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Abstract – Modelling fluid turbulence using a ‘skeleton’ of coherent structures has traditionally progressed by
focusing on a few canonical laboratory experiments such as pipe flow and Taylor-Couette flow. We here con-
sider the stratified inclined duct, a sustained shear flow whose density stratification allows for the exploration
of a wealth of new coherent and intermittent states at significantly higher Reynolds numbers than in unstrati-
fied flows. We automatically identify the underlying turbulent skeleton of this experiment with a data-driven
method combining dimensionality reduction and unsupervised clustering of shadowgraph visualisations. We
demonstrate the existence of multiple types of turbulence across parameter space and intermittent cycling
between them, revealing distinct transition pathways. With a cluster-based network model of intermittency
we uncover patterns in the transition probabilities and residence times under increasing levels of turbulent
dissipation. Our method and results pave the way for new reduced-order models of multi-physics turbulence.

Introduction. — One of the greatest challenges in fluid dy-
namics is identifying reduced-order descriptions of the high-
dimensional, strongly nonlinear dynamical system describing
turbulence. One promising approach, coherent-structure mod-
eling, dates back to [1,2] and assumes that the turbulent dynam-
ics of practical importance are low-dimensional, with phase-
space trajectories spending significant time near a small set, or
‘skeleton’, of exact (though usually unstable) solutions of the
Navier-Stokes equations, called simple invariant solutions or
exact coherent states [3,4]. This description enables the predic-
tion of turbulent statistics using a weighted average over these
solutions [5], and can reproduce some aspects of the spatiotem-
poral coherence of the fully-nonlinear dynamics [6, 7].

The search for coherent turbulent skeletons requires a deep
understanding of the transition from laminar to turbulent flow.
The study of hydrodynamic stability dates back to O. Reynolds
[8], who introduced in 1883 an experiment that has since be-
come a dominant paradigm: cylindrical pipe flow. A key in-
sight was that the transition to turbulence was governed by
the Reynolds number Re = uh/ν , where u and h denote the
flow’s characteristic velocity and length scales and ν denotes
the fluid’s kinematic viscosity. Recent reviews [9–12] high-
light the significant progress made on understanding the route
to turbulence and the skeleton of pipe flow over the last 150
years. A crucial step in this journey was made by G. I. Taylor
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[13], who introduced in 1923 a second canonical experiment:
the flow between two concentric rotating cylinders, now known
as Taylor-Couette flow. Over the past century, pipe and Taylor-
Couette flows revealed two fundamentally different routes to
turbulence with increasing Re. Pipe flow is linearly stable, and
nonlinearities amplify finite-amplitude disturbances (a subcrit-
ical transition) into turbulent puffs and slugs of increasing life-
time like in excitable and bistable media [11]. By contrast,
Taylor-Couette flow (when dominated by inner-cylinder rota-
tion) is linearly unstable, and nonlinearities lead to the satura-
tion of exponential instabilities (a supercritical transition) and
turbulence after a sequence of successive instabilities [14, 15].

We here consider routes to turbulence in a third and compar-
atively less-well-known laboratory experiment: the ‘stratified
inclined duct’ (SID, see top of fig. 1). This density-stratified
flow features rich transitional and intermittent dynamics which,
we will argue, provide a new fruitful paradigm for advancing
turbulence modelling. Previous progress in characterising tur-
bulence has crucially relied upon the study of transitional flows
exhibiting spatio-temporal intermittency, which is notoriously
difficult to grasp. In SID, stratification introduces stabilising
effects and thus a second dimensionless parameter, yielding
richer intermittent behaviors at higher Re [16,17] and thus more
generic building blocks for the skeleton of turbulence [18–20].

The addition of two-layer stratification to the shear flow in a
tilted pipe was first done by Reynolds in his 1883 paper [8,
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Fig. 1: Experimental setup (the duct is 2 m long, 100 mm wide and
H = 50 mm tall), shadowgraph data and dimensionality reduction
pipeline: edge detection, 10-dimensional (10-D) morphology vector,
2-D vector in principal coordinates, and unsupervised clustering [28].

