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Abstract. We propose a new class of inflationary attractors in metric-affine gravity. Such
class features a non-minimal coupling ξ̃Ω(ϕ) with the Holst invariant R̃ and an inflaton
potential proportional to Ω(ϕ)2. The attractor behaviour of the class takes place with two
combined strong coupling limits. The first limit is realized at large ξ̃, which makes the theory
equivalent to a R̃2 model. Then, the second limit considers a very small Barbero-Immirzi
parameter which leads the inflationary predictions of the R̃2 model towards the ones of
Starobinsky inflation. Because of the analogy with the renown ξ-attractors, we label this
new class as ξ̃-attractors.
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1 Introduction

Cosmic inflation, i.e. an accelerated expansion during the very early Universe, is the current
paradigm for explaining the flatness and homogeneity of the Universe at large scales [1–4].
Moreover, it also provides an origin for the small inhomogeneities observed in the Cosmic
Microwave Background radiation. In its minimal version, inflation is usually formulated by
adding to the Einstein-Hilbert action one scalar field, the inflaton, whose energy density
induces a near-exponential expansion.

The latest combination of Planck, BICEP/Keck and BAO data [5] has sensibly reduced
the allowed parameters space, strongly favouring nearly-flat concave inflaton potentials and
already ruling out many proposed models. Nevertheless, the most popular inflationary re-
alizations, the Starobinsky model [1] and Higgs-inflation [6], still sit in the allowed region.
Both models can be described by a scalar field non-minimally coupled to gravity (e.g. [7] and
references therein).

However, when theories are non-minimally coupled to gravity there is more than one
choice of the dynamical degrees of freedom. In the more popular metric gravity, the metric
tensor is the only dynamical degree of freedom, while the connection is fixed to be the Levi-
Civita one. On the other hand, in metric-affine gravity (MAG), both the metric and the
connection are dynamical variables and their corresponding equations of motion will dictate
the eventual relation between them. When the gravity action contains only the term linear in
the curvature scalar, the two approaches lead to equivalent theories (e.g. [8] and refs. therein),
otherwise the theories are completely different [8–10] and lead to different phenomenological
predictions, as recently investigated in e.g. [11–63]. Moreover, MAG admits two, rather
than just one, two-derivative curvature invariants: the usual Ricci-like scalar and the Holst
invariant [64–66], which can be used to construct new models (e.g. [67–78]).

The purpose of this article is to study a new model in MAG, where the Jordan frame
inflaton scalar potential is proportional to the square of the non-minimal coupling function
involving the Holst invariant and/or the Ricci-like curvature scalar. As we will see later, this
kind of setup will induce a new class of inflationary attractors.

The discussion is organized as follows. In Section 2 we introduce the action for our
inflationary model in metric-affine gravity. For the sake of minimality, we consider only
constructions where the physical degrees of freedom are only the graviton and the inflaton.
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In Section 3 we present an analytical study of the inflaton potential and describe how the
attractor configuration is reached. Then, in Section 4 we present a detailed numerical study
with the corresponding inflationary predictions. Finally, in Section 5 we summarize our
conclusions. In addition, in Appendix A, we show the full analytical equations of the slow-
roll parameters and the inflationary observables.

2 Model

We start with the Jordan frame action for a real scalar ϕ non-minimally coupled to gravity

SJ =

∫
d4x

√
−g

[
M2

P

2

(
f(ϕ)R+ f̃(ϕ)R̃

)
− ∂µϕ∂µϕ

2
− V (ϕ)

]
, (2.1)

where MP is the reduced Planck mass, V (ϕ) the inflaton potential, f(ϕ) and f̃(ϕ) are non-
minimal coupling functions, R and R̃ respectively, a scalar and pseudoscalar contraction of
the curvature (the latter also known as the Holst invariant [64–66]),

