F3). We observe that the number of almost-complex structures decreases from
8 (which is 2 to the number of positive roots of sl3) to 4 (which is 2 to the number
of simple roots of sl3). Furthermore, we demonstrate that all of these almost-complex
structures are integrable, which is to say, they are both complex structures.

5.1. Preliminaries on Complex and Almost-Complex Structures. In this subsection, we
briefly recall some preliminaries about almost-complex and complex structures. See [4,
§1] or [26, 5, 38] for a more detailed discussion of complex structures.

An almost complex structure Ω(•,•), for a ∗dc (Ω•,d), is an Z
2
≥0-algebra grading of Ω•

such that

Ωk =
⊕

a+b=k

Ω(a,b),
(

Ω(a,b)
)∗

= Ω(b,a), for all (a, b) ∈ Z
2
≥0.

If the exterior derivative decomposes into a sum d = ∂ + ∂, for ∂ a (necessarily unique)

degree (1, 0)-map, and ∂ a (necessarily unique) degree (0, 1)-map, then we say that Ω(•,•)

is a complex structure. It follows that we have a double complex. The opposite complex

structure of a complex structure Ω(•,•) is the Z
2
≥0-algebra grading Ω

(•,•)
, defined by

Ω
(a,b)

:= Ω(b,a), for (a, b) ∈ Z
2
≥0.

Finally, we restrict to the case of a covariant dc Ω• over a quantum homogeneous space
B ⊆ A. In this case, a complex structure Ω(•,•) for Ω• is said to be covariant if the
Z
2
0-decomposition of the dc is a decomposition in the category of two-sided relative Hopf

modules A
BModB.

5.2. Almost-Complex Structures for the Classical Full Flag Manifold F3. In this sub-
section we briefly recall the covariant almost complex structures for the classical flag
manifold F3. We do so to highlight the novel non-classical behavior occurring for the
quantum case. We refer the interested reader to [2] or [3] for more further details.

A choice of almost-complex structure for the manifold F3 corresponds to assigning to each
positive root of the root system ∆ of sl3 the label of holomorphic or anti-holomorphic.
We see that there exist eight such labellings, meaning that up to identification of opposite
almost-complex structures, we have four.

A labelling corresponds to a complex structure if and only if it gives a choice of positive
roots for ∆, or equivalently a choice of base for the root system. We see that three of our
almost-complex structures are integrable and one is not. The Weyl group S3 of sl3 acts
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T (0,1) Integrable Metric

{

E1, E2, [E1, E2]
}

✓ Kähler–Einstein

{

F1, E2, [E1, E2]
}

, ✓ Kähler–Einstein

{

E1, F2, [E1, E2]
}

✓ Kähler–Einstein

{

E1, E2, [F1, F2]
}

✗ Nearly Kähler

transitively on the set of bases for ∆, and hence on the set of covariant almost-complex
structures.

Each almost-complex structure comes with a distinguished homogeneous Riemannian
metric. In the integrable case these metrics are permuted by the Weyl group and all
three are Kähler–Einstein. For the non-integrable case there is a choice of nearly-Kähler
metric, recalling the special role 6-dimensional manifolds play in the theory of nearly-
Kähler geometry [25]. We collect these recollections below in the form of a table.

5.3. Complex Structures for Full Quantum Flag Manifolds. In this subsection we classify
the covariant complex structures on the dc Ω1

q(F3). We find that two of the classical
almost structures fail to extend to the quantum setting. In particular, one of the bases
of the root system of sl3 fails to have a corresponding foacs in the quantum setting. This
breaks the classical Weyl group symmetry of the almost-complex structures on F3.

As usual in the theory of differential calculi, we find it convenient to initially work at
the level of fodc and then discuss the extension to higher forms. This motivates the
following general definition.

Definition 5.1. A first-order complex structure, or foacs, for a ∗-fodc Ω1(B) over an
algebra B is a direct sum decomposition of B-bimodules

Ω1(B) ≃ Ω(1,0) ⊕ Ω(0,1)(19)

such that (Ω(1,0))∗ = Ω(0,1) or equivalently (Ω(0,1))∗ = Ω(1,0).

Just as for a complex structure, we have the corresponding notions of opposite foacs

and covariant foacs for a covariant fodc over a quantum homogeneous space. Moreover,
we note that any covariant dc over a quantum homogeneous space B ⊆ A, a covariant
foacs implies a corresponding decomposition of the cotangent space V 1, in the category
πBModB of the dc over B.

