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Abstract

We perform molecular dynamics simulations under uniaxial tension to investi-
gate the micromechanisms underlying strain hardening in glassy polymers. By
decomposing the stress into virial components associated with pair, bond, and
angle interactions, we identify the primary contributors to strain hardening as the
stretching of polymer bonds. Interestingly, rather than the average bond stretch,
we find that the key contributions to stress response come from a subset of bonds
at the upper tail of the stretch distribution. Our results demonstrate that the stress
in the hardening region can be correlated with the average stretch of the most
extended bonds in each polymer chain, independent of temperatures and strain
rates. These bonds, which we denote as load-bearing bonds, allow us to define a
local load-bearing deformation gradient in continuum mechanics that captures their
contribution to the hardening stress tensor. Building on this insight, we incorporate
the load-bearing mechanism into a constitutive framework with orientation-induced
back stress, developing a model that accurately reproduces the stress response of
the molecular systems over a wide range of temperatures and strain rates in their
glassy state.
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1. Introduction

Glassy polymers are essentially amorphous polymers at temperatures below
their glass transition temperature Tg, exhibiting solid-like mechanical behavior
due to restricted atomic mobility from neighboring interactions. The polymer
molecules, typically with chain-like structures, can undergo strain hardening at
large deformations, effectively increasing the toughness of the materials. Accu-
rately modeling the mechanical response in the hardening region is essential for
studying the failure mechanisms of glassy polymers. Unlike rubbers, which are
amorphous polymers above Tg, the strain hardening behavior of glassy polymers is
sensitive to strain rate and temperature as evident in various experiments [1, 2, 3]
and molecular dynamics (MD) simulations [4, 5]. However, the mechanisms un-
derlying the rate- and temperature-dependence of strain hardening remain not fully
understood.

For decades, the hardening mechanism in glassy polymers has often been
interpreted through entropic elasticity theory developed for rubbers [6, 7], which at-
tributes stress increases to the reduction of entropy during the elongation of polymer
chains. While this theory applies well to rubbers, various experiments [8, 9] and
MD simulations [4] reveal inconsistencies when applied to glassy polymers. This
discrepancy probably arises from a core assumption in entropic elasticity theory
that polymer segments are free to adjust their conformations to accommodate defor-
mation. However, in glassy polymers, atomic mobility is restricted, preventing such
free adjustment. Consequently, the relaxation time associated with the evolution
of polymer segments becomes non-negligible, leading to rate-dependent behavior
in the hardening region of glassy polymers. This limited mobility also introduces
temperature sensitivity, as relaxation times are typically temperature-dependent.
Thus, understanding strain hardening in glassy polymers involves addressing two
key questions: (i) which structures primarily contribute to the stress response, and
(ii) the relaxation of which structures most significantly affects stress behavior?

To address the first question, various assumptions have been tested via constitu-
tive modeling, given that experimental observation of the microscopic structure
during deformation is challenging. Although the precise origin of hardening stress
remains unclear, most constitutive models adopt the Lee-Kröner decomposition
F = F eF p [10, 11] of the deformation gradient F , where F e and F p represent the
elastic and viscoplastic components of F , respectively. In this framework, F e is
assumed to contribute to the stress, which drives the evolution of F p, characterized
by the viscosity η. To capture strain hardening, Arruda et al. [12] introduced a
back stress term to account for chain orientation effects. Anand et al. [13, 14]
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generalized this formulation by incorporating a unimodular orientation tensor A
as an internal variable of the free energy density for orientation and proposed that
the evolution of A is subjected to a dynamic recovery term driven by the back
stress. Additional approaches have also been proposed, including models with
deformation-dependent viscosity [1, 3], a viscous model that uses strain rate as
an external variable to capture steady-state mechanical behavior [15], and models
that represent orientation through shear transformation zones (STZs) [16, 17, 18].
While these models successfully replicate the stress response of glassy polymers in
the hardening region under various conditions, they remain largely phenomenolog-
ical, each grounded in different assumptions about the origin of hardening stress.
A deeper understanding of the underlying micromechanisms is needed to further
elucidate the nature of strain hardening in glassy polymers.

In addressing the second question, it is critical to determine whether the pri-
mary relaxation mechanism influencing strain hardening occurs at the scale of
polymer chains, such as disentanglement, or at the scale of local segments, like
bond rotations. MD simulations have been used to study the mechanisms of dis-
entanglement by tracking the evolution of the entanglement lengths Ne during
deformation [4, 19, 17]. Hoy and Robbins [4] observed that hardening increases
with decreasing Ne only when Ne is relatively small; beyond a critical value N cr

e ,
hardening saturates with Ne. This suggests that disentanglement is relevant primar-
ily at smaller Ne. This finding may help to reconcile the conflicting results reported
in [19] and [17], where Ne remains constant in [19] but evolves in [17] during
deformation. Furthermore, the critical value N cr

e is likely temperature-dependent,
as increased temperatures accelerate polymer chain relaxation. This implies that
disentanglement only occurs at sufficiently high temperatures for glassy polymers,
while at low temperatures, the dominant relaxation mode is likely limited to local
segmental rotations. These include backbone chain rotations (α-relaxation) or side
group rotations (β-relaxation) for certain glassy polymers [20, 21, 22]. Experi-
mental studies on the time-temperature superposition of glassy polymers at large
strains [23, 24, 25] support this assumption. These studies demonstrate that the
stress-strain curves of glassy polymers at specific temperatures and strain rates can
coincide in the hardening region, with derived shift factors matching those from
small strains. This suggests that similar relaxation mechanisms are active across
both small and large strain regimes in these materials. Since disentanglement is
not the primary relaxation mechanism at small strains before yielding, it is likely
not the dominant mechanism at large strains in the hardening region either, based
on these experimental results. Using identical shift factors for both small and large
strains, Xiao and Tian [26] employed the back stress model [14] to successfully
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predict pre-deformation effects in the strain hardening region of glassy polymers.
This paper aims to investigate the microscopic mechanisms underlying strain

hardening in glassy polymers using MD simulations, with a focus on capturing its
rate- and temperature-dependent behavior. To achieve this, we first decompose the
virial stress components into contributions from pair, bond, and angle interactions,
identifying bond and angle stresses as the primary contributors to strain hardening.
Subsequently, we examine the microscopic quantities that can be correlated with
these bond and angle stresses within the hardening region. Our key finding is
that these stress terms are correlated with the averaged values of the largest bond
stretch in each polymer chain, independent of temperature and strain rate. We
denote these bonds as load-bearing bonds and represent this microscopic quantity
through a deformation gradient, capturing the macroscopic local load-bearing
deformation, denoted as F l. Building on this result, we propose a decomposition
of the total deformation gradient, F = F lF r, where F r represents the resisting
component of the deformation gradient. Finally, we develop a constitutive model
within the framework established by [14], incorporating orientation-induced back
stress. Compared to the model proposed by [14] and various other hardening
models [26, 1, 3, 16, 17, 18, 15], the improvement presented in this paper lies in
providing a clear physical basis for the stress response in the hardening region, as
well as a well-defined interpretation of the deformation gradient decomposition
F = F lF r, where the contribution of F l to the stress can be directly extracted
from MD simulations.