R ≡ F µν
µν , R̃ ≡ 1√

−g
ϵµνρσFµνρσ, (2.2)

where ϵµνρσ is the totally antisymmetric Levi-Civita symbol with ϵ0123 = 1. F ρ
µν σ is the

curvature associated with the connection A ρ
µ σ,

F ρ
µν σ ≡ ∂µA ρ

ν σ − ∂νA ρ
µ σ +A ρ

µ λA
λ

ν σ −A ρ
ν λA

λ
µ σ . (2.3)

As mentioned before, we do not consider any other term in action (2.1) in order to keep the
model as minimal as possible, with only the massless graviton and the inflaton as physical
degrees of freedom and without terms that feature more than two derivatives.

We remind that in MAG, the connection A ρ
µ σ is not assumed to be the Levi-Civita

one, but it is computed from the corresponding equation of motion. We also remind that, if
A ρ

µ σ is the Levi-Civita connection, R̃ vanishes1 and R equals the Ricci scalar R. After some
manipulations (e.g. [78] and refs. therein), the action (2.1) can be written in the Einstein
frame as

SE =

∫
d4x

√
−g

[
M2

P

2
R− 1

2
∂µχ∂µχ− U(χ)

]
, (2.4)

where the Einstein frame scalar potential is

U(χ) =
V (ϕ(χ))

f2(ϕ(χ))
, (2.5)

and the canonical normalized scalar is defined by solving

dχ

dϕ
=
√
k(ϕ) , k(ϕ) =

1

f
+

12
[
f(ϕ)′f̃(ϕ)− f(ϕ)f̃(ϕ)

′]2
f(ϕ)2

[
f(ϕ)2 + 4f̃(ϕ)

2
] , (2.6)

where a prime represents a derivative with respect to argument of the function. Since f(ϕ)
must be positive in order to avoid repulsive gravity, k(ϕ) is always positive and ϕ never a
ghost.

1The careful reader might notice that R̃ actually vanishes for any A ρ
µ σ that satisfies A ρ

µ σ = A ρ
σ µ.
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In the present article we are interested in the ξ-attractors-inspired [79, 80] configuration

V (ϕ) = Λ4Ω(ϕ)2, f(ϕ) = 1 + ξΩ(ϕ), f̃(ϕ) = f̃2
0 + ξ̃Ω(ϕ) , (2.7)

where Ω is a positive continuous and differentiable function of ϕ. The quantity 1/(4f̃2
0 ) is

known as the Barbero-Immirzi parameter [81, 82]. Similar setups have been already studied
in the literature. For instance, the configuration with f̃0 = ξ̃ = 0 (i.e. without the Holst
invariant contribution) has been already studied in (e.g. [10, 17] and refs. therein), while the
choice with all the contributions active and Ω ∝ ϕ2 has been studied in [69, 70]. According
to our knowledge, for what concerns the last configuration, the setup with a generic Ω has
not been studied yet. In particular, in this article we study the setup where ξ = 0 (i.e. only
a non-minimal coupling between ϕ and the Holst invariant), leaving the most general study
for a future work.

3 General features of the scalar potential

In the case of f(ϕ) = 1 i.e. ξ = 0 (see eq. (2.7)), the scalar potential in eq. (2.5) just becomes
U(χ) = V (ϕ(χ)). Therefore, the eventual change of shape in the potential is all due to the
field redefinition in eq. (2.6). When ξ = 0, the non-minimal kinetic function simply becomes

k(ϕ) = 1 +
12
[
f̃(ϕ)

′]2[
1 + 4f̃(ϕ)

2
] = 1 +

12 ξ̃2 [Ω(ϕ)′]2

2

[
1 + 4

(
f̃0

2
+ ξ̃Ω(ϕ)

)2] . (3.1)