§ 12], yielding a turbulent transition that was fundamentally
different to pipe flow. The SID experiment was born later
[21, 22], by connecting a long rectangular duct to two large
saltwater reservoirs of different densities ρ0 ± ∆ρ/2 (fig. 1).
SID has two control parameters: Re based on half the duct
height h = H/2 and the layer-averaged buoyancy velocity scale
u =

√
gH∆ρ/ρ0, and the tilt angle θ , which provides extra

energy [23] to sustain dissipative states for longer periods and
explore their spatio-temporal intermittency. A rich ‘intermit-
tent regime’ was characterized by [22–24] in intermediate re-
gions of parameter space (Re,θ), between a finite-amplitude
Holmboe wave regime at low values of Reθ (weakly turbu-
lent, with little interfacial mixing) and a fully turbulent regime
at high Reθ (which never relaminarises and has intense mix-
ing). Novel experiments measuring the time-resolved, three-
dimensional velocity and density fields [25] allowed for the
development of a basic ‘SID skeleton’, demonstrating that (i)
the transition to turbulence was supercritical, mediated by the
‘confined’ Holmboe instability [26], and (ii) three-dimensional
coherent structures in the fully turbulent regime (e.g. hairpin
vortices) could be traced back to this linear instability [27].
However, intermittency has long remained enigmatic.

Outline. – In this Letter, we employ a novel data-driven

approach for advancing the discovery and understanding of
the fundamental states and intermittent dynamics underpinning
SID turbulence across (Re,θ) space. Such an analysis pre-
viously relied upon a trained human eye identifying qualita-
tive flow features within experimental videos [22, 24], limiting
the accuracy, repeatability, and feasibility of classifying large
datasets, and hence its success to date. These limitations have
recently been overcome [28] with an objective method, com-
bining dimensionality reduction and unsupervised clustering,
for classifying flow snapshots based on embedded dynamical
structures. We review and emphasise how this method identi-
fies a variety of distinct turbulent states distinguished by their
finescale density stratification. We reveal unique routes to tur-
bulence by studying the distribution of these states in (Re,θ)
and the intermittent temporal cycles between them. A key con-
tribution of this Letter is our subsequent focus on this intermit-
tency. By developing a cluster-based network model of these
reduced-order dynamics, we reveal new statistical patterns in
cluster transitions and residence times between transitions.

Dataset and dimensionality reduction. — Our dataset con-
sists of 50,155 individual shadowgraph frames (see example in
fig. 1) belonging to 113 movies [29]. Each movie visualises the
evolution of a sustained, sheared, salt-stratified turbulent flow
in SID for a fixed (Re,θ) over hundreds of advective (or shear)
time units h/u. Collectively, the movies span the Holmboe
wave, intermittent and fully turbulent human-classified regimes
[24] across a wide region of parameter space Re = 300−5000,
θ = 1 − 6◦. The greyscale intensity of the shadowgraphs is
approximately proportional to the x− z curvature of the fluid’s
refractive index, and hence the density field, integrated over the
spanwise direction y of the light rays. The dataset is thus well-
suited for studying the structure and temporal evolution of den-
sity interfaces embedded within the flow, which are known to
be energetically and dynamically meaningful [30–32]. The au-
tomated dimensionality reduction pipeline recently introduced
by [28] (sketched in fig. 1) begins by detecting density inter-
faces in shadowgraph frames using a Canny edge-detection al-
gorithm [33]. Only high-contrast edges are detected, to ensure
that experimental noise does not influence our results. The
properties of each connected density interface are then com-
puted: number per frame n, lists of respective areas {ai}i=1,...,n,
lengths {ℓi}, aspect ratios {ri} and tilt angles {αi} based on the
fitting of an ellipse (orange, fig. 1). A 10-dimensional mor-
phology vector

m f = [σz n µa σa µℓ σℓ µr σr µα σα ] (1)

is then constructed, representing each frame f by its number of
interfaces n, the vertical standard deviation of edge pixel den-
sity σz, and the mean (µ) and standard deviation (σ ) of its four
lists of interface properties. This low-dimensional representa-
tion remains physically-interpretable based on the structure of
density filaments embedded within the flow, unlike other com-
pression algorithms such as auto-encoders where the reduced-
order “latent space” may be harder to interpret. A principal
component analysis (PCA) [34] is used to identify correlations
within the matrix M = [m f ] f=1,...,50155, allowing the dataset to
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Fig. 2: Clustered data: All 50,155 experimental frames in the space of
principal components (a). Points belonging to clusters are coloured,
while sparser, unclustered points are in black (adapted from [28]).
Smoothed probability distributions of clusters in Re (b) and θ (c).

be further reduced to a two-dimensional (2-D) PCA basis, ex-
plaining ≈ 80 % of the total variance. Our pipeline thus com-
presses each 1.5-MPixel shadowgraph frame into a 2-D vector
p f in PCA space (P1,P2). More details can be found in [28].