The remaining part of this paper is organized as follows. In Section 2, we
introduce the MD systems used in this study. Section 3 presents the analysis of the
microscopic mechanisms underlying strain hardening, followed by a discussion on
the decomposition F = F lF r in Section 4 based on the findings from this analysis.
Section 5 derives the constitutive model, including parameter identification and the
validation. Finally, Section 6 concludes this study.

2. Methods and models

2.1. Systems and samples
We use the coarse-grained (CG) potential of atactic polystyrene (PS) developed

by Qian et al. [27] for MD simulations, which maps each chemical monomer to a
CG bead at its center of mass. The CG potential consists of pair, bond, and angle
interactions. Similar to most bottom-up CG models [28, 29], this model can only
represent the structural properties of its atomic counterpart in a limited temperature
range, which is 400 − 500 K for the CG PS [27]. Below this temperature, the

4



structural properties is not transferable and its dynamics is accelerated due to the
reduction of degree of freedom [30], resulting in a glass transition temperature
of Tg ≈ 170 K, much lower than the the values in atomistic simulations [31] and
experiments [32]. Therefore, this model is considered a generic model of glassy
thermoplastics below its Tg. The temperature transferablility could be improved
by the recently proposed energy renormalization approach [33, 34]. However,
as we focus on general properties of glassy polymers, an arbitrary traditional
CG bead-spring model is sufficient for the purpose of this study. Compared to
other widely-used generic bead-spring models such as the the Kremer-Grest model
[35] and the morse model [36], the primary reason for using such a CG model
is that various previous work [37, 38, 39, 15, 40] has provided substantial useful
information for choosing its parameters.

The process of preparing the MD systems has been described elsewhere in detail
[39, 15]. In brief, each MD system is generated using the self-avoiding random
walk algorithm [41] and first equilibrated at a high temperature of 590K and then
cooled down to the target temperature under NPT conditions. Different from our
previous work [39, 15], we choose a much faster cooling rate of Ṫc = −50 Kns−1

and do not perform a further equilibrium simulation at the cooled target temperature.
This operation significantly reduces the effects of strain softening, which increases
with the state of equilibrium in glassy systems [42, 43], making it possible to focus
on the effects of strain hardening. We consider cubic MD systems with periodic
boundary conditions (PBC), comprising 500 polymer chains with 200 CG beads in
each chain each. Temperatures from 10 K to 150 K are considered.

All the MD simulations are performed using LAMMPS [44] with a time step
size of 5 fs. The Nosé-Hoover thermostat and barostat [45, 46, 47] with coupling
times of 0.5 ps and 5 ps are used, respectively.

2.2. Uniaxial tensile simulations
We conduct uniaxial tensile deformation in x-direction with constant true strain

rate of ϵ̇ = 1%/ns − 100%/ns up to a maximum stretch of λx = 5, where λx is
defined as λx = lx/Lx with lx and Lx being the current and initial edge length of
the MD system in the x-direction, respectively. The true strain rate is defined as
ϵ̇ = λ̇x/λx. The purpose of using true strain rate instead of engineering strain rate
is to keep it consistent with the expression of deformation velocity l = Ḟ F−1 used
in continuum mechanics. For convenience, we also describe the stretch using the
engineering normal strain as

εxx(t) = λx(t)− 1 = exp(ϵ̇t)− 1. (1)
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The surfaces in the lateral directions are subjected to NPT conditions with p = 1
atm. It is notable that voids could form at large strains, typically above the engi-
neering strain of 300%, resulting in a drop of stress with increasing deformation,
which is neglected in this paper.

2.3. Virial stress contribution
We use the virial formulation [48] to evaluate the stress tensor, defined as

σ = − 1

V

NA∑
I=1

mIvI ⊗ vI −
1

V

NA∑
I=1

fI ⊗ rI (2)

with the volume of simulation box V and the total number of CG beads NA. The
first term refers to the kinematic contribution σke, where mI and vI denote the
mass and velocity vector of bead I . The second term represents the virial stress
tensor σvirial, where rI and fI are position vector and the resultant force vector on
atom I . It has been derived within statistical mechanics that the virial expression (2)
is equivalent to the Cauchy stress tensor with a sufficient large NA [49, 50], which
connects the macroscopic and microscopic mechanical responses.

To decompose the stress response between inter- and intra-chain interactions
in glassy polymers, we consider the components of force fI due to pair, bond,
and angle interactions as fI = fpair

I + fbond
I + f angle

I . The virial stress is then
decomposed as

σvirial =
1

V

NA∑
I=1

−fpair
I ⊗ rI︸ ︷︷ ︸

=:σpair

+
1

V

NA∑
I=1

−fbond
I ⊗ rI︸ ︷︷ ︸

=:σbond

+
1

V

NA∑
I=1

−f angle
I ⊗ rI︸ ︷︷ ︸

=:σangle

, (3)

giving the definition of pair stress σpair, bond stress σbond, and angle stress σangle.

2.4. Microscopic properties
We characterize the microscopic structure of local segments and global polymer

chain of the MD system. For local segments, the bond length lb, bond angle
θa between two adjacent bond vectors, and bond orientation PI are considered.
Following [5], the bond orientation PI is defined as

PI =
1

2

[
3 cos2

(
θbI
)
− 1
]
. (4)
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where θbI is the angle between bond vector I and the loading direction, which is the
x direction in this paper. These quantities are typically used in a thermodynamic
average sense. For example, the averaged bond orientation is denoted as ⟨P ⟩ =∑NB

I=1 PI/NB with NB the number of bonds considered. ⟨P ⟩ ranges from −0.5 to
1, which gives the value of −0.5 if all bonds are orthogonal to the loading direction,
while equals 1 if they are all parallel to the loading direction. The value ⟨P ⟩ = 0
means random distribution of all the bond orientations.

At the scale of polymer chains, we consider their elongation during deformation
following the definition given by Hoy and Robbins [51], described as

εchainxx (t) =

√
⟨R2

ee,x(t)⟩ −
√

⟨R2
ee,x(0)⟩√

⟨R2
ee,x(0)⟩

, (5)

where Ree,x(t) denotes the x-component of the end-to-end vector of a polymer
chain at time t while ⟨R2

ee,x(t)⟩ represents the thermodynamically-averaged value
of its squares.