It is well known that when k(ϕ) presents a pole (or just a pronounced peak), U(χ) exhibits a
flat region that might be suitable for inflation. Since the denominator in eq. (3.1) is strictly
positive, the chance of a pole is excluded and we are left only with the possibility of an
eventual local maximum with k(ϕ) ≫ 1. This should naively happen when |ξ̃| ≫ 1 (see
eq. (3.1)). In such a case, then we can easily approximate the behaviour of k(ϕ) nearby the
maximum by neglecting the “1+” term before the fraction in (3.1), obtaining

k(ϕ) ≃ 12 ξ̃2 [Ω(ϕ)′]2

2

[
1 + 4

(
f̃0

2
+ ξ̃Ω(ϕ)

)2] . (3.2)

Using such an expression, we can provide an approximated solution for (2.6)

χ ≃
√

3

2
MP

{
arcsinh

[
2
(
f̃0

2 + ξ̃Ω(ϕ)
)]

− arcsinh
(
2f̃0

2
)}

, (3.3)

which can be inverted in function of Ω(ϕ), allowing us to write explicitly the Einstein frame
potential as

U(χ)R̃2 ≃ Λ4

4ξ̃2

sinh

arcsinh

√

2
3χ

MP
+ 2f̃0

2

− 2f̃0
2


2

. (3.4)

Note that the potential (3.4) is completely independent on Ω(ϕ) and can be generated by the
action

S =

∫
d4x

√
−g

[
M2

P

2

(
R+ f̃2

0 R̃
)
+ cR̃2

]
, c = ξ̃2

(
MP

4Λ

)4

, (3.5)
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which has been already studied in [72]. Using the properties of the hyperbolic functions, it
can be proven that eq. (3.4) is equivalent to the expression of the inflaton potential used
in [72]. Moreover, taking the f̃0 → ∞ limit of (3.4), we obtain the Starobinsky potential [1]

U(χ)R2 ≃ Λ4f̃0
4

ξ̃2

(
1− e

−
√

2
3

χ
MP

)2

. (3.6)

Therefore, because of such an universal strong coupling limit and the analogy with the ξ-
attractors, we decide to label the class of models defined by eqs. (2.7) as ξ̃-attractors. It
is reasonable to expect that the ξ̃-attractors will show two asymptotic behaviours in two
different steps, the first one approaching the predictions of the R̃2 model in (3.5) for |ξ̃| ≫ 1
and then a second one approaching the results of Starobinsky inflation when also |f̃0| ≫ 1.
In order to test numerically such a behaviour, from now on we study the specific choice

Ω(ϕ)2 =

(
ϕ

MP

)n

, (3.7)

with n > 0. We note that for even n’s V (ϕ) is positive for any ϕ values and all the functions
in (2.7) are symmetric under the transformation ϕ → −ϕ. On the other hand, for odd n’s,
the inflaton potential is positive only for ϕ > 0. Therefore from now on we only work in the
positive quadrant for ϕ. Moreover, the absolute signs of f̃ and f̃0 are irrelevant (see eqs. (2.6)
and (2.7)), therefore from now on we choose the convention where f̃0 > 0 while ξ̃ changes
sign. Inserting (3.7) into (3.1), the kinetic function becomes

k(ϕ) = 1 +
3n2 ξ̃2

(
ϕ

MP

)n−2

2

[
1 + 4

(
f̃0

2
+ ξ̃

(
ϕ

MP

)n/2)2
] . (3.8)

The position of the corresponding local maximum can be computed to be

ϕpeak =

(
∆

ξ̃

)2/n

MP ∆ =
f̃0

2

4

(
n− 4−

√
n2 +

2(n− 2)

f̃04

)
. (3.9)

and the value of the maximum of the kinetic function is

k(ϕpeak) = 1 + ξ̃4/n
3n2∆2− 4

n

2
(
4
(
f̃02 +∆

)
2 + 1

) . (3.10)