Let us now recall a formula detailing the interaction of the dc ∗-map of a dc over a Hopf
algebra A with the fundamental theorem of Hopf modules. Consider the commutative
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diagram

Ω1(A)
U

// A⊗ Λ1

Ω1(A)

∗

OO

A⊗ Λ1.
U−1

oo

U ◦ ∗ ◦U−1

OO
(20)

As is easily shown (see [38, §2.6]) the map U ◦ ∗ ◦ U−1, which by abuse of notation we
denote by ∗, acts explicitly as

∗(a⊗ v) = −a∗(2) ⊗ v∗a∗(1), for a⊗ v ∈ A⊗ Λ1,(21)

where the star map ∗ : Λ1 → Λ1 is defined by [a]∗ = [S(a)∗].

Lemma 5.2. Let B ⊆ A be a quantum homogeneous space, and Ω1(A) a left A-covariant,
right πB(A)-covariant dc for A that frames Ω1(B), its restriction to a fodc on B. Con-

sider a decomposition of V 1 the cotangent space of Ω1(B)

V 1 ≃ V (1,0) ⊕ V (0,1) ∈ πBModB(22)

which is moreover, a decomposition of right A-modules, with respect to the embedding of

V 1 in Λ1 the tangent space of Ω1(A). Then this decomposition comes from a covariant

foacs on Ω1(B) if and only if V (1,0) and V (0,1) are interchanged by the ∗-map of Λ1.

Proof. Note first that right πB(A)-covariance of Ω1(A) means that we have we have
a quantum principal bundle. This allows us to invoke Majid’s framing theorem [30,
Theorem 2.1], from which we can conclude that the natural map from V 1 to Λ1 is
actually an embedding.

Consider the A-subbimodule of Ω1(A) given by

AΩ1(B) ≃ A⊗ V 1 ≃ AΩ1(B)A,

where the second isomorphism follows from the fact that V 1 is a right A-module, since
we have assumed that Ω1(A) is a framing calculus for Ω1(B). The decomposition of V 1

gives us the decomposition

AΩ1(B) ≃ (A⊗ V (1,0))⊕ (A⊗ V (0,1)).

This is again a decomposition of A-bimodules, since by assumption the decomposition
of V 1 is a decomposition of right A-modules. Since we are supposing that ∗ maps
V (1,0) to V (0,1), and both subspaces are right A-modules, it follows from (21) that the ∗
map interchanges A⊗ V (1,0) and A⊗ V (0,1). This of course implies that ∗ interchanges
A�πV

(1,0) and A�πV
(0,1), and hence that we have a foacs.

In the other direction, let us assume that the decomposition of V 1 comes from an foacs.
Taking an arbitrary element a(∂b)a′ in AΩ(1,0) we see that

(a∂b)∗ = (∂b∗)a∗ ∈ AΩ(0,1).

Thus the ∗-map of Ω1(A) interchanges AΩ(1,0) and AΩ(0,1). It now follows from (21)

that ∗ maps V (1,0) to V (1,0), giving the opposite implication. �
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Proposition 5.3. The fodc Ω1
q(F3) admits, up to identification of opposite structures, two

covariant foacs. Explicitly, one decomposition of V 1 is given by

V (1,0) = spanC

{

eα1 , eα2 , eα1+α2

}

, V (0,1) := spanC

{

fα1 , fα2 , fα1+α2

}

,

and the other is given by

V (1,0) = spanC

{

fα1 , eα2 , eα1+α2

}

, V (0,1) := spanC

{

eα1 , fα2 , fα1+α2

}

,

Proof. Consider a general left Oq(SU3)-covariant foacs on Ω1
q(F3), and denote by

V 1 ≃ V (1,0) ⊕ V (0,1).

the corresponding decomposition of the cotangent space V 1 into two left O(T2)-comodule
right Oq(F3)-modules. Since the basis elements all have mutually distinct weights, we see

that each basis element is contained in either V (1,0) or V (0,1). The right Oq(F3)-module

requirement, together with Lemma 3.1, implies that if eα1 is contained in V (1,0), then

eα1+α2 is also contained in V (1,0), and analogously, if fα1 is contained in V (0,1), then

fα+α2 is contained in V (0,1). In other words, any complex structure is determined by

knowing whether the basis elements eα, fα, for α ∈ Π, are contained in V (1,0) or V (0,1).

We now note that any such Oq(F3)-decomposition of V 1 will necessarily be a decom-
position of right Oq(F3)-modules. This allows us to appeal to Lemma 5.2. Considering
V 1 as a subspace of Λ1, the cotangent space of the fodc Ω1

q(SU3), and recalling that

e∗γ = fγ , for all γ ∈ ∆+, we now see that the only possible decompositions are those two
decompositions given in the statement of the proposition. �

Given a foacs on a fodc, there is at most one extension to an almost complex structure
on its maximal prolongation, or indeed any quotient thereof (see [38, Proposition 6.1]
for details). The following proposition tells that both our foacs extend.