3. Analysis of molecular dynamics results

3.1. Dominating relaxation mechanisms in strain hardening
We start with identifying the primary relaxation mechanisms of strain hardening

in glassy polymers, which result in their rate- and temperature-dependent behavior
as shown in Figure 1. Basically, the solid curves in Figure 1 show rate-dependent
hardening behavior at a constant temperature of 120 K, indicating the existence of
relaxation mechanisms in the hardening region. The dashed curves in Figure 1 are
presented to repeat the time-temperature correlation (TTC) behavior as discussed in
our previous work [39] with a minimum set of simulations to compare the relaxation
mechanisms at small and large strains, exhibiting different TTC behavior between
small and large deformation at different temperatures.

At lower temperatures, the simulations under conditions of [T = 120 K, ϵ̇ =
100%/ns] and [T = 80 K, ϵ̇ = 10%/ns] result in approximately the same stress-
strain curves at both small and large deformation, suggesting that the relaxation
mechanisms in the hardening region should be the same as at small strains, i.e.,
before yielding. Assuming that the relaxation at the scale of polymer chains is not
involved at small strains before yielding due to frozen mobility, it is reasonable to
speculate that the rate-dependent strain hardening behavior at lower temperatures
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Figure 1: Stress–strain curves of the MD systems in uniaxial tension simulations at
different temperatures and true strain rates.

is also primarily determined by the relaxation of local structures, i.e., the structure
composed of atoms close to each other.

In contrast, at higher temperatures close to Tg, the MD system exhibits different
TTC behavior at small and large strains. Specifically, the stress-strain curve at
[T = 120 K, ϵ̇ = 1%/ns] coincide with the curve at [T = 150 K, ϵ̇ = 20%/ns] at
strains below 80% but approximately coincide with the curve at [T = 150 K, ϵ̇ =
10%/ns] at strains above 300%. This different TTC behavior at small and large
strains means that the dominating relaxation mechanisms in the hardening region
at higher temperatures is not only the relaxation of local structures. Most likely, the
relaxation of polymer chains such as disentanglement start contributing to the rate-
and temperature-dependence of strain hardening at this temperature. As discussed
in Section 1, this conjecture can well interpret the contradictory results of MD
simulations for different glassy polymer models reported in [19, 17], where the
entanglement length Ne remains approximately constant in [19] but evolves with
increasing strain in the hardening region in [17].

To observe the effects of disentanglement at higher temperatures, we fol-
low [51] to compare the stretch of polymer chains under different conditions during
deformation as depicted in Figure 2, where the averaged stretch of polymer chains
is scaled in the form of strain as defined in Equation (5). The chain stretch εchainxx

can follow the macroscopic strain εxx with increasing deformation, indicating
that the effects of relaxation at the scale of polymer chains play a minor role in
strain hardening. Instead, polymer chains are stretched approximately affine to
the macroscopic deformation. It is the relaxation of local structures such as chain

8



segments that dominates the rate- and temperature-dependent strain hardening. At
different temperatures and strain rates, the chain stretch εchainxx coincide at small
strains and exhibit slight deviations at large strains, where the chain stretch at
higher temperatures and lower strain rates becomes smaller than that at lower
temperatures and higher strain rates, indicating that disentanglement happens under
these conditions, but only resulting in a small contribution to the relaxation at the
scale of polymer chains. This result is consistent with the observation in [51] and
the results shown in Figure 1. In summary, the stress increase in strain hardening
is caused by chain stretch, primarily mediated by relaxation of local structures at
temperatures below Tg, and slightly influenced by the relaxation at larger length
scales such as disentanglement at the temperatures close to Tg.
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360 380 400
320

340

360

Figure 2: The averaged stretch of polymer chains as defined in Equation (5) as a
function of applied engineering strain at different temperatures and true strain rates.

3.2. Primary contributions to strain hardening
We further attempt to identify which local structure is the main resource to

strain hardening in glassy polymers. To this end, we consider the virial components
of stress responses during deformation as defined in Equation (3). We focus on the
simulations at lower temperatures to avoid the influence of disentanglement. Figure
3(a) depicts the x components of bond, angle, and pair stresses during deformation
at the conditions of [T = 120 K, ϵ̇ = 100%/ns] and [T = 80 K, ϵ̇ = 10%/ns],
which is adopted from the simulation sets resulting in coinciding stress-strain
curves in Figure 1. It is evident in Figure 3(a) that the virial components also
coincide in these simulations, suggesting that the dominating relaxation mechanism
also has very similar influence on each virial component. In Figure 3(a), the pair
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stress initially increases to a yield point and then decreases continuously, suggesting
that the pair interaction is not the primary contribution to strain hardening. In
contrast, the strain hardening should be attributed to the bond and angle stresses as
they increase in the hardening region.
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Figure 3: The virial stress contributions as defined in Equation (3) as a function of
engineering strain in the form of (a) the normal component in the loading direction
and (b) the deviatoric part. The y axis ∆σ denoted the in crease of stress compared to
its initial value as ∆σ(t) = σ(t)− σ(0) at time t.

To explain the drop of the x component of the pair stress in Figure 3(a), we
further consider the deviatoric part of the stress, which is defined as σdev

xx =
[2σxx − σyy − σzz]/3 in uniaxial deformation, as depicted in Figure 3(b). Here,
the deviatoric pair stress remains approximately constant after yielding, indicating
that pair interactions also has no negative contributions to strain hardening. As
explained in our previous work [15], the decrease of pair stress in the loading
direction could be attributed to bond orientation, which squeezes the space in
the loading direction but releases more space along the lateral directions for pair
interactions. Similar to their x components, the deviatoric part of bond and angle
stresses also increases in the hardening region, justifying that the strain hardening
is caused by bond and angle interactions in the deviatiric point of view.

To further explore the exact source contributing to the stress response in strain
hardening, we compare the evolution of different quantities representing the micro-
scopic structures in Figure 4. Figure 4(a) presents the evolution of the averaged
bond length ⟨lb⟩ during deformation at a strain rate of ϵ̇ = 100%/ns at different
temperatures. A nonmonotonic dependence of ⟨lb⟩ on the temperature suggests that
⟨lb⟩ is not an appropriate variable to describe the microscopic structure associated
with strain hardening. Instead, we use the averaged value of the maximum bond
length in each polymer chain ⟨lbmax⟩ to characterize the microscopic structure. As
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shown in Figure 4(b), the variable ⟨lbmax⟩ monotonically increases with decreasing
temperatures in the hardening region. Furthermore, the transition similar to yield-
ing can be observed in the curves in Figure 4(b). These features indicate that ⟨lbmax⟩
could be a good candidate to characterize the microscopic structure associated
with strain hardening. Moreover, it is reasonable to imagine that the traction of
an elongated chain should be balanced by its longest bond if all bonds are con-
nected in series. We denote this bond as load-bearing bond. We further denote
the local deformation associated with the load-bearing bonds as local load-bearing
deformation.
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Figure 4: The averaged microscopic quantities of the MD system along deformation
with a strain rate of 100%/ns at different temperatures: (a) averaged bond length, (b)
averaged value of the largest bond length in each polymer chain, (c) averaged bond
orientation as defined in Equation (4), and (d) averaged bond angle.