Since ∆ is always negative, in order to ensure that ϕpeak is real and positive, ξ̃ must be
negative as well. Therefore, from now on we will only consider ξ̃ < 0. Moreover, if 0 < n < 2,

then f̃0 has the lower bound f̃0
2 ≥

√
2
√

2−n
n2 . Now let us see how the peak in k(ϕ) generates

a flat region in U(χ). This happens via an inflection point, whose equation is:

U ′′(χflex) = 0 . (3.11)

In terms of ϕ, eq. (3.11) can be rewritten as

1

2

k′(ϕflex)

k(ϕflex)
=

V ′′(ϕflex)

V ′(ϕflex)
, (3.12)
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Figure 1: Ū(χ) vs. χ/MP for n = 4. (a) f̃0 = 5 with |ξ̃| ≃ 0.22 (brown, dashed) and |ξ̃| ≃
46.8 (brown, dot-dashed). (b) f̃0 = 30 with |ξ̃| ≃ 7.24 (brown, dashed) and |ξ̃| ≃ 1.66× 103

(brown, dot-dashed). For reference the corresponding Ū(χ)R̃2 (black, dashed) and Ū(χ)R2

(black, continuous).

where we have used ξ = 0. Now, using eqs. (2.7) and (3.7), eq. (3.12) becomes

MP

2

k′(ϕflex)

k(ϕflex)
= (n− 1)

MP

ϕflex
. (3.13)

Then, it is easy to see that for n = 1, eq. (3.13) just becomes k′(ϕflex) = 0 and ϕflex = ϕpeak.
For any other n, if ϕflex ≫ MP , then ϕflex ≃ ϕpeak. This happens when f̃0 ≫ 1 (see eq. (3.9)).
Let us now study the behaviour of U(χ) in the vicinity of the pronounced peak in k(ϕ). From
eq. (3.10) it is easy to check that if |ξ̃| ≫ 1 and/or f̃0 ≫ 1, then the value of k(ϕ) at the
maximum behaves like

k(ϕpeak) ≈
3

2
n2 ξ̃4/n f̃0

4− 8
n ≫ 1 . (3.14)

Moreover, using the result of (3.3) combined with eq. (3.7), we can provide an approximated
solution for the field redefinition as

χ ≃
√

3

2
MP

{
arcsinh

[
2

(
f̃0

2 + ξ̃

(
ϕ

MP

)n/2
)]

− arcsinh
(
2f̃0

2
)}

, (3.15)

which leads to the same Einstein frame potential shown in eq. (3.4). In order to have a
better understanding of the behaviour of the inflaton potential at big f̃0, we show in Fig. 1,

the plot of Ū(χ) = 4ξ̃2

Λ4 U(χ) (brown) for n = 4, f̃0 = 5 (a), f̃0 = 30 (b) with respectively

|ξ̃| ≃ 0.22 (dashed), 46.8 (dot-dashed) and |ξ̃| ≃ 7.24 (dashed), 1.66× 103 (dot-dashed). For
reference we will also show the plots of the corresponding Ū(χ) potentials for the R̃2 model
in eq. (3.4) (black, dashed) and for the Starobinsky model in eq. (3.6) (black, continuous).
We can see that all the brown lines in both plots exhibit a quite flat inflection point and that
the corresponding concave knee if moving to smaller χ’s by increasing |ξ̃|. Moreover when |ξ̃|
is large, the plateau region of Ū(χ) is essentially indistinguishable from the one of Ū(χ)R̃2 .