Corollary 5.4. Both foacs on Ω1
q(F3) extend to a factorisable almost complex structure

on Ω•
q(F3).

Proof. The fact that both first-order structures extend to covariant almost-complex
structures, follows directly from the explicit form of the relations given in Theorem
3.3 and [38, Theorem 6.4]. Moreover, factorisability follows from the explicit form of the
relations and [38, Corollarly 6.8]. �

5.4. Integrability for the Full Quantum Flag Almost-Complex Structures. As shown in
[38, Lemma 7.2], an almost-complex structure Ω(•,•) on a dc Ω• is integrable if and only if

the maximal prolongation of the fodc Ω(0,1) is isomorphic to the subalgebra Ω(0,•). Using
this reformulation of integrability, we now observe that, just as in the classical case, both
the covariant almost-complex structures on Ω•

q(F3) are integrable. Interestingly, this
means that Ω•

q(F3) does not admit a non-integrable covariant almost-complex structure.

Proposition 5.5. Both covariant almost-complex structures of the dc Ω•
q(F3) are inte-

grable.
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Proof. We will treat the case of the almost-complex structure

V (0,1) =
{

eα1 , eα2 , eα1+α2

}

,

the other case being entirely analogous. We need to calculate the dimension of the

maximal prolongation of the associated fodc Ω(0,1). We note that Ω
(0,1)
q (SU3) is a framing

calculus for Ω
(0,1)
q (F3), allowing us to use the appraoch of §2.3 to calculate the degree

two relations of the maximal prolongation of Ω
(0,1)
q (F3).

We see that the ideal I ′ ⊆ Oq(F3)
+ corresponding the to the Ω

(0,1)
q (F3) contains the

elements

I ∪ {zα1
12 , z

α2
23 , z

α1
13 }.

Moreover, since the quotient of Oq(F3)
+ by I ′ is three dimensional, we see that this is

in fact the whole ideal.

Operating on the elements of I by ω we clearly reproduce the degree-(0, 2) elements from
those given in Theorem 3.8. For the element zα2

23 , recalling [40, Lemma 3.8] we see that

ω(zα2
23 ) = ω(u23S(u33)) =

3
∑

a=1

[(u23S(ub3)]⊗ [S(u3b)
+] +

3
∑

a=1

[S(ub3)
+]⊗ [(u+23S(u3b)]

+

3
∑

a=1

[(u+2aS(ub3)]⊗ [u+a3S(u3b)].

Since each of the elements

u23, u13, u
+
22, u23

pair trivially with each element of T (0,1), we now see that ω(zα2
23 ) = 0. Analogous

calculations establish that

ω(zα2
23 ) = ω(zα1

13 ) = 0.

Thus we see that the maximal prolongation of Ω
(0,1)
q (F3) is isomorphic to the subalgebra

Ω
(0,•)
q (F3), and so, the almost-complex structure is integrable. �

5.5. Restriction of the Almost Complex Structures. Throughout this subsection, P will
denote a ∗-algebra and B a ∗-subalgebra. We note that, for Ω•(P ) a ∗-dc over P , the
restriction to a dc on B is again a ∗-dc calculus.

Proposition 5.6. Let Ω•(P ) be a ∗-dc over P , and let Ω(•,•)(P ) an almost complex struc-

ture for Ω•(P ). Denote by Ω•(B) the restriction of Ω•(P ) to a ∗-dc on B. Then an

almost complex structure on Ω•(B) is given by Ω(•,•)(B), where

Ω(a,b)(B) := Ω(a,b)(P ) ∩ Ωa+b(B)

if and only if the following three equivalent conditions hold

1. ∂b ∈ Ω1(B),
2. ∂b ∈ Ω1(B),

3. Ω1(B) is homogeneous with respect to the decomposition Ω1(P ) ≃ Ω(1,0) ⊕ Ω(1,0).
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Proof. Since Ω•(B) is a ∗-subspace of Ω•(P ), we see that

(Ω(a,b)(B))∗ =(Ω(a,b)(P ) ∩ (Ωa+b(B)))∗ = (Ω(b,a)(P ) ∩Ωa+b(B)) ⊆ Ω(b,a)(B).

The fact that ∗ is an involution implies that (Ω(a,b)(B))∗ = Ω(b,a)(B).