Figure 4(c-d) presents the evolution of averaged chain orientation ⟨P ⟩ and
bond angle ⟨θb⟩ during deformation, respectively, which increases with decreasing
temperature in the hardening region. These two variables can represent the relax-
ation of the chain segments, where a slower increase during deformation means a
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stronger relaxation, caused by higher temperatures. This relaxation accommodates
the chain stretch to mediate the stress increase.

3.3. The quantitative effects load-bearing bond
Following the finding that the stress in the hardening region is primarily con-

tributed by the longest bond in each chain, i.e., the load-bearing bonds, we explore
their quantitative effects on strain hardening in this section.

In Figure 5(a-b), the evolution of bond stress and angle stress are plotted against
the change of the averaged lengths of load-bearing bonds, which are represented
in the form of relative stretch ⟨lbmax⟩/⟨lbmax(0)⟩. Here, ⟨lbmax(0)⟩⟩ denotes the value
of ⟨lbmax⟩ before deformation. It is evident that both the bond and angle stresses
approximately coincide at larger stretch of load-bearing bonds, corresponding to
the hardening region. This result suggest that the bond and angle stresses are
dominated by the stretch of load-bearing bonds, independent of the relaxation of
chain segments, for example, characterized by the evolution of ⟨P ⟩ and ⟨θb⟩.
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Figure 5: The response of (a) bond stress and (b) angle stress as a function of
the stretch of the averaged value of the longest bonds in each chain at different
temperatures and strain rates.

We relate the stretch of load-bearing bonds to continuum mechanics by repre-
senting them using a local deformation gradient, denoted as F l. In uniaxial defor-
mation, F l comprises only the diagonal components as F l

ii = ⟨lbmax,i⟩/⟨lbmax,i(0)⟩
with i = x, y, z, where lbmax,i denotes the projection of lbmax in direction i. Then we
have the left Cauchy-Green tensor bl = F lF lT with F lT =

[
F l
]T. Its isochoric

component of the deviatoric part is given by

bl∗,dev = J l− 2
3 bl − 1

3
i tr
(
J l− 2

3 bl
)

(6)
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with the Jacobian determinant J l = det F l and the second-order unit tensor in
the deformed configuration i. Figure 6 depicts the deviatoric part of the bonded
Kirchhoff stresses with respect to the evolution of the x components of bl∗,dev,
showing that the bonded deviatoric Kirchhoff stresses are almost proportional to
bl∗,devxx in the hardening region, independent of temperatures and strain rates. This
relation can be formulated as

τ bonded,dev = µbdev
(
bl∗
)
, (7)

which is equivalent to the formulation of Neo-Hookean (NH) model utilizing
τ = Jσ with J = detF . Here, the sum of the bond and angle stress is denoted as
bonded stress as they exhibit similar dependence on the local load-bearing stretch
as shown in Figure 5. Through fitting the curves in the hardening region in Figure
6, the value of the bond shear modulus is obtained as µb = 131 MPa is obtained.
Based on the relation of the bonded stress and load-bearing stretch in the hardening
region, we assume that µb is the intrinsic hardening modulus.
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Figure 6: Deviatoric part of the bonded stress (sum of the bond and angle stress) as
a function of the deviatoric part of the left Cauchy-Green deformation tensor for the
load-bearing stretch in the loading direction as defined in Equation (6).

In summary, the results in this section suggests that the strain hardening is
caused by the stretch of chain segments, primarily mediated by the relaxation
of local structures at temperatures far below Tg and also slightly influenced by
disentanglement at temperatures close to Tg. The stress increase during strain
hardening is primarily contributed by bonded interactions, i.e., the bond stress and
angle stress, while the pair stress only has negligible influence in the hardening
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region. The bonded stress is mainly contributed by the stretch of local load-bearing
bond, which can be related to continuum mechanics by defining a local load-
bearing deformation gradient F l. Such a definition results in a relation between
the bonded stress and F l, independent of temperatures and strain rates, leading to
the NH constitutive model characterized by the bond shear modulus µb.

4. Decomposition of the deformation gradient

Similar to the decomposition of the virial stress, we assume that the total stress
in continuum mechanics comprises the contribution from pair, bonded and an
elastic term as represented by the rheological model in Figure 7:

σ = σpair + σbonded + σe, (8)

where σbonded is the stress due to bond and angle interactions. The elastic term
σe is defined for completeness of the constitutive model, which might be mainly
attributed to volumetric deformation. We assume these stress terms are independent
and our focus in this section is on the analysis of the bonded branch.

σe

σpair ηp

σbonded
Mback

ηb

σ σ

Figure 7: Rheological representation of the constitutive model.

4.1. Decomposition of deformation gradient
Based on the results in Section 3.3 that the bonded stress is merely contributed

by the local load-bearing deformation gradient F l, it is reasonable to assume a
decomposition of the total deformation into two parts as F = F lF r, where F r is
denoted as the resistance part of the deformation gradient. This decomposition
corresponds to the illustration of the bonded branch in Figure 7, where F l con-
tributes to σbonded while the evolution of F r is driven by σbonded. As the part
of chain segments corresponding to F r also has stress caused by bonded inter-
actions, which resists itself to be stretched, the resultant driving force should be
the difference between σbonded and the resistant stress. In convention, we denote
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this resistance stress as back stress. The driving stress leads to the evolution of
F r, balanced by the friction due to sliding of polymer segments. The friction
is considered as rate-dependent and characterized by the viscosity ηb. While in
mathematical representation, our decomposition F = F lF r is the same as the
Lee-Kröner decomposition F = F eF p [10, 11], the physical meaning becomes
clear in the decomposition F = F lF r for glassy polymers.

The velocity gradient of the resistant part is defined as

lr = Ḟ rF r−1,

and the corresponding rate of deformation tensor is given by Dr = [lr + lrT]/2.
Assuming isochoric resistance deformation F r analogous to most study of inelastic
flow in glassy polymers, i.e., det F r = 1, the relation between Dr and the driving
effective Mandel stress M eff,dev = Mbonded,dev −Mback,dev is given by

Dr =
M eff,dev

2ηb
, (9)

where Mbonded,dev = F lT τ bonded,dev F l−T is the pull-back of the bonded Kirch-
hoff stress τ bonded,dev = Jσbonded,dev to the intermediate configuration. The
superscript “dev” denotes the deviatoric part of the stress tensor.