Finally, when both |ξ̃| and f̃0 are big, the plot of Ū(χ)R̃2 overlaps the one of Ū(χ)R2 until it
passes the inflection point. Then Ū(χ)R̃2 turns upwards into a convex behaviour diverging
to infinity while Ū(χ)R2 remains concave while approaching its horizontal asymptote.
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4 Inflationary results

In this section we discuss the inflationary predictions of the model. As well known, in the
slow-roll approximation, all the inflationary observables can be computed from the potential
slow-roll parameters:

ϵU (χ) =
M2

P

2

(
U ′(χ)

U(χ)

)2

, (4.1)

ηU (χ) = M2
P

U ′′(χ)

U(χ)
. (4.2)

The expansion of the Universe is estimated in number of e-folds, which is

Ne =
1

M2
P

∫ χN

χend

dχ
U(χ)

U ′(χ)
, (4.3)

where the field value at the end of inflation is given by ϵ(χend) = 1, while the field value χN at
the time a given scale left the horizon is given by the corresponding Ne. The tensor-to-scalar
ratio r and the scalar spectral index ns are:

r = 16ϵU (χN ) , (4.4)

ns = 1 + 2ηU (χN )− 6ϵU (χN ) . (4.5)

Finally, the amplitude of the scalar power spectrum is

As =
1

24π2M4
P

U(χN )

ϵU (χN )
≃ 2.1× 10−9 , (4.6)

whose experimental constraint [83] usually fixes the energy scale of inflation. The explicit
analytical expression for the inflationary observables are too cumbersome to provide any
useful information at first glance, therefore we postpone them into a separate Appendix A.

The corresponding numerical results are instead illustrated in Fig. 2 for Ne = 50 and
Fig. 3 for Ne = 60, where we show r vs. ns (a), r vs. |ξ̃| (b), |ξ̃| vs. ns (c), δΛ vs. |ξ̃| (d) with
δΛ = Λ

MP
counting the prefactor of the inflaton potential (2.7) in Planck units. We considered

the following values for n: 1 (red), 2 (orange), 3 (yellow) and 4 (brown). In both Figs. 2 and 3
we used f̃0 = 4 (dotted), f̃0 = 5 (dot-dashed) and f̃0 = 30 (dashed). For reference we also
added the 1,2σ allowed regions coming from the latest combination of Planck, BICEP/Keck
and BAO data [5] (gray areas) and the predictions of R̃2 inflation (black, dashed) at Ne =
50, 60 (according to the figure) and of standard ϕn inflation (continuous, same colors as
before) and Starobinsky inflation (black, continuous) for Ne ∈ [50, 60].

First all we notice that, as usual, moving from Ne = 50 (Fig. 2) to Ne = 60 (Fig. 3), the
predictions move towards lower (higher) r (ns) but the generic behaviour remains unaffected.
However, the lower f̃0, the higher is the increase in ns at a given ξ̃ (cf. Figs. 2(c) and 3(c)).
As expected from the analytical study of the inflaton potential and the limits in eqs. (3.4)
and (3.6), we see that for |ξ̃| ≫ 1 we predictions are aligned with the ones of the R̃2 model.
When also f̃0 ≫ 1 (specifically f̃0 = 30 in our case), then the results match the ones of
Starobinsky inflation2. Even though it is possible to get predictions in agreement with the

2This is in agreement with the results of [72], where, using our notation, the author just stopped the
numerical analysis at f̃0 = 10

√
3 ≃ 17.3.
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Figure 2: r vs. ns (a), r vs. |ξ̃| (b), |ξ̃| vs. ns (c), δΛ vs. |ξ̃| (d) for Ne = 50 and n = 1
(red), 2 (orange), 3 (yellow) and 4 (brown) with f̃0 = 4 (dotted), f̃0 = 5 (dot-dashed) and
f̃0 = 30 (dashed). The gray areas represent the 1,2σ allowed regions coming from the latest
combination of Planck, BICEP/Keck and BAO data [5]. For reference the predictions of R̃2

inflation (black, dashed) at Ne = 50 and of standard ϕn inflation (continuous, same colors as
before) and Starobinsky inflation (black, continuous) for Ne ∈ [50, 60].

latest constraints [5], most of the predictions actually fall out of the 2σ allowed region. On
the other hand, it is possible to reach the 1σ region without using very large f̃0 but just
f̃0 = 4.