Classification and physical interpretation. – The density-
based clustering algorithm ‘OPTICS’ [35, 36] is then used to
automatically detect dense clusters in the PCA space P (fig. 2a).
Five clusters are detected, accounting for ≈ 80 % of the data,
with unclustered points indicating sparser regions. OPTICS,
based on the seminal algorithm DBSCAN, was chosen for its
simplicity and distinct advantages over other algorithms: it au-
tomatically determines the number of clusters, recognises clus-
ters of arbitrary shape and density, and is robust to noise [37].
Figures 2b-c show the distributions of Re and θ for the frames
belonging to each cluster. The successive prevalence of each
cluster L, B, O, G and U as Re increases, and of a different
succession of clusters as θ increases, already suggests that the
classification captures meaningful and non-trivial physics.

The clusters are interpreted in terms of their physical flow

Fig. 3: Frames corresponding to the centroid of each cluster (squares
in fig. 2a) representing the five types of turbulence. Shadowgraphs are
shown (top) with the detected edges (bottom). Note the dimensionless
Re,θ and snapshot time t (top right). Adapted from [28].

properties in fig. 3, using a representative frame from each
cluster’s centroid. We summarise these properties here to set
the stage for our further analysis, noting that more detail can
be found in [28]. Frame L intuitively qualifies as the most
laminar state (for reference, a hypothetical single laminar in-
terface would yield principal coordinates far off the top right
vertex in fig. 2a). It represents what we may call laminaris-
ing turbulence, where small-scale structure from a preceding
turbulent phase remains visible in the shadowgraph snapshot,
but the pattern of edges shows a ‘stacking’ of flat and stable
density interfaces. By contrast, frame B illustrates braided tur-
bulence, owing to its pair of central ‘braids’ with relatively
two-dimensional curvature in the density field evidenced by
a strong contrast in shadowgraph intensity, representing two
strong interfaces surrounded by a number of weaker ones.
Frame O illustrates overturning turbulence, owing to its numer-
ous short, tilted and hence unstable interfaces. Frames G and
U illustrate granular and unstructured turbulence respectively,
where small-scale three-dimensional turbulent motions result
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in blurred images due to averaging in the cross-duct y direction.
The similarity of clusters G and U is consistent with them being
adjacent in fig. 2a; the more detailed OPTICS output in [28]
demonstrates that they are sub-components of a larger unify-
ing cluster, but are distinguishable based on subtle differences
in their density interfaces. Specifically, the turbulence in G is
more granular, owing to a slightly stronger contrast and hence
more detected edges, especially at mid-height, whereas the tur-
bulence is less structured in U, with flatter edges localised near
the top and bottom walls where the blurred mixing layer meets
the more quiescent boundary layers.

Phase-space dynamics and temporal intermittency. —
We now highlight in fig. 4 the phase space trajectories (P1,P2)
of six experiments, spanning a range of (Re,θ) (fig. 4a). We
compare three experiments traditionally classified (by the hu-
man eye) as fully ‘Turbulent’ at Reθ ≈ 10,000 (fig. 4b-d) and
three classified as ‘Intermittent’ at Reθ ≈ 6000 (fig. 4e-g).
We note that the product Reθ is proportional to the time- and
volume-averaged rate of turbulent kinetic energy dissipation ε

in the flow [23], and to the dynamic range of stratified turbu-
lence, or buoyancy Reynolds number Reb = (LO/LK)

4/3, mea-
suring the separation between the Ozmidov lengthscale LO =
(ε/N3)1/2 and the Kolmogorov lengthscale LK = (ν3/ε)1/4 (N
is the averaged buoyancy frequency) [38, Sec. 5.1].