4.2. Deformation of the resistance stretch
Based on the results obtained in Section 3, the isochoric part of the load-

bearing deformation gradient F l∗ can be recovered using the relation (7) with
given bond shear modulus µb and bonded stress in MD simulations. Then, it
is straightforward to calculate the components of F r and its rate Ḟ r using the
decomposition F = F lF r. Figure 8(a) presents the evolution of the stretch of the
resistance part in the loading direction λr

x at various temperatures and strain rates,
where λr

x is the x component in F r. An evident rate- and temperature-dependence
of λr

x can be observed. The resistance stretch in simulations at higher temperature
and lower strain rate shows more tendency to follow the total deformation of the
systems. Figure 8(b) illustrates the x component of Dr scaled by the loading
rate during deformation at the same temperature and rate conditions as in Figure
8(a). It is striking that all the scaled curves approximately coincide during the
whole deformation process, suggesting that the flow rate of the resistance stretch
is independent of temperature. Instead, it can follow the stretch rate of the whole
system ϵ̇ in a scaled point of view. A yield point can be evidently observed at the
highest point of the curves, where Dr

xx ≈ ϵ̇, indicating that at the yield point only
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the resistance part is deformed while the load-bearing stretch λl
x is fixed. After the

yield point, the decrease of Dr
xx corresponds to the increase of the load-bearing

stretch λ̇l
x, leading to the increase of bonded stress in the hardening region.
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Figure 8: Estimated (a) stretch and (b) rate of deformation of the resistance part of
the deformation gradient F r in the loading direction. In (b), the rate of deformation is
scaled by the prescribed true strain rate.

4.3. Yielding at small deformation
To analyze the stress arising from the flow of the resistance deformation, we

consider the yield behavior of the bonded stress at small strains. Figure 9 shows
the stress-strain curves of the bonded contributions in MD simulations at strains
below 30%, where the yield points are marked by solid points. The yield stress is
estimated as the highest point on the curves at strains below 20%. As the bonded
stress flattens after yielding, the errors of the yield stresses resulting from this
estimation method are acceptable.

The estimated yield stresses are used to identify the parameters in the viscosity
model ηb in Equation (9). Here, we consider the Eyring model

ηb = ηb0 (T )
Qmeq

T

[
sinh

(
Qmeq

T

)]−1

≈ ηb0 (T )
2Qmeq

T

[
exp

(
Qmeq

T

)]−1

(10)

with the specific activation volume Q and equivalent stress meq =
√

M eff,dev : M eff,dev/2.
The variable ηb0 (T ) is a temperature-dependent viscosity at zero stress, denoted
as static viscosity. The approximation sign is Equation (10) is valid if meq is
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Figure 9: The response of bonded stress of the MD system during deformation at
small strains marked by the yield points.

sufficiently large. In uniaxial deformation alone x-axis, meq =
√
3|M eff,dev

xx |/2 =√
3|τ eff,devxx |/2.

Assuming that before yielding there is no back stress, we have M eff,dev =
Mbonded,dev at small strains. Utilizing the approximation at the yield point that
Dr

xx,y ≈ ϵ̇ as demonstrated in Figure 8(b) and combining Equations (9) and (10),
we have

Mbonded,dev
xx,y = ηb0 (T )

2
√
3Q|Mbonded,dev

xx,y |
T

[
exp

(
Qmeq

y

T

)]−1

ϵ̇, (11)

where the subscript “y” denotes the stress at the yield point. Given Mbonded,dev
xx,y =

τbonded,devxx,y > 0 in uniaxial tension as evident in the MD simulation results, Equation
(11) can be transformed into

meq
y

T
=

1

Q
ln

(
2
√
3 ηb0 (T )Qϵ̇ref

T

)
+

1

Q
ln

(
ϵ̇

ϵ̇ref

)
, (12)

where the variable ϵ̇ref is an arbitrary constant reference strain rate. The dependence
of meq

y /T on ln(ϵ̇/ϵ̇ref) at different temperatures and strain rates are plotted in
Figure 10(a), where ϵ̇ref = 1%/ns is used. The specific activation volume Q can
be fitted, giving an averaged value of Q = 80.54 KMPa−1.

We further identify the temperature dependent static viscosity ηb0 (T ) by intro-
ducing a shift factor a(T ) that ηb0 (T ) = a(T )ηbg0 with the static viscosity ηbg0 at Tg.
Inserting this relation into Equation (12), the shift factor a(T ) can be expressed as

ln(a(T )) =
Qmeq

y

T
− ln

(
Tg

T

)
− ln

(
2
√
3 ηbg0Qϵ̇ref

Tg

)
− ln

(
ϵ̇

ϵ̇ref

)
, (13)
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Figure 10: (a) Bonded yield stress as a function of scaled strain rates at different
temperatures with ϵ̇ref = 1%/ns and their linear fitting (dashed). (b) The quantity of
Qmeq,bonded

y /T at the strain rate of ϵ̇ref as a function of 1/T from simulations (solid
curve) and the linear fit (dashed curve).

where the last two terms on the right hand side are independent of temperature.
Using Arrhenius function that a(T ) = exp (A/T − A/Tg), we can identify the
constant A by fitting the curves of

[
Qτ eqy /T − ln (Tg/T )

]
with respect to 1/T with

a linear function as shown in Figure 10(b). We obtain A = 1008 K and the relation

Q
meq

y

T
− ln

(
Tg

T

)
=

A

T
+B (14)

with B = −6.749. Comparing Equations (13) and (14), the static viscosity at Tg

can be expressed as

ηbg0 =
Tg

2
√
3Qϵ̇ref

exp

(
B +

A

Tg

)
, (15)

which results in ηg0 = 26.86 MPans = 2.686× 10−8 MPa s.
It is notable that the values of Q, A, and ηbg0 are calculated based on the follow-

ing assumptions at the yield point: i) the back stress has negligible contributions to
the flow of the resistance deformation; ii) the flow rate of the resistance deformation
is the same as the prescribed strain rate; iii) The Eyring model and Arrhenius func-
tion are applicable for the MD systems at temperatures below Tg at small strains
around the yield point. While the results derived from the last two assumptions
seem to be reasonable as evident from the MD simulation results shown in Figures
8(b) and 10(a-b), the first assumption could result in oversimplification and errors
of the estimated values. The values of these quantities will be further checked in
constitutive models discussed in Section 5.
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4.4. Back stress
The remaining component in the bonded branch in Figure 7 is the expression

of the back stress. We write the x component in Equation (9) as

M eff,dev
xx = 2ηbDr

xx = ηbg0a(T )
2Qmeq

T

[
sinh

(
Qmeq

T

)]−1

Dr
xx. (16)

In uniaxial tension, we can solve this equation utilizing the relation meq =√
3M eff,dev

xx /2, which gives

M eff,dev
xx =

2√
3

T

Q
sinh−1

(√
3ηbg0 a(T )QDr

xx

T

)
. (17)

We plot the results of the estimated M eff,dev
xx as a function of strain at different

temperatures and strain rates in Figure 11(a) and found that the effective Mandel
stress flattens in the hardening region. While this is based on the assumption that
the viscosity ηb is independent of the shape of the system, these curves cannot
provide quantitative results for the analysis of the microscopic mechanisms of strain
hardening bur only serve to provide some insights for the subsequent constitutive
modeling.
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Figure 11: Estimated (a) effective Mandel stress and (b) back stress in the deviatoric
form.