Thus it remains to show that homogeneity of Ω•(B) with respect to the Z
2
≥0-grading

Ω(•,•)(B). one direction is obvious, so let us assume homogeneity of Ω1(B) with respect
to the decomposition Ω1(P ) ≃ Ω(1,0)(P )⊕Ω(0,1)(P ). Now every form in Ωk(B) is a linear
combination of elements of the form

b0db1 ∧ · · · ∧ dbk = b0(∂b1 + ∂b1) ∧ · · · ∧ (∂bk + ∂bk).

Hence each ω ∈ Ωk(B) is a linear combination of 1-forms of the form b∂b′ or c∂c′,
for b, b′, c, c′ ∈ B. Now each product is homogeneous with respect to the Z

2
≥0-grading.

Moreover, since ∂b and ∂c are in Ω1(B) by assumption, these products are actually
contained in Ω1(B). Thus we see that, as required, Ω•(B) is a homogeneous subspace
with respect to the Z

2
≥0-grading.

Finally, we see that since Ω(•,•)(P ) is an almost-complex structure, ∂b is contained in
Ω1(B) if and only if ∂b∗ is contained in Ω1(B), which is of course equivalent to Ω1(B)
being homogeneous with respect to the decomposition of Ω1(P ). �

The proof of the following corollary, discussing the relationship of integrability and re-
striction, is clear, and so, we omit it.

Corollary 5.7. If Ω(•,•)(P ) is an integrable complex structure that restricts to an almost

complex structure Ω(•,•)(B) on B, then Ω(•,•)(P ) is also integrable.

5.6. Restriction of Covariant Almost complex Structures. In this subsection we deal
with the restriction of covariant almost-complex structures for nested of pairs of quantum
homogeneous spaces. Throughout A will denote a Hopf algebra, and P ⊆ A and B ⊆ A
a pair of quantum homogeneous A-spaces, such that B ⊆ P , that is to say a nested pair

of quantum homogeneous spaces [13]. Moreover, let Ω•(P ) be a left A-covariant dc over
P and Ω•(B) the restriction to a dc over B. Since we have two quantum homogeneous
spaces, we have two versions of Takeuchi’s equivalence. We denote the functors of the
two equivalences by ΦP and ΨP for P , and by ΦP and ΨP for B. Moreover, we denote
V 1
P := ΦP (Ω

1(P )) and V 1
B := ΦB(Ω

1(B)).

Proposition 5.8. Assume that the embedding

ι : VB 7→ VP , [db] 7→ [db]

is injective, and identify V 1
B with its image. Then any left A-covariant almost-complex

structure on Ω•(P ) descends to a complex structure on Ω•(B) if and only if V 1
B = V (1,0)⊕

V (0,1), and either, or equivalently both, of the subspaces

V
(1,0)
B := V 1

B ∩ V
(1,0)
P , V

(0,1)
B := V 1

B ∩ V
(0,1)
P ,

are πB(A)-subcomodules of V 1
B.
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Proof. Let us denote

db =
∑

i

ai ⊗ vi ∈ A�πB
V 1
B .

Assume that V 1
B is homogeneous with respect to the decomposition V 1

P ≃ V
(1,0)
P ⊕V

(0,1)
P .

Denoting the corresponding decomposition of each element vi by vi = v+i + v−i , we see
that

db =
∑

i

ai ⊗ v+i +
∑

i

ai ⊗ v1i − .

In particular, we see that

∂b =
∑

i

ai ⊗ v+i ∈ A⊗ V (1,0).

Now if V
(1,0)
B and V

(1,0)
B are left πB(A)-comodules, then the fact that db is an element of

A�πB
V 1
B implies that ∂b is an element of A�πB

V 1
B , which is to say, ∂b is an element of

Ω1(B), which is to say the complex structure is an almost complex structure.

In the other direction, assume that the almost complex structure on Ω1(P ) restricts to
a complex structure on Ω1(B). In particular, assume that ∂b is an element of Ω1(B).

Then since [db] = [∂b] + [∂b], and [∂b], [∂b] ∈ ι(V 1
B), we see that V 1

B = V (1,0) ⊕ V (0,1).

Looking next at the element [∂] ∈ V (1,0), we see that

∆L([∂b]) = πB(b(1))⊗ [∂b(2)],

which is to say, V (1,0) is a left πB(A)-comodule. The proof that V (0,1) is a left πB(A)-
comodule is analogous. Thus we have established the opposite implication. �

The following corollary is a simple dualisation of this result to the tangent space setting,
under the assumption that B is a quantum homogeneous space of the form WA, for
W ⊆ A◦, as discussed in §2.3. Note that a covariant almost complex structure Ω(•,•)(P )
on Ω•(P ) induces a direct sum decomposition of its corresponding the tangent space

T ≃ T (1,0) ⊕ T (0,1), where T (1,0) is the subspace of elements of T that vanish on V (1,0),
and T (0,1) is the subspace of elements of T that vanish on V (0,1).