Our analysis reveals that the most dissipative turbulence, tra-
ditionally classified as fully developed turbulence (top Reθ line
of highest dynamic range), is in fact characterised by different
states. At high Re and low θ = 2◦ (fig. 4b) turbulence is ex-
clusively unstructured, staying within or very near cluster U.
At intermediate Re and θ = 4◦ (fig. 4c), it shifts to being gran-
ular in cluster G with excursions to the sparser (unclustered)
space towards O. At low Re and high θ = 6◦ (fig. 4d), it is ex-
clusively of overturning type, in or near cluster O. By contrast,
less dissipative turbulence along the bottom Reθ line transi-
tions between clusters over time (fig. 4e-i). At intermediate Re
and θ (fig. 4f), the turbulence is of mixed braided/overturning
type, confined to clusters B, O and the intervening space, with
rare relaminarisations. At high Re and low θ (fig. 4e,h), the
route to turbulence is fundamentally different: the time series is
now quasi-periodic across L, B and G. The cycles, numbered in
bold, have periods T ≈ 120−140 advective (shear) time units.
Each cycle starts with a very short excursion to braided turbu-
lence (residence time ≈ 5), followed by a long visit in or near
granular turbulence (≈ 50), then another excursion to braided
turbulence (≈ 10), eventually leading to a long relaminarisation
(≈ 65). At low Re and high θ (fig.4g,i), the route to turbulence
is different again, being quasi-periodic across L, B and O (with
a more variable period T ≈ 120− 220). Importantly, the in-
tense turbulent periods are of overturning (O) rather than gran-
ular (G) type. However they are again accessed by the same
braided (B) ‘gateway’, albeit by ‘turning up’ via its top end of
rather by ‘turning down’ via its middle (compare fig. 4g and e).
Moreover, in both cases the excursions through B during the re-
laminarisation phases G/O→B→L are consistently longer than
during the unstable transitional phases L→B→G/O. These re-
sults suggest that the dynamics of SID intermittency organise
around two inherently different ‘slow manifolds’, motivating

Fig. 4: Temporal dynamics (b-i) in six experiments chosen from the
113 experiments in the space of input parameters (a). The frames are
shown in (b-g) by translucent symbols and the cluster boundaries are
in colours. The cycling time series of (e,g) are shown in (h,i) respec-
tively (without initial transients t < 100), with cycle numbers in bold.
Unclustered frames are coloured based on the nearest cluster.

the future exploration of a higher-dimensional phase space to
resolve the bursting and relaxation dynamics in the orthogonal
‘fast manifold’ [39, § 6.7.2]. These cycles are reminiscent of
the lifecycle of a (transient) Kelvin-Helmholtz billow [20, 40],
but SID flow evidently harbours a greater wealth of turbulent
attractors and transition pathways.

Cluster-based network model of intermittency. – We now
study these intermittent cycles systematically in fig. 5 with a
cluster-based network model inspired by [41]. We count, for
each experiment, the number of transitions NX→Y between clus-
ters X and Y and the residence times TX→Y (in advective time
units) spent by the flow in cluster X before transitioning to
cluster Y. This model overcomes the limitations of traditional
Markov chain models [42, 43] by providing residence times
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Fig. 5: Transition and residence matrices computed by the cluster-
based network model. (a) The 45 intermittent experiments used for
the analysis, exhibiting at least five transitions each. (b-d) Number
of transitions NX→Y recorded and (e-g) average residence times TX→Y
for all data with tilt angles θ = 2◦, 3−4◦, 5−6◦.

rather than selecting a fixed arbitrary time step to discretise the
time series. We restrict the analysis to the 45 truly intermittent
experiments exhibiting at least five transitions (fig. 5a), com-
prising a total of 594 transitions. Three extra steps were taken
for robustness. First, we assigned all unclustered data points (in
black in fig. 2a) to their nearest cluster. Second, we merged the
neighbouring clusters G and U into a single GU cluster given
their similarity. Third, we denoised the data by excluding tran-
sitions near cluster boundaries of the form X→Y→X that are
deemed spurious below a short residence of TY→X < 3.5, in-
stead treating the data as remaining in cluster X. Figure 5b-
d show the NX→Y matrices by segregating all the data with
tilt angle θ = 2◦ (N = 10 experiments), θ = 3− 4◦ (N = 19)
and θ = 5− 6◦ (N = 16). We find that these three matrices
are nearly symmetric, showing a similar number of transitions
from X→Y and Y→X. The most common types of transitions
are L↔B (50% of the total 594), followed by B↔O (39%).
The transitions B↔GU and O↔GU are rarer (5.5% each) and
almost exclusively found at θ = 2◦, confirming the different