From Figs. 2(b) and 3(b), we see that r is insensitive to the value of ξ̃ when |ξ̃| < 1, for
all the considered values of f̃0. By increasing |ξ̃|, r decreases until it reaches its asymptotic
value corresponding to R̃2 inflation, for all the studied values of f̃0 but f̃0 = 4, where instead,
it first reaches a minimum and then increases towards the aforementioned limit. Finally we
notice that the generic shape of the results is not affected by changing n, but the asymptotic
configuration is reached at larger |ξ̃| values with n increasing.

From Figs. 2(c) and 3(c), we see that behaviour of ns is the same for all the considered
values of f̃0. First, it is insensitive to the value of ξ̃ when |ξ̃| < 1. By increasing |ξ̃|, ns

decreases until it reaches a minimum and then it increases reaching its asymptotic value
corresponding to R̃2 inflation. As before, the generic shape of the results is not affected by
changing n, but the asymptotic configuration is reached at larger |ξ̃| values with n increasing.
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Figure 3: r vs. ns (a), r vs. |ξ̃| (b), |ξ̃| vs. ns (c), δΛ vs. |ξ̃| (d) for Ne = 60 and n = 1
(red), 2 (orange), 3 (yellow) and 4 (brown) with f̃0 = 4 (dotted), f̃0 = 5 (dot-dashed) and
f̃0 = 30 (dashed). The gray areas represent the 1,2σ allowed regions coming from the latest
combination of Planck, BICEP/Keck and BAO data [5]. For reference the predictions of R̃2

inflation (black, dashed) at Ne = 60 and of standard ϕn inflation (continuous, same colors as
before) and Starobinsky inflation (black, continuous) for Ne ∈ [50, 60].

Finally, from Figs. 2(d) and 3(d), we see that behaviour of δΛ is the same for all the
considered values of f̃0. First, it is insensitive to the value of ξ̃ when |ξ̃| < 1. By increasing
|ξ̃|, δΛ decreases until it reaches a minimum and then it increases reaching its asymptotic
configuration corresponding to R̃2 inflation. Again, the generic shape of the results is not
affected by changing n, but the asymptotic configuration is reached at larger |ξ̃| values with
n increasing.

To conclude we note that our results agree with the ones of [69] in the corner of the
parameters space where the two models are comparable. However, no direct comparison can
be done with [70] because they do not study the case of a negative ξ̃.

5 Conclusions

We studied a new class of inflationary attractors in metric-affine gravity. Such class exhibits
a non-minimal coupling function, Ω(ϕ), with the Holst invariant R̃ and an inflaton potential
proportional to Ω(ϕ)2. Because of the analogy with the renown ξ-attractors, we decided
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to label this new class as ξ̃-attractors. The attractor behaviour of the class takes place
with two combined strong coupling limits. The first limit is the obvious ξ̃ ≫ 1, which
makes the theory equivalent to a R̃2 model. Then, the second limit considers a very small
Barbero-Immirzi parameter (i.e. f̃0 ≫ 1), driving the inflationary predictions of the model
into the ones of Starobinsky inflation. We also performed a detailed numerical study for
Ω(ϕ)2 = (ϕ/MP )

n with n = 1, 2, 3, 4. The two-steps attractor behaviour has been confirmed
for all the considered values of n. The Starobinsky limit has been reached for f̃0 = 30.
On the other hand, compatibility with experimental data [5] at 1σ level, is already possible
for f̃0 = 4 and ξ̃ ≃ 6, 1.5, 0.3, 0.08, respectively for n = 1, 2, 3, 4, but far away from the
Starobinsky solution. The forthcoming experiments with a precision of δr ∼ 10−3, such as
Simons Observatory [84], CMB-S4 [85] and LITEBIRD [86], will be capable to confirm or
rule out our scenario, in particular for the cases away from the Starobinsky limit.
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A Equations for inflationary parameters