Corollary 5.9. The almost complex structure Ω(•,•) restricts to an almost complex struc-

ture on Ω•(B) if

WT (1,0)|B = T (1,0)|B , and WT (0,1)|B = T (0,1)|B .(23)

Proof. Note first that if (23) holds thenWT |B = T |B , and hence the map ι is an injection
(see [40, §4.2] for a discussion of this). The equivalence of the requirements of (23) and
those given in Proposition 5.8 now follows from a routine dualisation argument. �

5.7. Restriction of the Complex Structures to Oq(CP
2). In this subsection we address

the question of the restriction of the complex structures on Ω•
q(F3) to the dc Ω

•
q(CP

2). We
see that just as in the classical case, sometimes a complex structure restricts, while other
times it does not. In particular, we see that the unique left Oq(SU3)-covariant complex
structures on the Heckenberger–Kolb conplex dc can be realised as the restriction of a
complex structure on Ω•

q(F3).
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Proposition 5.10. It holds that

1. the complex structures V
(•,•)
I and V

(•,•)
II restrict to a left Oq(SU3)-covariant com-

plex structure on Ω•
q(CP

2
α1
),

2. the complex structure V
(•,•)
I restricts to a a left Oq(SU3)-covariant complex struc-

ture on Ω•
q(CP

2
α2
), while V

(•,•)
II does not restrict.

Proof. By Corollary 5.9 we simply need to check that T (1,0) and T (0,1) are Uq(lS)-

modules. For example, for the complex structure V
(•,•)
II ,

F1 ⊲ F2 = F1F2 /∈ T (0,1),

and so, the complex structure does not restrict to a complex structure on Ω•
q(CP

2
α2
). �

Remark 5.11. The asymmetry between the case of Ω•
q(CP

2
α1
) and Ω•

q(CP
2
α2
) can be un-

derstood as follows: In the classical case, each copy of the complex projective plane has
two complex structure on F3) that restrict to its covariant complex structure. However,
in the noncommutative setting, we have fewer complex structures, meaning we have
only one lift of the complex structure on Ω•

q(CP
2
α2
) to a complex structure on Ω•

q(F3).
However, we we instead look at the case of the Lusztig dc on Oq(SU3) associated to the
reduced decomposition of the longest element of the Weyl group w0 = s1s1s1, then this

situation is reversed, with Ω
(•,•)
q (CP2

α2
) having two lifts and Ω

(•,•)
q (CP2

α1
) having only one.

Thus the symmetry is preserved by considering the alternative reduced decomposition.

5.8. Some Remarks about the Higher Rank Full Quantum Flag Manifolds. In this sub-
section, which is in effect an extended remark, we discuss the extension of our results for
Oq(F3) to the higher rank quantum flag manifolds. The definition of the quantum flag
manifolds directly extends from the Podleś sphere, and Oq(F3), to a general definition of
full quantum manifold. Following the conventions of [29, §7.1], we denote by Uq(sln+1)
the Drinfeld–Jimbo quantisation of the universal enveloping algebra of sln+1, and by
Oq(SUn+1) the dual quantised coordinate algebra. We then define the full quantum flag

manifold of Oq(SUn+1) to be the coideal subalgebra

Oq(Fn+1) := {b ∈ Oq(SUn+1) |K
±1
i ⊲ b = b}

Just as for Oq(F3), this is a quantum homogeneous space. Recall next that the Weyl
group of sln+1 is the symmetric group Sn+1, and that for any reduced decomposition of
ω0, the longest element of Sn+1, we have an associated set of root vectors

{Xγ | γ ∈ ∆} ⊆ Uq(sln+1),

labeled by ∆, the set of roots of sln+1. (See [29, §6.2], or [40, Appendix A], for a more
detailed presentation of Lusztig’s root vectors.)

As shown in [40], for either of the reduced decompositions

w0 = (snsn−1 · · · s1)(snsn−1 · · · s2) · · · (snsn−1)sn

= (s1s2 · · · sn)(s1s2 · · · sn−1) · · · (s1s2)s1

the associated space of positive Lusztig root vectors, that is the space spanned by the
elements Xγ , for γ ∈ ∆+, is a quantum tangent space T (0,1) for Oq(Fn+1). For the
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special case of sl3, this reduces to the Oq(F3) tangent space presented in §3.1, and for
the special case of the Podleś sphere it reduces to anti-holomorphic part of the tangent
space of the Podleś calculus.