Fig. 6: Intermittency statistics from the network model. (a) Total
number of transitions. (b) Normalised ‘next-cluster’ probabilities (the
coloured arrows out of each cluster sum to 100%). (c) Probability dis-
tribution of the residence times for the B↔O and B↔L transitions,
coloured by range of θ . The mean values, given by the small circles
on top of each histogram, match the matrices of fig. 5e-g.

routes to turbulence found in fig. 4. We do not observe any di-
rect transitions between the laminarising (L) and turbulent (O
and GU) clusters, confirming the role of the braided (B) cluster
as the unique gateway to and from intense turbulence. Fig-
ure 5e-g show the corresponding averaged residence matrices
TX→Y , and we pay particular attention to their asymmetry. We
find that residence times on either side of the L↔B transitions
are nearly equal at θ = 2◦ (at 42 and 48 time units). By con-
trast, at θ = 3−6◦, the flow spends much less time in B before
L than vice versa (TB→L ≪ TL→B), signalling a faster relam-
inarisation at higher tilt angles for reasons that remain to be
understood. We also find that TB→X ≪ TX→B (with only one
exception for TB→O at θ = 2◦, which will be minimised later),
meaning that B is a relatively unstable region of phase space,
transitioning mostly to either L or O based on fig 5b-d. We also
notice a strong asymmetry in times between turbulent clusters
O↔GU, as TO→GU ≪ TGU→O (5 vs 19) at θ = 2◦, whereas it is
the exact opposite at θ = 5−6◦ (19 vs 6). This is a puzzling but
potentially insightful observation which may require a greater
sample of transitions to be confirmed as statistically significant.

Probabilistic description of transitions. – Statistics on
transitions and residence times are shown in fig. 6 to offer a
condensed, low-dimensional representation of SID intermit-
tency. The total number and type of transitions in the data
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(fig. 6a) may be normalised to provide, for each cluster, the
probability of transition to the next cluster (fig. 6b). We find
that laminarising (L) turbulence always leads to braided (B)
turbulence, while overturning (O) turbulence most often tran-
sitions back to braided (B) turbulence. By contrast, the task of
predicting the future state of the flow from a single snapshot
in granular/unstructured (GU) or braided (B) turbulence would
be more uncertain as their probabilities are more evenly spread
across two or three clusters. Figure 6c shows the probability
distributions of residence times of the four most common tran-
sitions O↔B↔L. We find the most spread for laminarising tur-
bulence (L→B, top right panel), and the least spread for braided
turbulence before it overturns (B→O, top left panel). However,
we notice a few outliers with very long TB→O, especially at
θ = 2◦ (in green) which increase the mean value above those
at higher angles, resulting in the apparent exception previously
noted in fig. 5. Outliers are also found in TB→L (bottom right) at
θ = 2◦, suggesting that braided turbulence is occasionally sur-
prisingly long-lived at low tilt angles. These histograms also
show that the vast majority of overturning turbulence events
last less than 70 advective (shear) time units (TO→B ≤ 70), and
laminarising phases last less than 100 time units (TL→B ≤ 100).
What sets these robust upper bounds in times scales remains
unclear, but it may be related to the length of the duct. As the
longitudinal aspect ratio is 40, it takes ≈ 80 times units for a
turbulent patch to be advected at the layer-averaged velocity
along the duct. It must be kept in mind that our data provide a
localised view of these spatio-temporally intermittent dynamics
in a window spanning around a fifth of the duct length.