Subtracting the estimated effective stress from the total bonded Mandel stress,
we obtain the estimated back stress Mback

xx . We plot them as a function of the
deviatoric part of the left Cauchy green tensor for the resistance deformation br∗,devxx

in Figure 11(b). The definition of br∗,devxx is similar to their counterpart bl∗,devxx given
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in Equation (6). The rate- and temperature-dependence of the curves in Figure
11(b) indicates that the back stress Mback is not a unary function of F r. Instead,
it is appropriate to introduce an internal variable to construct the function of the
back stress, such as the widely used orientation tensor A [14]. Furthermore, the
shape of the curves suggests that the relation between Mback and A should not be
the NH model as the slopes increases with deformation. A Langevin-based model
could be considered as used in [26].

5. Constitutive modeling

In this section, we synthesize the results obtained in previous sections in a con-
stitutive model as schematically illustrated in Figure 7 to validate the mechanism
of local load-bearing deformation that primarily induces strain hardening in glassy
polymers. In the pair branch, the conventional Lee-Kröner decomposition of the
deformation gradient F = F eF p [10, 11] is used while in the bonded branch,
the decomposition F = F lF r discussed in Section 3 is assumed. We start with
deriving the mathematical expression in Section 5.1 and 5.2, followed by parameter
identification and validation in Section 5.3 and 5.4, respectively.

5.1. Thermodynamics
The requirement of the constitutive model for thermodynamic consistency is

firstly derived in this subsection. Different from the conventional Coleman-Noll
procedure [52, 53], which considers a single continuum body Ω subjected external
source of force, heat flux, and entropy flux, we follow the method proposed
by Bouchbinder [54] to derive the expression of the first and second laws of
thermodynamics by taking into account the effects of the reservoir, which is
thermally connected with Ω. Then, the first and second laws read∫

Ω

u̇ dV + U̇R =

∫
Ω

S :
1

2
Ċ dV (18)∫

Ω

ṡ dV + ṠR ≥ 0, (19)

where u and s denote the energy density and entropy density in Ω while UR and SR

are the total energy and entropy in the reservoir, respectively. The variables S and
C = F TF denote the Piola-Kirchhoff stress tensor and the right Cauchy-Green
tensor, respectively. As the reservoir is in equilibrium state, its temperature can be
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defined as TR = ∂UR/∂SR, resulting in the relation ṠR = U̇R/TR. Inserting this
relation and the first law (18) into the second law (19), it can be transformed as

−
[
1− T

TR

]
U̇R +

∫
Ω

[
S :

1

2
Ċ − Ψ̇− Ṫ s

]
dV ≥ 0, (20)

where the free energy density Ψ is operationally defined as Ψ = u− Ts to avoid
the explicit dependence of the energy on entropy u = u(s).

The variable −U̇R in Equation (20) equals the heat flux from the reservoir to
the system Ω. This process controls the temperature T in Ω through adjusting TR,
which is independent of what happens in Ω. Therefore, the inequality (20) must be
satisfied for arbitrary U̇R, requiring

−
[
1− T

TR

]
U̇R ≥ 0, (21)

which can be fulfilled by specifying the direction of the heat flux Q := −U̇R =
−K [T − TR] with an effective scalar coefficient K > 0. The second term in
Equation (20) also must be satisfied for all possible Ċ and Ṫ , independent of the
heat heat flux into Ω, and also for arbitrary Ω, leading to the inequality

S :
1

2
Ċ − Ψ̇− sṪ ≥ 0, (22)

essentially identical to the conventional Clausius-Duhem inequality.
Based on the MD simulation results discussed in Section 3 and 4, the free

energy density Ψ is assumed to be a function of temperature T , the right Cauchy-
Green tensor C, the visco-plastic part of the deformation gradient F p for the pair
contributions, the stretch resisting part of the deformation gradient F r for the
contribution from bonded interactions, and an internal variable A associated with
the back stress, which has been mostly assumed to represent the orientation of
polymer chains and is symmetric and unimodular [14]. The rate of the free energy
is then expressed as

Ψ̇ =
∂Ψ

∂T
Ṫ +

∂Ψ

∂C
: Ċ +

∂Ψ

∂F p
: Ḟ p +

∂Ψ

∂F r
: Ḟ r +

∂Ψ

∂A
: Ȧ

=
∂Ψ

∂T
Ṫ + 2

∂Ψ

∂C
:
1

2
Ċ − 2Ce ∂Ψ

∂Ce
: Dp − 2C l ∂Ψ

∂C l
: Dr +

∂Ψ

∂A
: Ȧ, (23)
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where Dp is the symmetric part of the velocity gradient lp = Ḟ pF p−1. Substituting
Equation (23) into (22), the Clausius-Duhem inequality becomes[

S − 2
∂Ψ

∂C

]
:
1

2
Ċ −

[
s+

∂Ψ

∂T

]
Ṫ + 2Ce ∂Ψ

∂Ce
: Dp

+ 2C l ∂Ψ

∂C l
: Dr − ∂Ψ

∂A
: Ȧ ≥ 0, (24)

which must be satisfied for all possible Ċ and Ṫ , resulting in the constitutive model

S = 2
∂Ψ

∂C
, (25)

s = −∂Ψ

∂T
. (26)

These expressions simplifies the inequality (24) to

2Ce ∂Ψ

∂Ce
: Dp + 2C l ∂Ψ

∂C l
: Dr − ∂Ψ

∂A
: Ȧ ≥ 0. (27)

As assumed that the pair and bonded contributions are independent, the inequality
(27) must be satisfied for all possible Dp, requiring that the first term in Equation
(27) to be non-negative. This can be realized by defining the flow law as

Dp =
1

2ηp
2Ce ∂Ψ

∂Ce︸ ︷︷ ︸
=:Mpair

=
Mpair

2ηp
(28)

with the viscosity ηp > 0, where Mpair denotes the pair Mandel stress tensor.
For the same reason, the last two terms in Equation (27) must also be non-

negative as they are variables associated with the bonded contributions. Adopting
the following evolution equation for A

Ȧ = ADr +DrA− f(A)A (29)

as widely used [14, 55, 26], where the function f(A) represents the recovery
relaxation of A due to the back stress originated from A. The variable A would
be associated with the left Cauchy-Green tensor br = F rF rT if the recovery term
f(A) vanishes [14]. Using the equations of motion (29), the last two terms in
inequality (27) can be simplified as[