This quantum tangent space is a direct q-deformation of the holomorphic tangent space
of the classical full flag manifold, and we denote the associated covariant dc by Ω(0,1).
We denote the basis elements of the cotangent space V (0,1) by eγ , for γ ∈ ∆+.

The space of Lusztig root vectors in fact forms a tangent space for Oq(SUn+1). Just as

for the rank 2 case, we can consider (T (0,1))∗ the ∗-extension of T (0,1) and then restrict to
the full quntum flag manifold. We denote the associated fodc by Ω1

q(Fn+1) and observe
that by construction it admits a direct sum decomposition

Ω1
q(Fn+1) ≃ Ω(1,0) ⊕ Ω(0,1),

where Ω(1,0). We denote the basis of the associated cotangent space by fγ , for γ ∈ ∆+.
We now establish a direct generalisation of Proposition 5.3 to this higher rank setting,
with a sketched proof.

Proposition 5.12. For the dc Ω1
q(Fn+1), there exist, up to identification of opposite struc-

tures, 2|Π| left Oq(SUn+1)-covariant foacs.

Proof. (Sketch) The proof is a direct extension of the proof for Oq(F3). The right

Oq(SUn+1)-module structure of V (0,1) is given explicitly in [40, Proposition 3.7]. The

right Oq(SUn+1)-module structure of V (1,0) can then be concluded from

[S(ω∗)]b = [S(ωS−1(b∗))].

In short, this implies that

V (1,0) ≃
⊕

γ∈Π

fγOq(SUn+1), V (0,1) ≃
⊕

γ∈Π

eγOq(SUn+1).

It now follows that, just as for Oq(F3), a covariant foacs on the dc is determined by
assigning to the basis elements eγ and fγ , for γ a simple root, the label of holomorphic
or anti-holomorphic. Moreover, any such assignment necessarily gives a decomposition
of right Oq(Fn+1)-modules

V 1 ≃ V (1,0) ⊕ V (0,1).

This allows us to appeal to Lemma 5.2. Considering V 1 as a subspace of Λ1, the cotan-
gent space of the fodc on Oq(SUn+1).

Noting that by construction e∗γ = fγ , for all γ ∈ ∆+, we now see that the only decom-
positions that give foacs are those two decompositions where eγ and fγ , for γ ∈ Π, are
contained in complementary summands of the decomposition. Thus we see that we have
2|Π| covariant foacs for the dc. �

The relations of the maximal prolongation of Ω1
q(Fn+1) have not, as of now, been calcu-

lated. However, we expect that the results for the Oq(F3)-case extend directly. This is
formally presented in the following conjecture.
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Conjecture 5.13. For each full quantum flag manifold Oq(Fn+1), endowed with the fodc

Ω1
q(Fn+1), each of its 2|Π| left Oq(SUn+1)-covariant structures extends to a factorisable,

integrable, left Oq(SUn)-covariant almost complex structure on Ω•
q(Fn+1), the maximal

prolongation of Ω1
q(Fn+1).

Whether this conjecture is true or not, we note that we still have a much smaller number
of covariant complex structures than in the classical case, with an upper bound being
expressed in terms of the number of simple roots, as opposed to the classical case where
it is the number positive roots. Moreover, this conjecture claims that non-integrable
almost-complex structures for the full flags are a classical phenomenon.

5.9. The Non-existence of a Covariant Kähler Structure. Classically, the flag manifolds
possess not only a complex structure, but a Kähler structure. Indeed, much of the classi-
cal Kähler geometry of the irreducible flag manifolds carries over to the quantum setting.
The notion of a noncommutative Kähler structure was introduced in [39] to provide a
framework in which to describe this q-deformed geometry. Moreover, the existence of a
Kähler structure in general, was shown to imply direct noncommutative generalisations
of many classical results of Kähler geometry, such as, Lefschetz decomposition and the
Kähler identities.

It is thus natural to ask if the dc Ω•
q(F3) admits a noncommutative Kähler structure, and

in particular, if it admits a left Oq(SU3)-covariant Kähler structure. The definition [39,
Definition 7.1] of a noncommutative Kähler structure requires a central element of the
algebra Ω•

q(F3) that is non-degenerate, that is to say, a form satisfying κ3 6= 0. Moreover,
if the Kähler structure is covariant, then κ must be a left Oq(F3)-coinvariant element.
We will prove the non-existence of a covariant Kähler structure by showing that no such
form κ exists.