In this Appendix we give the analytical expressions of the slow-roll parameters and the
corresponding inflationary observables. Since the field redefinition (2.6) cannot be solved
analytically, as customary, we apply the chain rule of derivatives and express the parameters
in function of ϕ. Therefore, using eqs. (2.5), (2.6), (4.1) and (4.2), we get

ϵU (xϕ) =
n2

2x2ϕ

1

1 +
3n2ξ̃2xn−2

ϕ

2

[
1+4

(
f̃02+ξ̃x

n/2
ϕ

)2
] , (A.1)

ηU (xϕ) =
1(

16f̃02ξ̃x
n
2
+2

ϕ + 2
(
4f̃04 + 1

)
x2ϕ + ξ̃2

(
3n2 + 8x2ϕ

)
xnϕ

)2 ×

×
[
12n4f̃0

4ξ̃2xnϕ + 36n4f̃0
2ξ̃3x

3n/2
ϕ + 3n4ξ̃2xnϕ + 24n4ξ̃4x2nϕ +

+4(n− 1)nx2ϕ

(
8f̃0

2ξ̃x
n/2
ϕ + 4f̃0

4 + 4ξ̃2xnϕ + 1
)2 ]

, (A.2)

where we have defined xϕ = ϕ/MP . Hence, the number of e-folds is computed using (4.3) as

Ne =

[
x2ϕ
2n

+
3

8
ln

(
1 + 4

(
f̃0

2 + ξ̃x
n/2
ϕ

)2)
− 3

2
f̃0

2 arctan
(
2
(
f̃0

2 + ξ̃x
n/2
ϕ

))]xϕN

xϕend

, (A.3)
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while the tensor-to-scalar ratio (4.4) and the scalar spectral index (4.5) become respectively

r =
8n2

x2ϕN

1

1 +
3n2ξ̃2xn−2

ϕN

2

[
1+4

(
f̃02+ξ̃x

n/2
ϕN

)2
] , (A.4)

ns = 1− n(n+ 2)

x2ϕN

+
3n4ξ̃2xn−2

ϕN

(
ξ̃2xnϕN

(
3(n− 4)n+ 8x2ϕN

)
− 2

(
4f̃0

4 + 1
)
x2ϕN

)
2
(
16f̃02ξ̃x

n
2
+2

ϕN
+ 2

(
4f̃04 + 1

)
x2ϕN

+ ξ̃2
(
3n2 + 8x2ϕN

)
xnϕN

)
2

+
3n3(n+ 8)ξ̃2xnϕN

4x4ϕN

(
4
(
f̃02 + ξ̃x

n/2
ϕN

)
2 + 1

)
+ 6n2ξ̃2xn+2

ϕN

. (A.5)

To conclude, the amplitude of scalar perturbations (4.6) is given by

As =
xnϕN

24π2

Λ4

M4
P

2x2ϕN

n2
+

3ξ̃2xnϕN

1 + 4
(
f̃02 + ξ̃x

n/2
ϕN

)2
 . (A.6)
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[69] M. L̊angvik, J.-M. Ojanperä, S. Raatikainen, and S. Rasanen, Higgs inflation with the Holst
and the Nieh–Yan term, Phys. Rev. D 103 (2021), no. 8 083514, [arXiv:2007.12595].

[70] M. Shaposhnikov, A. Shkerin, I. Timiryasov, and S. Zell, Higgs inflation in Einstein-Cartan
gravity, JCAP 02 (2021) 008, [arXiv:2007.14978]. [Erratum: JCAP 10, E01 (2021)].

[71] G. Pradisi and A. Salvio, (In)equivalence of metric-affine and metric effective field theories,
Eur. Phys. J. C 82 (2022), no. 9 840, [arXiv:2206.15041].

[72] A. Salvio, Inflating and reheating the Universe with an independent affine connection, Phys.
Rev. D 106 (2022), no. 10 103510, [arXiv:2207.08830].