2C l ∂Ψ

∂C l
− 2A

∂Ψ

∂A

]
: Dr +A

∂Ψ

∂A
: f(A) ≥ 0. (30)
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The simplified inequality (30) can be satisfied by requiring a stronger form that
each term is non-negative. Similar to Ref. [26], we adopt the simplest form that

Dr =
1

2ηb

[
2C l ∂Ψ

∂C l
− 2A

∂Ψ

∂A

]
︸ ︷︷ ︸

=:Meff

=
M eff

2ηb
, (31)

f(A) =
1

2ηori
2A

∂Ψ

∂A︸ ︷︷ ︸
=:Mback

=
Mback

2ηori
(32)

with the viscosity ηb > 0 and ηori > 0, as well as the Mandel back stress Mback

and the Mandel effective stress M eff . The equilibrium relations (25), (26) and
the evolution equations (28), (31), (29), as well as the expression for the recovery
function (32) constitute the formulation of the constitutive model satisfying the
thermodynamic laws.

5.2. Individual models
We assume the free energy density Ψ can be decomposed into a thermal part

Ψth(T ), an equilibrium part Ψe(C), an inequilibrium part accounting for the
pair contribution Ψpair(Ce), an inequilibrium part for the bonded contribution
Ψbond(C l), and an orientation part Ψori(A) as

Ψ = Ψth(T ) + Ψe(C) + Ψpair(Ce) + Ψbond(C l) + Ψori(A). (33)

The expression for Ψth is not of interest in the present paper as we focus on
the simulations under isothermal conditions. The equilibrium term is assumed to
be only dependent on the volume change as there are no permanent cross-links in
the present MD models for thermoplastics. The pair term Ψpair is assumed to be
subjected to the NH model for simplicity. The bonded term is also considered as
an NH model as justified in Section 3.3, specifically, as evident in Figure 6. The
expression of Ψori is assumed to be a Langevin-related model as suggested by the
results in Figure 11(b), where we take the widely used Eight-Chain model [12].
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Therefore, the individual models can be summarized as

Ψe =
κe

2
[J − 1]2 , (34)

Ψpair =
µp

2
[tr (Ce∗)− 3] +

κp

2
[Je − 1]2 , (35)

Ψbonded =
µb

2

[
tr
(
C l∗)− 3

]
+

κb

2

[
Jb − 1

]2
, (36)

Ψori = µbackλL

[
λ∗β + λL ln

(
β

sinh β

)]
−Ψori

0 (37)

with λ∗ =
√

tr(A∗)/3, β = L−1
(
λ∗/λL

)
and a constant Ψori

0 . The parameter λL

represents the locking stretch while the function L−1 is the inverse of the Langevin
function L(•) = coth(•)− (•)−1. The coefficient µback can be considered as shear
modulus accounting for the chain orientation. As Je = Jb = J , the effective total
bulk modulus can be defined as κ = κe + κp + κb.

Utilizing the constitutive relation (25), the Cauchy stress tensor can be calcu-
lated as

σ =
1

J
FSF T =

µp

J
dev (be∗)︸ ︷︷ ︸

=:σpair,dev

+
µb

J
dev

(
bl∗
)

︸ ︷︷ ︸
=:σbonded,dev

+κ [J − 1]︸ ︷︷ ︸
=:σvol

. (38)

The back stress reads

Mback = µbackL−1
(
λ∗/λL

)
3λ∗/λL

dev (A∗) , (39)

which recovers to the NH formulation at small ratio of λ∗/λL as L−1(x) ≈ 3x for
sufficiently small positive x. The Mandel stresses associated with the bonded and
pair terms are given by

Mbonded = 2C l ∂Ψ

∂C l
= µbdev

(
C l∗) , (40)

Mpair = 2Ce ∂Ψ

∂Ce
= µpdev (Ce∗) . (41)

The flow rates in the associated branches are defined in Equations (28) and (31)
with M eff = Mbonded −Mback, while the flow rate of A is expressed as

Ȧ = ADr +DrA− Mback

2ηori
A. (42)
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As discussed in Section 4, the Eyring model is adopted for the viscosity associ-
ated with bonded term as in Equation (10). The same model is also adopted for the
pair term. They are expressed as

ηb = ηbg0a
b(T )

Qbmeff
eq

T

[
sinh

(
Qbmeff

eq

T

)]−1

, (43)

ηp = ηpg0a
p(T )

Qpmpair
eq

T

[
sinh

(
Qpmpair

eq

T

)]−1

(44)

with Qb, ηbg0, and meff
eq being the specific activation volume, the stress-independent

viscosity at Tg, and the norm of M eff , respectively, associated with the bonded term.
Accordingly, the quantities Qp, ηbg0, and mpair

eq have the same meaning associated
with the pair term. The Arrhenius function is taken for both terms as

ab(T ) = exp

(
Ab

T
− Ab

Tg

)
, (45)

ap(T ) = exp

(
Ap

T
− Ap

Tg

)
(46)

with constant parameters Ab > 0 and Ap > 0. The viscosity associated with chain
orientation ηori is assumed to be a function of ηb and the shape of the system,
taking the form

ηori = c ηb
[
λ∗
max

λ∗
min

]m
(47)

with λ∗
max = max {λ∗

1, λ
∗
2, λ

∗
3} and λ∗

min = min {λ∗
1, λ

∗
2, λ

∗
3}, where λ∗2

1 , λ∗2
2 , λ∗2

3

denote the eigenvalues of C∗. The coefficient c is a constant parameter denoting
the ratio between ηori and ηb. The exponent m accounts for the effect of shape
on the viscosity for chain orientation, which increases with the stretch of polymer
chains.

5.3. Parameter identification
The parameters of the constitutive model are listed in Table 1 together with their

identified values, categorized into the groups of pair, bonded, and back stresses,
as well as the bulk modulus for the total stress. The bulk modulus κ is roughly
estimated according to the response of the pressure to the volume change J , which
is not a main focuses of the present paper. The parameters in the pair group are
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identified according to the stress-strain curves of the pair contributions of the virial
stress as presented in Section 3.2, where the shear modulus µp is estimated to be the
slope of the stress-strain curves at small strains while the remaining parameters are
identified using the same process as discussed in Section 4.3. In the bonded group,
the shear modulus µb is assumed to be identical to be the bond shear modulus
fitted in Section 3.3 while the activation temperature Ab and the specific activation
volume Qb are adopted from the fitted values presented in Section 4.3. However,
this process is based on the assumption that the back stress vanishes before yielding,
which could result in deviations between the results from the constitutive model
and the MD simulations. We attempt to reduce this deviation by adjusting as few
parameters as possible. Here, only the static viscosity ηbg0 is set to be adjustable.
In the back group, we assume the shear modulus µback is identical to µb as they
originates from the same chain segments while the remaining three parameters
have to be identified by fitting the stress-strain curves.