We begin with two simple general lemmas, which are undoubtly well-known to the ex-
perts, but which we include for the reader’s convenience.

Lemma 5.14. Let B ⊆ A be a quantum homogeneous space and F ∈ A
BMod a relative

Hopf module. Then it holds that

co(A)
(

1�πΦ(F)
)

= 1⊗
(

πB(A)Φ(F)
)

.

Proof. Note first that any element of 1 ⊗ (πB(A)Φ(F)) is contained in the cotensor
product A�πB

Φ(F). Since any such element is clearly left A-coinvariant, we see that

1⊗(πB(A)Φ(F)) is contained in co(A)F . In the other direction, for any coinvariant element
f in F , we see that

U(f) = f(−1) ⊗ [f(0)] = 1⊗ [f ].

where of course [f ] ∈ πB(A)Φ(F)). Thus the unit U maps the coinvariant elements of
F into 1 ⊗ (πB(A)Φ(F)). Since U is a left A-comodule map, we see that the opposite
inclusion holds, and hence we have equality. �

Lemma 5.15. Let f ∈ F be a left A-coinvariant element. Then fb = bf , for all b ∈ B, if

and only if [f ]b = ε(b)[f ], for all b ∈ B.
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Proof. Since f is left A-coinvariant by assumption, it holds that U(f) = 1⊗ [f ]. Now if
[f ]b = ε(b)[f ], for all b ∈ B, then

(1⊗ [f ])b = b(1) ⊗ [f ]b(2) = b(1) ⊗ ε(b(2))[f ] = b⊗ [f ] = b(1⊗ [f ]).

Thus since U is a B-bimodule map, we see that fb = bf .

In the other direction, if fb = bf then we see that

[f ]b = [fb] = [bf ] = ε(b)[f ], for all b ∈ B,

which establishes the claimed equivalence. �

We now apply these results to the dc Ω•
q(F), describing first that the space of degree-2

coinvariant forms.

Lemma 5.16. The space of left Oq(SU3)-coinvariant 2-forms is a three-dimensional space.

The corresponding space of Oq(T
2)-coinvariant degree-2 elements of V • is spanned by

fα1 ∧ eα1 , fα2 ∧ eα2 , fα1+α2 ∧ eα1+α2 .

Proof. The left O(T2)-coinvariant elements of V • are simply the elements of weight zero.
Looking at the degree two elements of V •, and consulting Table 1 we see that the only
weight zero basis elements are fα1 ∧ eα1 , fα2 ∧ eα2 , and fα1+α2 ∧ eα1+α2 . Thus we see
that the space of coinvariants is three-dimensional as claimed. �

Lemma 5.17. The space of left Oq(T
2)-coinvariant elements v ∈ V 2, satisfying vb =

ε(b)v, for all b ∈ Oq(F2), is spanned by the elements

fα2 ∧ eα2 , fα1+α2 ∧ eα1+α2 .

Proof. Note first that

(fα2 ∧ eα2)b = fα2b(1) ∧ eα2b(1) = fα2b ∧ eα2 = ε(b)fα2 ∧ eα2 ,

with the analogous result for fα1+α2 ∧ eα1+α2 . Let us now look at the remaining Oq(T
2)-

coinvariant basis element fα2 ∧ eα2 . It follows from (5) that the element u11u32u33 is
contained in Oq(F3). We see that

(fα1 ∧ eα1)u11u32u23 =

3
∑

a,b,c=1

(fα1u1au3bu3c) ∧ (eα1ua1ub2uc3)

=

3
∑

a,b,c=1

(fα1u11u23u33) ∧ (eα1u11u32u33)

=− q−3ν2fα1 ∧ eα1

6= 0.

Thus (fα1∧eα1)u11u23u33 6= ε(b)fα1∧eα1 , for all b, meaning that the space of coinvariant
forms, whose right Oq(F3)-action is trivial, is two-dimensional as claimed. [39] �

Lemma 5.18. For an arbitrary left Oq(SU3)-coinvariant form

ω := c1fα1 ∧ eα1 + c2fα2 ∧ eα2 + c3fα1+α2 ∧ eα1+α2

it holds that ω3 6= 0 only if c1 6= 0.