[73] M. Piani and J. Rubio, Higgs-Dilaton inflation in Einstein-Cartan gravity, JCAP 05 (2022),
no. 05 009, [arXiv:2202.04665].

[74] A. Di Marco, E. Orazi, and G. Pradisi, Einstein–Cartan pseudoscalaron inflation, Eur. Phys. J.
C 84 (2024), no. 2 146, [arXiv:2309.11345].

[75] I. D. Gialamas and K. Tamvakis, Inflation in metric-affine quadratic gravity, JCAP 03 (2023)
042, [arXiv:2212.09896].

[76] I. D. Gialamas, T. Katsoulas, and K. Tamvakis, Inflation and reheating in quadratic
metric-affine gravity with derivative couplings, JCAP 06 (2024) 005, [arXiv:2403.08530].

[77] I. D. Gialamas and K. Tamvakis, Inflation in Weyl-invariant Einstein-Cartan gravity,
arXiv:2410.16364.

[78] A. Racioppi and A. Salvio, Natural metric-affine inflation, JCAP 06 (2024) 033,
[arXiv:2403.18004].

[79] R. Kallosh, A. Linde, and D. Roest, Universal Attractor for Inflation at Strong Coupling, Phys.
Rev. Lett. 112 (2014), no. 1 011303, [arXiv:1310.3950].

[80] M. Galante, R. Kallosh, A. Linde, and D. Roest, Unity of Cosmological Inflation Attractors,
Phys. Rev. Lett. 114 (2015), no. 14 141302, [arXiv:1412.3797].

[81] G. Immirzi, Real and complex connections for canonical gravity, Class. Quant. Grav. 14 (1997)
L177–L181, [gr-qc/9612030].

– 13 –

http://arxiv.org/abs/2212.11869
http://arxiv.org/abs/2112.12149
http://arxiv.org/abs/2206.14117
http://arxiv.org/abs/2305.01399
http://arxiv.org/abs/gr-qc/9511026
http://arxiv.org/abs/1910.07506
http://arxiv.org/abs/2007.12595
http://arxiv.org/abs/2007.14978
http://arxiv.org/abs/2206.15041
http://arxiv.org/abs/2207.08830
http://arxiv.org/abs/2202.04665
http://arxiv.org/abs/2309.11345
http://arxiv.org/abs/2212.09896
http://arxiv.org/abs/2403.08530
http://arxiv.org/abs/2410.16364
http://arxiv.org/abs/2403.18004
http://arxiv.org/abs/1310.3950
http://arxiv.org/abs/1412.3797
http://arxiv.org/abs/gr-qc/9612030


[82] G. Immirzi, Quantum gravity and Regge calculus, Nucl. Phys. B Proc. Suppl. 57 (1997) 65–72,
[gr-qc/9701052].

[83] Planck Collaboration, Y. Akrami et al., Planck 2018 results. X. Constraints on inflation,
Astron. Astrophys. 641 (2020) A10, [arXiv:1807.06211].

[84] Simons Observatory Collaboration, P. Ade et al., The Simons Observatory: Science goals
and forecasts, JCAP 02 (2019) 056, [arXiv:1808.07445].

[85] K. Abazajian et al., CMB-S4 Science Case, Reference Design, and Project Plan,
arXiv:1907.04473.

[86] LiteBIRD Collaboration, M. Hazumi et al., LiteBIRD: JAXA’s new strategic L-class mission
for all-sky surveys of cosmic microwave background polarization, Proc. SPIE Int. Soc. Opt.
Eng. 11443 (2020) 114432F, [arXiv:2101.12449].

– 14 –

http://arxiv.org/abs/gr-qc/9701052
http://arxiv.org/abs/1807.06211
http://arxiv.org/abs/1808.07445
http://arxiv.org/abs/1907.04473
http://arxiv.org/abs/2101.12449

	Introduction
	Model
	General features of the scalar potential
	Inflationary results
	Conclusions
	Equations for inflationary parameters