Table 1: Parameters of the constitutive model and their identified values.

Parameter value unit physical meaning stress groups
κ 300 [MPa] total bulk modulus total
µp 148 [MPa] shear modulus

pair
ηpg0 0.003 [MPa s] static viscosity at Tg

Ap 3393 [K] activation temperature
Qp 118 [KMPa−1] spcific activation volume
µb 131 [MPa] shear modulus

bonded
ηbg0 2.686E-8 [MPa s] static viscosity at Tg

Ab 1008 [K] activation temperature
Qb 80.54 [KMPa−1] spcific activation volume
µback 131 [MPa] shear modulus

backλL 1.1 [−] locking stretch
c 0.049 [−] viscosity ratio
m 2.39 [−] shape exponent

Specifically, the parameters ηbg0, λL, c, and m are identified by minimizing the
deviations of the deviatoric part of the bonded stresses between the constitutive
model and the MD simulation results. We consider the conditions at temperatures
of 60 K and 100 K, each for strain rates of 1%/ns and 1%/ns. As shown in Figure
12, the constitutive model can well reproduce the MD results at 60 K and at the
strain rate of 100%/ns for 100 K. For the simulation at 100 K and 1%/ns, the
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deviations are small at intermediate strains but start increasing from the strain of
300%, which might be caused by the effects of disentanglement as discussed in
Section 3.2. As the main focus of the paper is the mechanisms of local load-bearing
stretch on strain hardening, the effects of disentanglement are not further discussed
here and will be systematically studied in future research.
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Figure 12: Parameter identification: Bonded Kirchhoff stress during deformation of
the constitutive model (solid curves) and MD simulations (dashed curves).

5.4. Validation
We compare the stress responses of the constitutive model with identified

parameters summarized in Table 1 and the MD simulation results in uniaxial tension
at temperatures of T = 20K−120K for every 20K below Tg with true strain rates
of ϵ̇ = 1%/ns− 100%/ns. It is noticeable that the temperatures considered in the
validation are beyond the limits of temperatures used for parameter identification
to challenge the constitutive model.

Firstly, the bonded stresses are compared as illustrated in Figure 13, demon-
strating an excellent agreement between the constitutive model and the MD results,
except for the deviations at the temperatures of 100 K and 120 K with strain rates
of 1%/ns as shown in Figure 13(a). This can be attributed to the effects of disen-
tanglement that are not considered in this paper as discussed in Section 5.3, which
will be pursued in future work.

Furthermore, we also present the results of the pair stress and the total stress
for the completeness of evaluating the constitutive model. As shown in Figure
14, both the pair stress and the total stress of the constitutive model closely match
the MD results. However, some deviations are noticeable for the pair stress. The
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Figure 13: Comparison between the bonded Kirchhoff stress during deformation of
the constitutive model (solid curves) and MD simulations (dashed curves) at different
strain rates and temperatures.

deviations in the yield region could be attributed to the oversimplification of the
Eyring model, which is merely a thermally-activated model and does not include
structural relaxation of glassy materials. This deviation could be reduced by
employing a more complex plasticity model, e.g., the phenomenological softening
model [56], the shear transformation zone (STZ) model [57, 58], or the effective
temperature model [59, 60, 61]. Another deviation can be observed at large strains
for simulations at high strain rates and low temperatures, where the MD results
exhibit a bit strain hardening behavior. This could be interpreted by the saturation
of the STZ for glassy materials, which can induce strain hardening for metallic
glasses [57]. However, the deviations in pair stresses is not further studied as the
primary purpose of the constitutive model is to validate the mechanism of local load-
bearing deformation-induced strain hardening in glassy polymers. Furthermore, the
deviations resulted from pair stress at large strains are acceptable in the total stress
as illustrated in Figures 14(b,d,f) as the bonded stress contributes significantly
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more than the pair stress in the hardening region.
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Figure 14: Comparison between the pair Kirchhoff stress (a,c,e) and the total Cauchy
stress (b,d,f) during deformation of the constitutive model (solid curves) and MD
simulations (dashed curves) at different strain rates and temperatures.
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6. Discussion and outlook

We have conducted MD simulations to investigate the physical origin of strain
hardening and its dependence on strain rate and temperature in glassy polymers.
The main findings and contributions are summarized as follows:

• Primary mechanisms of strain hardening: The principal contributors to strain
hardening are identified as bond and angle stresses, with negligible influence
from the pair term.

• Load-bearing bond stretches: Bond and angle stress components are gov-
erned primarily by the average stretch of the maximum bond in each polymer
chain, denoted as ⟨lbmax⟩/⟨lbmax(0)⟩ (referred to as load-bearing bonds),
and are largely independent of strain rate and temperature in the hardening re-
gion. This suggests that elongation forces stem primarily from load-bearing
bonds, while the remaining chain structure resists the stretch.

• Decomposition of deformation gradient: We propose decomposing the de-
formation gradient into a local load-bearing part, F l, and a stretch-resistance
part, F r, such that F = F lF r. Here, F l primarily contributes to stress
response in the hardening region, while F r resists chain segment elongation.

• Local load-bearing approximation: The local load-bearing component F l

can be approximated by ⟨lbmax⟩/⟨lbmax(0)⟩ in uniaxial tension simulations.
Results indicate that the bonded stress (i.e., the combined bond and angle
stress) and the left Cauchy-Green tensor for F l align well with the NH model
in the hardening region, allowing us to identify the shear modulus µb from
MD simulations.

• Constitutive modeling: Based on these mechanisms, we developed a consti-
tutive model comprising elastic, pair, and bonded branches, which demon-
strates good agreement with simulation results across a wide range of tem-
peratures and strain rates.

While the constitutive model presented in this paper effectively captures the
temperature- and rate-dependent stress response in the hardening region at temper-
atures well below Tg, deviations become apparent as the temperature approaches
Tg. This discrepancy is likely due to disentanglement effects, as indicated by the
inability of polymer chain stretches to fully follow the macroscopic deformation of
the entire system as discussed in Section 3.1. This deviation could be reduced by in-
troducing a local deformation gradient F d to account for the inelastic deformation
induced by disentanglement such that F = F lF rF d, where the rate of F d is driven

30



by the bonded stress. The model incorporating the effects of disentanglement will
be systematically studied in future work. Although the current constitutive model
has only been validated against MD simulations, several models with a similar
structure that incorporate orientation-induced back stress have been successfully
validated against experimental data for a variety of glassy polymers [14, 55, 26]. A
quantitative comparison of material parameters between real-world polymers and
MD simulations will require more accurate CG MD or atomistic models.
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