Trends in residence times under increasing turbulence. –
We finally turn our attention in fig. 7 to the evolution of resi-
dence times as the dynamic range Reθ is increased within the
intermittent region of parameter space Reθ ≈ 3000−7000. We
focus on the numerous transitions between braided and over-
turning turbulence, which show the clearest trend. We plot
the mean (circle) and minimum/maximum (error bars) TB→O
(fig. 7a) and TO→B (fig. 7b) between θ = 3− 6◦, with larger
circles denoting a larger sample of transitions. As sketched
by the light blue trend arrow, we find in fig. 7a that the un-
stable braided periods TB→O first decreases with Reθ in the
range 3000− 5000 (see grey inset) to very short and repeat-
able below 5 time units before increasing again to generally
longer and much more variable values of order 10−50 at higher
Reθ ≈ 5000−7000. The existence of an optimal, intermediate
Reθ minimising the transition time to turbulence is particularly
compelling. By contrast, we find in fig. 7b that the overturn-
ing turbulence period TO→B increases monotonically with Reθ .
This suggests that the strongly dissipative overturning state be-
comes more attractive and stable at higher Reθ , consistent with
Reθ being a proxy for the mean dissipation rate. Remarkably,
both panels of fig. 7 demonstrate a collapse of residence times
with Reθ at various values of θ . This product of parameters
is therefore not only significant to the first-order energetics and
the distribution of types of turbulence in parameter space, but
also to more subtle and deeper statistical properties of its tem-
porally intermittent dynamics in phase space.

Summary and conclusions. — We have performed coher-

Fig. 7: Trends in residence times (a) TB→O and (b) TO→B with in-
creasing turbulent dynamic range (or dissipation) Reθ , using the 35
intermittent experiments of fig. 5a between θ = 3−6◦. Data at θ = 2◦

are excluded because L↔B↔O cycles are replaced by L↔B↔UG cy-
cles at higher Re values, as found in fig. 4. Note the emphasis (larger
circles) on experiments having a larger, more statistically significant
sample of transitions (maximum 5).

ent structure modelling of turbulence in the SID experiment,
a wall-bounded sustained stratified shear flow whose 2-D pa-
rameter space (Re,θ) yield a rich set of turbulent and intermit-
tent states. Our analysis was made possible by a recent image-
processing algorithm that transforms shadowgraph movies into
a reduced set of 2-D vectors representing the morphology of
density interfaces within each frame. This allowed an unsu-
pervised algorithm to automatically reveal five distinct types
of turbulence, interpreted as building blocks for the coherent
‘skeleton’ underpinning SID turbulence, and map their distri-
bution in parameter space. The temporal dynamics of turbu-
lence with high dissipation and dynamic range ∝ Reθ are con-
fined within individual clusters, whose type shifts from un-
structured to granular to overturning with decreasing Re and
increasing θ . Less dissipative, intermittent turbulence at lower
Reθ transitions between clusters, typically quasi-periodically.
Two fundamentally different routes to turbulence were identi-
fied, both of which pass through a common braided turbulence
‘gateway’ but end up in different granular or overturning ‘at-
tractors’. We developed a dynamic network model to quantify
cluster transition probabilities and residence times in a dataset
of 594 transitions. This low-dimensional description of SID
intermittency revealed the following physical insights. (i) Av-
erage residence times greatly vary between clusters and, within
each cluster, depend on the next cluster visited. (ii) The braided
turbulence gateway is the most unstable region, and relaminar-
isation is faster at higher θ . (iii) Predicting the next cluster
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is more uncertain from a single snapshot in braided, granular
or unstructured turbulence compared to overturning or lami-
narising turbulence, but residence times in braided turbulence
are the most predictable. (iv) Intense turbulence and laminar-
ising phases tend to be shorter than 100 advective (shear) time
units, which may be related to advection along the duct. (v)
The transition to turbulence is, surprisingly, shortest at inter-
mediate Reθ . By contrast, the dissipative overturning turbu-
lence attractor becomes increasingly stable with Reθ until in-
termittency disappears, with similarities to directed percolation
in pipe flow [11, § 10.4]. This provides further evidence that the
bulk dissipation proxy Reθ has a deep and subtle influence on
the geometry of the SID ‘skeleton’ in phase space that warrants
further study. The success of this reduced-order modelling also
suggests that a similar methodology could profitably be applied
to gain new dynamical systems insight from other datasets of
high-Re turbulence with additional physics, such as rotating,
multiphase, or magnetohydrodynamic turbulence.
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