A NONCOMMUTATIVE COMPLEX STRUCTURE FOR Oq(F3) 29

Proof. Let us consider the case of c1 = 0 and consider the third power of the form. This
will be a linear combination of elements of the form

cicjckfαi
∧ eαi

∧ fαj
∧ eαj

∧ fαk
∧ eαk

,

for i, j, k = 2, 3, and for convenience we have denoted α3 = α1 + α2. It follows di-
rectly from the commutation relations given in §3.8 that all such products are zero. For
example, we see that the product

fα2 ∧ eα2 ∧ fα2 ∧ eα2 ∧ fα3 ∧ eα3

is equal to

− q−2fα2 ∧ fα2 ∧ eα2 ∧ eα2 ∧ fα3 ∧ eα3 + νfα2 ∧ fα3 ∧ eα3 ∧ eα3 ∧ fα3 ∧ eα3

which is in turn equal to

q(α1+α2,α1+α2)νfα2 ∧ fα3 ∧ fα3 ∧ eα3 ∧ eα3 ∧ eα3 = 0.

Thus the form ω3 is equal to zero as claimed. �

Combining the statements of Lemma 5.17 and Lemma 5.18 we arrive at the following
theorem, which means that the dc Ω•)q(F3) does not admit a covariant Kähler structure.

Theorem 5.19. There does not exist a left Oq(SU3)- coinvariant non-degenerate form

σ ∈ Ω2
q(F3) that commutes with the elements of Oq(F3).

Remark 5.20. Despite the fact that any nondegenerate coinvariant 2-form does not com-
mutate with the elements of Oq(F3), we can still define left and right Lefschetz maps. As
is readily checked, each map is (either a left or right) Oq(F3)-module isomorphism. Each
has an associated Lefschetz decomposition with a corresponding Hodge map, metric, and
inner product.

Remark 5.21. The nonexistence of a coinvariant non-degenerate form also implies that
Ω2
q(F3) does not admit a metric in the sense of Beggs and Majid [4]. This implies that

Ω1
q(F3) is not self-dual as an object in the category of relative Hopf modules A

BModB , as
explained for example in [7].

Remark 5.22. The definition of a Kähler structure also requires that the Kähler form κ
is real, that is to say κ∗ = κ, and closed, that is to say dκ = 0. A family of real, closed,
left Oq(SU3)-coinvariant 2-forms can be constructed from the Kähler structures of the

two copies of Oq(CP
2) in Oq(F3).

As shown in §3.4, the Heckenberger–Kolb double complex of each copy of Oq(CP
2) is

realised as the restriction of the ∗-dc Ω•
q(F3). Thus the Kähler forms κ1 and κ2 of these

dc, as introduced in [39], will be real closed left Oq(SU3)-coinvariant elements of Ω2
q(F3).

Thus we see that the 2-form

κ1 + λκ2, for λ ∈ C
×

is a real closed left Oq(SU3)-coinvariant 2-form. Classically this form is the fundamental
form of a Kähler metric for F3.
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Table 1. Sums of roots of sl3

α1 α2 α1 + α2 −α1 −α2 −(α1 + α2)
α1 2α1 α1 + α2 2α1 + α2 0 α1 − α2 −α2

α2 α1 + α2 2α2 α1 + 2α2 α2 − α1 0 −α1

α1 + α2 2α1 + α2 α1 + 2α2 2(α1 + α2) α2 α1 0
−α1 0 α2 − α1 α2 −2α1 −(α1 + α2) −(2α1 + α2)
−α2 α2 − α1 0 α1 −(α1 + α2) −2α2 −(α1 + 2α2)

−(α1 + α2) −α2 −α1 0 −(2α1 + α2) −(α1 + 2α2) −2(α1 + α2)

Appendix A. Some Details on the Lie Algebra sl3

In this subsection, so as to set notation, we recall some elementary definitions and results
about the A2-root system associated to the special linear Lie algebra sl2. Let {εi}

n+1
i=1

be the standard basis of R3, and endow it with its canonical Euclidean structure. The
root system A3 is the pair (V,∆), where V is the subspace of R3 spanned by the roots

∆ :=
{

± α1 := ±(ε1 − ε2), ±α2 := ±(ε2 − ε3), ±(α1 + α2) = ±(ε1 − ε3)
}

.

We take the standard subset of positive roots, and its associated set of simple roots,

∆+ :=
{

α1, α2, α1 + α2

}

, Π :=
{

α1, α2

}

.

This gives us the Cartan matrix

(aij)ij =





2 −1 0
−1 2 −1
0 −1 2





We also recall that the Weyl group of the root system is the symmetric group S3 of order
6.

We finish with a table presenting all possible sums α + β, where α, β ∈ ∆+. The sums
highlighted in blue are those that again roots of sl3

We appeal to this table a number of times in the paper. For example, we refer to it
when classifying the left coinvariant forms in Lemma 5.16.
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[38] R. Ó Buachalla, Noncommutative complex structures on quantum homogeneous spaces, J. Geom.
Phys., 99 (2016), pp. 154–173.
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